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Integrated model of deforestation, rainfall and agriculture.

Integrated model of deforestation, rainfall and agriculture.

Deforestation for agriculture affects rainfall, which affects agricultural
productivity.

Most deforestation in Amazon is for agriculture (cattle-ranching)

Araujo [2023]

Model to measure the externality caused by land-use decisions on
agricultural productivity via changes in rainfall.
Application: Effect of the state of the Amazon forest on agricultural
productivity in Mato Grosso State, where 10% of world’s soybeans are
grown.
Counterfactual where farmers are allowed to deforest an important
currently protected area.
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Some relevant references

Well known connection between deforestation and rainfall, ]Salati
et al. [1979],Spracklen et al. [2012]

Measurement of externality, Araujo et al. [2023]

Balboni et al. [2022]: Economics literature mostly overlooks feedback
between land use decision and climate.

Araujo [2023]

develops discrete choice model of land use that accounts for
adaptation, which is missing from natural sciences models.
develops climate model of precipitation accounting for climate
externalities that are absent in economic models.
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Land use model I

Farmer in plot i can:

Deforest and choose activity c = 1, 2, 3 (cattle, soybeans or soybeans
+ corn) with log payoff

π̂c
i = log r ci + β̂c

1Ri + k̂c + ϵ̂ci ,

where r ci is a measure of the value of sales of c in plot i , Ri is a
measure of precipitation in plot i , kc captures cost of production of
activity c , and ϵci is a idiosyncratic shock.

Keep plot i as forest and get log payoff

π̂F = k̂F + ϵ̂Fi .

For c = 1, 2

r ci = Ac
i (p

c − τ ci )
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Land use model II

r3i = A2
i (p

1 − τ1i ) + Acorn
i (pcorn − τ corni )

A1
i is maximum cattle production in plot i ,, A2

i is maximum soybean
yield in plot i , and Acorn

i is maximum corn yield in plot i .

p·, international market price;

τ ·i is transportation cost from land i to the port.

Farmer chooses max{maxc π̂
c
i , π̂

f }
Assumption: Vector of unobservables follows a Generalized Extreme
Value (GEV) with joint probability distribution:

exp

−e−
ϵ̂Fi
σ −

(∑
c

e−
ϵ̂ci
λσ

)λ
 (1)
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Land use model III

if λ ̸= 1 then non-forest shocks are correlated.

Since rescaling payoffs has no choice consequences, let
1 α := 1

σ

2 βc
1 := 1

σ β̂
c
1

3 . . .

and rewrite log payoffs as:

π̃c
i = α log r ci + βc

1Ri + kc + ϵi ,

π̃F = k̂F + ϵ̂i .

and the distribution of unobservables is as in expression (1) with
σ = 1.
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Land use model IV

Identification from observed behavior requires normalization of
constants and coefficients of common variables.

Set (i) k1 = 0 and (ii)β1 = 0.

(i) is innocuous while (ii) has substance: Rain does not affect cattle
productivity.

Would need a (probably dynamic) model of how rain affects cattle

Application and (ii) motivates, Ri : total precipitation during growing
season in Mato Grosso – September-March, on land i.
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Choice probabilities

Write π·
i for π̃

·
i when ϵ·i = 0

Pi (F ) =
eπ

F
i

eπ
F
i +

(∑
c
e
πc
i

λ

)λ

Pi (c) =

e
πc
i
λ +

(∑
c e

πc
i
λ

)λ−1

eπ
F
i +

(∑
c
e
πc
i

λ

)λ

Pi (c |not F ) =
e

πc
i
λ∑

c e
πc
i
λ

Each Pi function of precipitation Ri .

8 / 24



Empirical precipitation model I

Time interval: month

Use wind data from Copernicus [2017] from 1985 to 2018.

Since wind data (∼ 25km x 25km) is lower resolution than land use
data (.25km × .25km), map land use pixel into corresponding wind
pixel.

For each wind pixel o construct forest index Imo using average
Mapbiomas status (forested =1, deforested =0) of the Mapbiomas
pixels (30m x 30m) in wind pixel.

Upwind exposure to the forest of a back trajectory is:

Hm
o :=

∑
Õm

o

Imõ , (2)

where Õm
o is the set of wind pixels in back trajectory of wind that

arrives at o in month m.
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Empirical precipitation model II

Ignores cascading (see Part III)

Model of precipitation at climate pixel o as a function of upwind
exposure to the forest,

Rm
o = θmH

m
o + ϵmo (3)

Precipitation in land plot only depends on wind pixel.

Aggregate (3) to growing season in Mato Grosso.
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ML estimation

Discrete time model estimated by maximum likelihood in two stages
(Train [2009])

Agriculture nest: ML estimate of parameters parameters (αλ ,
βc

λ , kcλ ).

(log) likelihood ∑
i

Ici logPi (c |C ), , (4)

where Pi (c |C ) is the conditional probability of activity c given theat
the plot is not kept for forest and Ici = 1 if c is chosen for plot i .

Given the estimated parameters for agriculture nest obtained by
maximizing expression 4 over choices of (αλ ,

βc

λ , kcλ choose parameters
(kf , λ) in the deforestation nest by maximizing

(log) likelihood∑
i

IFi logPi (F ) + (1− IFi ) log(1− Pi (F )) (5)
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Equilibrium

Land use choice is function of precipitation and precipitation depends
on land use.

Equilibrium is a land use that is consistent with the precipitation it
generates.

For counterfactual needs to compute impact of changing area of
allowed deforestation

Write P(F ) for the vector of Pi (F ). From precipitation model,
expected rain in plot i depends on P(F ).

In turn plot choices and hence P ′(F ) depends on expected rain vector.

This defines mapping P ′(F ) = T (P(F ))

Equilibrium is a fixed point of T .

Estimated parameter values imply that T is a contraction. (see
Appendix B of paper).

Equilibrium can be computed by making initial guess and iterating.
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Data I

Land use from Simoes et al. [2020]

annual land use from 2001-2017 for pixels of 250 meters in Mato
Grosso state.
Drop cities and water
Equate all single cropping to soybeans and all double cropping to
soybeans plus corn.
Treat all vegetation. wetland, cerrado, as forest.

Transportation cost from Araujo et al. [2020] which uses
transportation and freight data to estimate as in Donaldson [2018],
least cost for transportation from a plot i to port with access to
international markets.

International agricultural prices from St. Louis Federal Reserve
dataset FRED.
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Data II

Ac (maximum sustainable yield for crop c) from soil suitability from
FAO project Global Ecological Zone. For cattle, use grass potential
yield (FAO) and match average grass potential per hectare in Mato
Grosso to average production per hectare in MT.

Data used previously e.g., Costinot et al. [2016].

FAO measure affected by rain
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results

Estimation of model parameters

Table: Parameter Estimation

Panel A Panel B

Coefficient Estimate Coefficient Estimate

α
λ 0.56 λ 0.85

(0.01) (0.03)
βsinglecrop

λ 0.98 kF 3.14
(0.03) (0.01)

βdoublecrop

λ 2.58
(0.03)

ksinglecrop
λ -3.68

(0.02)
kdoublecrop

λ -4.51
(0.02)

Notes: Standard errors in parentheses computed with
block bootstrap clustered at the pixel level. All estimates
have p-value ¡ 0.01. Pane4l A - number of observations:
3,185,987; number of unique pixels: 379,902. Pannel B
number of observations: 7,265,252; number of unique pix-
els: 727,750.
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results

Estimation of empirical rain model 3

Figure 3: Exposure to the Forest and Precipitation

(A) the green boxes describe the upwind exposure to the forest data. The white lines inside the boxes mark
the median value. The boxes boundaries and the caps shows the percentiles 5%, 25%, 75%, and 95%. The
blue boxes describe the precipitation data.(B) this figure shows results for the empirical climate model 9.
All specifications include as a control the length of the back trajectory traveled by land. Standard errors
are clustered at the pixel level. Each line/color denotes a different specification for fixed effects.The small
vertical lines show the 95% confidence interval of the estimate. Number of observations 487,560.

20

All specifications include control of length of back trajectory over
land.
Standard errors clustered at the pixel level
Small vertical lines show 95% interval
487,560 observations
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results

Counterfactual: Effect of allowing farming in protected
indigenous territories in Xingu region

(A)
(B)

Figure: (A) shows the location of the Amazon Rainforest and of the Brazilian
State of Mato Grosso. (B) shows the location of the indigenous territories of the
Xingu River Basin and the locations of other protected areas in the State of Mato
Grosso.
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results

Counterfactual: Wind trajectories arriving in Mato Grosso

(C) (D)

Figure: (C) and (D) show a sample of back trajectories for the months of
February and July 2002 arriving in Mato Grosso.
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results

Counterfactual: Effect of allowing farming in protected
indigenous territories in Xingu region

Use average wind exposure in data to predict change in rainfall.
Allowing farmers in protected Xingu river results in, 57,841 km2

(43%) of deforestation.
Cattle ranching responsible for 73% of deforestation
A bit lower but not that different then average cattle-share in Brazilian
Amazon

For regions outside Xingu single and double cropping expected payoffs
decrease by 2%,, with some regions reaching 8%.

Farmers outside protected areas in Xingu pay for farmers that invade
Xingu.
Effect heavily driven by double cropping
Double cropping much more sensitive to rain change.

Losses do not account for emissions of 2.8 Gigatons of CO2 (90
billion USD at $25/ton).
Do not account for biodiversity loss.
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results

Counterfactual: Change in single and double cropping
expected payoffs

(A) (B)

Figure: (A) Change in single crop expected payoff and (B) Change in double
cropping expected payoff due to the endogenous change in rainfall caused by the
deforestation in the Xingu
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results

Counterfactual: Distribution of losses across years

Figure: Distribution of loss (%) using year-to-year variation in the atmospheric
trajectory data for double cropping (A) and crops in general (B).
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