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Abstract

When there are multiple outcome series of interest, Synthetic Control analyses typically proceed by estimating

separate weights for each outcome. In this paper, we instead propose estimating a common set of weights

across outcomes, by balancing either a vector of all outcomes or an index or average of them. Under a

low-rank factor model, we show that these approaches lead to lower bias bounds than separate weights, and

that averaging leads to further gains when the number of outcomes grows. We illustrate this via simulation

and in a re-analysis of the impact of the Flint water crisis on educational outcomes.
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1 Introduction

The synthetic control method (SCM) estimates a treated unit’s counterfactual untreated outcome

via a weighted average of observed outcomes for untreated units, with weights chosen to match

the treated unit’s pre-treatment outcomes as closely as possible (Abadie et al., 2010). In many

applications, researchers are interested in multiple outcome series at once, such as both reading and

math scores in educational applications (e.g., Trejo et al., 2021), or both low-wage employment and

earnings when studying minimum wage changes (e.g., Jardim et al., 2022). Other recent empirical

examples include Billmeier and Nannicini (2013); Kleven et al. (2013); Bohn et al. (2014); Pinotti

(2015); Acemoglu et al. (2016); Dustmann et al. (2017); Cunningham and Shah (2018); Kasy and

Lehner (2022). There is limited practical guidance for using SCM in this common setting, however,

and researchers generally default to estimating separate weights for each outcome.

Like other single-outcome SCM analyses, this separate SCM approach can run into two main

challenges. At one extreme, poor pre-treatment fit, which is more likely with longer series, can

lead to bias (Ferman and Pinto, 2021; Ben-Michael et al., 2021). At the other extreme, perfect or

near-perfect pre-treatment fit, which is more likely with shorter series, can lead to finding SCM

weights that overfit to idiosyncratic errors — rather than finding weights that balance latent factors

(Abadie et al., 2010).

In this paper, we show that estimating a single set of weights common to multiple outcome

series can help address these challenges. We consider two approaches. First, following several

recent empirical studies, we find a single set of concatenated weights: SCM weights that minimize

the imbalance in the concatenated pre-treatment series for all outcomes. Second, we find a single

set of average weights: SCM weights that minimize the imbalance in a linear combination of

pre-treatment outcomes; as the leading case, we focus on imbalance in the average standardized

pre-treatment outcome series.

Under the assumption that the K different outcome series share a similar factor structure, we

derive finite-sample bounds on the bias for these two approaches, as well as bounds when finding

separate SCM weights for each outcome series. We show that both the concatenated and averaging

approaches reduce the potential bias due to overfitting to noise by a factor of 1√
K

relative to the

analysis that considers each outcome separately. We also show that the averaging approach further

reduces the potential bias due to poor pre-treatment fit by a factor of 1√
K

relative to both the

separate and concatenated approaches. In particular, averaging reduces the amount of the noise,

which both improves pre-treatment fit and reduces bias due to overfitting to noise.

We inspect other facets of the distribution of the bias for each of the three approaches via a

Monte Carlo study. We then use our results to conduct a re-analysis of Trejo et al. (2021), who

study the impact of the Flint water crisis on student outcomes in Flint, Michigan.

Overall, for a wide variety of SCM analyses with multiple outcomes, we recommend averaging

across outcomes, after appropriate standardization, as a reasonable default procedure that effec-

tively leverages the multiple outcomes for bias reduction.
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Related literature. Despite the many empirical examples of SCM with multiple outcomes,

there is relatively limited methodological guidance for this setting. Robbins et al. (2017) consider

this problem in the context of SCM with high-dimensional, granular data and consider different

aggregation approaches. Amjad et al. (2019) introduce the Multi-Dimensional Robust Synthetic

Control (mRSC) method, which fits a linear regression using a de-noised matrix of all outcomes

concatenated together.

The closest paper to ours is independent work from Tian et al. (2023), who explore a similar

setting and also develop a bias bound. Their theoretical results, however, hinge on finding perfect

pre-treatment fit for all outcome series simultaneously, which can be especially challenging to

achieve with many outcomes. Moreover, the authors only consider weights based on concatenated

outcomes. By contrast, our bias bounds are valid even with imperfect pre-treatment fit, and our

analysis shows how averaging can reduce finite sample error relative to concatenated weights.

Finally, we build on an expansive literature on the Synthetic Control Method for single out-

comes; see Abadie (2021) for a recent review. In particular, several recent papers propose modifi-

cations to SCM to mitigate bias both due to imperfect pre-treatment fit (e.g., Ferman and Pinto,

2021; Ben-Michael et al., 2021) and bias due to overfitting to noise (e.g., Kellogg et al., 2021). We

complement these papers by highlighting how researchers can also incorporate multiple outcomes

to mitigate both sources of bias.

Plan for paper. Section 2 sets up the problem. Section 3 discusses the underlying identifying

assumptions for SCM and the extension to multiple outcomes. Section 4 then explores how to

leverage multiple outcomes for estimation, including a brief discussion of inference. Sections 5

and 6 present a simulation study and re-analysis of Trejo et al. (2021), respectively. Section 7

concludes. The appendix includes proofs, additional derivations, and further technical discussion.

2 Preliminaries

2.1 Setup and notation

We consider an aggregate panel data setting of N units and T time periods. For each unit i =

1, . . . , N and at each time period t = 1, . . . , T , we observe K outcomes Yitk where k = 1, . . . ,K.

We denote the exposure to a binary treatment by Wi ∈ {0, 1}. We restrict our attention to the

case where a single unit receives treatment, and follow the convention that this is the first one,

W1 = 1. The remaining N0 ≡ N − 1 units are possible controls, often referred to as “donor units.”

To simplify notation, we limit to one post-treatment observation, T = T0 + 1, though our results

are easily extended to larger T .

We follow the potential outcomes framework (Neyman, 1990 [1923]) and denote the potential

outcome under treatment w with Yitk(w). Implicit in our notation is the assumption that there

is no interference between units. Under this setup, we can write the observed outcomes as Yitk =

(1−Wi)Yitk(0)+Wi1{t ≤ T0}Yitk(0)+Wi1{t > T0}Yitk(1). The treatment effects of interest are the
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effects on the K outcomes for the treated unit in the post-treatment period, τk = Y1Tk(1)−Y1Tk(0).

We collect the treatment effects into a vector τ = (τ1, . . . , τK) ∈ RK . Since we directly observe

Y1Tk(1) = Y1Tk for the treated unit, we focus on imputing the missing counterfactual outcome

under control, Y1TK(0).

To ensure that the multiple outcomes have similar variance, we standardize each outcome series

using its pre-treatment standard deviation. The resulting average across standardized outcomes

is therefore akin to a precision-weighted average, which, as we will show below, reduces noise and

bias relative to classical SCM. To aid in interpretation, we also change the sign of each outcome to

follow the convention that positive has the same semantic meaning for all outcomes (e.g., higher

test scores are more desirable).

Throughout, we will focus on de-meaned or intercept-shifted weighting estimators (Doudchenko

and Imbens, 2017; Ferman and Pinto, 2021). We denote Ȳi·k ≡ 1
T0

∑T0
t=1 Yitk as the pre-treatment

average for the kth outcome for unit i, and Ẏitk = Yitk − Ȳi·k as the corresponding de-meaned

outcome. We consider estimators of the form:

Ŷ1Tk(0) ≡ Ȳ1·k +

N∑
i=2

γiẎiTk, (1)

where γ ∈ RN−1 is a set of weights.1 Our paper centers on how to choose the weights γ.

2.2 Review: SCM with a single outcome series

Our setup encompasses the classic synthetic control method applied separately to each series

(Abadie and Gardeazabal, 2003; Abadie et al., 2010, 2015), adapted to have an intercept, as in

Doudchenko and Imbens (2017) and Ferman and Pinto (2021). This is a de-meaned weighting

estimator with weights chosen to optimize the pre-treatment fit for a single de-meaned outcome k:2

qsepk (γ) =

√√√√√ 1

T0

T0∑
t=1

Ẏ1tk −
∑
Wi=0

γiẎitk

2

The weights that minimize this objective are the synthetic control weights:

γ̂sepk = argmin
γ∈∆N0

qsepk (γ)2.

1While we focus on the de-meaned estimator here, all of our subsequent discussions and results readily encompass
weighting without de-meaning. Appendix D collects and presents all results for that case.

2We can also re-write this objective as including an intercept ; solving for this intercept gives the de-meaned
formulation. We focus on this notation to avoid keeping track of additional parameters that have closed-form solutions.
Note that the original formulation of this objective in Abadie et al. (2010) includes a weighting matrix that prioritizes
different time periods. We focus on uniformly weighting the time periods, but our results extend to this more general
setup.
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We refer to these as separate weights, because we use a distinct set of weights to separately estimate

the effect for each outcome. Typically, the weights γ are constrained to the simplex ∆N0 = {γ ∈
RN0 | γi ≥ 0,

∑N
i=2 γi = 1} as above. This ensures that the weights will be sparse and non-negative.

However, other constraints are possible, allowing for negative but bounded weights. If there are

multiple constrained minimizers, we could further add a regularization term to the objective; see

e.g., Doudchenko and Imbens (2017).

The quality of the de-meaned SCM estimator is determined by whether Ŷ1Tk(0) is a good

estimate for Y1Tk(0). A familiar condition for this to be the case is that the SCM weights achieve

a low (root mean squared) placebo treatment effect, i.e., qsepk (γ̂sepk ) is close to zero. Under some

restrictions on the idiosyncratic errors and for a single treated unit and single outcome, Abadie et

al. (2010) show that if qsepk (γ̂sepk ) = 0 then the bias in the (non-demeaned) SCM estimator will tend

to zero as T0 → ∞. In shorter panels, however, the SCM estimator can be subject to bias from

overfitting to idiosyncratic errors even if the fit is excellent. The goal of our paper is to understand

how to leverage multiple outcomes when constructing the synthetic control to reduce bias from this

and other sources.

3 Leveraging Multiple Outcomes for SCM: Identification

In this section we outline the assumptions on the data generating process that will allow us to share

information across multiple outcomes. We describe necessary and sufficient conditions for there to

exist a single set of weights that achieves zero bias across all outcomes simultaneously, and give

intuition and examples in terms of linear factor models.

Throughout, we make the following structural assumption on the potential outcomes under

control, similar to Athey et al. (2021).

Assumption 1. The outcome under control is generated as

Yitk(0) = αik + βtk + Litk + εitk

where the deterministic model component includes unit and time fixed effects αik and βtk, with∑T
t=1 βtk = 0 for all k. After incorporating the additive two-way fixed effects, the model component

retains a term Litk with
∑N

i=1 Litk = 0 for all t, k and
∑T

t=1 Litk = 0 for all i, k. The idiosyncratic

errors εitk are mean zero, independent of the treatment status Wit, and independent across units

and outcomes.

This setup allows the model component to include αik, a unit fixed effect specific to outcome

k. We explicitly account for the presence of these fixed effects by de-meaning across pre-treatment

periods within each unit’s outcome series.
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3.1 Existence of common weights shared across outcomes

To begin, we first characterize the bias of a de-meaned weighting estimator under Assumption 1.

For a set of weights γ that is independent of the idiosyncratic errors in period T , Ŷ1Tk(0) has bias:

EεT

[
Y1Tk(0)− Ŷ1Tk(0)

]
= βTk

(
1−

N∑
i=2

γi

)
+ L1Tk −

N∑
i=2

γiLiTk, (2)

where Y1Tk(0) is the kth control potential outcome for the treated unit at time T . Here the

expectation is taken over the idiosyncratic errors in period T .

From this we see that weights γ will lead to an unbiased estimator for time t and outcome k

if (i) the weights sum to one and (ii) the weighted average of the latent Litk for the donor units

equals L1tk for the treated unit. Weights that satisfy these conditions for all time period/outcome

pairs would yield an unbiased estimator for every Y1tk(0) simultaneously. We refer to such weights

as oracle weights γ∗, since they remove the bias due to the presence of the unobserved model

components Litk.

Definition 1 (Oracle Weights). The oracle weights γ∗ solve the following system of (TK) + 1

equations (
L 1N

)′( −1

γ∗

)
= 0TK , (3)

where the first row of L ∈ RN×(TK) contains Litk for the treated unit and the remaining rows

correspond to control units.

We show in Section 4 that if such oracle weights exist, we can pool information across outcomes

by finding a single set of synthetic control weights that are common to all K outcomes. Such

weights will exist if and only if the underlying matrix of model components L is low rank. We

formalize this in the following assumption and proposition.

Assumption 2a (Low-rank L). The N × (TK) matrix of model components has reduced rank, that

is,

rank(L) < N − 1.

Proposition 1 (Low-rank is sufficient and necessary). The unconstrained oracle weights γ∗ exist

iff Assumption 2a holds.

3.2 Interpretation for linear factor models

Proposition 1 shows that determining whether oracle weights exist is equivalent to determining

whether the model component matrix L is low rank. We now discuss when this assumption is

plausible and how it relates to the more familiar low rank assumptions used in the panel data

literature.
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To further interpret these restrictions, it is useful to express the model components L in terms of

a linear factor model. Under Assumption 2a, for r = rank(L) the deterministic model component

can be written as a linear factor model,

Litk = ϕi · µtk, (4)

where µtk ∈ Rr are latent time- and outcome-specific factors and each unit has a vector of time-

and outcome-invariant factor loadings ϕi ∈ Rr.3 Proposition 1 guarantees that oracle weights exist

and solve

ϕ1 = Φtr
0 γ

∗

where the matrix Φ0 ∈ R(N−1)×r collects the factor loadings ϕi for control unit i = 2, . . . , N.

To interpret this factor structure, note that a special case that satisfies Assumption 2a is where

the model component Litk can be decomposed into a common component that is shared across

outcomes and an idiosyncratic, outcome-specific component:

Litk =

r0∑
f=1

ϕcfµtkf +

rk∑
f=r0+1

ϕkfµktf , (5)

where all ϕcf and ϕkf are orthogonal to each other. Let r0 denote the dimension of the factor

loadings that are shared across the outcomes. Then we can calculate rank(L) = r0+
∑K

k=1(rk−r0),

where there are r0 common factor loadings and (rk−r0) idiosyncratic factor loadings for outcome k.

The factor loadings can be seen as latent feature vectors associated with each unit, which may vary

with the outcomes of interest. The low-rank Assumption 2a then states that r0 +
∑K

k=1(rk − r0) <

N − 1. This can happen when either the number of outcomes K is relatively small or r0 is large

compared to rk so that there is a high degree of shared information across outcomes.

Example 1 (Repeated measurements of the same outcome). An extreme case is where Yit1, . . . YitK

are K repeated measurements of the same outcome. In this case µtk = µt for k = 1, . . . ,K, there

are no idiosyncratic terms, and the rank of L is r0.

Example 2 (Multiple test scores). Even with different outcomes, in many empirical settings, such

as standardized test scores, there are only a few factors that explain most of the variation across

outcomes, so
∑K

k=1(rk − r0) is small and the low-rank assumption is plausible. For example, across

seven test scores collected by Duflo et al. (2011), “average verbal” and “average math” explain 72%

of the total variation.

Even if oracle weights that balance model components across all K outcomes exist, estimating

weights can be challenging without further restrictions. For example, there may be infinitely many

solutions to Equation (3). We therefore introduce the following regularity condition that a set of

oracle weights with a bounded norm exists.

3This factor structure can be based on a singular value decomposition L = UDV ′. Define Υ = V D . Then we
can write L = UΥ′ where for r = rank(L), Υ ∈ R(TK)×r are the latent time-outcome factors and U ∈ RN×r are the
loadings.
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Assumption 2b. Assume rank(L) < N − 1 and assume there is a known C such that some oracle

weights exist in a set C where ∥x∥1 ≤ C for all x ∈ C. Denote γ∗ as a solution to Equation (3) in

C.

Below, we will estimate synthetic control weights that are constrained to be in C; Assumption 2b

ensures that this set contains at least some oracle weights, allowing us to compare the synthetic

control and oracle weights. This assumption further ensures that these oracle weights are not

too extreme, as measured by the sum of their absolute values. While we keep the constraint

set C general in our formal development, in practice—and in our empirical analysis below—this

constraint set is often taken to be the simplex C = ∆N−1, where C = 1. This adds the stronger

assumption that there exist oracle weights that are non-negative, and so the model component for

the treated unit L1· ∈ RTK is contained in the convex hull of the model components for the donor

units, conv{L2·, . . . , LN ·}.

4 Leveraging Multiple Outcomes for SCM: Estimation

We now turn to estimation. When common oracle weights across outcomes exist, they can yield

unbiased estimates across all K outcomes simultaneously. In that case, we seek to estimate a single

set of weights across all K outcomes that is approximately unbiased. In this section we consider

two ways to do so: (i) finding one set of weights that balances all standardized outcomes, and

(ii) finding one set of weights that balances the average across the standardized outcomes. We

then establish bias bounds for both methods and separate SCM. Our findings indicate that under

some conditions, both methods reduce bias due to overfitting compared to separate SCM and the

averaging approach further reduces bias due to poor pre-treatment fit.

4.1 Measures of imbalance

In principle, we would like to find oracle weights that can recover L1Tk from a weighted average

of L2Tk, . . . , LNTk for all k. Since the underlying model components are unobserved, however,

we must instead use observed outcomes Y to construct feasible balance measures. In Section 2.2

above, we reviewed that the outcome k-specific imbalance measure qsepk (γ) is the relevant criterion

for separate SCM for each outcome series in the classic synthetic control literature (Abadie and

Gardeazabal, 2003; Abadie et al., 2010, 2015).

Motivated by the common factor structure, we now consider two alternative balance measures

that use information from multiple outcome series. First, we consider the concatenated objective,

which simply concatenates the different outcome series together. This is the pre-treatment fit

achieved across all standardized outcomes and pre-treatment time periods simultaneously:

qcat(γ) ≡

√√√√√ 1

T0

1

K

K∑
k=1

T0∑
t=1

Ẏ1tk −
∑
Wi=0

γiẎitk

2

,
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with corresponding weights

γ̂cat ≡ argmin
γ∈C

qcat(γ)2.

We refer to the set of weights that minimize this objective as the concatenated weights.

An alternative choice is the averaged objective, the pre-treatment fit for the average of the

standardized outcomes:

qavg(γ) ≡

√√√√√ 1

T0

T0∑
t=1

 1

K

K∑
k=1

Ẏ1tk −
∑
Wi=0

γiẎitk

2

,

with corresponding weights

γ̂avg ≡ argmin
γ∈C

qavg(γ)2.

We refer to the set of weights that minimize this objective as the average weights.

Note that, for any realization of the data, the pre-treatment fit will be better for the aver-

aged objective than for the concatenated objective, qavg(γ̂avg) ≤ qcat(γ̂cat).4 This finite-sample

improvement in the fit also translates to a smaller upper bound on the bias, as we discuss next.

4.2 Estimation error

We first decompose the estimation error into the error due to bias and the error due to noise, then

further decompose and bound the bias in Section 4.3. For any estimated weights γ̂, the estimation

error is

τk − τ̂k(γ̂) = Ẏ1Tk(0)−
N∑
i=2

γ̂iẎitk

= L1Tk −
N∑
i=2

γ̂iLiTk︸ ︷︷ ︸
bias = imbalance + overfitting

+ ε̇1Tk −
N∑
i=2

γ̂iε̇iTk︸ ︷︷ ︸
noise

.

The second term in the decomposition is due to post-treatment idiosyncratic errors and is common

across the different approaches for choosing weights. In Appendix B.3 we show that this term has

mean zero and can be controlled if the weights are not extreme.

Our main focus will be the first term, the bias due to inadequately balancing model components.

4Since the arithmetic mean is less than the quadratic mean, for any weights at any period t we have 1

K

K∑
k=1

Y1tk −
∑
Wi=0

γiYitk

2

≤ 1

K

K∑
k=1

Y1tk −
∑
Wi=0

γiYitk

2

.

Therefore we have qavg(γ̂cat) ≤ qcat(γ̂cat). Since qavg(γ̂avg) is the minimizer, by construction we have qavg(γ̂avg) ≤
qavg(γ̂cat).

9



Specifically, we can decompose this into two terms using the linear factor model in (4):

L1Tk −
∑
Wi=0

γ̂iLiTk =

T0∑
t=1

K∑
j=1

ωtj

Ẏ1tj −
∑
Wi=0

γ̂iẎitj

 (R0) (6)

−
T0∑
t=1

K∑
j=1

ωtk

ε̇1tj −
∑
Wi=0

γ̂iε̇itj

 (R1) (7)

where the time and outcome specific terms ωtj are transformations of the factor values that depend

on the specific estimator.5

The first term, R0, is bias due to imperfect pre-treatment fit in the pre-treatment outcomes,

Ẏitj . The second term, R1, is bias due to overfitting to noise, also known as the approximation

error. This arises because the optimization problems minimize imbalance in observed pre-treatment

outcomes — noisy realizations of latent factors — rather than minimizing imbalance in the latent

factors themselves.

4.3 Main result: Bias bounds

4.3.1 Additional assumptions

To derive finite sample bias bounds, we place structure on the idiosyncratic errors, assuming they

are independent across time and do not have heavy tails.

Assumption 3. The idiosyncratic errors εitk are sub-Gaussian random variables with scale pa-

rameter σ.

Note that this assumption encompasses the setting where the idiosyncratic errors have a larger

variance for certain outcomes; in this case the common scale parameter σ is the maximum of

the outcome-specific scale parameters. In practice, however, we assume that the variances of

idiosyncratic errors across outcomes are equal after standardization.6 As a result, the simple

average is also the precision-weighted average.

Finally, we assume an adequate signal to noise ratio for each outcome separately, for all outcomes

jointly, and for the average across outcomes. Previous literature introduces similar assumptions

to avoid issues of weak identification (Abadie et al., 2010). This additional assumption precludes

settings where averaging removes substantial variation in the latent model components over time.

Consider, for example, a setting where the model components for different outcomes vary over

5For the estimator based on outcome k-specific imbalance γ̂sep
k , we set ωtk = µTk ·

(∑T0
t=1 µtkµ

′
tk

)−1

·µtk and ωtj = 0

for j ̸= k. For the estimator based on imbalance of all outcomes γ̂cat, we set ωtj = µTk ·
(∑K

k=1

∑T0
t=1 µtkµ

′
tk

)−1

·µtj .

For the estimator based on imbalance of the average outcomes γ̂avg, we set ωtj = µTk ·
(∑T0

t=1 µ̄tµ̄
′
t

)−1

· µ̄t where

µ̄t =
1
K

∑K
k=1 µtk.

6Standardizing by the estimated standard deviation rather than the true, unknown standard deviation may induce
a small degree of additional dependence across outcomes at different times. We leave a more thorough analysis of
this potentiality to future work.
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time in exactly opposite directions. Here averaging would cancel out any signal from their latent

model components, and, as a result, our theoretical guarantees for the average weights would no

longer hold. However, we can generally rule out these edge cases by economic reasoning or visual

inspection of the co-movement across outcomes.

Assumption 4. Denote µtk ∈ Rr as the time-outcome factors from Equation (4) and assume

that they are bounded above by M . Furthermore, denoting σmin(A) as the smallest singular value

of a matrix A, assume that (i) σmin

(
1
T0

∑
t µtkµ

′
tk

)
≥ ξsep > 0 for all outcomes k = 1, . . . ,K;

(ii) σmin

(
1

T0K

∑
tk µtkµ

′
tk

)
≥ ξcat > 0; and (iii) σmin

(
1
T0

∑
t (µ̄t) (µ̄t)

′
)

≥ ξavg > 0 where µ̄t =

1
K

∑K
k=1 µtk.

4.3.2 Bias bounds

With this setup, we now formally state the high-probability bounds on the bias terms in Equations

(6) and (7) for the three weighting approaches. These bounds hold with high probability over the

noise in all time periods and all outcomes, εitk. We can compare these high-probability for fixed N

as the number of time periods T and/or the number of outcomes K grow.

Theorem 1. Suppose Assumptions 1, 2b, 3 and 4 hold. Recall that by construction, the estimated

weights satisfy ∥γ̂∥1 ≤ C and Assumption 2b implies ∥γ∗∥1 ≤ C. Let σ̃ = (1 + 1/
√
T0)σ. For any

δ > 0, the absolute bias for estimating the treatment effect
∣∣L1Tk(0)−

∑
Wi=0 γ̂iLiTk

∣∣ satisfies the

bound

(i) if analyzing γ̂sepk ,

≤ rkM
2

ξsep

(
4(1 + C)σ + 2δ +

1√
T0

(
2C
√
log 2N0 + (1 + C)δ

)
σ̃

)
,

with probability at least 1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0δ2

2σ2(1+C2)

)
.

(ii) if analyzing γ̂cat,

≤ rM2

ξcat

(
4(1 + C)σ̃ + 2δ +

1√
T0K

(
2C
√
log 2N0 + (1 + C)δ

)
σ̃

)
,

with probability at least 1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0Kδ2

2σ2(1+C2)

)
.

(iii) if analyzing γ̂avg,

≤ rM2

ξavg

(
1√
K

4(1 + C)σ + 2δ +
1√
T0K

(
2C
√

log 2N0 + (1 + C)δ
)
σ̃

)
,

with probability at least 1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0Kδ2

2σ2(1+C2)

)
.
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Bias due to imperfect fit Bias due to overfitting

γ̂sep O(1) O
(

1√
T0

)
γ̂cat O(1) O

(
1√
T0K

)
γ̂avg O

(
1√
K

)
O
(

1√
T0K

)
Table 1: Leading terms in high probability bounds on the bias due to imperfect fit and overfitting
in Theorem 1, with N fixed.

The proof for Theorem 1 relies on bounding the discrepancy in the objectives between estimated

and oracle weights. In Lemma 4 in the Appendix, we also derive finite-sample error bounds for the

oracle weights themselves and show a similar ordering for the bounds on average, concatenated,

and separate objectives. Table 1 gives a high-level overview of these results and shows the leading

terms in the bounds, removing terms that do not change with K and T0. We discuss implications

of our results next.

4.4 Discussion: Bias decomposition

Our analysis differs from the existing literature in two key ways. First, the results for (non-de-

meaned) synthetic controls with a single outcome from Abadie et al. (2010) are based on an upper

bound on R1 while assuming R0 = 0. Instead we show explicit finite sample upper bounds for R0

and generalize these bounds to incorporate multiple outcomes. Second, we quantify the impact of

demeaning with a finite number of pre-treatment time periods T0; this contributes to additional

bias (often known as “Nickell bias” due to Nickell, 1981) but vanishes as T0 grows large. These

finite-sample bounds extend existing asymptotic results from Ferman and Pinto (2021).

For both the separate weights γ̂sepk and the concatenated weights γ̂cat, imperfect pre-treatment

fit—on outcome k alone for the separate weights, and on all outcomes for the concatenated weights—

contributes to bias, regardless of the number of pre-treatment periods or outcomes. This result is

consistent with Ferman and Pinto (2021) who show that as T0 → ∞, the separate objective function

qsepk (γ) does not converge to the objective minimized by the oracle weights, and therefore remains

biased. In contrast, the bias due to pre-treatment fit for the average weights will decrease with

the number of outcomes K. This is because averaging across outcomes reduces the level of noise

in the objective. With many outcomes, the average will be a good proxy for the underlying model

components that themselves can be exactly balanced by the oracle weights. Averaging therefore

allows us to get close to an oracle solution, with low bias due to pre-treatment fit. This result is also

consistent with Ferman and Pinto (2021) since the variance of the noise decreases to zero as both

K and T0 → ∞ grow. Note, however, that the bounds are scaled by the rank r of the underlying

model matrix when pooling information across outcomes; so if the outcomes share few common

factors and have many idiosyncratic ones, there may be more error in the estimator relative to

separately fitting the weights.
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The second component of the bias is the contribution of overfitting to noise. Mirroring prior

results (e.g., Abadie et al., 2010), we find that the threat of overfitting to noise with separate

synthetic control weights will decrease as the number of pre-treatment periods T0 increases —

but remains unchanged as K increases. In contrast, the bias from overfitting to noise for both

the concatenated and the averaged weights will decrease as the product T0K increases, albeit

for different reasons. For the concatenated weights, the extra outcomes essentially function as

additional time periods. Each time period-outcome pair gives another noisy projection of the

underlying latent factors, and finding a single good synthetic control for all of these together limits

the threat of overfitting to any particular one. For averaged weights, averaging across outcomes

directly reduces the noise of the objective, as we discuss above. The T0 averaged outcomes will

therefore have a standard deviation that is smaller by ≈ 1√
K

than the original outcome series,

leading to less noise and less potential for overfitting.

Finally, for all three estimators the component due to overfitting to noise in Theorem 1 includes

an additional term that scales like O(1/T0) as T0 increases, and so is not a leading term. This is

an example of Nickell (1981) bias and arises due to de-meaning by the estimated, rather than true,

unit fixed effects.

4.5 Inference

There is a large and growing literature on inference for the synthetic control method and variants.

Here we adapt the conformal inference approach of Chernozhukov et al. (2021) to the setting of

multiple outcomes. To do so, we focus on a sharp null hypothesis about the effects on the K

different outcomes simultaneously, H0 : τ = τ0, with τ ∈ RK . For example, if τ0 = 0K we are

interested in testing whether the treatment effect is zero for all outcomes.

The conformal inference approach proceeds as follows:

1. Enforce the null hypothesis by creating adjusted post-treatment outcomes for the treated unit

Ỹ1Tk = Y1Tk − τ0k.

2. Augment the original data set to include the post-treatment time period T , with the adjusted

outcomes Ỹ1Tk; use the concatenated or averaged objective function to obtain weights γ̂(τ0)

3. Compute the adjusted residual ûtk = Y1tk−
∑

Wi=0 γ̂i(τ0)Yitk and ûTk = Ỹ1Tk−
∑

Wi=0 γ̂i(τ0)YiTk

and form the test statistic:

Sq(ût) =

(
1√
K

K∑
k=1

|ûtk|q
)1/q

(8)

where the choice of the norm q maps to power against different alternatives. For instance, if

the treatment has a large effect for only few outcomes, choosing q = ∞ yields high power.

On the other hand, if the treatment effect has similar magnitude across all outcomes, then

setting q = 1 or q = 2 yields good power. In practice, we set q = 1.

13



4. Compute a p-value by assessing whether the test statistic associated with the post-treatment

period “conforms” with the distribution of the test statistic associated with pre-treatment

periods:

p̂(τ0) =
1

T

T0∑
t=1

1 {Sq(ûT ) ≤ Sq(ût)}+
1

T
. (9)

Chernozhukov et al. (2021) show that in an asymptotic setting with T (and N) growing, this

conformal inference procedure will be valid for estimation methods that are consistent. In partic-

ular, they show that the test (9) has approximately correct size; the difference between actual size

and nominal size vanishes as T0 → ∞. In Appendix A we discuss technical sufficient conditions

for consistency, closely following Chernozhukov et al. (2019) and departing from the finite-sample

analysis that is our main focus here.

To construct the confidence set for the treatment effect of different outcomes, we collect the

values of τ0 for which test (9) does not reject. We can then project the confidence set onto each

outcome to form a conservative confidence interval.

Finally, an alternative approach is to focus on testing the average effect across the K outcomes,
1
K

∑K
k=1 τk, with outcomes appropriately scaled so that positive and negative effects have the sim-

ilar semantic meanings across outcomes. This setting returns to the scalar setting considered by

Chernozhukov et al. (2021), where the estimates are based on the average weights γ̂avg, and so for

inference on the average we can follow their procedure exactly.

5 Simulations

We now conduct a Monte Carlo study to further inspect the behavior of separate, concatenated,

and average weights. In particular, Theorem 1 gives upper bounds on the bias term, describing

the worst-case behavior of the estimators with high probability. Here we instead use simulation to

inspect other features of the distribution of the bias, especially the average bias.

To focus on key ideas, we consider a simple model of the kth outcome under control,

Yitk(0) = ϕiµt + εitk,

where ϕi is a scalar and εitk ∼ N (0, 1). Here multiple outcomes are in fact repeated measurements

of the same underlying model component that consists of a single latent factor. We consider four

settings for the number of pre-treatment time periods T0 and outcomes K: (i) T0 = 10,K = 4; (ii)

T0 = 10,K = 10; (iii) T0 = 40,K = 4; (iv) T0 = 40,K = 10.

We set the factor values µt to be evenly spaced over the interval [0.5, 1] for t = 1, . . . , T0 + 1,

reflecting an upward time trend; the factor loadings ϕi are evenly spaced over the interval [1, 5] for

i = 1, . . . , 50. Similar to Ferman (2021), we set the treated unit to be the unit with the second

largest factor loading. This accomplishes two goals. First, it injects selection of the treated unit

based on the factor loadings, so that a simple difference in means would be biased. Second, it
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Figure 1: Box plots of bias using separate SCM, concatenated SCM, and averaged SCM over 1000
simulations.

guarantees the existence of oracle weights that solve ϕ1 −
∑

Wi=0 γ
∗
i ϕi = 0. Note that since the

time trend has a heterogenous effect across the units, the difference-in-differences estimator is also

biased.

Figure 1 compares the distribution of the bias for estimating the treatment effect on the first

outcome under different weighting estimators:

E [τ̂1 − τ1] = L1T1 −
∑
Wi=0

γ̂iLiT1.

Consistent with Theorem 1, Figure 1 illustrates that, relative to separate weights, the concatenated

and average weights reduce bias in settings with multiple outcomes. We also see that, as expected,

the average weights have smaller average bias than the concatenated weights.
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To further inspect this, Appendix Figure E.1 contrasts the imbalance for each type of weight

with the corresponding objective functions. First, the concatenated weights have slightly greater

imbalance than the separate weights, highlighting the difficulty in achieving good pre-treatment

fit on all outcomes simultaneously relative to good pre-treatment fit for a single outcome alone.

However, the average bias for the concatenated weights is still smaller than for the separate weights,

showing that the reduction in overfitting by concatenating more than outweighs the slight reduction

in pre-treatment fit. Second, the average weights have much better pre-treatment fit than either

alternative, with the fit improving as K increases. As Figure 1 shows, this leads to further bias

reduction, consistent with Theorem 1 and the intuition from Table 1.

6 Application: Flint Water Crisis Study

We now revisit the Trejo et al. (2021) study of the impact of the 2014 Flint water crisis on student

outcomes. On April 25, 2014, Flint’s residents began receiving drinking water from the Flint River,

where the water was both corrosive and improperly treated, causing lead from the pipes to leach

into the tap water. Roughly 100,000 citizens of Flint were exposed to this polluted water for at

least a year and a half — and likely much longer in some cases. Nearly a decade later, there are still

widespread concerns about the impact of this crisis, especially on children, who are particularly

susceptible to adverse effects from lead.

To assess this impact, Trejo et al. (2021) conduct several different analyses both across school

districts and within Flint. We focus here on their cross-district SCM analysis, based on a district-

level panel data set for Flint and 54 possible comparison districts in Michigan, viewing the April

2014 change in drinking water as the “treatment.” The authors focus on four key educational

outcomes: math achievement, reading achievement, special needs status, and daily attendance; all

are aggregated to the annual level from 2007 to 2019.7

Trejo et al. (2021) argue that these four outcomes are indicative of (aggregate) student psycho-

social outcomes at the district level, and, consistent with our results in Theorem 1, fit a common

set of (de-meaned) SCM weights based on concatenating these outcome series. Here we return to

that choice and also consider both separate and average SCM weights.

First, we assess whether the observed data are consistent with the low-rank factor model dis-

cussed in Section 3.1. To do so, we examine the N ×T0K matrix of (de-meaned and standardized)

pre-treatment outcomes, where N = 54, T0 = 8, and K = 4. In Appendix Figure E.2, we show

that the top 10 singular values capture over 80% of the total variation, which is consistent with a

low-rank model component and the existence of corresponding oracle weights.

7Math and reading achievement are measured via the annual state-administered educational assessments for grades
3-8, and are standardized at the grade-subject-year level. Special needs status is measured as the percent of students
with a qualified special educational need. Attendance is in percent of days attended. The math, reading, and special
needs series begin in 2007; daily attendance begins in 2009. Note that Trejo et al. (2021) also use 2006 data for
special needs; we start our data series in 2007 to have multiple outcomes available for averaging, dropping attendance
from the average for 2007 and 2008. Finally, when averaging, we further standardize each outcome series using the
series pre-treatment standard deviation.
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Figure 2 shows the SCM gap plots — i.e. the differences between the observed outcomes for Flint

and the counterfactual outcomes imputed by the synthetic control — for these three sets of weights.

The separate SCM weights (long dashed line) achieve close to perfect fit in the pretreatment period,

suggesting potential bias due to overfitting to noise, as we discuss in Section 4.4. By contrast, the

concatenated and average SCM weights (dashed and solid, respectively) do not lead to near-perfect

pre-treatment fit, though the fit is still reasonably good. Figure 3 shows the gap plot for the average

of the (standardized) outcomes for both averaged and concatenated SCM; as we expect, we see that

the concatenated weights achieve poorer fit for this index of outcomes than the average weights,

substantially so at the beginning and end of the pre-treatment period.

Both averaged and concatenated weights estimate a deterioration of math test scores following

the Flint water crisis, with little change in reading test scores and student attendance. Both sets of

weights also find an increase in the proportion of students with special needs, though the magnitude

is smaller for the averaged weights. Thus, the results largely replicate those in Trejo et al. (2021),

although the estimates from average weights have slightly smaller magnitudes.

Finally, we use the conformal inference procedure discussed in Section 4.5 to assess uncertainty,

with the caveat that the number of pre-treatment periods is only slightly larger than the number

of post-treatment periods in this application. We first test the null hypothesis of no effect on any

outcomes in each time period, using average SCM weights and i.i.d. permutations; this yields p-

values of roughly p ≈ 0.1 for each time period (for 2015-2019, these are 0.113, 0.098, 0.116, 0.098,

and 0.108). We then test the joint null hypothesis of no effect on any outcomes in any time period

via a conformal inference procedure using all post-treatment time periods; here we find strong

evidence against the null of no effect whatsoever, with p = 0.007.

In the appendix, we also consider analyzing the impact on special needs separately from the

other three outcomes, consistent with the robustness checks in Trejo et al. (2021). In particular,

the proportion of students with special needs may be less correlated with the other outcomes, and

so may share fewer common factors, loosening the bound from Section 4.3. Appendix Figure E.3

shows that results are broadly similar when we restrict to math, reading, and attendance alone.

The results are also broadly similar if we consider the proportion of students without special needs

as an outcome in place of the original definition.

7 Conclusion

SCM is a popular approach for estimating policy impacts at the aggregate level, such as school

district or state. This approach, however, can be susceptible to bias due to poor pre-treatment

fit or to overfitting to idyosyncratic errors. By incorporating multiple outcome series into the

SCM framework, this paper proposes approaches that address these challenges, provided that the

multiple outcomes share a similar factor structure.

There are several directions for future work. The most immediate is to give guidance for SCM

with multiple outcomes when the common factor structure might not in fact hold. One possibility
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Figure 2: Point estimates for the effect of the Flint water crisis using SCM, concatenate SCM, and
average SCM. Using i.i.d. permutations, the conformal p-values for the joint null hypothesis of no
effect on any outcome for the 5 post treatment year 2015-2019 are: 0.113, 0.098, 0.116, 0.098, and
0.108. Note that the separate SCM estimates have essentially perfect pre-treatment fit for all four
outcomes.

is to consider weights that “partially pool” between separate SCM weights and common weights

in the spirit of Ben-Michael et al. (2022), which could enable guarantees under mis-specification.

More broadly, we could consider approaches that average or borrow strength across multiple model

types, including from hierarchical Bayesian models (see, for example, Ben-Michael et al., 2023),

from tensor completion following Agarwal et al. (2023) or from an instrumental variable approach

following Shi et al. (2021) and Fry (2023).

Finally, leveraging multiple outcomes alone might not be enough to mitigate SCM bias. Fol-

lowing Ben-Michael et al. (2021) and Arkhangelsky et al. (2021), we could consider augmenting

common SCM weights with either a common outcome model or separate models for each outcome

series.
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Figure 3: Fit for the average of the outcomes (standardized by the pre-treatment standard deviation
of the series) using average SCM and concatenate SCM.
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A Technical details regarding inference

In this section we provide additional technical details for the approximate validity of the conformal

inference procedure proposed by Chernozhukov et al. (2021) with averaged weights. To do so,

we will consider an asymptotic setting with both N and T growing, and make a variation of the

structural Assumption 1 and Assumption 2b that constrained oracle weights exist.

Assumption 5. The de-meaned potential outcome under control for the treated unit’s kth outcome

at time t is

Ẏitk(0) =
∑
Wi=0

γ∗i Ẏitk + utk,

for some set of oracle weights γ∗ ∈ C, where for a given k the noise terms u1k, . . . , uTk are station-

ary, strongly mixing, with a bounded sum of mixing coefficients bounded, and satisfy E[utkYitk] = 0

for all Wi = 0.

As in the previous assumptions, Assumption 5 also assumes the existence of oracle weights γ∗

shared across all outcomes, though they are defined slightly differently. Directly applying Theorem

1 in Chernozhukov et al. (2021), the conformal inference procedure in Section 4.5 using a set of

weights γ̂, will be asymptotically valid if
∑

Wi=0 γ̂iẎitk is a consistent estimator for
∑

Wi=0 γ
∗
i Ẏitk,

when we include the post-treatment period T when estimating the weights.

Next, we list sufficient assumptions for this type of consistency using the average weights γ̂avg,

consistency with the concatenated weights γ̂cat can be established in an analogous matter. In these

assumptions, we define ūt =
1
K

∑K
k=1 utk and ˙̄Yit· =

1
K

∑K
k=1 Ẏitk.

Assumption 6.

(i) There exist constants c1, c2 > 0 such that E[
(
˙̄Yit·ūt

)2
≥ c1 and E[

∣∣Ȳit·ūt∣∣3] ≤ c2 for any i such

that Wi = 0 and t = 1, . . . , T .

(ii) For each i such that Wi = 0, the sequence { ˙̄Yit·ūt} is β-mixing and the β-mixing coefficient

satisfies β(t) ≤ a1 exp (−a2t
τ ), where a1, a2, τ > 0.

(iii) There exists a constant c3 > 0 such that maxi:Wi=0
∑T

t=1
˙̄Y 2
it·ū

2
t ≤ c3T with probability 1−o(1).

(iv) logN = o
(
T

4τ
3τ+4

)
(v) There exists a sequence ℓT > 0 such that ℓTM [log(min{T,N−1})]

1+τ
2τ√

T
→ 0,

∑
Wi=0

ẎiTkδi

2

≤ ℓT
1

T

T∑
t=1

∑
Wi=0

˙̄Yit·δi

2

,
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and

1

T

T∑
t=1

(
Ẏitkδi

)2
≤ ℓT

1

T

T∑
t=1

(
˙̄Yit·δi

)2
for all γ∗ + δ ∈ C, all k = 1, . . . ,K with probability 1− o(1).

Assumption 6 follows the technical assumptions in the proof of Lemma 1 in Chernozhukov et

al. (2021) with two modifications. First, we place assumptions on the noise values averaged across

outcomes, ū1, . . . ūT rather than the outcome-specific noise values because we are working with the

averaged estimator. Second, Assumption 6(v) modifies Assumption (6) in the proof of Lemma 1 in

Chernozhukov et al. (2021) to link consistent prediction of the average of the de-meaned outcomes

to consistent prediction for any individual outcome. This assumption is related to Assumption 2b.

If there is a common factor structure across outcomes, then we have the link∑
Wi=0

Ẏitkδi = µtk ·
∑
Wi=0

ϕiδi +
∑
Wi=0

ε̇itkδi

= µTk ·

(∑
t

(µ̄t) (µ̄t)
′

)−1

µ̄t

∑
Wi=0

˙̄Y it·δi + µTk ·

(∑
t

(µ̄t) (µ̄t)
′

)−1

µ̄t

∑
Wi=0

˙̄εit·δi +
∑
Wi=0

ε̇itkδi.

So, if common oracle weights exist, Assumption 6(v) amounts to an assumption on the noise terms.

Under these assumptions, we have a direct analog to Lemma 1 in Chernozhukov et al. (2021)

that is a direct consequence. We state it here for completeness.

Lemma 1. Let γ̂avg solve minγ∈C q
avg(γ)2, including the post treatment outcome T . Under Assump-

tions 5 and 6, γ̂avg satisfies the consistency properties required for Theorem 1 in Chernozhukov et

al. (2021), namely,

1

T

T∑
t=1

(
Ẏitk (γ̂i − γ∗i )

)2
= op(1)

and

ẎiTk (γ̂i − γ∗i ) = op(1).

Proof of Lemma 1. First, we can directly apply the claim from the proof of Lemma 1 and Lemma

H.8 in Chernozhukov et al. (2021) to state that there exists a constant M > 0 such that

1

T

T∑
t=1

(
˙̄Yit·(γ̂

avg
i − γ∗i )

)2
≤ M [log(min{T,N − 1})]

1+τ
2τ

√
T

with probability 1− o(1). Now from Assumption 6(v), ℓTM [log(min{T,N−1})]
1+τ
2τ√

T
= o(1), which com-

pletes the proof.
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B Auxillary lemmas and proofs

B.1 Error bounds for the oracle imbalance

The bias due to imbalance in observed demeaned outcomes depends crucially on the measure of

imbalance we choose to minimize. We upper bound the imbalance using the estimated weights with

the imbalance when using oracle weights, which we refer to as oracle imbalance. For example, we

argue the oracle imbalance for the objective function of the SCM satisfies a form of concentration

inequality:

qsep(γ∗) =

√√√√√ 1

T0

T0∑
t=1

ε̇1tj −
∑
Wi=0

γ∗i ε̇itj

2

At first glance, the imbalance is the L2 norm of the vector of demeaned errors. The challenge is

that the demeaned errors ε̇itj are correlated over time due to demeaning.

We prove a general upper bound on the oracle imbalance in Lemma 2 that allow us to decompose

the imbalance into the L2 norm of errors and the L2 norm of the average of errors. Lemma 3 presents

the intermediate concentration inequality for the L2 norm of errors. Finally, building on Lemma 2

and 3, Lemma 4 inspects the numerical properties for the pre-treatment fits achievable by the oracle

weights. Unless otherwise noted, all results hold under Assumptions 1, 2b, 3.

Lemma 2 (L2 norm of demeaned errors). Under the oracle weights, we have the following upper

bounds for the oracle imbalance

qcat(γ∗) ≤

√√√√√2 · 1

T0

1

K

K∑
k=1

T0∑
t=1

ε1tk −
∑
Wi=0

γ∗i εitk

2

+

√√√√√ 2

K

K∑
k=1

ε̄1·k −
∑
Wi=0

γ∗i ε̄i·k

2

qavg(γ∗) ≤

√√√√√ 2

T0

T0∑
t=1

 1

K

K∑
k=1

ε1tk −
∑
Wi=0

γ∗i εitk

2

+

√√√√√2

 1

K

K∑
k=1

ε̄1·k −
∑
Wi=0

γ∗i ε̄i·k

2

qsep(γ∗) ≤

√√√√√ 2

T0

T0∑
t=1

ε1tj −
∑
Wi=0

γ∗i εitj

2

+

√√√√√2

ε̄1·j −
∑
Wi=0

γ∗i ε̄i·j

2

.

Proof of Lemma 2. Note the following algebraic inequalityε̇1tj −
∑
Wi=0

γ∗i ε̇itj

2

=

ε1tj −
∑
Wi=0

γ∗i εitj −

ε̄1·j −
∑
Wi=0

γ∗i ε̄i·j

2

≤ 2

ε1tj −
∑
Wi=0

γ∗i εitj

2

+ 2

ε̄1·j −
∑
Wi=0

γ∗i ε̄i·j

2

.
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For brevity, we only prove the upper bound for qsep(γ∗) as the other two upper bounds can be

shown similarly.

qsep(γ∗) ≤

√√√√√ 2

T0

T0∑
t=1

ε1tj −
∑
Wi=0

γ∗i εitj

2

+ 2

ε̄1·j −
∑
Wi=0

γ∗i ε̄i·j

2

≤

√√√√√ 2

T0

T0∑
t=1

ε1tj −
∑
Wi=0

γ∗i εitj

2

+

√√√√√2

ε̄1·j −
∑
Wi=0

γ∗i ε̄i·j

2

.

Lemma 3 (L2 norm of errors). Suppose Assumptions 1, 2b and 3 hold. For any δ > 0, we have

the following bounds for the imbalance achieved by the oracle weights γ∗√√√√√ 1

T0

1

K

K∑
k=1

T0∑
t=1

ε1tk −
∑
Wi=0

γ∗i εitk

2

≤ 4σ

√
1 + ∥γ∗∥22 + δ (10)

√√√√√ 1

T0

T0∑
t=1

 1

K

K∑
k=1

ε1tk −
∑
Wi=0

γ∗i εitk

2

≤
4σ
√
1 + ∥γ∗∥22√
K

+ δ (11)

with probability at least 1− 2 exp
(
− T0Kδ2

2σ2(1+∥γ∗∥22)

)
.

Similarly, with probability at least 1 − 2 exp
(
− T0δ2

2σ2(1+∥γ∗∥22)

)
, we have the following bounds for

the separate imbalance achieved by the oracle weights γ∗√√√√√ 1

T0

T0∑
t=1

ε1tj −
∑
Wi=0

γ∗i εitj

2

≤ 4σ

√
1 + ∥γ∗∥22 + δ (12)

Proof of Lemma 3. For the bound in (10), note that ε1tk −
∑

Wi=0 γ
∗
i ε1ik is independent across

t and k, and sub-Gaussian with scale parameter σ
√
1 + ∥γ∗∥22. Via a discretization argument

from Wainwright (2019)[Ch.5], we can bound the LHS of (10), a scaled L2 norm of a (T0K) × 1

sub-Gaussian vector. With probability at least 1− 2 exp
(
− δ2

2σ2(1+∥γ∗∥22)

)
, we have

√√√√√ 1

T0

1

K

K∑
k=1

T0∑
t=1

ε1tk −
∑
Wi=0

γ∗i εitk

2

≤ 1√
T0K

(
2σ

√
1 + ∥γ∗∥22

√
log 2 + T0K log 5 + δ

)

≤ 4σ

√
1 + ∥γ∗∥22 +

1√
T0K

δ

where we use the inequality log 2 +N log 5 ≤ 4N for positive N .
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For the bound in (11), note that each ε̄1t −
∑

Wi=0 γ
∗
i ε̄1i is independent across t, and sub-

Gaussian with scale parameter σ/
√
K
√
1 + ∥γ∗∥22. we can similarly bound the LHS of (11), a scaled

L2 norm of a (T0)× 1 sub-Gaussian vector. With probability at least 1− 2 exp
(
− Kδ2

2σ2(1+∥γ∗∥22)

)
,

√√√√√ 1

T0

T0∑
t=1

 1

K

K∑
k=1

ε1tk −
∑
Wi=0

γ∗i εitk

2

≤ 1√
T0

2
σ
√

1 + ∥γ∗∥22√
K

√
log 2 + T0 log 5 + δ


≤

4σ
√

1 + ∥γ∗∥22√
K

+
1√
T0

δ

Setting δ = δ
√
T0K for the tail bound of (10), and δ = δ

√
T0 for the tail bound of (11), we

have the claimed result.

Finally for (12), we have a scaled L2 norm of a (T0)× 1 sub-Gaussian vector, each with a scale

parameter σ
√
1 + ∥γ∗∥22. Following a similar argument as above, we have with probability at least

1− 2 exp
(
− δ2

2σ2(1+∥γ∗∥22)

)
, we have

√√√√√ 1

T0

T0∑
t=1

ε1tj −
∑
Wi=0

γ∗i εitj

2

≤ 1√
T0

(
2σ

√
1 + ∥γ∗∥22

√
log 2 + T0 log 5 + δ

)

≤ 4σ

√
1 + ∥γ∗∥22 +

1√
T0

δ

Setting δ = δ
√
T0 for the tail bound of (12), we have the claimed result.

Lemma 4 (Oracle imbalance). Suppose Assumptions 1, 2b and 3 hold. For any δ > 0, we have

the following bounds for the imbalance achieved by the oracle weights γ∗:

(i) if analyzing the separate imbalance

qsepk (γ∗) ≤ 4σ

√
1 + ∥γ∗∥22 + 2δ (13)

with probability at least 1− 4 exp
(
− T0δ2

2σ2(1+∥γ∗∥22)

)
.

(ii) if analyzing the concatenated imbalance

qcat(γ∗) ≤ 4σ

√
1 + ∥γ∗∥22 + 2δ +

4σ
√
1 + ∥γ∗∥22√
T0

(14)

with probability at least 1− 4 exp
(
− T0Kδ2

2σ2(1+∥γ∗∥22)

)
.
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(iii) if analyzing the average imbalance

qavg(γ∗) ≤
4σ
√

1 + ∥γ∗∥22√
K

+ 2δ (15)

with probability at least 1− 4 exp
(
− T0Kδ2

2σ2(1+∥γ∗∥22)

)
.

Proof of Lemma 4. First we apply Lemma 2 to derive a general upper bound.

For qsepk (γ∗), note that each ε̄1·k−
∑

Wi=0 γ
∗
i ε̄i·k is independent across k, and sub-Gaussian with

scale parameter σ√
T0

√
1 + ∥γ∗∥22. Setting δ = δ/

(
σ√
T0

√
1 + ∥γ∗∥22

)
in Lemma 6, we have that∣∣ε̄1·k −∑Wi=0 γ

∗
i ε̄i·k

∣∣ is upper bounded by δ with probability at least 1 − 2 exp
(
− δ2T0

2σ2(1+∥γ∗∥22)

)
.

Applying the union bound, together with the bound in (12) of Lemma 3, we have the claimed

bound in (13).

For qcat(γcat), note that each ε̄1·k −
∑

Wi=0 γ
∗
i ε̄i·k is independent across k, and sub-Gaussian

with scale parameter σ√
T0

√
1 + ∥γ∗∥22. Using similar argument for the bound in (12) of Lemma 3,

we can bound the following scaled L2 norm of a K × 1 sub-Gaussian vector with probability at

least 1− 2 exp
(
− T0Kδ2

2σ2(1+∥γ∗∥22)

)
,

√√√√√ 1

K

K∑
k=1

ε̄1·k −
∑
Wi=0

γ∗i ε̄i·k

2

≤
4σ
√
1 + ∥γ∗∥22√
T0

+ δ

Applying the union bound, together with the bound in (10), we have the claimed bound in (14).

For qavg(γ∗), note that 1
K

∑K
k=1 ε̄1·k −

∑
Wi=0 γ

∗
i ε̄i·k is sub-Gaussian with scale parameter

σ√
KT0

√
1 + ∥γ∗∥22. Setting δ = δ/

(
σ√
KT0

√
1 + ∥γ∗∥22

)
in Lemma 6, we have that

∣∣∣ 1K ∑K
k=1 ε̄1·k −

∑
Wi=0 γ

∗
i ε̄i·k

∣∣∣
is upper bounded by δ with probability at least 1 − 2 exp

(
− δ2KT0

2σ2(1+∥γ∗∥22)

)
. Applying the union

bound, together with the bound in (11) of Lemma 3, we have the claimed bound in (15).

B.2 Error bounds for the approximation errors

Lemma 5 (Lemma A.4. of Ben-Michael et al. (2021)). If ξi are mean-zero sub-Gaussian random

variables with scale parameter ω̄, then for weights γ̂ and any δ > 0, with probability at least 1 −
4 exp

(
− δ2

2

)
, we have

∣∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξi

∣∣∣∣∣∣ ≤ δω̄ + 2 ∥γ̂∥1 ω̄
(√

log 2N0 +
δ

2

)
= ω̄

(
2 ∥γ̂∥1

√
log 2N0 + δ(1 + ∥γ̂∥1)

)
.
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B.3 Error bounds for the post-treatment noise

Lemma 6. For weights independent of εiT j, under Assumption 1 and 3, for any δ > 0 with

probability at least 1− 2 exp
(
− δ2

2

)
, we have

∣∣∣∣∣∣ε1Tj −
∑
Wi=0

γ̂iεiT j

∣∣∣∣∣∣ ≤ δσ(1 + ∥γ̂∥2).

Proof of Lemma 6. Since the weights are independent of εiT j , by sub-Gaussianity and independence

of εiT j , we see that ε1Tj −
∑

Wi=0 γ̂iεiT j is sub-Gaussian with scale parameter σ
√
1 + ∥γ̂∥22 ≤

σ(1 + ∥γ̂∥2). Applying the Hoeffding’s inequality, we obtained the claimed bound.

Lemma 7. For weights γ̂ and any δ > 0, with probability at least 1− 6 exp
(
− δ2

2

)
, we have

∣∣∣∣∣∣ε̇1Tj −
∑
Wi=0

γ̂iε̇iT j

∣∣∣∣∣∣ ≤ δσ(1 + ∥γ̂∥2) + δ
σ√
T0

+ 2 ∥γ̂∥1
σ√
T0

(√
log 2N0 +

δ

2

)

≤ (1 + C)δσ

(
1 +

1√
T0

)
+

σ√
T0

(
2C
√

log 2N0

)
Proof of Lemma 7. For the post-treatment noise, we have∣∣∣∣∣∣ε̇1Tj −

∑
Wi=0

γ̂iε̇iT j

∣∣∣∣∣∣ =
∣∣∣∣∣∣ε1Tj −

∑
Wi=0

γ̂iεiT j +
∑
Wi=0

γ̂iε̄i·j − ε̄1·j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ε1Tj −
∑
Wi=0

γ̂iεiT j

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
Wi=0

γ̂iε̄i·j − ε̄1·j

∣∣∣∣∣∣
Lemma 6 applies to the first term. However, for the second term, we note that ε̄i·j and γ̂i are

correlated, and Lemma 5 applies with a scale parameter of σ/
√
T0. Applying a union bound to the

two terms, and note that ∥γ̂∥2 ≤ ∥γ̂∥1 = C by construction, we obtained the claimed bound.

C Proofs

Proof for Proposition 1. For the system of linear equations (3) to have a solution, the sufficient and

necessary condition is the matrix
(

L 1N

)
has reduced rank to be less than N . Furthermore,

since all time effects are removed from L, the columns of L are linearly independent with the one

vector 1N . Therefore, a sufficient and necessary condition is for the rank of L to be less than

N − 1.

Proof of Theorem 1 . The proof follows from Theorem 2, 3 and 4, separately proved below.
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C.1 Error bounds for separate weights

Theorem 2. Suppose Assumptions 1, 2b, 3 and 4 hold. Then for any δ > 0, we have the following

bound

∣∣∣∣∣∣L1Tj(0)−
∑
Wi=0

γ̂sepi LiT j

∣∣∣∣∣∣
≤ rM2

ξsep

(
(4σ(1 + C) + 2δ) +

σ · (1 + 1/
√
T0)√

T0

(
2C
√
log 2N0 + (1 + C)δ

))

with probability at least 1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0δ2

2σ2(1+C2)

)
.

Proof of Theorem 2. As discussed in the main text, denote the projected factor value by ωtj =

µTj ·
(∑

t µtjµ
′
tj

)−1
µtj , we can decompose the bias into the following two terms:

L̇1Tj(0)−
∑
Wi=0

γ̂sepi L̇iT j =

T0∑
t=1

ωtj(Ẏ1tj −
∑
Wi=0

γ̂sepi Ẏitj)−
T0∑
t=1

ωtj(ε̇1tj −
∑
Wi=0

γ̂sepi ε̇itj)

Next we derive the upper bound for the absolute value of each term.By Assumption 4, for all t we

have (ωtj)
2 ≤

(
rjM

2

ξsep
T0

)2
. Next we derive the upper bound for the absolute value of each term.

To bound the bias due to imbalance, we apply the Cauchy-Schwarz inequality:

(Rsep
0 ) =

T0∑
t=1

ωtj(Ẏ1tj −
∑
Wi=0

γ̂sepi Ẏitj) ≤

√√√√ T0∑
t=1

ω2
tj

√√√√ T0∑
t=1

(Ẏ1tj −
∑
Wi=0

γ̂sepi Ẏitj)2

=
√
T0

√√√√ T0∑
t=1

ω2
tj

√√√√ 1

T0

T0∑
t=1

(Ẏ1tj −
∑
Wi=0

γ̂sepi Ẏitj)2

≤
√

T0

√
T0 ·

(
rjM2

ξsepT0

)2

qsep(γ̂sep) = (ξ)−1rjM
2qsep(γ̂sep) ≤ (ξsep)−1rjM

2qsep(γ∗).

Lemma 4 derives a high-probability upper bound for qsep(γ∗), which gives an upper bound for

|Rsep
0 |.
For |Rsep

1 |, set ξi =
∑T0

t=1 ωtjεitj and ξ̄i = ε̄i·j
∑T0

t=1 ωtj . We therefore have the upper bound

|Rsep
1 | =

∣∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξj − ξ̄1 +
∑
Wi=0

γ̂iξ̄j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ξ1 −

∑
Wi=0

γ̂iξj

∣∣∣∣∣∣+
∣∣∣∣∣∣ξ̄1 −

∑
Wi=0

γ̂iξ̄j

∣∣∣∣∣∣
Furthermore, the weighted sum ξi is sub-Gaussian with a scale parameter σ√

T0

rjM
2

ξsep , and ξ̄i is

sub-Gaussian with a scale parameter σ
T0

rjM
2

ξsep . We apply Lemma 5 to both terms with the union
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bound.

Combining the probabilities with the union bound gives the result with probability at least

1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0δ2

2σ2(1+∥γ∗∥22)

)
, the bias is upper bounded by

rjM
2

ξsep

(
4σ

√
1 + ∥γ∗∥22 + 2δ +

σ · (1 + 1/
√
T0)√

T0

(
2 ∥γ̂sep∥1

√
log 2N0 + δ(1 + ∥γ̂sep∥1)

))
.

We then note that ∥γ̂sep∥1 = C by construction and Assumption 2b implies that
√
1 + ∥γ∗∥22 ≤

1 + ∥γ∗∥2 ≤ 1 + C and 1 + ∥γ∗∥22 ≤ 1 + C2.

C.2 Error bounds for concatenated weights

Theorem 3. Suppose Assumptions 1, 2b, and 3 and 4. Then for any δ > 0, we have the following

bound∣∣∣∣∣∣L1Tj(0)−
∑
Wi=0

γ̂cati LiT j

∣∣∣∣∣∣
≤ rM2

ξcat

(
(4σ(1 + 1/

√
T0)(1 + C) + 2δ) +

σ · (1 + 1/
√
T0)√

T0K

(
2C
√
log 2N0 + (1 + C)δ

))

with probability at least 1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0Kδ2

2σ2(1+C2)

)
.

Proof of Theorem 3. As discussed in the main text, denote the projected factor value to be ωtk =

µTj · (
∑

tk µtkµ
′
tk)

−1 µtk, we can decompose the bias into the following two terms Rcat
0 and Rcat

1 :

L1Tj(0)−
∑
Wi=0

γ̂cati LiT j =
K∑
k=1

T0∑
t=1

ωtk(Y1tk −
∑
Wi=0

γ̂cati Yitk)−
K∑
k=1

T0∑
t=1

ωtk(ε1tk −
∑
Wi=0

γ̂cati εitk)

Next we derive the upper bound for the absolute value of each term. By Assumption 4, for

all t we have (ωtk)
2 ≤

(
rM2

ξcat
T0K

)2

. To bound the absolute value of the first term, we apply the

Cauchy-Schwarz inequality:

(Rcat
0 ) =

K∑
k=1

T0∑
t=1

ωtk(Y1tk −
∑
Wi=0

γ̂cati Yitk) ≤

√√√√ K∑
k=1

T0∑
t=1

(ωtk)
2

√√√√ K∑
k=1

T0∑
t=1

(Y1tk −
∑
Wi=0

γ̂cati Yitk)2

=
√
T0K

√√√√ K∑
k=1

T0∑
t=1

(ωtk)
2

√√√√ 1

T0K

K∑
k=1

T0∑
t=1

(Y1tk −
∑
Wi=0

γ̂cati Yitk)2

≤
√
T0K

√
T0K ·

(
rM2

ξcatT0K

)2

qcat(γ̂cat) = (ξ)−1rM2qcat(γ̂cat) ≤ (ξcat)−1rM2qcat(γ∗).
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Lemma 4 derives a high-probability upper bound for qcat(γ∗), which gives an upper bound for

|Rcat
0 |.
For |Rcat

1 | =
∣∣ξ1 −∑Wi=0 γ̂iξj − ξ̄1 +

∑
Wi=0 γ̂iξ̄j

∣∣, set ξi =∑K
k=1

∑T0
t=1 ωtkεitk and ξ̄i =

∑K
k=1 ε̄i·k

∑T0
t=1 ωtk.

We therefore have the upper bound

|Rcat
1 | ≤

∣∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξj

∣∣∣∣∣∣+
∣∣∣∣∣∣ξ̄1 −

∑
Wi=0

γ̂iξ̄j

∣∣∣∣∣∣ .
Furthermore, the weighted sum ξi is sub-Gaussian with a scale parameter σ√

T0K
rM2

ξcat and the

weighted sum ξ̄i is sub-Gaussian with a scale parameter σ
T0

√
K

rM2

ξcat . We apply Lemma 5 to both

terms and then a union bound.

Combining these probabilities with the union bound gives the result that with probability at

least 1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0Kδ2

2σ2(1+∥γ∗∥22)

)
, the bias is upper bounded by

rM2

ξcat

4σ

√
1 + ∥γ∗∥22 + 2δ +

4σ
√

1 + ∥γ∗∥22√
T0

+
σ · (1 + 1/

√
T0)√

T0K

(
2
∥∥γ̂cat∥∥

1

√
log 2N0 + (1 +

∥∥γ̂cat∥∥
1
)δ
) .

We then note that
∥∥γ̂cat∥∥

1
= C by construction and Assumption 2b implies that

√
1 + ∥γ∗∥22 ≤

1 + ∥γ∗∥2 ≤ 1 + C and 1 + ∥γ∗∥22 ≤ 1 + C2.

C.3 Error bounds for average weights

Denote the average outcome Ȳit =
1
K

∑K
k=1 Yitk and similarly µ̄t =

1
K

∑K
k=1 µtk.

Theorem 4. Suppose Assumptions 1, 2b, 3 and 4 hold. Then for any δ > 0, we have the following

bound ∣∣∣∣∣∣L1Tj(0)−
∑
Wi=0

γ̂avgi LiT j

∣∣∣∣∣∣
≤ rM2

ξavg

(
(
4σ√
K

(1 + C) + 2δ) +
σ · (1 + 1/

√
T0)√

T0K

(
2C
√

log 2N0 + (1 + C)δ
))

with probability at least 1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0Kδ2

2σ2(1+C2)

)
.

Proof of Theorem 4. As discussed in the main text, denote the projected average factor value to

be ωtj = µTj ·
(∑

t (µ̄t) (µ̄t)
′)−1

µ̄t we can decompose the bias into the following two terms Ravg
0

and Ravg
1 :

L1Tj(0)−
∑
Wi=0

γ̂avgi LiT j =

T0∑
t=1

ωtj(Ȳ1t −
∑
Wi=0

γ̂avgi Ȳit)−
T0∑
t=1

ωtj(ε̄1t −
∑
Wi=0

γ̂avgi ε̄it)
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Next we derive the upper bound for the absolute value of each term. By Assumption 4, for all t we

have ωtj ≤
(

rM2

ξavg
T0

)2
.

To bound the bias due to imbalance, we apply the Cauchy-Schwarz inequality:

(Ravg
0 ) =

T0∑
t=1

ωtj(Ȳ1t −
∑
Wi=0

γ̂iȲit) ≤

√√√√ T0∑
t=1

(ωtj)
2

√√√√ T0∑
t=1

(Ȳ1t −
∑
Wi=0

γ̂iȲit)2

≤
√
T0

√√√√ T0∑
t=1

(ωtj)
2

√√√√ 1

T0

T0∑
t=1

(Ȳ1t −
∑
Wi=0

γ̂iȲit)2

≤
√
T0

√
T0

(
rM2

ξavgT0

)2

qavg(γ̂) = (ξ)−1rM2qavg(γ̂avg) ≤ (ξavg)−1rM2qavg(γ∗)

Lemma 4 derives a high-probability upper bound for qavg(γ∗), which gives an upper bound for

|Ravg
0 |.
For |Ravg

1 |, set ξi =
∑T0

t=1 ωtj ε̄it and ξ̄i = ε̄i··
∑T0

t=1 ωtj . We therefore have the upper bound

|Ravg
1 | =

∣∣∣∣∣∣ξ1 −
∑
Wi=0

γ̂iξj − ξ̄1 +
∑
Wi=0

γ̂iξ̄j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ξ1 −

∑
Wi=0

γ̂iξj

∣∣∣∣∣∣+
∣∣∣∣∣∣ξ̄1 −

∑
Wi=0

γ̂iξ̄j

∣∣∣∣∣∣ .
Since ε̄it is the average of K independent sub-Gaussian random variables, it is also sub-Gaussian

with scale parameter σ/
√
K. Furthermore, the weighted sum ξi is also sub-Gaussian with a scale

parameter σ√
T0K

rM2

ξavg . Similarly, the weighted sum ξ̄i is also sub-Gaussian with a scale parameter

σ
T0

√
K

rM2

ξavg . we apply Lemma 5 to both terms and then the union bound.

Combining the probabilities with the union bound gives the result that with probability at least

1− 8 exp
(
− δ2

2

)
− 4 exp

(
− T0Kδ2

2σ2(1+∥γ∗∥22)

)
, the bias is upper bounded by

rM2

ξavg

(
(
4σ√
K

√
1 + ∥γ∗∥22 + 2δ) +

σ · (1 + 1/
√
T0)√

T0K

(
2 ∥γ̂avg∥1

√
log 2N0 + (1 + ∥γ̂avg∥1)δ

))
.

We then note that ∥γ̂avg∥1 = 1 by construction and Assumption 2b implies that
√
1 + ∥γ∗∥22 ≤

1 + ∥γ∗∥2 ≤ 1 + C and 1 + ∥γ∗∥22 ≤ 1 + C2.

D Bias bounds for weighting estimators without de-meaning

We first state the alternative assumption for the outcome under control without unit fixed effects.

Then we For the save of brevity, we omit the proof for Theorem 5 as it is largely similar to that

for Theorem 1.
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Assumption 7. The outcome under control is generated as

Yitk(0) = βtk + Litk + εitk

where the deterministic model component includes time fixed effects βtk, with
∑T

t=1 βtk = 0 for all

k, as well as a non-additively separable term Litk with
∑N

i=1 Litk = 0 for all t, k and
∑T

t=1 Litk = 0

for all i, k. The idiosyncratic errors εitk are mean zero, independent of the treatment status Wit,

and independent across units and outcomes.

Theorem 5. Suppose Assumptions 2b, 3, 4 and 7 hold. For any δ > 0, the absolute bias for

estimating the treatment effect
∣∣L1Tj(0)−

∑
Wi=0 γ̂iLiT j

∣∣ satisfies the bound

1) if analyzing γ̂sepi ,

≤ rjM
2

ξsep

(
4σ(1 + C) + δ +

σ√
T0

(
2C
√

log 2N0 + 2(1 + C)δ
))

,

with probability at least 1− 4 exp
(
− δ2

2

)
− 2 exp

(
− T0δ2

2σ2(1+C2)

)
.

2) if analyzing γ̂cati

≤ rM2

ξcat

(
4σ(1 + C) + δ +

σ√
T0K

(
2C
√
log 2N0 + 2(1 + C)δ

))
,

with probability at least 1− 4 exp
(
− δ2

2

)
− 2 exp

(
− T0Kδ2

2σ2(1+C2)

)
.

3) if analyzing γ̂avgi

≤ rM2

ξavg

(
(
4σ√
K

(1 + C) + δ) +
σ√
T0K

(
2C
√

log 2N0 + 2(1 + C)δ
))

,

with probability at least 1− 4 exp
(
− δ2

2

)
− 2 exp

(
− T0Kδ2

2σ2(1+C2)

)
.

E Additional figures
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Figure E.1: Box plots of imbalance using separate SCM, concatenated SCM, and average SCM
over 1000 simulations
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Figure E.2: The Singular Value spectrum for all outcomes

Figure E.3: Point estimates for the effect of the Flint water crisis using SCM, concatenate SCM,
and average SCM, without including special needs. Each outcome is standardized using the series
pre-treatment standard deviation.
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