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Carbon prices and forest preservation over time and space in the
Brazilian Amazon

Carbon capture potential of reforestation in tropical forests

Assunção et al. [2023]

Studies the problem of a fictitious social planner to provide a
benchmark for ad hoc policy alternatives.

Uses data on the Brazilian Amazon

Analyzes a dynamic model across heterogeneous regions in the
Amazon.

Exploits rich panel data set that covers a cross-section of regions in
the Amazon.

Uses numerical methods to achieve a necessary degree of economic
and environmental richness to achieve credible results.

Implements a novel refinement to uncertainty quantification.
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Carbon prices and forest preservation over time and space in the
Brazilian Amazon

Motivation

The Amazon forest contains 123± 31 billion tons of captured carbon
that can be released into the atmosphere, equivalent to the historical
cumulative emissions of the United States (Malhi et al. [2006],
Friedlingstein et al. [2022])

Brazilian Amazon occupies 60% of the 2.7 million square miles that
comprise the Amazon.

An area the size of Texas has been deforested in the Brazilian
Amazon.

Portions of Amazon have become a source instead of sink for carbon.

Destruction of forest has not help alleviate to poverty in Brazil

Income of agricultural workers in legal Amazon was 829 reais/month in
2019, only 83% of Brazilian minimum wage
85% informal
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Carbon prices and forest preservation over time and space in the
Brazilian Amazon

Emissions curve
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Carbon prices and forest preservation over time and space in the
Brazilian Amazon

Road map

1 Present model

2 Short literature review

3 Discuss calibration

4 Present results

5 Some added remarks

6 Conclusions
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Model

State and control variables

Sites are denoted i = 1, . . . , I and the state-vector by (Z ,X ,Pa).

Z = (Z 1, . . .Z I ), is the vector of site-specific hectares of land used
for agriculture.

X = (X 1, . . . ,X I ) is the vector of site-specific stocks of captured
carbon (above ground).

Pa is an index of cattle prices in Brazil in 2017 USD.

85% of deforested land is used for cattle raising.

Pe is the social price of emissions

Non-negative controls U i and V i with Ż = U − V

At optima U i
tV

i
t = 0

State constraints:
0 ≤ Z i

t ≤ z̄ i ,

where z̄ i is the maximum area for agriculture in site i .
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Model

State dynamics

Carbon capture dynamics

Ẋ i = −γ iU i − αX i + αγi
(
z̄ i − Z i

)
where γ i > 0 and α > 0.

Does not allow for interactions across sites.

q state Markov chain with possible values for the agricultural price,
pa1, . . . p

a
q

An infinitesimal generator given by q × q matrix M = [mℓ,ℓ′ ] with
non-negative off-diagonal entries and∑

ℓ′ ̸=ℓ

mℓℓ′ = −mℓℓ > 0.

exp(tM) gives transition probabilities over interval t.
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Model

Outputs

Agricultural output
Ai = θiPaZ i

where θi ≥ 0 is a site specific productivity parameter. and Pa is the
national price.

Net emissions

κ

I∑
i=1

Z i
t −

I∑
i=1

Ẋ i
t

where κ > 0 measures the emissions per hectare of land induced by
agriculture.
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Model

Quadratic adjustment cost

Aggregate investment/disinvestment in agriculture over sites

I∑
i=1

|Ż i |

Quadratic adjustment costs

ζ

2

[
I∑

i=1

(
U i
t + V i

t

)]2
.

Motivation: Finite amount of resources to change use.

Today: Only source of interactions across site.
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Model

Social planner’s objective I

Planner maximizes

E
∫ ∞

0
exp(−δt)

[
−Pe

(
κ

I∑
i=1

Z i
t −

I∑
i=1

Ẋ i
t

)
+ Pa

t

I∑
i=1

θiZ i
t−

ζ

2

(
I∑

i=1

(U i
t + V i

t )

)2
 dt

Assume passive restoration

Because of low and diminishing productivity, 7.2 million hectares of
deforested land has been abandoned and passively restored for at least
6 years.

Planner chooses site-specific controls U i ,V i subject to the state
evolution equations and the initial states
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Model

Social planner’s objective II

Pe , price of emissions, reflects a market for offsets and/or a planner’s
own valuation.

Cross sectional heterogeneity often implies boundary solutions for
sites.
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Model

Adding parameter uncertainty I

Assume Pa
t is constant, φi := (γ i , θi ), φ full 2I dim parameter vector.

φ = φ(β), dim(β) < 2I .

Time taken by numerical solution calculation sensitive to dimension of
parameter vector.

π baseline distribution of β.

d be the vector of decisions and f (d , φ(β)) for the resulting value
given the unknown β.

max
d

min
g ,
∫
gdπ=1

∫
f (d , β)g(β)dπ(β) + ξ

∫
log g(β)g(β)dπ(β)

ξ > 0 is penalty parameter.

For given g , max problem can ignore penalty.
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Model

Adding parameter uncertainty II

No learning.

minimizing g is given by:

gd(β) =
exp

[
−1

ξ f (d , β)
]

∫
B exp

[
−1

ξ f (d , β)
]
dπ(β)

(1)
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Model

Deterministic limit case

Limit case with ξ =∞ corresponds to ambiguity neutrality. Decision
problem uses objective

max
d

∫
B
f (d , β)g(β)dπ(β).

Problem is deterministic with parameters set at the average value of β
under the baseline distribution π.
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Literature

Some references I

Role of natural solutions

Griscom et al. [2017], Heinrich et al. [2021] (focus on Brazilian
Amazon)

Franklin Jr and Pindyck [2024] ignores passive restoration, focus on
active restoration projects at small scale in Brazil and derive high
marginal costs.

Static discrete-choice models to study the link between agriculture
and deforestation, e.g, (Souza-Rodrigues [2019] and Dominguez-Iino
[2021]).

Araujo et al. [2022]) develop dynamic model along lines of
Souza-Rodrigues [2019] but with dynamics restricted to
forward-looking behavior of farmers.
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Literature

Some references II

Survey of economics of tropical deforestation, Balboni et al. [2022],
contains many references.

Most studies on agricultural expansion and deforestation are static.

This paper provides framework that integrates the impact of carbon
prices on deforestation, forest restoration, and agriculture. Also take
into account the uncertainty on agricultural productivity and forest
carbon measures.
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Calibration

Sites and initial states

Sites:

Fine grid of 1887 sites of ≈ 67 km × 67 km. Of these 1043 have at
least 3% ot area in the Brazilian Amazon biome. Featured in results
today without price uncertainty and with ambiguity neutrality; solve as
a deterministic model.
Coarser grid of 78 sites (featured in results with agricultural price
uncertainty, solve using MPC methods with a Markov process for prices
of agricultural output and in results about parameter ambiguity, and
for comparison, deterministic model): Aggregate 16 sites of fine grid to
produce sites of ≈ 268km × 268km.

Drop three sites with < 3% in Brazilian Amazon biome.

Agricultural areas in 2017 (Z i
0)

Source: MapBiomas

Total land available in 2017 (z̄ i )

Source: MapBiomas

X i
0 = γ i (z̄ i − Z i

0).
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Calibration

Cattle productivity I

Use Cattle data since cattle occupies 85% of areas deforested for
agriculture.

Data on value cattle sales and area of agriculture for 540
municipalities that overlap the biome from 2017 Agriculture Census.

Missing data (74 out of 540) and unlikely outliers for municipalities
with very small agricultural area.

Regression of log value of cattle per hectare on set of 7 geographical
variables Rm

θ and the local farmgate-price (proxy for transportation
costs) yields smoother and lower dimensional representation βθ · Rm

θ
and fills in missing data.

Because cattle-grazing area differs a lot across municipalities, weight
observations by 2017 pasture area in municipality.

Calculate site θi by averaging over overlapping municipalities
(weighted by overlap) of exp(βm

θ Rm
θ ), and dividing by pA2017.
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Calibration

Cattle productivity II

Heterogeneity reflects transportation cost and current technology.

Historically transportation network increased deforestation but with
limited effect on productivity (Gollin and Wolfersberger [2023]).

Note we are not accounting for labor costs, thus exaggerating
productivity of sector.
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Calibration

Cattle price uncertainty and adjustment costs

Cattle price uncertainty: Fit two-state Markov process as hidden state
Markov chain with Gaussian noise, using hmmlearn package in
python.

Fits two states and transition matrix.
Ps mean of stationary distribution.

Adjustment cost, ζ, so marginal cost of changing land use matches
forest to pasture cost estimated by Araujo et al. [2022].

Need to explore asymmetry
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Calibration

Carbon dynamics I

γ i : Extract random sample of 1.2M 30m-pixels and select 893,753
pixels that could be considered primary forest in 2018 (pixels with no
deforestation since 1985). Add above ground biomass density data for
2017, from ESA Biomass (Santoro and Cartus [2021]). Biomass data
comes in a grid format ∼100m, so spatially match it to sample and
calculate average CO2 density (Mg/ha).

Calculate mean γm for municipalities.

Regression of log γm on set of 5 geographical variables Rm
γ yield

smoother representation.

Calculate site γ i by average over overlapping municipalities (weighted
by overlap) of exp(βm

γ Rm
γ ).

α, carbon depreciation parameter, set so convergence of carbon
accumulation process is 100 years. (Henrich et al.(2021)).

κ calibrated from agricultural net annual emission data at the state
level available from SEEG.
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Calibration

Baseline distribution

Uncertainty on β := (βγ , βθ) induces uncertainty on φi = (γ i , θi )

Lower dimensionality of uncertainty (13 vs. 78)

Use conjugate prior updating (Raiffa et al. [1961], Hansen and
Sargent [2013], Section 5.3) to produce a baseline distribution π of
the vector β.

Baseline for θ. γ analogous except that no weight matrix.

Let Y be the vector of log value of cattle per hectare for the 466
municipalities with data. Coeffs of least squares with weight Wθ and
Gaussian error variance-covariance σ2

θ I is same as coeffs of least
square regression,

Yθ = Rθβθ + εθ, εθ ∼ N (0, σ2
θW

−1
θ ), (2)

.
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Calibration

Baseline distribution I

If priors

βθ | σ2
θ ∼ N (m0, σ

2
θQ

−1
0 ) (3)

and,

σ2
θ ∼ Inv-Gamma(a0, b0) (4)

Posterior is given by Normal-inverse gamma with

Q = R ′
θWθRθ + Q0,

m = Q−1(R ′
θWθyθ + Q0m0),

a = a0 +
n

2
,

b = b0 +
1

2
(y ′θWθyθ +m′

0Q0m0 −m′Qm),

23 / 66



Calibration

Baseline distribution II

Impose improper priors:

Q0 = 0 m0 = 0 a0 = 0 b0 = 0,

Implies posteriors inputs are familiar regression statistics.

Uncertainty on θ larger than on γ.
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Calibration

Site-specific Parameters γ i and θi (1043 sites)
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Results

Computational Approach

Discrete-time (year) approximation

Deterministic prices (78 or 1043 sites): Interior Point Method:
inequalities are approximated with logarithmic penalty functions.

Uncertain prices (78 sites): Add Model Predictive Control
Finite-horizon approximation with two horizons:

Relatively short uncertainty horizon (u.h.) where controls are computed
as a function of potential shock realizations ( five periods);
Longer horizon where the control solutions are approximated by
eliminating shocks beyond the uncertainty horizon ( 200 periods).

Solve the model again in subsequent periods with the same u.h..
Choose u.h.= 5) because value function changes little from u.h. = 4.
Interested in first 50 years
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Results

Parameter uncertainty

i) Given a g , solve the maximization problem for a candidate d . May
ignore relative entropy penalty.

ii) For given d , solve the minimization problem to obtain new g .

iii) Repeat until achieve convergence.

For step ii) use quasi-analytical solution (1) and a Markov chain
Monte Carlo method that is based on Hamiltonian dynamics. Often
more efficient for high dimensional problems than Metropolis-Hastings
(Neal et al. [2011], Carpenter et al. [2017]).
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Results

Planner’s own valuation - Inferred shadow price of carbon
from aggregate behavior 1995-2008

1995 - Begin reliable price data. 2008 - Announcement of Amazon
Fund that incentivizes preservation of the forest with resources from
Norway. ( NOK 8.3 billion in 2009-2018)

Observe prices Pa
t in 95-08 and find Pee that produces Z2008 = Z o

2008.

Price Pee that matches observed deforestation varies with model
chosen.

A model where, implicitly, a planner would act more aggressively
against preservation would imply a larger Pee .

Larger Pee applied to future decisions lowers deforestation ( increase
reforestation).

Pee that vary with model brings future trajectories across models
closer.

Similar observation when comparing discount rates.
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Results

Shadow prices for different specifications

Table: Business-as-usual prices

number of sites agricultural price ξ carbon price (Pee)

1043 Pa = 41.1 ∞ 7.6
78 Pa = 41.1 ∞ 7.1
78 Pa = 41.1 1 5.3
78 stochastic ∞ 6.9

Notes: The agricultural price Pa = 41.1 is the mean under the stationary
distribution.
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Results

Evolution of agricultural area (deterministic case, Pa = P s)

1043 Sites 78 Sites

Pee = $7.6 ($7.1) for 1043 (78) sites

Business as usual agr. area ∼ 25% - may result on tipping of east,
south and central Amazon (Lovejoy and Nobre [2018])
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Results

Evolution of the stock of carbon (deterministic case,
Pa = P s)

1043 Sites 78 Sites

Pee = $7.6 ($7.1) for 1043 (78) sites
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Results

Evolution of occupation by agriculture, 78 sites,
b = 15,Pa = P s

Much of the reallocation in 15 years
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Results

Evolution of occupation by agriculture, 1043 sites,
b = 15,Pa = P s
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Results

Evolution of occupation by agriculture: with and without
transfers
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Results

Planner Value Decomposition (200 years)

Table: 78 Sites - Deterministic case

Pa

($)
Pe

($)
b
($)

Agricultural
Output Value

($ 1011)

Net
Transfers
($ 1011)

Forest
Services
($ 1011)

Adjustment
Costs

($ 1011)

Planner
Value

($ 1011)

41.1 7.1 0 3.31 0.00 -1.10 0.06 2.14
41.1 17.1 10 0.43 1.22 0.87 0.11 2.41
41.1 22.1 15 0.26 2.022 0.95 0.17 3.06
41.1 27.1 20 0.20 2.78 0.98 0.22 3.75
41.1 32.1 25 0.17 3.54 1.00 0.26 4.45

Notes:$41.1 is the mean of the agricultural price in the stationary distribution of the two-state
Markov chain. Forest services are calculated using baseline shadow price (b = 0)
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Results

Planner Value Decomposition (200 years)

Table: 1043 Sites - Deterministic case

Pa

($)
Pe

($)
b
($)

Agricultural
Output Value

($ 1011)

Net
Transfers
($ 1011)

Forest
Services
($ 1011)

Adjustment
Costs

($ 1011)

Planner
Value

($ 1011)

41.1 7.6 0 3.72 0.00 -1.39 0.07 2.26
41.1 17.6 10 0.57 1.16 0.88 0.11 2.51
41.1 22.6 15 0.33 1.98 1.00 0.17 3.14
41.1 27.6 20 0.23 2.76 1.04 0.22 3.82
41.1 32.6 25 0.18 3.52 1.07 0.26 4.52

44.3 7.8 0 4.25 0.00 -1.64 0.08 2.51
44.3 17.8 10 0.73 1.09 0.85 0.10 2.58
44.3 22.8 15 0.40 1.94 1.01 0.16 3.19
44.3 27.8 20 0.26 2.74 1.07 0.21 3.86
44.3 32.8 25 0.20 3.51 1.09 0.26 4.56

Notes: For Pa, 41.1 is the mean of the agricultural price in the stationary distribution and 44.3 is
the upper value in the two-state Markov chain.
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Results

Transfer cost (30 years, 78 sites)

Pe

($)
b
($)

Net Captured
Emissions

(billion tons of CO2e)

Discounted
Net Transfers

($ 1011)

Discounted
Effective Cost

($ per ton of CO2e)

7.1 0 -15.28 0.00 NaN
17.1 10 11.79 0.84 3.13
22.1 15 14.08 1.54 5.25
27.1 20 14.74 2.18 7.27
32.1 25 15.06 2.81 9.26

Notes: $41.1 is the mean of the agricultural price in the stationary distribution.

Gains from trade
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Results

Transfer cost (30 years, 1043 sites)

Pe

($)
b
($)

Net Captured
Emissions

(billion tons of CO2e)

Discounted
Net Transfers

($ 1011)

Discounted
Effective Cost

($ per ton of CO2e)

7.6 0 -17.66 0.00 NaN
17.6 10 11.67 0.86 2.93
22.6 15 13.85 1.55 4.92
27.6 20 14.62 2.21 6.85
32.6 25 15.00 2.86 8.75

Notes: Agricultural price Pa = $41.1, which is the mean of the agricultural price in the
stationary distribution.
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Results

Evolution of agricultural area and stock of carbon
(Uncertainty on Pa)

Pee =$6.9
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Results

Planner value decomposition (200 years)

Table: 78 Sites - MPC case

($ 1011)
Agricultural
Output Value

Net
Transfers

Forest
Services

Adjustment
Costs

Planner
Value

Pa = stochastic
b = $0
10% 3.22 0.00 -1.01 0.05 2.19
50% 3.34 0.00 -1.00 0.05 2.29
90% 3.43 0.00 -0.97 0.05 2.37

b = $25
10% 0.16 3.48 0.96 0.27 4.33
50% 0.18 3.48 0.96 0.28 4.34
90% 0.19 3.48 0.96 0.28 4.35

Pa = $41.1
b = $0 3.31 0.00 -1.10 0.06 2.14
b = $25 0.17 3.54 1.00 0.26 4.45

Notes: The quantiles were computed based on two hundred simulations. Shadow prices
are Pee = 7.1 for Pa = 41.1 and Pee = 6.9 for Pa = stochastic.
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Results

Transfer cost (30 years)

Table: 78 Sites - MPC case

Net Captured Emissions
(billion tons of CO2e)

Discounted Net Transfers
($ 1011)

Discounted Effective cost
($ per ton of CO2e)

Pa = stochastic
b = $0
10% -14.41 0.00 NaN
50% -13.79 0.00 NaN
90% -13.33 0.00 NaN

b = $25
10% 14.78 2.78 9.49
50% 14.79 2.78 9.70
90% 14.81 2.78 9.86

Pa = $41.1
b = $0 -15.25 0.00 NaN
b = $25 15.08 2.87 9.47

Notes: The quantiles were computed based on two hundred simulations. Shadow prices are Pee = 7.1 for
Pa = 41.1 and Pee = 6.9 for Pa = stochastic.
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Results

Parameter uncertainty I

Hamiltonian Monte Carlo

Following Stan (software for HMC) recommendation we sample from

exp

[
−1

ξ
f (d , β)

]
dπ(βθ, σ

2
θ |Rθ, yθ)dπ(βγ , σ

2
γ |Rγ , yγ) (5)

Baseline marginal for β is a multivariate t-distribution.

ρ := (β, σθ, σγ) take logs and change sign get potential energy:

U(ρ) = 1

ξ
f (d , β)− log dπ(βθ|σ2

θ ,Rθ, yθ)− log dπ(βγ |σ2
γ ,Rγ , yγ)

− log dπ(σ2
θ |Rθ, yθ)− log dπ(σ2

γ |Rθ, yγ)

(6)

Momentum ω (same dim as ρ), with ω ∼ N (0,M) and M symmetric,
positive-definite mass matrix.

42 / 66



Results

Parameter uncertainty II

H(ρ, ω) := U(ρ) + 1

2
ω′M−1ω (7)

H is ”energy function”

Induces a unique ”canonical probability” with density

P(ρ, ω) =
1

Z
exp (−U(ρ)) exp

(
−1

2
ω′M−1ω

)
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Results

Iteration I

Sample from baseline π and initialize φ0 as the mean of the
transformed samples.

For each iteration τ = 0, 1 . . . , τ :
1 Solve the planner’s problem for decision vector dτ using φτ .

2 Sample {ρsτ}4000s=1 using (5) by running HMC simultaneously across 4
independent Markov chains, taking 1000 samples and 500 burn-in
samples per chain.

3 Transform marginal samples {βs
τ}4000s=1 back into the φ space.

4 Compute φ̄τ as the mean across samples, and update φτ using
φτ+1 := w φ̄τ + (1− w)φτ , with w = 0.25.

5 τ is first occurrence of when ||φτ+1 − φτ ||∞ < 0.001. If τ < τ̄ , return
to step 1 and repeat.

6 Once τ̄ is reached redo steps 2 and 3 with dτ , taking 5000 samples,
and save the transformed samples {φs

τ}20000s=1 .
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Results

Iteration II

The density figures are plotted using {φs
τ}20000s=1 .

Trajectory plots and decompositions are computed using dτ̄ .

For ξ = 1, we obtain Pee = 5.3
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Results

HMC algorithm I

For a given dτ :

Initialize ρ0τ .

For each chain, for s = 0, . . . , 1000 :
1 Sample momentum ωs

τ ∼ N(0,M).

2 Generate proposal (ρ̃sτ , ω̃
s
τ ) by moving according to (8) , using the

leapfrog integrator with step size ϵ and a number of steps L:

dρ

dt
=

∂H
∂ω

,
dω

dt
= −∂H

∂ρ
(8)

3 Orbits preserve canonical density probability distribution.

4 Orbits preserve value of H.
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Results

HMC algorithm II

5 Perform Metropolis test to accept or reject the state update
(ρs+1

τ , ωs+1
τ )← (ρ̃sτ , ω̃

s
τ ), with acceptance probability:

min {1, exp (H(ρsτ , ωs
τ )−H(ρ̃sτ , ω̃s

τ ))}

In continuous should always accept but discrete approximation.

In our case accept over 90% of the time
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Results

Ambiguity adjustment, b = 15, Pa = P s
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Results

Ambiguity adjustment, b = 15, Pa = P s
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Results

Ambiguity adjustment, b = 15, Pa = P s

Larger adjustments if we did not adjust Pee .

50 / 66



Results

Evolution of agricultural area: productivity ambiguity,
b = 0, 15, Pa = P s

(a) b=0 (b) b=15
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Results

Year of maximal reforestation in site i (b = 15)

ambiguity no ambiguity

Larger changes if did not adjust Pee .
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Results

Planner Value Decomposition (200 years)

Table: 78 Sites - HMC case

Agricultural Output Value ($ 1011) Planner Value ($ 1011)

b
($)

ambiguity
neutral

ambiguity
aversion

percent
change

ambiguity
neutral

ambiguity
aversion

percent
change

0 3.31 2.57 -22.4 2.14 1.64 -23.4
10 0.41 0.55 33.6 2.41 2.08 -13.9
15 0.26 0.30 14.2 3.06 2.62 -14.4
20 0.20 0.23 12.9 3.75 3.19 -15.0
25 0.17 0.19 11.9 4.45 3.74 -15.8

Notes: Pa = $41.11, the average price under the stationary distribution. Forest services are
calculated using baseline shadow price (b = $0).

Bigger difference when not adjusting Pee .
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Results

Transfer cost (30 years)

Table: 78 Sites - HMC case

Ambiguity Neutral Ambiguity Aversion

b
($)

net captured
emissions

(billion tons
of CO2e)

discounted
net transfers

($ 1011)

discounted
effective cost
($ per ton
of CO2e)

net captured
emissions

(billion tons
of CO2e)

discounted
net transfers

($ 1011)

discounted
effective cost
($ per ton
of CO2e)

0 -15.25 0.00 NaN -15.08 0.00 NaN
10 11.91 0.87 3.21 10.18 0.74 2.93
15 14.10 1.57 5.37 12.57 1.39 5.03
20 14.75 2.23 7.43 13.15 1.97 6.97
25 15.08 2.87 9.47 13.29 2.51 8.86

Notes: Agricultural price Pa = $41.1, which is the mean of the agricultural price in the stationary distribution.
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Results

Incentive to defect

Value tables show that shows that the planner would agree to sign an
agreement to receive (pay) b = 25 dollars for each ton of CO2

captured (emitted) in the Brazilian Amazon.

However since mature forests reach an equilibrium, the value of
transfers eventually converge to zero.

Possibility: At some t, Brazil defects and opts to follow the optimal
trajectory when b = 0, starting from (zt , xt). Call the present value as
of t of defecting Wt .

Defection will occur if Wt > Vt .
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Results

Value of continuing versus defecting (78 sites
deterministic)
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Results

Avoiding defection I

Max present value for t ≤ 50 is less than $5 billion.

If b = 30 max present value t ≤ 50 is less than $1.5 billion.

Defection can be avoided with carrot or stick

Carrot: Set fund of $5 billion payable at t = 50 if no (substantial)
deviation in zt , for t ≤ 50. Cost per ton of CO2 less that $1/ton.
Stick: Brazil issues a bond with initial value of $5 billion that only
becomes due if (substantial) deviation in zt , for t ≤ 50 is observed

Many Carbon capture and sequestration (CCS) projects are private,
with no clear liability horizon. Limited liability implies that
indemnification for loss is only possible up to the value of the firm’s
assets (Gollier [2005]. Often long term liability for leaks transferred to
governments.

Australian Commonwealth and Western Australia state agreed to take
over liability of Gorgon CCS project from Chevron and partners that
include Shell and ExxonMobil after closing of project.
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Results

Comparison with other carbon sequestration schemes

US IRC Section 45Q, states that secure geological storage includes
“storage at oil and gas reservoirs”.

According to CBO, almost all CCS facilities in the US use captured
CO2 for enhanced oil recovery (EOR)to force more oil out of aging oil
fields.

Occidental Petroleum, which is developing large carbon removal
projects in Texas, uses EOR to sell what it calls“net-zero oil”
Capture carbon to release captured carbon.

As of 9/23 total US capacity for CCS amounted to 22 million tons,
.4% of US current emissions.

Under IRA, U.S. 45Q tax credit for EOR carbon capture projects pays
$60/ton ($130 for direct air capture DAC)) for facilities that start
construction before 2033 and pay prevailing wages during the
construction phase and during the first 12 years of operation.
Amounts adjusted for inflation after 2026.
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Results

Carbon prices above $25 (World Bank)

4/12/24, 2:01 PM Price | Carbon Pricing Dashboard

https://carbonpricingdashboard.worldbank.org/compliance/price 3/5





* Indicates instruments with multiple price levels. Only the main rate is shown for these instruments. Prices are not directly comparable due to di�erences in coverage,

compliance and compensation arrangements. Prices are on 1 April, or latest available prior to 1 April each year. Note that some jurisdictions have multiple instruments in place.

For example, Poland has a carbon tax but is also covered by the EU ETS.

 Instrument

Price (US$)

Uruguay CO2 tax
Switzerland carbon tax

Liechtenstein carbon tax
EU ETS

Switzerland ETS
UK ETS

Finland carbon tax
Ireland carbon tax
France carbon tax

Alberta TIER
BC carbon tax

Canada federal OBPS
Newfoundland and Labrador PSS

Northwest Territories carbon tax
Canada federal fuel charge

Saskatchewan OBPS
Newfoundland and Labrador carbon tax

New Brunswick ETS
Ontario EPS

New Brunswick carbon tax
Tokyo CaT

Prince Edward Island carbon tax
Austria ETS

New Zealand ETS
Germany ETS

Queretaro carbon tax
California CaT

Quebec CaT
Denmark carbon tax

UK Carbon Price Support
Washington CCA
Nova Scotia CaT

BC GGIRCA
Tamaulipas carbon tax

Latvia carbon tax
Spain carbon tax

Yucatan carbon tax
RGGI

Zacatecas carbon tax
Beijing pilot ETS

Guangdong pilot ETS
Massachusetts ETS

Korea ETS
South Africa carbon tax

Shenzhen pilot ETS
Shanghai pilot ETS
China national ETS

Hubei pilot ETS
Colombia carbon tax

Chile carbon tax
Chongqing pilot ETS

Fujian pilot ETS
Tianjin pilot ETS

Mexico carbon tax
Singapore carbon tax
Argentina carbon tax

State of Mexico carbon tax
Estonia carbon tax

Japan carbon tax
Kazakhstan ETS

Saitama ETS
Ukraine carbon tax

0 10 20 30 40 50 60 70 80 90 100 110 120 130 1

Alberta TIER

Alberta carbon tax

Argentina carbon tax

Australia CPM

Australia Safeguard

Mechanism

Austria ETS

Economic efficiency implies all carbon prices should be the same.
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Conclusion

Conclusions I

Posed explicit dynamic model across heterogeneous regions in
Amazon to assess potential adverse impact of deforestation.

Rich panel data set

Computational challenge because the heterogeneity of subregions
requires large number of state variables and state-constraints that
bind at optimum.

Parameter uncertainty

With modest prices for CO2e (compared e.g. with US EOR schemes
or with ETS prices in Europe...), Brazilian Amazon would produce
noticeable CO2 capture.

Compared to IPCC “budget”
Compared to Griscom et al. [2017] that identify and quantify “natural
climate solutions” (NCS).
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Conclusion

Conclusions II

In Part III will show the existence of important interactions across
sites that are ignored here.

Predicted path under “business as usual” even more perilous.

Further results can be found in the Online Appendix.

61 / 66

https://lphansen.github.io/Amazon/intro.html


References

References I

Rafael Araujo, Francisco Costa, and Marcelo Sant’Anna. Efficient
forestation in the brazilian amazon: Evidence from a dynamic model,
2022.

Juliano J Assunção, Lars Peter Hansen, Todd Munson, and José A
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