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Introduction

It 1s useful to distinguish three broad branches of decision analysis:

normative, descriptive, prescriptive.

Normative analysis seeks to establish ideal properties of decision making.

Descriptive analysis seeks to understand and predict how decision makers behave.

Prescriptive analysis seeks to improve the performance of actual decision making.

Prescriptive analysis draws on normative thinking to define the term "improve" and on

descriptive research to characterize actual decisions.



My concern is prescriptive analysis that seeks to improve patient care.

My focus is decision making under uncertainty.

By '"uncertainty," I do not just mean that clinicians make probabilistic rather than

deterministic predictions of patient outcomes.

I mean that available evidence and medical knowledge may not suffice to yield precise

probabilistic predictions.



A patient may ask:
"What is the chance that I will develop disease X in the next five years?"
"What is the chance that treatment Y will cure me?"

A credible response may be a range, say "20 to 40 percent" or "at least 50 percent."

Decision theorists may use the terms "deep uncertainty" and "ambiguity." I encompass them

within the broader term "uncertainty."

Uncertainty has sometimes been acknowledged verbally, but it has generally not been

addressed in research on evidence-based medicine.

I think this a huge omission.



Surveillance or Aggressive Treatment

I pay particular attention to choice between surveillance or aggressive treatment of patients

at risk of potential disease.

Consider women at risk of breast cancer.
Surveillance = periodic mammograms and clinical exams.
Aggressive treatment = preventive drug treatment or mastectomy.

Or consider surveillance or drug treatment for patients at risk of heart disease.

Or consider surveillance or chemotherapy for patients treated for localized cancer who are

at risk of metastasis.



Uncertainty often looms large when one contemplates the risk of disease development and

the outcome of aggressive treatments.

Decision making may require resolution of a tension between benefits and costs.

Aggressive treatment may be more beneficial to the extent that it reduces the risk of disease

development or the severity of disease that does develop.

It may be more costly to the extent that it generates health side effects and financial costs

beyond those associated with surveillance.



Evolution of My Research Program

[ have no formal training in medicine. The contributions that I may be able to make concern

the methodology of evidence-based medicine.

This lies within the expertise of econometricians, statisticians, and decision analysts.

Research on treatment response and personalized risk assessment shares a common

objective: Probabilistic prediction of some patient outcome conditional on patient attributes.

Development of methodology for probabilistic conditional prediction has long been a core

concern of statistics and econometrics.

Probabilistic Conditional Prediction = regression, actuarial prediction, statistical

prediction, machine learning, predictive analytics, Al



Statistical imprecision and identification problems affect empirical (evidence-based)

research that uses sample data to predict population outcomes.

Statistical theory characterizes the inferences that can be drawn about a study population by

observing a sample.

Identification analysis studies inferential difficulties that persist when sample size grows

without bound.

I focus mainly on i1dentification problems, which often are the dominant difficulty.



The logic of empirical inference 1s summarized by the relationship:

assumptions + data = conclusions.

There 1s a tension between the strength of assumptions and their credibility, that I have

called (Manski, 2003):

The Law of Decreasing Credibility: The credibility of inference decreases with the strength

of the assumptions maintained.

I have argued against making precise predictions with incredible certitude.



Probabilities of future events may be partially rather than point identified.

That 1s, research may be able to credibly bound the probability that an event will occur but

not make credible precise probabilistic predictions, even with large data samples.

My research on partial identification began in the late 1980s.

Whereas my early research focused on prediction per se, I have over time investigated the

implications for decision making.

Example: How might one choose between treatment A and B when one cannot credibly

identify the sign of the average treatment effect?



Elementary decision theory suggests a two-step process for choice under uncertainty.
(1). Eliminate dominated actions.
(2). Choose an undominated action.

There 1s no optimal way to choose among undominated alternatives.

There are only various reasonable ways.



Patient care is ripe for study as a problem of decision making under uncertainty.

[ have sought to learn enough about evidence-based medicine to make original contributions.

The results include studies of

* diagnostic testing and treatment under uncertainty (Manski, 2009, 2013b)

* personalized medicine with partial assessment of health risks (Manski, 2018a)

* analysis and design of randomized trials (Manski, 2004; Manski and Tetenov, 2016)
* drug approval (Manski, 2009)

* vaccination policy with partial knowledge of disease transmission (Manski, 2010, 2017b).

Manski (2018b) is a review article.



I am now 1n process of bringing this work together in a book.

A book provides the space to present major themes and to show how they become manifest

in various specific contexts.

A book enables one to speak to a broader audience than 1s possible when writing research

articles on particular topics.

I hope that this book will prove useful to a spectrum of readers.
* clinicians who make decisions about patient care.

* patients who participate in their own care.

* medical researchers.

* biostatisticians who assist medical researchers.

* health economists.



Some will correctly view my work as critical of existing methodologies:

* biostatisticians who have used the statistical theory of hypothesis testing to advise medical

researchers on the design and analysis of randomized trials.

* guideline developers who have argued that evidence-based medicine should rest solely or

predominately on evidence from randomized trials.

I hope that these readers will view my work as providing constructive suggestions.

To make the lectures and book accessible, the exposition 1s almost entirely verbal.

I give references to the technical articles that provide the full analysis.



Clinical Guidelines and Clinical Judgment

Medical texts and training have long offered clinicians guidance in patient care.

Guidance has increasingly become institutionalized through i1ssuance of clinical practice

guidelines (CPGs).

Dictionaries typically define a "guideline" as a suggestion or advice for behavior rather than

a mandate. Institute of Medicine (IOM) (2011) writes (p. 4):

"Clinical practice guidelines are statements that include recommendations intended to
optimize patient care that are informed by a systematic review of evidence and an

assessment of the benefits and harms of alternative care options."



Although CPGs are not mandates, clinicians often have strong incentives to comply with

guidelines, making adherence close to compulsory.

A health insurance plan may require adherence to a CPG as a condition for reimbursement

of the cost of treatment.

Adherence may furnish evidence of due diligence that legally defends a clinician in the event

of a malpractice claim.

Adherence provides a rationale for care decisions that might otherwise be questioned by

patients, colleagues, or employers.



The medical literature contains many commentaries exhorting clinicians to adhere, arguing

that guideline developers have superior knowledge than do clinicians.

Wennberg (2011) defines "unwarranted variation" as variation that (p. 687): "isn't explained

by illness or patient preference."

The UK National Health Service gives its Atlas of Variation in Healthcare (2015) the

subtitle "Reducing unwarranted variation to increase value and improve quality."

IOM (2011) states: "Trustworthy CPGs have the potential to reduce inappropriate practice

variation."

These and similar quotations exemplify a widespread belief that adherence to guidelines is

socially preferable to decentralized clinical decision making.



There are two reasons why patient care adhering to guidelines may differ from the care that

clinicians provide:

(1) The developers of guidelines may differ from clinicians in their ability to predict how

decisions affect patient outcomes.

(2) Guideline developers and clinicians may differ in how they evaluate patient outcomes.

I focus mainly on (1).



Variation in Guidelines

Commentaries exhorting adherence to guidelines implicitly assume that guideline developers

agree on appropriate patient care.

Consensus holds in some cases, but the guidelines 1ssued by distinct health organizations

often differ from one another.

Variation in care is inevitable if clinicians adhere to different guidelines.



Example:

Consider the role of the clinical breast examination (CBE) in breast cancer screening.

Guidelines issued by the National Comprehensive Cancer Network (NCCN), the American

Cancer Society (ACS), and the U.S. Preventive Services Task Force (USPSTF) differ

markedly.

The NCCN considers the CBE to be a core element of breast cancer screening.

The ACS takes a firmly negative position.

The USPSTF is neutral.



Degrees of Personalized Medicine

In principle, personalized medicine means health care specific to the individual.

In practice, the term means care that varies with some observed patient attributes.

Thus, personalized medicine 1s a matter of degree.

Clinicians often observe patient attributes beyond those used to predict outcomes in

evidence-based risk assessments and studies of treatment response.

Hence, clinicians often can personalize patient care to a greater degree than do evidence-

based CPGs.



Prediction of Cardiovascular Disease

The ASCVD Risk Estimator of the American College of Cardiology predicts the probability

a person will develop atherosclerotic cardiovascular disease (ASCVD) in the next ten years.

This online tool conditions the reported probability on:
Patient Demographics: current age, sex, race
Current Labs/Exams: total, HDL, and LDL cholesterol; systolic blood pressure.

Personal History: history of diabetes, hypertension treatment, smoker, on a statin, on aspirin
therapy.

It does not condition on obesity, job stress, and exercise.

These attributes are observable by clinicians and may be thought relevant risk factors.



The Breast Cancer Risk Assessment Tool

The Breast Cancer Risk Assessment (BCRA) Tool of the National Cancer Institute gives an
evidence-based probability that a woman will develop breast cancer conditional on eight

attributes:

(1) history of breast cancer or chest radiation therapy for Hodgkin Lymphoma.
(2) a BRCA mutation or genetic syndrome associated with risk of breast cancer.
(3) current age.

(4) age of first menstrual period.

(5) age of first live birth of a child.

(6) number of first-degree female relatives with breast cancer.

(7) number of breast biopsies.

(8) race/ethnicity.



The BCRA Tool has become widely used and is an important input to the CPG for breast
cancer screening i1ssued by the NCCN.

The reason that the Tool assesses risk conditional on eight attributes and not others is that

it uses a modified version of the "Gail Model," based on Gail ef al. (1989).

The Gail et al. article estimated probabilities of breast cancer for white women who have

annual breast screening, conditional on attributes (1) through (7).



The BCRA Tool does not condition on further patient attributes that may be associated with

risk of cancer, including:

* the number and ages of a woman's first-degree relatives.

* the prevalence of breast cancer among second-degree relatives.

* membership in ethnic groups who have differential risk of a BRCA mutation.

* behavioral attributes such as excessive drinking of alcohol.



Predicting Unrealistically Precise Probabilities

A user of the ASCVD Risk Estimator or the BCRA Tool receives a precise probability of

disease development.

Statistical imprecision and 1dentification problems make these risk assessments uncertain.

Without discussion of uncertainty, clinicians and patients may mistakenly believe that

precise probabilistic risk assessments are accurate.

If uncertainty is not quantified, those who recognize the presence of uncertainty cannot

evaluate the degree to which assessments may be inaccurate.



Consider statistical imprecision in the BCRA Tool.

The Gail et al. article calls attention to statistical imprecision in its predictions.

It describes a general procedure for estimating confidence intervals.

It reports illustrative computations of 95% confidence intervals for two women with

different attributes.

The confidence intervals vary considerably in width.

The BCRA Tool does not report confidence intervals.

The NCI website that houses the Tool makes no mention of statistical imprecision.



Optimal Care Assuming Rational Expectations

The BCRA Tool and ASCVD Risk Estimator exemplify a common question.

Evidence enables assessment of risk of disease or treatment response conditional on certain

patient attributes. CPG recommendations condition on these attributes.

Clinicians observe additional attributes that may be informative predictors of outcomes.

Available evidence does not show how outcomes vary with the additional attributes.

How should medical decision making proceed?



Economists have studied this question in an i1dealized setting of individualistic patient care

with rational expectations.

A clinician chooses how to treat each patient in a population. The objective is to maximize

a utilitarian welfare function. That is, the clinician aims to do what is best for each patient.

The care received by one patient affects only that individual and not other members of the

population. This 1s realistic when considering non-infectious diseases.

Rational expectations means that the clinician knows the actual probability distribution of
health outcomes that may occur if a patient with specified observed attributes 1s given a

specified treatment.



With rational expectations, optimization of patient care has a simple solution.

Patients should be divided into groups having the same observed attributes.

All patients in a group should be given the care that yields the highest within-group mean

welfare.

Thus, it is optimal to differentially treat patients with different attributes if different

treatments maximize their within-group mean welfare.

Patients with the same observed attributes should be treated uniformly.

The value of maximum welfare increases as more patient attributes are observed.



Optimal Choice Between Surveillance and Aggressive Treatment

Aggressive treatment may be more beneficial to the extent that 1t reduces the risk of disease

development or the severity of disease that does develop.

It may be more costly to the extent that it generates health side effects and financial costs

beyond those associated with surveillance.

Given certain assumptions, aggressive treatment is the better option if the probability of

disease development exceeds a patient-specific threshold.

Surveillance is the better option otherwise.



Psychological Research Comparing Evidence-Based Prediction and Clinical Judgment

If clinicians have rational expectations, there is no utilitarian argument for CPGs.

Psychological research concludes that clinicians do not have rational expectations.

Psychologists have found that evidence-based prediction consistently outperforms clinical

judgment when the predictions are made using the same patient attributes.

The gap in performance persists even when clinical judgment uses additional attributes as

predictors.



Notable early contributions include Sarbin (1943, 1944), Meehl (1954), Goldberg (1968).

Dawes, Faust, and Meehl (1989) distinguish evidence-based (aka actuarial or statistical)

prediction and clinical judgment as follows:

"In the clinical method the decision-maker combines or processes information in her or
her head. In the actuarial or statistical method the human judge 1s eliminated and
conclusions rest solely on empirically established relations between data and the

condition or event of interest."



Comparing the two in circumstances where a clinician observes patient attributes that are not

utilized 1n available evidence-based prediction, they state:

"Might the clinician attain superiority if given an informational edge? For example,
suppose the clinician lacks an actuarial formula for interpreting certain interview results
and must choose between an impression based on both interview and test scores and a
contrary actuarial interpretation based on only the test scores. The research addressing
this question has yielded consistent results . . .. Even when given an information edge,
the clinical judge still fails to surpass the actuarial method; in fact, access to additional

information often does nothing to close the gap between the two methods."

They attribute the weak performance of clinical judgment to clinician failure to adequately
grasp the logic of the prediction problem and to their use of decision rules that place too

much emphasis on unusual patient attributes.



I have found no explicit reference to this psychological research in my reading of medical
commentaries advocating adherence to CPGs, nor in the broader literature concerning

practice of evidence-based medicine.

I have found passages in the literature on evidence-based medicine that praise rather than

criticize exercise of clinical judgment.



Welfare Comparison of Adherence to Guidelines and Clinical Judgment

The psychological literature challenges the realism of assuming that clinicians have rational

expectations.

However, it does not imply that adherence to CPGs would yield greater welfare than

decision making using clinical judgment.

The literature has not addressed all welfare-relevant aspects of clinical decisions.

Psychologists have studied the relative accuracy of risk assessments made by evidence-based

predictors and by clinicians, but they have not studied the relative accuracy of evaluations

of patient preferences over health outcomes.



Psychological research has seldom examined the accuracy of probabilistic risk assessments

and diagnoses.

It has been more common to assess the accuracy of point predictions.

Study of the logical relationship between probabilistic and point prediction shows that data

on the latter at most yields wide bounds on the former.

Manski (1990a) considers a forecaster who is asked to give a yes/no point prediction that an

event will occur.

Observation that the forecaster states "yes" or "no" only implies that he judges the

probability to be in the interval ['2, 1] or [0, ¥2] respectively.



It 1s not possible at present to conclude that imperfect clinical judgment makes adherence

to CPGs superior to decentralized decision making.

The findings of the psychological literature do imply that welfare comparison is a delicate

matter of choice between alternative systems for patient care.

Adherence to evidence-based CPGs may be inferior if CPGs condition on fewer patient

attributes than do clinicians.

It may be superior if imperfect clinical judgment yields sub-optimal decisions.

How these opposing forces interplay may depend on the specifics of the setting.



Wishful Extrapolation of Trial Findings to Patient Care

The fact that predictions are evidence-based does not ensure that they use evidence

effectively.

Multiple questionable methodological practices have long afflicted research on health

outcomes and may afflict the development of guidelines.

I focus on predictions made with evidence from randomized trials.

Trials have long enjoyed a favored status within medical research on treatment response and

are often called the "gold standard" for such research.



Guideline developers value trial evidence more than observational studies. They sometimes

use only trial evidence, excluding observational studies.

The appeal of trials is that, with sufficient sample size and complete observation of

outcomes, they deliver credible findings on treatment response in the study population.

However, extrapolation of findings from trials to clinical practice can be difficult.

Researchers and guideline developers often use untenable assumptions to extrapolate.

I have called this wishful extrapolation.



From Study Populations to Patient Populations

Study populations in trials often differ from patient populations.

It is common to perform trials studying treatment of a specific disease only on subjects who

have no co-morbidities or who have specific co-morbidities.

Guideline developers sometime caution about the difficulty of using trial findings to make

care recommendations for patients with co-morbidities.



The problem 1s well-stated by Wong et al. (2017) in an article presenting updated guidelines

for treatment of melanoma;:

"Creating evidence-based recommendations to inform treatment of patients with additional
chronic conditions, a situation in which the patient may have two or more such
conditions—referred to as multiple chronic conditions (MCC)—is challenging. Patients with
MCC are a complex and heterogeneous population, making it difficult to account for all of
the possible permutations to develop specific recommendations for care. In addition, the
best available evidence for treating index conditions, such as cancer, 1s often from clinical
trials whose study selection criteria may exclude these patients to avoid potential interaction
effects or confounding of results associated with MCC. As a result, the reliability of
outcome data from these studies may be limited, thereby creating constraints for expert

groups to make recommendations for care in this heterogeneous patient population."



Another source of difference is that a study population consists of persons with specified

demographic attributes who volunteer to participate in a trial.

Volunteers are those who respond to financial and medical incentives to participate.

The study population differs materially from the relevant patient population if subjects and

non-subjects have different distributions of treatment response.

Treatment response in the latter group is not observed.

It may be wishful extrapolation to assume that treatment response in trials performed on

volunteers with specified demographic attributes who lack co-morbidities is the same

as what would occur in actual patient populations.



Trials of Drug Treatments for Hypertension

Evidence from dozens of trials was utilized by the Eighth Joint National Committee (JNC
8), which promulgated the 2014 guidelines for management of high blood in the United
States (James ef al., 2014).

The JINC 8 highlighted trials by Beckett et al. (2008), SHEP Cooperative Research Group
(1991), and Staessen et al. (1997).

Participants differed in age, countries of residence, and the rules governing exclusions for
co-morbidities. They differed in their blood pressure levels before being randomized into
treatment. The SHEP and Staessen trials, but not the Beckett trial, restricted eligibility to
persons with isolated systolic hypertension, a condition in which systolic blood pressure is

higher than desirable but diastolic blood pressure is in the normal range.



Campbell and the Primacy of Internal Validity

To justify trials performed on study populations that may differ substantially from patient
populations, researchers often cite Donald Campbell, who distinguished between the internal
and external validity of studies of treatment response (Campbell and Stanley, 1963).

A study has have internal validity 1f 1t has credible findings for the study population.

It has external validity if an invariance assumption permits credible extrapolation.

The appeal of randomized trials 1s their internal validity.

Wishful extrapolation is an absence of external validity.



Campbell argued that studies should be judged primarily by their internal validity and

secondarily by their external validity.

This perspective has been used to argue for the primacy of experimental research over

observational studies, whatever the study population may be.

The Campbell position is well grounded if treatment response is homogeneous.

Then researchers can learn about treatment response in easy-to-analyze study populations

and clinicians can confidently extrapolate findings to patient populations.

However, homogeneity of treatment response seems the exception rather than the rule.

Hence, it may be wishful to extrapolate from a study population to a patient population.



From Experimental Treatments to Clinical Treatments

Treatments in trials often differ from those that occur in clinical practice.

This 1s particularly so in trials comparing drug treatments. Drug trials are double-blinded,

neither the patient nor the clinician knowing the assigned treatment.

A double-blinded drug trial reveals the distribution of response in a setting where patients

and clinicians are uncertain what treatment a patient is receiving,.

It does not reveal what response would be when patients and clinicians know what drug is

being administered and can react to this information.



Consider drug treatments for hypertension.

Patients react heterogeneously to the various drugs available for prescription.

A clinician treating a particular patient may sequentially prescribe alternative drugs, trying

each for a period in an effort to find one that performs satisfactorily.

Sequential experimentation is not possible in a trial. The standard protocol prohibits the
clinician from knowing what drug a subject is receiving and from using judgment to modify

the treatment.

Blinding 1s also problematic for clinical interpretation of noncompliance with assigned

treatments.



From Surrogate Outcomes to Health Outcomes

A serious measurement problem often occurs in trials with short durations, which measure

surrogate outcomes rather than ones of intrinsic health interest.

Example: Treatments for heart disease may be evaluated using data on cholesterol levels and

blood pressure rather than data on heart attacks and life span.

The most lengthy trials for drug approval, phase 3 trials, typically run for two to three years.

Credible extrapolation from surrogate outcomes to outcomes of interest can be challenging.



Considering approval of cancer drugs in the United States and Europe, Prasad (2017) writes:

"Although we are approving cancer drugs at a rapid pace, few come to market with good
evidence that they improve patient centred outcomes. If they do, they often offer
marginal benefits that may be lost in the heterogeneous patients of the real world. Most
approvals of cancer drugs are based on flimsy or untested surrogate endpoints, and
postmarketing studies rarely validate the efficacy and safety of these drugs on patient
centred endpoints. Add to this that the average cancer drug costs in excess of $100 000
(£75 000; €85 000) per year of treatment, and the conclusion seems that the regulatory

system is broken."



From Hypothesis Tests to Treatment Decisions

A longstanding practice has been to use trial data to test a specified null hypothesis against

an alternative and to use the outcome of the test to compare treatments.

A common procedure when comparing two treatments is to view one as the status quo and

the other as an innovation.

The usual null hypothesis is that the innovation 1s no better than the status quo and the

alternative 1s that the innovation is better.

If the null hypothesis is not rejected, it is recommended that the status quo be used in

practice. If the null is rejected, the innovation is recommended.



It has been standard to fix the probability of rejecting the null hypothesis when it is correct,

the probability of a Type I error.

Sample size determines the probability of rejecting the alternative when it 1s correct, the

probability of a Type II error. Power 1s one minus the probability of a type II error.

The convention has been to choose a sample size that yields specified power at a value of

the effect size deemed clinically important.

International Conference on Harmonisation (1999) provides this guidance for drug trials:

“Conventionally the probability of type I error is set at 5% or less or as dictated by any
adjustments made necessary for multiplicity considerations; the precise choice may be
influenced by the prior plausibility of the hypothesis under test and the desired impact
of the results. The probability of type II error 1s conventionally set at 10% to 20%.”



Manski and Tetenov (2016) give several reasons why hypothesis testing may yield

unsatisfactory results for medical decisions:

Use of Conventional Asymmetric Error Probabilities

It has been standard to fix the probability of Type I error at 5% and the probability of Type
IT error at 10-20%. The theory of hypothesis testing gives no rationale for selection of these
conventional error probabilities. It gives no reason why a clinician concerned with patient
welfare should find it reasonable to make treatment choices that have a substantially greater

probability of Type II than Type I error.



Inattention to Magnitudes of Losses When Errors Occur

A clinician should care about the magnitudes of the losses to patient welfare that arise when
errors occur. A given error probability should be less acceptable when the welfare difference

between treatments 1s larger. The theory of hypothesis testing does not take this into account.

Limitation to Settings with Two Treatments

A clinician often chooses among several treatments and many clinical trials compare more
than two treatments. Y et the standard theory of hypothesis testing only contemplates choice
between two treatments. Statisticians have struggled to extend it to deal sensibly with

comparisons of multiple treatments.



Example

A terminal form of cancer may be treated by a status quo treatment or an innovation.

It 1s known that mean patient life span with the status quo treatment is 1 year.

Medical researchers see two possibilities for the effectiveness of the innovation.

It may yield a mean life span of 1/3 year or 5 years.

A trial 1s performed to learn the effectiveness of the innovation.

The trial data are used to perform a test comparing the innovation and the status quo. The

null 1s that the innovation 1s no more effective than the status quo. The alternative is that the

innovation is more effective.



The probability of a Type I error is set at 0.05 and that of a Type II error 1s 0.20. The result

1s used to choose between treatments.

A Type I error occurs with probability 0.05 and reduces mean patient life span by 2/3 of a

year (1 year minus 1/3 year).

A Type II error occurs with frequentist probability 0.20 and reduces mean patient life span

by 4 years (5 years minus 1 year).
Use of'the test to choose the treatment implies that society 1s willing to tolerate a large (0.20)
chance of a large welfare loss (4 years) when making a Type II error, but only a small (0.05)

chance of a small welfare loss (2/3 of a year) when making a Type I error.

The theory of hypothesis testing does not motivate this asymmetry.



Wishful Meta-Analyses of Disparate Studies

The problems discussed above relate to analysis of findings from single trials.

Further difficulties arise when researchers and guideline developers attempt to combine

findings from multiple trials.

It 1s easy to understand the impetus for combination of findings.

Decision makers must interpret the mass of information provided by research.

The hard question is how to interpret this information sensibly.

Combination of findings 1s sometimes performed by systematic review of a set of studies.

This 1s a subjective process similar to exercise of clinical judgment.



Statisticians have proposed meta-analysis in an effort to provide an objective methodology

for combining the findings of multiple studies.

Meta-analysis was originally developed to address a purely statistical problem.

Suppose that multiple trials have been performed on the same study population, each

drawing an independent random sample.

The most precise way to use the data combines them into one sample.

Suppose that the raw data are unavailable. Instead, multiple parameter estimates are

available, each computed with the data from a different sample.

Meta-analysis proposes methods to combine the multiple estimates. The usual proposal is

to compute a weighted-average of the estimates, the weights varying with sample size.



The original concept of meta-analysis 1s uncontroversial, but its applicability is limited.

It 1s rare that multiple independent trials are performed on the same population.

It is more common for multiple trials to be performed on distinct populations that may have

different distributions of treatment response.

Administration of treatments and measurement of outcomes may vary across trials.

Meta-analysis are performed often in such settings, computing weighted averages of

estimates for distinct study populations and trial designs.

Averages computed with subjective weights are called Bayesian weighted averages.



It may not be clear how to interpret a weighted average of the estimates.

Meta-analyses often use a random-effects model (DerSimonian and Laird, 1986).

The model assumes that each of the multiple estimates pertains to a distinct parameter value

drawn at random from a population of potential parameter values.

Thus, a weighted average of the estimates is interpreted to be an estimate of the mean of all

potential parameter values.



A Meta-analysis of Outcomes of Bariatric Surgery

Buchwald et al. (2008) use a random-effects model to combine the findings of 134 studies

of the outcomes of bariatric surgery.

These included 5 randomized trials enrolling 621 patients, 28 nonrandomized but somehow
otherwise controlled trials enrolling 4613 patients, and other "uncontrolled case series" with
16860 patients. The studies were performed around the world. They followed patients for

different periods of time. They measured weight loss in multiple ways.

To summarize the findings, the authors write:
"The mean (95% confidence interval) percentage of excess weight loss was 61.2%
(58.1%-64.4%) for all patients."

The estimated mean of 61.2% considers the 134 studies to be a sample drawn from a

population of potential studies.



The Misleading Rhetoric of Meta-Analysis

The relevance to clinical practice of a weighted average of estimates is often obscure.

DerSimonian and Laird consider each of the trials considered in a meta-analysis to be drawn

at random "from a population of possible studies."

They do not explain what is meant by a population of possible studies, nor why the published

studies should be considered a random sample from this population.
Even if these concepts are meaningful, they do not explain how a mean outcome across a
population of possible studies connects to what should matter to a clinician, namely the

distribution of health outcome across the relevant population of patients.

Medical researchers have struggled to explain how clinicians should use the findings.



The Algebraic Wisdom of Crowds

Empirical researchers who study prediction in various fields have reported that the mean of

a set of predictions is more accurate than are the individual predictions.

Formally, they report that the prediction error of the mean prediction 1s smaller than the

average prediction error across the individual predictions.

Surowiecki (2004) calls this phenomenon the "wisdom of crowds." A review article by

Clemen (1989) put it this way (p. 559):

"The results have been virtually unanimous: combining multiple forecasts leads to
increased forecast accuracy. This has been the result whether the forecasts are
judgmental or statistical, econometric or extrapolation. Furthermore, in many cases one

can make dramatic performance improvements by simply averaging the forecasts."



Citing this literature, one may be tempted to hope that, however deficient the logic of meta-

analysis may be, the methodology may work in practice.

I strongly caution against this.

The wisdom of crowds is not an empirical regularity.

It 1s an algebraic result that holds when a convex loss function measures prediction error.
With such a loss function, the result is a consequence of Jensen's Inequality. (McNees, 1992;

Manski, 2011, 2016).

The result holds regardless of whether one combines predictions by their simple mean or a

weighted average.

It holds regardless of the quality of the individual predictions that are combined.



Credible Use of Evidence to Inform Patient Care

Evidence-based research can better inform patient care if it seeks to provide knowledge that

promotes effective decision making.

Optimal care, as formalized by medical economists, chooses treatments that maximize

patient welfare conditional on observed attributes.

From this perspective, studies of treatment response are useful to the degree that they reveal

how welfare varies with treatments and attributes.

Methodological research should aim to determine the information that studies provide when

evidence 1s combined with credible assumptions.



Statistical imprecision and identification problems limit the informativeness of studies.

Statistical imprecision stems from small sample size.

Identification problems are the difficulties that persist when sample size grows without

bound.

Statistical imprecision may be vexing, but identification 1s the more fundamental challenge.



Identification of Treatment Response

Unobservability of Counterfactual Treatment Outcomes

Perhaps the most fundamental identification problem in analysis of treatment response stems

from the unobservability of counterfactual treatment outcomes.

Observation of a study population can reveal the outcomes that patients realize with the
treatments they actually receive. It cannot reveal that outcomes that patients would have

experienced with other treatments.

Optimal treatment choice requires comparison of potential outcomes under alternative

treatments. Hence, the available evidence is inherently incomplete.



The unobservability of counterfactual outcomes 1s a matter of universal logic. The logic

holds in randomized trials and observational studies alike.

The problem is not resolvable by increasing sample size.

It 1s a basic aspect of empirical inference that can be mitigated only by making credible

assumptions that relate observed and counterfactual outcomes.



Researchers often draw a sharp distinction between observational studies and trials, asserting
that unobservability of counterfactual outcomes poses a problem for interpretation of the

former but not the latter.

The foundation for this distinction is that a particular assumption is credible in trials with

perfect compliance, but may not be otherwise.

Assume that the patients in a large study population are randomly assigned to treatments and
that all comply with their assigned treatments. Then the distribution of treatment response
in the overall study population is replicated in the sub-population who receive each

treatment.

This does not hold precisely in trials of finite size, but statistical imprecision diminishes as

sample size increases.



The assumption of random treatment assignment does not render observable the

counterfactual outcomes of individual patients.

It provides a credible basis to make probabilistic predictions of outcomes under alternative

treatments for patients in the study population.

One observes the realized distribution of outcomes for the patients assigned to a specified
treatment and uses this distribution to predict the outcomes that would occur if this treatment

were to be assigned to other patients.

The credibility of these predictions underlies the common remark that trials are the "gold

standard" for analysis of treatment response.



Now consider observational studies.

It may not be credible to assume random treatment allocation when clinicians purposefully

choose the treatments that patients receive.

Nor may it be credible to make another assumption that enables probabilistic prediction of

counterfactual outcomes.

Hence, it 1s common to view the unobservability of counterfactual outcomes as a problem

that afflicts observational studies.

Trials with imperfect compliance share with observational studies the difficulty that it may

not be credible to assume that treatment allocation 1s random.



Much research on evidence-based medicine avoids consideration of imperfect compliance

by performing intention-to-treat analysis.

Such analysis does not solve the identification problem generated by noncompliance.

It just makes it appear in a different form, namely that of an extrapolation problem.

The trial enables one to predict outcomes when patients are offered treatments in the setting

of a trial.

To inform patient care, we want to predict outcomes when patients are offered treatments

in clinical practice.



Extrapolation Problems

Extrapolation is an identification problem, not a matter of statistical imprecision. Increasing
the sample sizes of trials would increase the precision of findings, but it would not improve

the credibility of extrapolations.

Extrapolation from observational studies may also be problematic, but extrapolation from

observational studies tends to pose a less severe problem than does extrapolation from trials.

The study populations in trials are volunteers and exclude persons with co-morbidities.
Observational studies often collect data from broad study populations that are similar to the

populations that clinicians treat.

Drug trials use a double-blind protocol that prevents knowing what treatments subjects

receive. Observational studies enable one to learn about patient care as it occurs in practice.



Studying Identification

Although identification problems are ubiquitous in analysis of treatment response, they are
given little formal attention in the textbooks and articles that have provided the standard

methodological framework for evidence-based medical research.

These sources focus on statistical imprecision and provide at most verbal discussions related

to 1dentification.

As a result, medical researchers, guideline developers, and clinicians may have little

quantitative sense of how i1dentification problems affect prediction.



Study of identification has been a core concern of research in econometrics from the

beginnings of the field in the 1930s through the present.

For about fifty years, the literature focused on identification of systems of linear

simultaneous equations, most famously applied to analyze market transactions.

This early research can be used to analyze treatment response with observational data, when

treatments vary in the magnitude of their dose.

It 1s not applicable to comparison of qualitatively different treatments, which has been the

prevalent concern of evidence-based medicine.

Hence, it is not surprising that econometricians and medical researchers long found little

reason to communicate with one another.



The prospects for beneficial communication have grown substantially from the 1990s
onward, as econometricians have increasingly studied identification of response to

qualitatively different treatments, using data from observational studies and trials.

The recent econometric research has multiple branches, whose differing objectives affect the

features of treatment response that authors want to learn.

Some research aims to learn so-called "causal effects" as a subject of intrinsic interest.

Some research studies treatment response in order to inform future treatment decisions.

The latter objective motivates my research.



When realistic data are combined with credible assumptions, research may yield informative

bounds on treatment response but typically does not yield exact findings.

Thus, treatment response 1s partially identified rather than point-identified.

Econometric research aims to characterize the identified bounds in a tractable manner.

This done, guideline developers and clinicians should be able to use the findings.

Data from both observational studies and trials may be informative, so analysis of both

should be encouraged.



Identification with Missing Data on Patient Qutcomes or Attributes

Missing data on patient outcomes and attributes is a frequent occurrence.

Researchers commonly assume that data are missing at random.

This done, researchers often report findings only for sampled patients with complete data.

Or they impute missing values and report findings for all patients, acting as if imputed values

are actual values.

Assuming that data are missing at random superficially solves the identification problem.

It 1s rare for researchers to discuss the credibility of the assumption.

Yet there 1s often reason to worry that the assumption is unrealistic.



I have sought to understand how missing data may affect the conclusions drawn in empirical

research.

I have found it useful to begin by first asking what one can learn about treatment response

in the absence of any knowledge of the process generating missing data.

Conclusions drawn in this manner are weaker but more credible than those drawn by

assuming that data are missing at random or by making some other assumption.

Thus, analysis of inference with missing data illustrates the Law of Decreasing Credibility.



Inference without assumptions about the nature of missing data basically is a matter of

contemplating all possible configurations of the missing data.

Doing so generates the set of possible conclusions in empirical research, called the

identification region or the identified set.

The practical challenge is to characterize this set of possible conclusions in a tractable way,

so applied researchers can use the findings.



Analysis 1s simple when only outcome data are missing (Manski, 1989, 1990).

The simplest case occurs when the objective 1s to learn the success probability for a
treatment that may fail or succeed. The smallest and largest success probabilities are

determined by conjecturing that all missing outcomes are failures or successes.

The same reasoning holds when the objective is to learn the mean or median life span that

a treatment yields.

The smallest and largest values are determined by conjecturing that all patients with missing

outcomes die immediately or live as long as humanly possible.

Analysis 1s more complex when some sample members may have missing attribute data.

Horowitz and Manski (1998, 2000) study these settings.



Missing Data in a Trial of Treatments for Hypertension

Horowitz and Manski (2000) analyzed identification of treatment response when a trial is

performed but some patient outcome or attribute data are missing.

Focusing on cases in which outcomes are binary (success or failure), we derived sharp

bounds on success probabilities without imposing any assumptions about the distribution of

the missing data.

This analysis contrasts sharply with the conventional practice in medical research of

assuming that missing data are missing at random or have some other structure.

We applied the findings to data from a trial comparing treatments for hypertension.



Materson ef al. (1993) reported on a trial comparing treatments for hypertension sponsored

by the U.S. Department of Veteran Affairs (DVA).

Male veteran patients were randomly assigned to one of 6 antihypertensive drug treatments

or to placebo.

Treatment was defined to be successful if DBP < 90 mm Hg on two consecutive

measurement occasions and DBP < 95 mm Hg later.



The authors performed an intention-to-treat analysis that interpreted attrition from the trial

as lack of success. From this perspective there were no missing outcomes.

We obtained the trial data and used them to examine how treatment response varies with an

attribute that has missing data.

This 1s “renin response,” taking the values (low, medium, high), which had previously been

studied as a factor that might be related to successful treatment.

Renin-response was measured at the time of randomization, but data were missing for some

subjects.

We removed the intention-to-treat interpretation of attrition as lack of success.

Instead, we viewed subjects who leave the trial as having missing outcome data.



Missing Data in the DV A Hypertension Trial

Number  Observed None Missing Missing  Missing

Treatment Randomized Successes Missing Onlyy Only x (v, X)
1 188 100 173 4 11 0
2 178 106 158 11 9 0
3 188 96 169 6 13 0
4 178 110 159 5 13 1
5 185 130 164 6 14 1
6 188 97 164 12 10 2
7 187 57 178 3 ) 0

Bounds on Success Probabilities Conditional on Renin Response

Renin Treatment
Response 1 2 3 4 5 6 7

Low  [0.54,0.61] [0.52,0.62] [0.43,0.53] [0.58,0.66] [0.66,0.76] [0.54,0.65] [0.29,0.32]
Medium [0.47,0.62] [0.60,0.74] [0.53,0.68] [0.50,0.69] [0.68,0.85] [0.41,0.65] [0.27,0.32]
High  [0.28,0.50] [0.64,0.86] [0.56,0.75] [0.63,0.84] [0.55,0.78] [0.34,0.59] [0.28, 0.40]



Missing Data on Family Size When Predicting Genetic Mutations

Partial identification analysis can quantify the potential severity of many missing data

problems that occur in research on treatment response and risk assessment.

Consider predictions of the risk that a woman with observed family history carries a gene

mutation that make development of breast cancer likely.

These predictions have been used to develop precise probabilistic thresholds for

recommendations that women should be referred for genetic testing.



Amir et al. (2010) acknowledge difficulties in obtaining data on of family histories:

"All risk assessment models have limitations: Adoption, small family size. ..., and lack
of information about family history reduce the usefulness of all models to some degree.
It i1s known that because of the reluctance of people to discuss their medical conditions,
particularly those involving cancer, generations of family medical history are lost to
present-day patients who are receiving care in the era of genetic testing. . . . . There 1s
therefore a need to improve methods for collecting and acknowledging family history

even while risk models continue to have their accuracy improved. . . . .

It 1s not clear how clinicians might use this verbal caution.

Partial identification analysis can quantify the implications of the missing data problem.



Partial Personalized Risk Assessment

An extreme case of missing attribute data occurs when evidence-based predictions condition
on a subset of the patient attributes that clinicians observe. Then data on the attributes not

used in evidence-based research is entirely missing.

Clinicians have used subjective judgment to predict outcomes conditional on all observed

patient attributes, but psychologists have found these judgments fallible.

Manski (2018a) shows that this identification problem can be mitigated if the predictions
made by evidence-based studies can be combined with auxiliary data that reveal the

distribution of the missing attributes across the patient population.



Predicting Mean Remaining Life Span

A common problem in health risk assessment is to predict remaining life span conditional

on observed patient attributes.

Life tables from the Centers for Disease Control provide actuarial predictions of life span

in the U. S. conditional on (age, sex, race).

The life tables do not predict life span conditional on other patient attributes that clinicians

observe. For example, clinicians readily observe patient blood pressure.



A clinician may want to predict the mean life span for a patient with a certain (age, sex, race,

blood pressure), but the life tables alone do not provide an evidence-based prediction.
Manski (2018a) shows that one can bound mean remaining life span conditional on (age,
sex, race, blood pressure) if one combines the evidence in the life tables with data on the

distribution of blood pressure among persons with the specified (age, race, sex).

Such data exist in the National Health and Nutrition Examination Survey (NHANES).



Consider 50-year-old non-Hispanic (NH) males whose race is either black or white.

I use a standard binary classification of high blood pressure (HBP).

The life tables show that mean remaining life span for 50-year-old NH black and white
males are 26.6 and 29.7 years.

The NHANES data show that the prevalence of HBP among 50-year-old NH black and white
males are 0.426 and 0.334.

Combining the data yields these sharp bounds:
18.1 < mean life years for (age 50, NH black male, not HBP) < 35.4,
14.3 < mean life years for (age 50, NH black male, HBP) < 38.5,
23.8 < mean life years for (age 50, NH white male, not HBP) < 36.4,
15.6 < mean life years for (age 50, NH white male, HBP) < 42.0.



Tighter bounds can be obtained if the data are combined with assumptions restricting the

distribution of life span conditional on the observed attributes.

Strong enough assumptions point-identify mean life span, but these lack credibility.

There 1s a substantial middle ground between making no assumptions and making

assumptions strong enough to yield point identification.

Manski (2018a) reports tighter bounds with bounded-variation assumptions.

These restrict the magnitudes of risk assessments and the degree to which they vary with

patient attributes, enabling clinicians to express quantitative judgments in a structured way.



Assume that persons with HBP have lower life expectancy than ones without HBP.

Assume that black males have between 0 and 2.5 years lower life expectancy than white

males conditional on blood pressure.

Combining these assumptions with the data yields these bounds:

29.4 < mean life years for (age 50, NH black male, not HBP) < 35.4,
14.7 < mean life years for (age 50, NH black male, HBP) < 22.9,
31.9 < mean life years for (age 50, NH white male, not HBP) < 36.4,
16.3 < mean life years for (age 50, NH white male, HBP) < 25.4.



Credible Inference with Observational Data

When cautioning against study of observational data, medical researchers and guideline

developers commonly use qualitative rather than quantitative terms.

The Cochran Handbook states (Higgins and Green, 2011): "the extent, and even the

direction, of the bias is difficult to predict."

The authors of the JNC 8 guidelines for treatment of hypertension state (James ef al., 2014):

"The panel limited its evidence review to RCTs because they are less subject to bias

than other study designs."



These verbal cautions may reflect a perception that it i1s not possible to characterize
quantitatively the severity of the identification problem created by the unobservability of

counterfactual outcomes.

They may also reflect a perception that the only way to use observational data to learn about

treatment response 1s to compute point estimates with unknown biases.

In fact, the unobservability of counterfactual outcomes affects inference from observational

studies in a simple way.

The problem 1s simply that counterfactual outcome data are missing.



Bounds with no Knowledge of Counterfactual Qutcomes

Manski (1990) begins by asking what one can learn about treatment response in the absence

of knowledge of the process generating counterfactual outcomes.

The 1dentification region 1s obtained by contemplating all logically possible values of the

counterfactual outcomes.

The practical findings are bounds on success probabilities and on mean and median

outcomes under specified treatments.

These bounds quantify what may be learned from observational data without assumptions.



Consider inference on the success probability for a treatment with a binary outcome or on

the mean or median outcome with a continuous outcome.

Lower bounds on these measures of treatment response are determined by conjecturing that
all counterfactual outcomes take the smallest values that can possibly occur. Upper bounds
are determined analogously.

Consider the average treatment effect (ATE) comparing treatments A and B.

The lower bound on the ATE is the lower bound on the mean outcome with treatment B

minus the upper bound on the mean outcome with A.

The upper bound on the ATE is analogous.



The bound on the ATE is particularly simple when the outcome is binary and (A, B) are the

only feasible treatments.

Then every patient under study receives one of the two treatments and not the other.

The width of the bound on the ATE necessarily equals 1. This 1s half the width of the logical

bound [-1, 1] that would hold if the data from the observational study were not available.

Thus, an observational study performed with no knowledge of counterfactual outcomes takes

one half way toward learning the exact value of the ATE.



Sentencing and Recidivism

Manski and Nagin (1998) analyze sentencing and recidivism of juvenile offenders in the

state of Utah.

The structure of this matter is analogous to patient care, with judges in the role of clinicians

and juvenile offenders 1n the role of patients.

The feasible treatments are alternative sentencing options.

The outcome of interest 1s recidivism; that 1s, future offending.



Judges in Utah have had the discretion to order various sentences for juvenile offenders.
Some offenders have been given sentences with no residential confinement and others have

been sentenced to confinement. These are akin to surveillance and aggressive treatment.

A possible alternative policy would be to replace judicial discretion with a mandate that all

offenders in Utah be confined. Another would be to mandate that no offenders be confined.

We supposed that the outcome of interest is whether an offender commits a new offense in
the two years following sentencing. No new offense indicates that treatment succeeds and

commission of a new offense indicates that it fails.



We obtained data on the sentences received and the recidivism outcomes realized by all male
offenders in Utah who were born from 1970 through 1974 and who were convicted of

offenses before they reached age 16.

11 percent of the offenders were sentenced to confinement. 23 percent of these persons did

not offend again in the two years following sentencing.

89 percent were sentenced to non-confinement. 41 percent of these persons did not offend

again.

Assuming that judges sentence randomly, the data imply that the success probability for

confinement is 0.23 and for non-confinement is 0.41. Hence, ATE = -0.18.

However, one may think it not credible to assume that judges sentence randomly.



We compute bounds that assume no knowledge of counterfactual outcomes.

The bound on the success probability for confinement 1s [0.03, 0.92], with width 0.89.

The bound on the success probability for non-confinement is [0.36, 0.47], with width 0.11.

Thus, the data reveal much more about recidivism with mandatory non-confinement than

with mandatory confinement.

The bound on the ATE 1s [-0.44, 0.56], with width 1.



One would like to learn more about the ATE than a bound of width 1.

This can be achieved by combining the data with assumptions. We present bounds obtained

with a variety of assumptions.

We conjecture two different models of judicial decision making that imply distinct

restrictions on counterfactual outcomes.

We also bring to bear assumptions that use instrumental variables.

These assumptions posit that the sub-populations of offenders who reside in different judicial

districts of Utah respond to sentencing similarly but face different sentencing selection rules.



Identification of Response to Diagnostic Testing and Treatment

A common prelude to treatment 1s to order a diagnostic test to learn more about a patient.

Suppose that a patient with symptoms presents to a clinician, who initially observes

demographic traits and medical history.

The clinician may prescribe a treatment immediately. Or he may order a test that yields

further information about the patient and then choose a treatment.

The clinical decision has several aspects. Should the test be ordered? What treatment
should be chosen 1n the absence of the test? What treatment should be chosen when the test

1s ordered and the result observed?



Optimal Testing and Treatment

Phelps and Mushlin (1988) initiated study of this sequential decision problem using the

rational-expectations optimization framework.

The value of ordering a diagnostic test is that doing so reveals a patient attribute that the

clinician would not observe otherwise, namely the test result.

The potential usefulness of testing is expressed by the expected value of information, defined

by Meltzer (2001) as:

"the change in expected utility with the collection of information."



The expected value of information is necessarily non-negative and is positive if the result

affects the optimal treatment.

It follows that a clinician should always order a test if performing the test has no direct

negative effect on patient utility.

However, performing a test may negatively affect utility. For example, biopsies, CT scans,
and colonoscopies are invasive and expensive. Hence, a test should be performed only if the

expected value of information outweighs the direct utility cost.

Phelps and Mushlin assumed that clinicians have the knowledge needed to optimize testing

and treatment. They characterized optimal testing and treatment given this knowledge.



Identification of Testing and Treatment Response with Observational Data

One might obtain the knowledge assumed by Phelps and Mushline by performing an ideal

randomized trial.

A trial with multiple arms, one for each possible testing and treatment decision, could yield

the knowledge of test results and treatment response needed to optimize.
However, performance of this ideal trial is rare.
Often the only available evidence 1s observational data generated by the testing and

treatment decisions that occur in clinical practice. Then it may be unrealistic to suppose that

clinicians have the knowledge that Phelps and Mushlin assumed.



Manski (2013b) characterizes the partial knowledge obtained when one has observational
data on a study population and uses various assumptions that restrict counterfactual testing

results and treatment outcomes.

I suppose that the diagnostic test has two possible results, positive or negative. I suppose

that there are two feasible treatments, A being surveillance and B being aggressive treatment.
A common practice is to choose aggressive treatment if and only if a diagnostic test is
performed and the result is positive. The chosen treatment is surveillance if the test result

1s negative or if the patient is not tested.

I call this practice aggressive treatment with positive testing (ATPT).



I study 1dentification when the available evidence is observation of a study population that

adheres to the ATPT practice.

One can observe test results for patients who are tested. One can observe health outcomes
* under treatment A for patients who are not tested and for patients who are tested and have
a negative test result

* under treatment B for patients who are tested and have a positive test result.

One cannot observe test results for patients who are not tested. One cannot observe health
outcomes

* under treatment B for patients who are not tested and for patients who are tested and have
a negative test result

* under treatment A for patients who are tested and have a positive test result.



The observational evidence yields informative bounds on some of the quantities that

determine optimal patient care.

I initially derive bounds without making assumptions that restrict counterfactual testing and

treatment outcomes.

I then show what more can be learned 1f the evidence 1s combined with several assumptions

that may be credible in some settings.



Combining Multiple Predictions

I have cautioned against use of meta-analysis to combine the predictions of disparate studies.

This leaves open how to combine multiple predictions credibly.

Suppose that one obtains N predictions of a patient outcome.

Each prediction uses appropriate data and a plausible prediction model, but the predictions

disagree with one another. It may be that one or none is accurate.

There is no logical reason to form an average prediction.

One can only conclude that the predictions pose N possible futures, with others perhaps

possible as well.



Combining Multiple Breast Cancer Risk Assessments

Explicit statement of this conclusion is rare, but there are some notable cases.

The Gail Model is the most prominent model that predicts future development of breast

cancer in women with specified personal attributes, but it 1s not the only such model.

The review article of Amir ef al. (2010) considers four other models: the Claus Model, the
BRCAPRO Model, the Jonker Model, the IBIS Model, and the BOADICEA Model.



These models differ from one another in multiple respects, including the patient attributes
used to condition predictions, the mathematical forms of the models, and the study data used

to estimate model parameters.

As a consequence, they often yield different probabilistic predictions when applied to a

woman with specified attributes.

Domchek et al. (2003) compare the Gail and Claus Models and find:

"Concordance of the two models is only fair, with the greatest discrepancies seen with
nulliparity, multiple benign breast biopsies, and a strong paternal or first-degree family

history."



When multiple models yield disparate probabilistic predictions, uncertainty is inevitable.

A clinician who 1nsists on having a precise probabilistic prediction may want to choose

among those that are available.

Amir et al. (2010) attempt to assist such a clinician by presenting a flowchart that

recommends how a clinician should choose among the five models that the authors compare.

The recommended choice depends on certain patient attributes. The authors write:

"It 1s clear that some models are better than others in certain circumstances."



Other writers do not agree with the attempt by Amir et al. to provide a guideline for
clinicians to choose among the models. In an editorial commenting on the Amir et al.

article, Gail and Mai (2010) write:

In our opinion, the flowchart in figure 3 of Amir et al. should only be regarded as a
preliminary attempt to synthesize a complex literature and should not be used as a true
guide to action. In fact, the lack of independent assessments of calibration of these
models . . .. is a serious deficiency in the confirmatory research needed to show that

these models yield reliable risk estimates."



Two articles approach combination of predictions in a manner that I think appropriate.

In their review article comparing the Gail and Claus Models, Domchek et al. (2003) reject
the notion that a clinician must choose one or the other. Instead, they suggest that the two

models (p. 600) "may provide helpful ranges" of probabilistic predictions.

Mandelblatt ez al. (2009) use multiple models to generate a range of predictions of breast
cancer development and mortality under alternative strategies for mammography screening.

They write:

"Each model has a different structure and assumptions and some varying input
variables, so no single method can be used to validate results against an external gold
standard. . . . Overall, using 6 models to project a range of plausible screening outcomes
provides implicit cross-validation, with the range of results from the models as a

measure of uncertainty."



Reasonable Care under Uncertainty

Clinicians and guideline developers should view patient care as a problem of decision

making under uncertainty.

Precedents for this conclusion exist in the literature on medical decision making.

Institute of Medicine (2011) calls attention to the assertion by the Evidence-Based Medicine
Working Group that:

"clinicians must accept uncertainty and the notion that clinical decisions are often made

with scant knowledge of their true impact."



Some CPGs use a rating system to rank the strength of recommendations by the certainty
that they are correct. The James et al. (2014) article summarizing guidelines for treatment

of hypertension describes its rating system this way:
A Strong Recommendation: There 1s high certainty based on evidence that the net benefit
1s substantial.

B Moderate Recommendation: There 1s moderate certainty based on evidence that the net
benefit 1s moderate to substantial or there is high certainty that the net benefit is moderate.

C Weak Recommendation: There i1s at least moderate certainty based on evidence that

there 1s a small net benefit.

Perhaps the most compelling evidence that CPGs recognize uncertainty is that they change

their recommendations as new research accumulates.



Verbal recognition of uncertainty has not led guideline developers to examine patient care

formally as a problem of decision making under uncertainty.

The IOM (2011) report on guideline development expresses skepticism about decision
analysis, stating:
"A frontier of evidence-based medicine is decision analytic modeling in health care
alternatives' assessment. . . . . Although the field is currently fraught with controversy,
the committee acknowledges it as exciting and potentially promising, however, decided

the state of the art is not ready for direct comment."

I think that formal analysis of patient care under uncertainty has much to contribute to

guideline development and to patient care.



Formalizing Uncertainty: States of Nature

The standard formalization of decision under uncertainty supposes that a decision maker

must choose among a set of feasible actions.

In patient care, the actions are the feasible alternative treatments.

A decision maker faces uncertainty if the welfare achieved by an action depends on an

unknown state of nature; a feature of the environment that 1s incompletely known.

The starting point for decision theory 1s to suppose that the decision maker lists all the states

of nature that he believes could possibly occur.

This list, called the state space, expresses partial knowledge.



In patient care, the state of nature may encompass a patient's current health status, the
manner in which disease will progress in this patient, and the patient's response to alternative

treatments.

When considering patient outcomes, one may find it useful to define states of nature in

deterministic personal terms or in probabilistic group terms.

A personal state of nature is a patient-specific outcome. (e.g., whether or not a patient is ill.)

A group state 1s the distribution of outcomes for patients with specified observed attributes.

(e.g., the fraction of patients with specified observed attributes who are 1ll.)



Optimal and Reasonable Decisions

The fundamental difficulty of decision making under uncertainty is clear even in a simple

setting with two feasible actions and two states of nature.

Suppose that one action yields higher welfare in one state of nature and the other action

yields higher welfare in the other state.

Then the decision maker does not know which action is better.

Thus, optimization is impossible.



Let the two feasible actions be surveillance and aggressive treatment.

A personal state of nature may be the presence or absence of disease.

It i1s common for surveillance to yield higher welfare in the absence of disease and for

aggressive treatment to be better in the presence of disease.

Then a clinician who does not know whether disease is present cannot determine whether

surveillance or aggressive treatment is better.



Decision theory suggests a two-step process when facing uncertainty.

The first step is to eliminate dominated treatments; those which are definitely inferior to

others.

Formally, an action is dominated if some other treatment is at least as good 1in all states of

nature and superior in some state.

The second step 1s to choose among the actions that are not dominated.

This 1s subtle because there is no optimal way to choose among undominated alternatives.

There are only various reasonable ways, each with its own properties.



The term "reasonable" inevitably has multiple interpretations. In a monograph on statistical

decision theory, Ferguson (1967) wrote:

"It 1s a natural reaction to search for a 'best' decision rule, a rule that has the smallest risk
no matter what the true state of nature. Unfortunately, situations in which a best
decision rule exists are rare and uninteresting. For each fixed state of nature there may
be a best action for the statistician to take. However, this best action will differ, in

general, for different states of nature, so that no one action can be presumed best over

all."

He went on to write: "A reasonable rule is one that 1s better than just guessing."



Once one accepts that there are multiple reasonable ways to make decisions under
uncertainty, the admonition of the medical literature that clinicians should adhere to CPGs

loses some of its force.

Commentaries often exhort clinicians to adhere to CPGs in order to reduce "unnecessary"

or "unwarranted" variation in clinical practice.

This prescription for clinical practice is justified when medical knowledge suffices to

distinguish optimal treatments from dominated ones.

It 1s not justified when clinicians choose among undominated treatments.

Different reasonable criteria for decision making may yield different treatment choices.



Reasonable Decision Criteria

Decision theorists have distinguished three primary situations regarding information that a
decision maker may or may not have beyond specification of the state space. They have

studied decision criteria suited to each situation.

Decisions with Rational Expectations

The decision maker knows the probabilistic process generating observed outcomes; that is,

he has rational expectations.

Then it is optimal to give each patient in the group the treatment that maximizes the mean

outcome within the group.



Maximization of Subjective Expected Utility

The decision maker does not know the probabilistic process generating outcomes. Instead

he introspects and places a subjective probability distribution on outcomes.

Decision theorists call such a decision maker Bayesian.

The usual prescription for decision making with a subjective distribution is to maximize

subjective expected utility.

The asserted subjective distribution may not accurately describe the actual process

generating patient outcomes.

Hence, maximizing subjective expected utility may not optimize patient care.



Decisions under Ambiguity: The Maximin and Minimax-Regret Criteria

The decision maker asserts no knowledge beyond that the true state of nature lies within the

specified state space.

Decision theorists refer to this as a situation of ambiguity or deep uncertainty.

A clinician may view ambiguity in terms of personal or group states of nature.

Consider prediction of life span. The clinician may know that if a specific patient were

treated in a certain manner, life span would be between 2 months and 5 years.

Or the clinician may know that if a group of patients with specified attributes were all treated

in this manner, mean life span would be between 6 months and 3 years.



Identification problems generate ambiguity, viewed in terms of group states of nature.

One wants to learn the distribution of outcomes for a group of patients.

Combining the available data with credible assumptions, one concludes that the distribution

lies in some set of possible distributions, the identification region.

Thus, the identification region for an outcome distribution is its state space.

When making a choice under ambiguity, a reasonable way to act is to use a decision criterion

that achieves adequate performance 1n all states of nature.

The two most commonly studied are the maximin and minimax-regret (MR) criteria.



Maximin Criterion

The maximin criterion chooses an action that maximizes the minimum welfare that might

possibly occur across all states of nature.

Thus, a clinician makes a worst-case prediction for the outcome of each treatment and then

chooses the treatment with the least-bad worse-case prediction.

Let life span be the outcome of interest.

A clinician using the maximin criterion might choose the treatment that yields the largest

value for minimum life span (a personal outcome) or for minimum mean life span (a group

outcome).



Minimax-Regret Criterion

Consider the performance of a specified treatment in a given state of nature.

Compute the loss in welfare that would occur if one were to choose this treatment rather than

the one that is best in this state. This is regret.

The decision maker must choose without knowing the true state. To achieve adequate
performance in all states, he computes the maximum regret of each treatment across all

states.

The criterion chooses a treatment that minimizes maximum regret; that is, maximum

distance from optimality.



Example: Choose between A and B. Life span 1s the outcome of interest.
Suppose that patient response to A and B 1s known to vary with the presence or absence of
some mutation. It is not known if the patient has the mutation.
A yields life span 5 years with the mutation and 2 months without it.
B yields life span 4 months with the mutation and 3 years without it.
Then A is optimal with the mutation and B 1s optimal without it.
In the state with the mutation, regret is zero under A and 4.67 years under B.
In the state without the mutation, regret 1s zero under B and 2.83 years under A.

Maximum regret is 2.83 years for treatment A and 4.67 years for B.

Hence, A 1s the MR choice.



The maximin and MR criteria are sometimes confused with one another.

Whereas maximin considers only the worst outcome that an action may yield, MR

considers the worst outcome relative to what is achievable.

Savage (1951) introduced minimax regret. He distinguished it sharply from maximin. He

wrote that the maximin criterion 1s “ultrapessimistic,” while minimax regret is not.

Maximum regret quantifies how uncertainty—Ilack of knowledge of the true state of

nature—potentially diminishes the quality of decisions.



Reasonable Choice Between Surveillance and Aggressive Treatment

Let aggressive treatment be the better option if the risk of disease exceeds a computable

patient-specific threshold and surveillance be better otherwise.

Consider decision making when a clinician does not know a patient's precise risk of disease

but can bound it.

Formally, a patient 1s described by attributes and risk of disease 1s the fraction of patients

with these attributes who would become ill if treated in a specified manner.

Risk of disease is a group state of nature whose identification region is described by a bound.



Knowledge of a bound on the risk of disease suffices to determine that surveillance is

optimal if the upper bound is less than the patient-specific threshold.

Similarly, aggressive treatment is optimal if the lower bound on risk of disease is greater

than the threshold.

Knowledge of the bound does not determine the optimal treatment 1f the threshold lies within

the bound.



Consider risk of breast cancer.

The NCCN guideline calls for aggressive treatment if a woman's probability of developing

the disease in the next five years exceeds 0.017.
A clinician who observes patient attributes beyond those used in the BCRA Tool may not
know the patient's risk of cancer conditional on her observed attributes but may be able to

bound the risk.

Surveillance is optimal if the upper bound i1s less than 0.017 and aggressive treatment 1s

optimal 1f the lower bound is greater than 0.017.

The optimal treatment 1s indeterminate if the value 0.017 lies within the bound.



When the optimal treatment is indeterminate, treatment choice depends on the criterion used.

A clinician maximizing subjective expected utility forms a subjective mean for the patient's

unknown risk of disease and acts as if the true risk equals the subjective mean.

A clinician making a maximin decision acts as if the true risk of disease equals the upper

bound on risk.

One making a minimax-regret decision acts as if the true risk of equals the midpoint of the

bound on risk.



Reasonable Treatment Choice with Trial Data

Consider use of sample data to inform decision making.

I focus on trial data and consider only statistical imprecision, as has been the case in the

statistical literature on trials.

Trial data aim to provide information about the outcome distributions that would occur 1f

groups of patients with specified attributes would to be treated in a specified manner.

Trials of finite size cannot definitively reveal outcome distributions.

Statistical theory characterizes the information that trials provide.



Medical researchers have applied concepts of statistical theory whose foundations are distant

from treatment choice.

It has been common to use hypothesis tests to compare treatments.

The Wald (1950) development of statistical decision theory provides a coherent framework

for use of trial data to make treatment decisions.

A body of recent research applies statistical decision theory to determine treatment choices

that achieve adequate performance in all states of nature, in the sense of maximum regret.

This provide an appealing practical alternative to use of hypothesis tests.



Principles of Statistical Decision Theory

Wald considered the general problem of using sample data to make decisions.

He posed the task as choice of a statistical decision function, which maps potential data into

a choice among the feasible actions.

He recommended ex ante evaluation of statistical decision functions as procedures, chosen
prior to realization of the data, specifying how a decision maker would use whatever data

may be realized. Thus, the theory 1s frequentist.

Expressing the objective as minimization of loss, he proposed evaluation of a statistical
decision function by its mean loss across realizations of the sampling process, which he

called risk.



In the presence of uncertainty, he prescribed a three-step decision process:

(1) Specify the state space.

(2) Eliminate inadmissible statistical decision functions. Inadmissible 1s a synonym for
dominated. A decision function is inadmissible if there exists another that yields at least as
good mean sampling performance in every state of nature and strictly better mean

performance in some state.

(3) Use some reasonable criterion to choose an admissible statistical decision function.



Maximization of subjective expected utility has been studied extensively.

Statistical decision theorists call these Bayes decisions. This focuses attention on the
Bayesian process of transforming a prior subjective distribution, determined before

observing the sample data, into a posterior distribution after observing the data.

The Bayesian prescription 1s sometimes asserted to be antithetical to frequentist statistics,

but Wald provided a clear frequentist perspective on Bayes decisions.

He showed that minimization of Bayes risk, a frequentist decision criterion, yields the same
decisions as occur if one performs Bayesian inference, combining the prior distribution with
the data to form a posterior subjective distribution, and then chooses an action to minimize

the posterior mean of expected loss.



Bayesian decision making may be compelling when one feels able to place a credible

subjective prior distribution on the state space.

However, Bayesians have long struggled to provide guidance on specification of priors and

the matter continues to be controversial.

A spectrum of views regarding Bayesian analysis of randomized trials 1s expressed by the

authors and discussants of Spiegelhalter, Freedman, and Parmar (1994).

The controversy suggests that inability to express a credible prior is common in actual

decision settings.



When one finds it difficult to assert a credible subjective distribution, a reasonable way to

act 1s to use a decision criterion that yields adequate performance in all states.

The maximin and minimax-regret criteria provide two ways to formalize this idea.

Wald's version of maximin chooses a decision function that minimizes maximum risk across

all states; hence, Wald called 1t minimax rather than maximin.
One may apply the minimax-regret criterion with sample data.
One measures the regret of a specified statistical decision function in a given state of nature

by the difference between the minimum risk achievable in that state and the risk obtained

with the specified decision function.



Some History, Post Wald

The Wald framework has breathtaking generality.

In principle, it enables comparison of all statistical decision functions whose risk functions

exist.

It enables comparison of alternative sampling processes as well as decision rules. It uses no

asymptotic approximations. It applies whatever information the decision maker may have.

One might anticipate that it would play a central role in modern statistics, but this has not

occurred. A surge of important extensions and applications followed in the 1950s.

However, this period of rapid development came to a close by the 1960s, with the exception

of Bayesian statistical decision theory.



Why did statistical decision theory lose momentum long ago?

One reason may have been the technical difficulty of the subject.

Wald's ideas are easy to describe, but applying them can be analytically and computationally

demanding.

Another reason may have been diminishing interest in decision making as the motivation for

analysis of sample data.

Modern statisticians tend to view their objectives as estimation and hypothesis testing rather

than decision making.

The near absence of the subject in modern journals and textbooks is unfortunate.



Recent Work on Statistical Decision Theory for Treatment Choice

Bayesian statistical decision theory has long been available as a methodology to design trials

and to choose treatments with trial data.

However, Bayesians have struggled to provide guidance on specification of priors.

Recent research avoids specification of priors and instead studies treatment choice using

maximum regret to measure performance across states.

Contributions include Manski (2004, 2005,2007a,2007b), Schlag (2006), Hirano and Porter
(2009), Stoye (2009, 2012), Tetenov (2012), Manski and Tetenov (2016), and Kitagawa and
Tetenov (2018).



The recent research adopts a public health perspective.

It supposes that the objective of treatment choice is to maximize a welfare function that sums

treatment outcomes across a population of patients who may have heterogeneous treatment

Iresponse.

A statistical decision function uses the data to choose an allocation of patients to treatments.

Such a function has been called a statistical treatment rule (STR).

The mean sampling performance of an STR across repeated samples 1s its expected welfare.

In Wald's terminology, expected welfare 1s the negative of risk.



Practical Appeal

Researchers have usually studied treatment choice with trial data on bounded outcomes.

The minimax-regret criterion behaves more reasonably than the maximin criterion.

Numerical methods may be required to precisely minimize maximum regret.

To simplify, researchers have often studied the maximum regret of the empirical success

(ES) rule, which chooses the treatment with the highest observed trial average outcome.

This simple rule either exactly or approximately minimize maximum regret in common

settings with two treatments when sample size 1s moderate.

In contrast, the maximin rule ignores the trial data, whatever they may be.



Conceptual Appeal

Maximum regret quantifies how lack of knowledge diminishes the quality of decisions.

An STR with small maximum regret 1s uniformly near-optimal across all states.

Maximum regret 1s well-defined with multiple treatments and when patients have

heterogeneous attributes.

The concept 1s especially transparent when there are two treatments and the members of the

patient population are observationally identical.



Suppose there are two feasible treatments, A and B.

In a state where A 1s better, the regret of an STR 1s the product of the probability across
repeated samples that the rule commits a Type I error (choosing B) times the magnitude of

the loss in expected welfare that occurs when choosing B.

In a state where B 1s better, regret 1s the probability of a Type II error (choosing A) times the

magnitude of the loss in expected welfare when choosing A.

Thus, regret considers Type I and II error probabilities symmetrically and it measures the

magnitudes of the losses that errors produce.



Example

Consider again the example in which a hypothesis test is used as an STR to choose between

a status quo treatment for cancer and an innovation.

There are two states: the innovation yields mean life span of 1/3 year or 5 years.

In the first state, the regret of the "test rule" equals 1/30 year; a 0.05 chance of a Type I error

times a 2/3 year reduction in mean life span with improper choice of the innovation.

In the second state, the regret of the test rule equals 4/5 year; a 0.20 chance of a Type II error

times a 4 year reduction in mean life span with improper choice of the status quo.

Thus, the maximum regret of the test rule 1s 4/5 year.



One could seek an STR that has smaller maximum regret.

A simple option would be to reverse the conventional probabilities of Type I and Type 11

errors; that is, use a test with a 0.20 chance of Type I error and 0.05 chance of Type II error.

In the first state, the regret of this STR equals 2/15 year; a 0.20 chance of Type I error times

a 2/3 year reduction in mean life span with improper choice of the innovation.

In the second state, the regret of rule equals 1/5 year; a 0.05 chance of Type II error times

a 4 year reduction in mean life span with improper choice of the status quo.

Thus, the maximum regret of the unconventional test rule is 1/5 of a year.

There may exist other STRs that perform even better.



Designing Trials to Enable Near-Optimal Treatment Choice

The above research concerns use of existing trial data to make treatment choices.

A complementary question asks how trials should be designed to inform treatment choice.

The convention has been to choose sample sizes that yield specified statistical power.

A better idea would be to choose sample size to enable near-optimal treatment choice.



Using Power Calculations to Choose Sample Size

The use of power calculations to set sample sizes derives from the presumption that trial data

will be used to test a hypothesis.

The convention has been to choose a sample size that yield specified power at a value of the

effect size deemed clinically important.

Trials with samples too small to achieve conventional error probabilities are called

"underpowered" and are criticized as scientifically useless and medically unethical.



Sample Size Enabling Near-Optimal Treatment Choice

An ideal objective for the design of trials would be to collect data that enable subsequent

implementation of an optimal treatment rule in the patient population.

Optimality 1s not achievable with finite sample size, but near-optimal rules—ones with small

maximum regret—exist when trials are large enough.

Manski and Tetenov (2016) trial design that enables near-optimal treatment choices.

We show that, given any € > 0, g-optimal rules exist when trials have large enough sample

size.

An g-optimal rule has expected welfare, across repeated samples, within ¢ of the welfare of

the best treatment in every state. Equivalently, it has maximum regret no larger than e.



We give simple sufficient conditions on sample sizes that ensure existence of e-optimal

treatment rules when there are multiple treatments and outcomes are bounded.

We report exact results for the case of two treatments and binary outcomes.

Use of near-optimality to set sample sizes requires specification of a value for ¢.

We suggest that a possible way to specify ¢ is to relate it to the minimum clinically important

difference (MCID) in the average treatment effect comparing alternative treatments.

Many writers call an average treatment effect clinically significant if its magnitude 1s greater

than a specified value deemed minimally consequential in clinical practice.

Research articles reporting trial findings sometimes pose particular values of MCIDs when

comparing alternative treatments for specific diseases.



Findings with Binary Outcomes, Two Treatments, and Balanced Designs

Determination of sample sizes that enable near-optimal treatment is simple in settings with
binary outcomes, two treatments, and a balanced design which assigns the same number of

subjects to each treatment group.

We provide exact computations of the minimum sample size that enables g-optimality with

three treatment rules, for various values of ¢.

€ ES Rule One-Sided One-Sided
5% z-Test 1% z-Test

0.01 145 3488 7963
0.03 17 382 879
0.05 6 138 310
0.10 2 33 79

0.15 1 16 35



Reconsidering Sample Size

Our findings yield a broad conclusion that sample sizes determined by clinically relevant

near-optimality criteria are much smaller than ones set with conventional power calculations.

Reduction of total sample size can lower the cost of executing trials, the time necessary to

recruit subjects, and the need to perform trials across multiple centers.

Reduction of sample size per treatment arm can make it feasible to perform trials that

increase the number of arms and thus yield information about more treatment options.



A Public Health Perspective on Reasonable Care

Treatment Diversification

A useful perspective when considering public health 1s to hypothesize a planner who treats

a population of patients.

The planner's objective 1s to maximize utilitarian social welfare across the relevant patients,

adding up their individual outcomes.



A planner with rational expectations would make the same decisions as would clinicians

optimizing treatment of individual patients.

The public health perspective differs from that of the clinician under uncertainty.

Suppose that the feasible treatments are A and B.

A clinician treating an individual patient can only choose one treatment or the other.

A planner can diversify treatment of observationally similar patients, allocating some

fraction to A and the remainder to B.

Treatment diversification is useful because it enables a planner to avoid gross errors that

would occur if all patients were given an inferior treatment.



Treatment diversification is analogous to financial diversification.

A portfolio 1s diversified if an investor allocates positive fractions of wealth to different

Investments.

Diversification enables an investor facing uncertain asset returns to limit the potential

negative consequences of placing 'all eggs in one basket.'
The finance literature shows that an investor seeking to maximize subjective expected utility
diversifies if utility is a sufficiently concave function of the investment return and the

probability distribution of returns has sufficient spread.

Treatment diversification by a health planner can be studied in the same manner.



Manski (2007a, 2009) takes a different approach, studying treatment allocation using the

minimax-regret criterion.

The central result is that when there are two undominated treatments, a planner using the

minimax-regret criterion always chooses to diversify.

The fraction of patients assigned to each treatment depends on the available knowledge of

treatment response.



Example: Treating X-Pox

Suppose that a new disease called x-pox 1s sweeping a community. It is impossible to avoid

infection. If untreated, infected persons always die.

Researchers propose two treatments, say A and B. The researchers know that one treatment
1s effective, but they do not know which one. They know that administering both treatments

in combination is fatal.

There 1s no time to experiment to learn which treatment 1s effective. Everyone must be

treated right away.



A public health agency must decide how to treat the community. The agency wants to

maximize the survival rate of the population.

It can select one treatment and administer it to everyone. Then the entire population will

either live or die.

It can give one treatment to some fraction of the community and the other treatment to the

remaining fraction. Then the survival rate will be one of the two chosen fractions.

If half the population receives each treatment, the survival rate is fifty percent.

What might the agency reasonably do?



There are two states of nature. Treatment A is effective in one state and B 1s effective in the

other.

All treatment allocations are undominated.

The planner might use the expected welfare, maximin, or minimax regret criterion to choose

a treatment allocation.

A planner who places subjective probabilities on the states of nature and evaluates a
treatment allocation by its subjective expected welfare would assign everyone to the

treatment with the higher subjective probability of being effective.

The maximin and the minimax-regret criteria both prescribe that the planner should assign

half the population to each treatment.



Although the maximin and minimax-regret criteria deliver the same treatment allocation in

this example, the two criteria are not the same in general.

To see this, amend the description of the x-pox problem by adding a third state of nature, say

u, in which neither treatment is effective.

Adding this third state does not affect the choices made by a planner who maximizes

expected welfare or minimizes maximum regret.

All treatment allocations solve the maximin problem. The reason is that there now exists a

possible state on nature in which everyone dies, regardless of treatment.



Adaptive Diversification

Consider a planner who makes treatment decisions in a sequence of periods, facing a new

group of patients each period.

The planner may observe the outcomes of early decisions and use this evidence to inform

treatment later on.

Diversification is advantageous for learning treatment response because it generates

randomized experiments.

As evidence accumulates, the planner can revise the fraction of patients assigned to each

treatment in accord with the available knowledge.

I have called this adaptive diversification.



A simple approach to multi-period treatment choice is to use the adaptive minimax-regret

(AMR) criterion.

In each period, this criterion applies the static MR criterion using the information available

at the time.

It is adaptive because successive cohorts may receive different allocations as knowledge of

treatment response increases over time.

The AMR criterion treats each cohort as well as possible, in the MR sense, given the

available knowledge.

It does not ask the members of one cohort to sacrifice for future cohorts.

Nevertheless, diversification enables learning about treatment response.



The fractional allocations produced by the AMR criterion are randomized experiments, so

one may ask how AMR differs from conventional trials.

The AMR criterion randomizes treatment of all observationally similar patients.

The treatment groups in trials are typically small fractions of the patient population.

Trials draw subjects from pools of persons who volunteer to participate and who meet

specific conditions, such as the absence of co-morbidities.



The Practicality of Adaptive Diversification

Implementation in Centralized Health-Care Systems

Adaptive diversification may be feasible in centralized health-care systems where a planning

entity chooses treatments for a broad patient population.

Examples: the Military Health System in the United States, the National Health Service in

the United Kingdom, private health maintenance organizations.

An open question 1s whether the relevant planners and patient populations would accept the

1dea.



A possible objection is that diversification violates a version of the ethical principle calling

for “equal treatment of equals.”

Fractional allocations are consistent with this principle in the ex ante sense that
observationally identical people have the same probability of receiving a particular

treatment.

They violate it in the ex post sense that observationally identical persons ultimately receive

different treatments.

Fractional allocations are consistent with prevailing standards of medical ethics, which

permit randomized trials under conditions of clinical equipoise.



Should Guidelines Encourage Treatment Variation under Uncertainty?

Suppose that controlled adaptive diversification is not feasible.

We can nevertheless question whether the medical community should continue to discourage

treatment variation.

CPGs could encourage clinicians to recognize that treatment choice may reasonably depend

on how one interprets the available evidence and on the decision criterion that one uses.

The result could then be natural treatment variation that yields some of the benefits of

adaptive diversification.



Managing Uncertainty in Drug Approval

The approval process of the Food and Drug Administration determines whether a drug can

legally be sold within the United States.
To obtain approval, a pharmaceutical firm must provide information on treatment response
through performance of randomized trials that compare the new drug with an existing

treatment or a placebo.

The FDA makes a (yes/no) approval decision after reviewing the findings.



Type I and II Errors in Drug Approval

FDA evaluation of new drugs occurs with partial knowledge of treatment response.

Approval decisions are susceptible to two types of errors.

Type I errors occur when new drugs that are inferior to accepted treatments are approved

because they appear superior when evaluated using available information.

Type Il errors occur when new drugs that are superior to accepted treatments are disapproved

because they appear inferior when evaluated using available information.



Type II errors commonly are permanent. After a drug is disapproved, use ceases and no

further data on treatment response are produced.

Some Type I errors eventually are corrected through the FDA’s post-market surveillance
program, which analyzes data on the outcomes experienced when the drug 1s used in clinical

practice.

The post-market surveillance program only aims to detect adverse side effects of approved

drugs, not to assess their effectiveness in treating the conditions for which they are intended.



Errors due to Statistical Imprecision and Wishful Extrapolation

A well-recognized potential source of errors in drug approval is the statistical imprecision

of empirical findings from trials with finite samples of subjects.

The FDA limits the frequency of statistical errors by requiring that trial sizes suffice to

perform hypothesis tests with specified power.

There 1s much reason to question the use of power calculations to choose trial sizes.

Nevertheless, power calculations ensure that trial sizes are large enough to make statistical

error a relatively minor concern.



The dominant determinants of errors in drug approval are extrapolation problems.

The approval process essentially assumes that treatment response in the relevant patient

population will be similar to response in the study population.

It assumes that response 1n clinical practice will be similar to response with double-blinded

treatment assignment.

It assumes that drug effectiveness measured by outcomes of interest will be similar to

effectiveness measured by surrogate outcomes.

These assumptions are unsubstantiated, but they have become enshrined by long use.



FDA Rejection of Formal Decision Analysis

In 2012, Congress responded to controversy about the drug approval process by requiring

the FDA to implement a "structured risk-benefit assessment framework."

The Food and Drug Administration Safety and Innovation Act of 2012 (Public Law 112-144)
amended the Federal Food Drug and Cosmetic Act by requiring the FDA to

"Implement a structured risk-benefit assessment framework in the new drug approval
process to facilitate the balanced consideration of benefits and risks, a consistent and
systematic approach to the discussion and regulatory decision-making, and the

communication of the benefits and risks of new drugs."



After enactment of the legislation, the FDA published a plan intended to fulfill the

Congressional requirement.

The agency responded skeptically to critics of the prevailing approval process who have

recommended that the FDA use formal decision analysis.

The agency described and defended its preferred approach to drug approval.

It rejected quantitative/formal decision analysis and argued for continuation of the

"structured qualitative" approach that it has used in the past. The agency stated:

"In the last few years, as other disciplines such as decision science and health economics have been
applied to drug regulatory decision-making, there has been much discussion among regulators,
industry, and other stakeholders regarding “qualitative” versus “quantitative” approaches to benefit-risk

assessment.



Some hold the view that a quantitative benefit-risk assessment encompasses approaches that seek to
quantify benefits and risks, as well as the weight that is placed on each of the components such that the
entire benefit-risk assessment 1s quantitative. This approach is typical of quantitative decision

modeling.

It usually requires assigning numerical weights to benefit and risk considerations in a process involving
numerous judgments that are at best debatable and at worst arbitrary. The subjective judgments and
assumptions that would inevitably be embodied in such quantitative decision modeling would be much

less transparent, 1f not obscured, to those who wish to understand a regulator’s thinking.

Furthermore, application of quantitative decision modeling seems most appropriate for decisions that
are largely binary. Many benefit-risk assessments are more nuanced and conditional based on
parameters that could be used to effectively manage a safety concern in the post-market setting. There
is significant concern that reliance on a relatively complex model would obscure rather than elucidate

a regulator’s thinking.

These concerns have led FDA to the conclusion that the best presentation of benefit-risk considerations



involves focusing on the individual benefits and risks, their frequency, and weighing them
appropriately. FDA believes that this can be accomplished by a qualitative descriptive approach for
structuring the benefit-risk assessment that satisfies the principles outlined earlier in this section, while
acknowledging that quantification of certain components of the benefit-risk assessment is an important

part of the process to support decision-making.

FDA considers it most important to be clear about what was considered in the decision, to be as
quantitative as possible in characterizing that information, and to fully describe how that information

was weighed in arriving at a conclusion.

Quantitative assessments certainly underpin the qualitative judgments of FDA’s regulatory decisions,
but FDA has adopted a structured qualitative approach that is designed to support the identification and
communication of the key considerations in FDA’s benefit-risk assessment and how that information

led to the regulatory decision."



Adaptive Partial Drug Approval

Adaptive diversification of drug treatment after FDA approval of new drugs could reduce
the impact of Type I errors in drug approval, diversifying treatment choice and producing
new post-market information on treatment response.

Adaptive diversification after drug approval would not reduce Type II errors.

Clinicians can only choose among the drugs that are approved by the FDA.

To reduce both Type I and II errors, the FDA could replace its present approval process with

one of adaptive partial drug approval.



The permitted use of a new drug now has a sharp discontinuity at the date of the FDA

approval decision.

Beforehand, a small fraction of the patient population receives the new drug in trials.

Afterwards, use 1s unconstrained if approval 1s granted and zero 1f approval 1s not granted.

An adaptive approval process would eliminate this discontinuity and instead permit use of

a new drug to vary smoothly as evidence accumulates.

I proposed such an approval process in Manski (2009). Others have made similar proposals,

without an explicit decision-theoretic motivation. See Eichler ez al. (2012).



Adaptive Limited-Term Sales Licenses

A version of adaptive approval would use limited-term sales licenses.

The approval process would begin, as at present, with a pharmaceutical firm performing
preclinical testing followed by Phase 1 and 2 trials. The changes would appear in the

subsequent Phase 3 trials and in the FDA decision process.

The duration of Phase 3 trials would be lengthened sufficiently to measure health outcomes

of real interest, not just surrogate outcomes.

The present binary approval decision following Phase 3 would be replaced by an adaptive
process that monitors the trial while in progress and that periodically grants limited-term

sales licenses.



An adaptive limited-term sales license would permit a firm to sell no more than a specified

quantity of the new drug over a specified time period.

Subject to this bound, treatment allocation would be determined by the decentralized pricing
decisions of the pharmaceutical firm, coverage decisions of insurers, and treatment decisions

of physicians and patients.
On each iteration of the decision, the maximum quantity of drug that the firm is permitted
to sell would be set by the FDA with the assistance of an expert advisory board, similar to

those now used in drug approval.

A possibility would be to use the AMR criterion.



When the lengthened Phase 3 trial is complete and the outcomes of health interest have been

observed, the FDA would make a longer-term approval decision.

If the drug is deemed safe and effective, the firm would be permitted to sell it with no

quantity restriction. Further use would be prohibited otherwise.

The FDA would retain the right to rescind approval should new evidence warrant.

Post-market surveillance would be necessary because lengthening Phase 3 trials to measure

health outcomes of interest may not suffice to determine with certainty whether the

innovation 1is superior to the status quo.



Open Questions

An adaptive drug approval process using limited-term sales licenses is one way that the FDA

might improve the present approval process.

Alternatively, the agency could empower some health-care providers to prescribe the drug

prior to final approval or could restrict treatment to patients with specified characteristics.

An open question is how pharmaceutical firms respond to the incentives that any approval

process puts in place.

We don't know much about how the approval process affects the decisions of firms to

perform basic research, initiate trials, and submit New Drug Applications.



Conclusion

I initially asked: Should clinicians adhere to guidelines or exercise judgment?

Guidelines call for uniform treatment of observationally similar patients. The argument

weakens when clinicians choose care under uncertainty.

1. Guidelines 1ssued by different health organizations may disagree with one another. Then

clinicians have to use judgment to determine which guideline to follow.

2. Clinicians observe patient attributes that are not considered in guidelines. Then clinicians

can personalize care to a greater degree than 1s possible with guidelines.

3. Predictions of treatment response used in evidence-based guideline development rest on

questionable methodological practices.



Thus, clinicians may reasonably interpret available evidence in different ways and may

reasonably use different decision criteria to choose treatments.

The rationale for treatment variation strengthens when one considers patient care as a public

health problem.

Then adaptive diversification of treatment can be valuable.



Separating the Information and Recommendation Aspects of Guidelines

Manski (2013a) proposed separating two tasks of guideline development that have

commonly been performed in conjunction with one another.

One is to characterize medical knowledge. The other is to make care recommendations.

I continue to think that these two tasks should be separated.

Having guideline development groups characterize knowledge can improve clinical practice.

Medical research is vast, it continues to grows rapidly, and it requires expertise to interpret.

It 1s not feasible for individual clinicians to keep up on their own.



Synthesis by expert panels seems essential.

The problem 1s that current approaches to synthesis of medical research are less informative

than they should be.

A huge deficiency 1s over-attention to internal validity and neglect of external validity.

This asymmetry has manifested itself in quantification of statistical imprecision without

quantification of identification problems.

Guideline panels recognize uncertainty only qualitatively and shun use of decision theory

when considering how to cope with uncertainty.

FDA drug approval process manifests the same deficiencies.



I question when guidelines should make recommendations for patient care under uncertainty.

Making recommendations asks guideline developers to aggregate the benefits and harms of

care into a scalar measure of welfare.

It requires them to specify a decision criterion to cope with partial knowledge.

Care recommendations may be contentious if perspectives vary.

Moreover, having all clinicians adhere to the same guidelines may be sub-optimal from a

public health perspective.

It does not recognize the attraction of diversification as a means of avoiding gross errors in

treatment. It does not exploit the opportunity for learning that diversification provides.



Educating Clinicians in Care under Uncertainty

An alternative to having guidelines make care recommendations would be to enhance the

ability of clinicians to make reasonable patient-care decisions under uncertainty.

It would be useful to introduce medical students to core concepts of uncertainty

quantification and decision analysis as part of their basic education.

An important part of the solution will be to bring specialists in risk assessment and decision

analysis into the clinical team who jointly contribute to patient care.

To instruct basic medical students and develop specialists in patient care under uncertainty

will require that medical schools create and implement appropriate curricula.
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