Climate and Economics: Tropical Forests Part IV

Jose A. Scheinkman (Columbia University)

Centre for microdata methods and practice - UCL - April 2024

Deterring deforestation in the Brazilian Amazon.

- Bulk of tropical forests in developing countries.
- Weak institutions have long been barriers to policy implementation in developing countries.
- Assunção et al. [2023] examines the use of remote sensing technology to reduce deforestation in the Brazilian Amazon.
- Implementation in 2004 of real-time satellite based system providing daily surveillance of deforestation (DETER).
- Upon detecting change in forest-cover DETER issues an alert to environmental law-enforcement.
 - Vast majority of deforestation in Amazon biome is illegal.
- On time alert is important because upon catching violators in *flagrante delicto*, enforcers can apply instant penalties including apprehending or destroying equipment.
 - Deforestation requires machines
 - Penalize owners instead of poor workers

Deforestation Brazilian Legal Amazon in Km²

- Not exactly Amazon biome
- https://web.archive.org/web/20230110063026/http://terrabrasilis. dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates

Law enforcement and illegal deforestation

- Endogeneity
 - Levitt [1997]
 - Presence of law enforcement may negatively impacts illegal forest clearing because potential offenders may fear punishment.
 - Law enforcement may be allocated partially based on the observation of clearings.
 - Only observe "equilibrium" outcomes
- Coefficient of law enforcement on a OLS regression of change in forest cover on law enforcement plus controls cannot be interpreted as casual impact of law enforcement on forest clearing.
- Instruments.
- Assunção et al. [2023] uses cloud covers that inhibit DETER satellite detection in particular areas as instrument for law enforcement.

Clouds and Deter alerts (January vs April 2011)

Clouds and Deter alerts (July vs October 2011)

Empirical strategy I

- Law enforcement measured by yearly total deforestation-related fines applied by IBAMA in municipality.
 - Upon verifying deforestation Ibama may apply other penalties but always issues a fine
 - Ibama produces public data on fines that contains date, municipality, and fine type of infraction, what allows to identify deforestation-related fines.
 - https://servicos.ibama.gov.br/ctf/publico/areasembargadas/ ConsultaPublicaAreasEmbargadas.php (raw data received May 2016).
- Deforestation measured by PRODES a system that started in 1988 , which uses a better (and more expensive) satellite system, and chooses the best pictures from the yearly Amazon dry season for each area.
 - PRODES uses optical images from Landsat satellites

Empirical strategy II

- PRODES produces a yearly measure of deforestation change for 30m pixels. PRODES counts pixels that are near totally deforested. Once area counted as deforested it is considered deforested forever.
- Does not account for reforestation or deforestation of reforested areas.

Empirical strategy III

• To reduce influence of large municipalities transform PRODES total increment in deforestation by using the transformation

$$\sinh^{-1}(y) = \ln\left(y + \sqrt{y^2 + 1}\right)$$

Empirical strategy IV

- Cloud cover measured using DETER.
- DETER uses optical images from MODIS sensor on the Terra Satellite
 - Resolution of 250 meters.
 - Daily visits of all areas
- Law enforcement gets high frequency info on deforestation but public data on cloud-cover is monthly.
- Variable *Cloudc_{i,t}* is yearly average of monthly ratios of area covered by clouds to municipal area.
- Panel of observations over municipalities *i* and PRODES year *t*, August (t-1) to July (t), for t = 2006...2016.
- OLS regression

$$Deforest_{i,t} = \tilde{\beta}LE_{i,t-1} + \sum_{k} [\tilde{\gamma}_{k}Control_{i,t,k}] + \tilde{\alpha}_{i} + \tilde{\phi}_{t} + \tilde{\epsilon}_{i,t}$$
(1)

Empirical strategy V

- Controls include, agricultural prices at municipality, precipitation and temperature at municipality, and PRODES satellite blocked areas.
- But coefficient $\tilde{\beta}$ is affected by presence of reverse causality.
- Instead, first-stage regression

$$LE_{i,t} = \beta Cloudc_{i,t} + \sum_{k} [\gamma_k X_i, t, k] + \alpha_i + \phi_t + \epsilon_{i,t}$$
(2)

- X_{i,t} municipality-level controls that include precipitation, temperature, and PRODES blocked areas.
- α municipality f.e., ϕ year f.e.
- SE clustered at municipality (521) and micro-region (81)-year two-way clustering.
- Clustering is to allow for heteroskedascity between error terms when computing standard errors.

Empirical strategy VI

- Two way clustering allows for heteroskedasticity and autocorrelation.
- β significantly \neq 0, (relevance).
- To use *Cloudc* as an instrument for *LE* need to argue that it is uncorrelated with the residuals in the OLS (1) . (exclusion)
- Threats to exclusion restriction
 - *Cloudc_{i,t}* correlated with omitted geographical variables that correlate with forest clearings.
 - Addressed by controlling for rainfall and temperature which could be causes of cloud cover, and may correlate with deforestation via *e.g.*, ecological effect of forest loss.
 - $Cloudc_{i,t}$ may be correlated with measure of deforestation
 - Addressed by using PRODES and a control for PRODES blocked areas.

Empirical strategy VII

• Second-stage (IV) regression:

$$Dforestat_{i,t} = \delta Cloudc_{i,t-1} + \sum_{k} \left[\theta_k X_{i,t,k}\right] + \psi_i + \lambda_t + \xi_{i,t}$$
(3)

- Use of *Cloudc*_{*i*,*t*-1} based on literature starting with (Levitt [1997]) that documents lagged response of illegal activity to enhanced enforcement.
- X_{i,t,k} include in addition to those in equation (2), agriculture commodity prices.
- Robustness exercises include controls for conservation policy controls.

2SLS, second stage and OLS: Cloud coverage and law enforcement

Panel A. 2SLS, second-stage results and OLS								
Depvar:	IHS(deforest)	ln(deforest)	deforest/muni area	deforest/mean	IHS(deforest)			
	2SLS	2SLS	2SLS	2SLS	OLS			
	(1)	(2)	(3)	(4)	(5)			
Enforcement, $t - 1$	-0.0503	-0.0743	-0.0244	-0.0452	0.0002			
	(0.0235)	(0.0399)	(0.0123)	(0.0243)	(0.0006)			
FE: municipality and year	Yes	Yes	Yes	Yes	Yes			
Controls: full	Yes	Yes	Yes	Yes	Yes			
Observations	5,210	5,210	5,210	5,210	5,210			
Municipalities	521	521	521	521	521			

TABLE 2-IV REGRESSIONS: LAW ENFORCEMENT AND DEFORESTATION

- Estimate in specification (1) implies that on average, increasing monitoring law enforcement by 50% yields 25% decrease in deforestation.
- Computation of elasticity as derived in Bellemare and Wichman [2020]

2SLS first stage: Cloud coverage and law enforcement

Panel B. 2SLS, first-stage r	esults
	Depvar: enforcement 2SLS
DETER cloud coverage	-9.6628 (3.0394)
Precipitation	-0.0004 (0.0003)
Temperature	-0.5530 (1.5160)
PRODES cloud coverage	0.0002 (0.0001)
PRODES nonobservable	0.0029 (0.0026)
First-stage F-statistic	10.11
FE: municipality and year Controls: agricultural price	Yes s Yes
Observations Municipalities	5,210 521

 First stage F > 10 means instrument strength not a cause for concern [Stock et al., 2002]

Results

Cost effectiveness I

- Total budget for Ibama and Inpe amounted to \$6.85 billion.
 - This uses 2011 budgets multiplied by the number of years (10).
 - Ibama and Inpe have many other tasks, so surely this exaggerates costs.
 - Ibama in charge of environmental impact evaluation and licensing in Brazil.
- Two counterfactual- exercises concerning deforestation in 2007-2016 using specification (3).
 - 1 No monitoring or low enforcement. Set LE = 0.
 - ② No new satellite system: Set LE = average 2002-2004 (pre-DETER)
- Both scenarios yield substantial increase in deforestation.
- Actual deforestation in period was 69,500 km².
- Scenario 1 implies Amazon would have seen 338,000 km² of cleared areas an increase of almost 400%.
- Scenario 2 implies 279,000 km² of cleared areas.

Cost effectiveness II

- Based on scenario 1 this would have implied extra emission of almost 10 gigatons of CO₂. Thus the cost corresponds to \$.69/ton.
- Based on scenario 2 cost =\$.89 /ton
- Deterrence of deforestation at scale and with punishment is very cheap.

Results

Calculating impact of counterfactual law enforcement I

• Let $y_{i,t}$ denote normalized deforestation and rewrite the benchmark specification (equation (3)) as:

$$y_{i,t} = \delta L E_{i,t-1} + \sum_{k} \theta_k X_{i,t,k} + \psi_i + \lambda_t + \xi_{i,t}$$
(4)

• In a counterfactual scenario of law enforcement :

$$\mathbb{E}[y_{i,t|sim} - y_{i,t}] = \hat{\delta}LE_{i,t-1|sim} + \sum_{k}\hat{\theta_k}X_{i,t,k} + \hat{\psi_i} + \hat{\lambda_t}$$
$$- \left[\hat{\delta}LE_{i,t-1} + \sum_{k}\hat{\theta_k}X_{i,t,k} + \hat{\psi_i} + \hat{\lambda_t}\right]$$
$$= \hat{\delta}\left(LE_{i,t-1|sim} - LE_{i,t-1}\right)$$

Calculating impact of counterfactual law enforcement II

 For the linear transformation in which annual municipal deforestation (*def_{i,t}*) is divided by a municipality-specific constant (μ_i), this difference is given by:

$$\mathbb{E}\left[\frac{def_{i,t}}{\mu_{i}}|_{sim} - \frac{def_{i,t}}{\mu_{i}}\right] = \hat{\delta}\left(LE_{i,t-1|sim} - LE_{i,t-1}\right)$$
$$\implies \mathbb{E}\left[\frac{def_{i,t}|_{sim} - def_{i,t}}{\mu_{i}}\right] = \hat{\delta}\left(LE_{i,t-1|sim} - LE_{i,t-1}\right)$$
$$\implies \mathbb{E}\left[def_{i,t}|_{sim} - def_{i,t}\right] = \mu_{i}\hat{\delta}\left(LE_{i,t-1|sim} - LE_{i,t-1}\right)$$

Results

Robustness Checks

- Checking if pre-DETER differences drive results
 - 2003 deforestation stock
 - 2003 increase in deforestation
 - 3 2002-2004 average municipal fines
- Coefficient on *Cloudc*_{*i*,*t*-1} in second stage specifications remain statistically significant and first-stage coefficient of *Cloudc*_{*i*,*t*} keeps sign, significance and instrument strength.
- Sample restricted to municipalities in which forest/municipal area in 2003 above median
- Control for conservation policies implemented alongside DETER: extension of protected areas, priority municipalities.
- Alternative weather controls (NOAA) instead of benchmark from [Matsuura and Willmott, 2018a,b]

Placebo I - Changing timing of Cloudc I

		Depvar: IHS(deforest)				
	(1)	(2)	(3)	(4)		
DETER cloud coverage, $t - 1$	0.4863 (0.1729)			0.5313 (0.1891)		
DETER cloud coverage, t		-0.1783 (0.1696)		$\begin{array}{c} -0.0181 \\ (0.1824) \end{array}$		
DETER cloud coverage, $t + 1$			-0.2111 (0.1944)	$\begin{array}{c} -0.2291 \\ (0.1878) \end{array}$		
FE: muni. and year Controls: full	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
R ² Observations Municipalities	0.8702 5,210 521	0.8699 5,210 521	0.8676 4,689 521	0.8703 4,689 521		

Table 4—Reduced-Form Specifications and Placebo Checks: Cloud Coverage and Deforestation

Results

Placebo II - Could cover before DETER I

FIGURE 3. PLACEBO CHECK: CLOUD COVERAGE AND DEFORESTATION BEFORE AND AFTER REMOTE MONITORING

- Use cloud-cover from NASA's Earth Data Giovanni platform.
 - Correlation of .63 with DETER cloud cover.
- Regression as in specification (1) of previous table but adding interaction between year dummies and cloud-cover.

Summary of Results

- Estimated coefficient $\tilde{\beta}$ of OLS not significantly different from 0, suggesting law enforcement does not affect deforestation. Because of reverse causality, expect OLS upward biased.
- Estimated β in first-stage regression significantly negative.
- Elasticity of deforestation with respect to law enforcement (proxied by Cloudc) is .53 for the average municipality.
- Empirical evidence that environmental law enforcement effectively curbed tropical deforestation in 2006-2016.
- Counterfactuals show that if implemented at scale protecting forests is cheap.

References I

- Juliano Assunção, Clarissa Gandour, and Romero Rocha. Deter-ing deforestation in the amazon: Environmental monitoring and law enforcement. *American Economic Journal: Applied Economics*, 15(2): 125–156, 2023.
- Marc F Bellemare and Casey J Wichman. Elasticities and the inverse hyperbolic sine transformation. *Oxford Bulletin of Economics and Statistics*, 82(1):50–61, 2020.
- Steven D Levitt. Using electoral cycles in police hiring to estimate the effect of police on crime. *The American Economic Review*, 87(3): 270–290, 1997.
- Kenji Matsuura and Cort J Willmott. Terrestrial air temperature: 1900–2017 gridded monthly time series. *University of Delaware, Newark, DE Retreived from*, 2018a.

References II

- Kenji Matsuura and Cort J Willmott. Terrestrial precipitation: 1900–2017 gridded monthly time series. *Electronic. Department of Geography, University of Delaware, Newark, DE*, 19716, 2018b.
- James H Stock, Jonathan H Wright, and Motohiro Yogo. A survey of weak instruments and weak identification in generalized method of moments. *Journal of Business & Economic Statistics*, 20(4):518–529, 2002.