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The Preamble of the Constitution of the United States states: 

“We the People of the United States, in Order to form a more perfect Union, establish 

Justice, insure domestic Tranquility, provide for the common defence, promote the 

general Welfare, and secure the Blessings of Liberty to ourselves and our Posterity, do 

ordain and establish this Constitution for the United States of America.” 

 

Alfred Marshall (1890) began his Principles of Economics with the sentence: 

“Political economy or economics is a study of mankind in the ordinary business of life; 

it examines that part of individual and social action which is most closely connected 

with the attainment and with the use of the material requisites of wellbeing.” 

 

A report on clinical practice guidelines by the U.S. Institute of Medicine (2010) states: 

“Clinical practice guidelines are statements that include recommendations intended to 

optimize patient care that are informed by a systematic review of evidence and an 

assessment of the benefits and harms of alternative care options.” 



The Constitutional premise that the United States should promote the general welfare, 

Marshall’s concern with social action to promote wellbeing, and the IOM premise that 

clinicians should optimize patient care exemplify broad assertions that entities making 

societal decisions should aim to maximize social welfare. 

 

Such assertions have rhetorical appeal, but they become meaningful only when several 

questions are answered: 

What constitutes social welfare?  What are the feasible actions? 

What is known about the welfare consequences of alternative choices? 

 

Maximization of welfare is a well-defined objective if enough is known about the welfare 

consequences of alternative choices to determine an unambiguous best action. It is ill-

defined if the consequences are sufficiently uncertain that no action is clearly best. 

 

My concern is societal decision making in such settings. 



The Prevalent Study of Planning with Certainty 

 

Economists have long studied policy choice by an actual or hypothetical social planner 

who aims to maximize welfare in democracies or other political systems where welfare is 

intended to express the values of a society rather than the preferences of a dictator. 

 

The public may not be familiar with formal welfare economics, but basic ideas are familiar 

through the widespread use of the term benefit-cost analysis. 

 

Economists often study planning with utilitarian welfare functions. 

 

We sometimes specify ones that express a form of paternalism or principles of fairness. 

  



The motivation for studying planning is most transparent when actual planners face 

specific decision problems. 

 

A national government must design an income tax and develop a national defense. 

 

Local governments maintain roads, perform policing, and organize public education. 

 

Clinicians make medical choices on behalf of patients. 

 

Parents act as planners for their families. 

 

In these settings and others, the planning objective is to maximize some idea of welfare.  



Welfare economics has also sought to shed light on noncooperative societal decision 

processes, where no actual planner exists. 

 

Adam Smith metaphorically suggested that an invisible hand makes decentralized decision 

making in market economies promote social welfare. 

 

Economists gradually formalized this notion to develop what have become known as the 

fundamental theorems of welfare economics. 

 

These give idealized conditions under which equilibrium outcomes in markets have the 

desirable welfare property of Pareto efficiency, which would be sought by a planner using 

a utilitarian or other welfare function that aggregates personal welfare (aka utility). 

  



A central concern of research in public economics has been to study planning when the 

idealized conditions of the fundamental theorems of welfare economics do not hold. 

 

Pareto efficiency has served as a benchmark for measuring the inefficiency of outcomes. 

 

The social welfare achieved by a hypothetical planner has also served as a benchmark in 

social-choice theory, which studies the outcomes produced by voting and other 

decentralized mechanisms that attempt to aggregate personal preferences. 

  



Whether performing abstract theoretical studies or applied benefit-cost analyses, 

researchers have generally assumed that the planner knows enough about the choice 

environment to be able to determine an optimal action. 

 

However, the consequences of decisions are often highly uncertain. 

 

Aiming to circumvent this difficulty, researchers commonly invoke strong unsubstantiated 

assumptions and use them to study solvable optimization problems. 

 

I have referred to this as policy analysis with incredible certitude.  

(Manski, EJ 2011, Public Policy in an Uncertain World, 2013). 

  



Planning with incredible certitude can harm society in multiple ways. 

 

It seeks to maximize the social welfare that would prevail if untenable assumptions were 

to hold rather than actual social welfare. 

 

If planners incorrectly believe that existing analysis provides an errorless description of 

society and accurate predictions of policy outcomes, they may make poor decisions. 

 

They will not recognize the potential value of research aiming to improve knowledge. 

 

Nor will they appreciate the potential usefulness of decision strategies that may help society 

cope with uncertainty and learn. 

  



The dearth of study of planning under uncertainty is apparent in the comprehensive 

textbook on public economics of Atkinson and Stiglitz (1980), which mentions uncertainty 

only a few times and then only in passing. 

 

Addressing the reluctance of research in welfare economics to come to grips with 

uncertainty has motivated my research program on credible social planning under 

uncertainty, which has developed over the past twenty years. 

 

The word ‘credible’ is subjective and often difficult to pin down, but I use it nonetheless. 

 

I will describe the themes of my work and applications.  



 

As far as I am aware, only a small body of other research engages any of the themes that I 

will discuss. 

 

Johansen (1978) called for research on macroeconomic planning under uncertainty, stating: 

“Uncertainty is not something which should be considered as a theoretically interesting 

refinement or extension of standard theory and methodology, but a central factor of 

eminently practical importance. Sometimes uncertainty is itself the heart of the matter 

when decisions are to be taken.” 

 

In the early 2000s, Hansen and Sargent initiated a program of work on robust 

macroeconomic policy, considering possible deviations of reality from the assumptions 

maintained in conventional macroeconomic models; see Hansen and Sargent (2008). 

 

Barlevy (2011) reviews work on macroeconomic policy under ambiguity.  



Uncertainty in Decision Theory 

 

A fundamental difficulty with welfare maximization under uncertainty is apparent even in 

a simple setting with two feasible actions, say A and B, and two possible choice 

environments, say s1 and s2. 

 

Suppose that A yields higher welfare in s1 and B yields higher welfare in s2. 

 

If it is not known whether s1 or s2 is the actual environment, then it is not known which 

action is better. 

 

Thus, maximization of welfare is logically impossible. 

 

At most one can seek a reasonable way to make a choice. A basic issue is how to interpret 

and justify the word ‘reasonable.’  



Research in decision theory has posed and characterized various principles for reasonable 

decision making under uncertainty. 

 

Decision theory is not specifically concerned with societal decisions. 

 

It assume an abstract decision maker who must choice among a specified set of actions. 

 

The decision maker could be an individual, a firm, or a planner. 

  



The description of uncertainty in decision theory is abstract. 

 

One supposes that outcomes are determined by the chosen action and by some feature of 

the environment, called the state of nature. 

 

The decision maker is assumed able to list all states of nature that could possibly occur. 

 

This list, the state space, is a primitive concept expressing uncertainty. 

 

The larger the state space, the less the decision maker knows about the consequences of 

each action. 

 

  



Much of decision theory adds a secondary expression of uncertainty in the form of a 

probability distribution over the state space. 

 

Some studies view the probability distribution as a cognitive concept, expressing how 

decision makers might actually perceive uncertainty. 

 

Others view it as a mathematical construct, whose existence might be inferred from 

analysis of choice behavior. 

 

Two conceptually distinct but mathematically related approaches have been used to 

develop criteria for reasonable decision making. 

 

One poses choice axioms as primitives. The other focuses on the substantive consequences 

of choices. The approaches are related by representation theorems. 

  



Axiomatic Decision Theory 

 

Axiomatic decision theory poses principles, called axioms, for consistency of hypothetical 

behavior across a class of potential choice problems. 

 

Researchers may introspect and assert it to be reasonable, or rational, that a decision maker 

should adhere to these choice axioms. 

 

The central research activity of axiomatic decision theory has been to pose and prove 

representation theorems establishing that adherence to a specified set of axioms is 

equivalent to acting as if one wants to maximize some welfare function, coping with 

uncertainty in some manner. 

  



 

Particularly famous are theorems in Von Neumann-Morgenstern (1944) and Savage (1954). 

 

Both establish that adherence to certain axioms is representable as maximizing expected 

utility. 

 

They differ mainly in that the distribution on the state space used to form expected utility 

is pre-specified in VN-M and determined within the theory in Savage.. 

 

VN-M viewed the distribution as a primitive concept. 

 

Savage viewed the distribution as a construct that may in principle be inferred from 

analysis of extensive choice behavior. 

 

In neither theorem does the distribution have any necessary connection to objective reality.  



When studying consistency axioms of the types posed by VN-M and Savage, decision 

theorists do not differentiate between private entities and social planners. 

 

The presumption is that all decision makers should behave consistently in the same manner. 

 

Choice axioms aim to characterize procedural reasonableness, or rationality, in the sense 

of consistency of hypothetical behavior across potential choice problems. 

 

Axiomatic decision theory provides no description of substantively good decisions. 

  



Consequentialist Decision Theory 

 

Consequentialist decision theory specifies a welfare function and an expression of 

uncertainty as primitives. It then seeks reasonable criteria to make decisions. 

 

The most prevalent recommendation has been maximization of expected utility. 

 

One places a probability distribution on the state space and chooses an action that 

maximizes the expected value of welfare with respect to this distribution. 

 

To assist decision makers who do not find it credible to express uncertainty through a 

probability distribution, decision theorists have studied criteria that, in some sense, works 

uniformly well over all of the state space. 

 

Two prominent interpretations of this idea are the maximin and minimax-regret criteria.  



The decision theory used in my research is consequentialist rather than axiomatic. 

 

I suppose that the objective is to make substantively good decisions in particular settings. 

 

I suppose that a planner specifies a welfare function, expresses uncertainty in a credible 

manner, and uses these primitives to make a decision. 

 

The welfare function and expression of uncertainty (aka expectations) are context specific. 

 

A fundamental problem with axiomatic decision theory is that it is unconcerned with the 

credibility of a decision maker’s expectations. 

 

The realism of expectations should matter to any decision maker. 

 

It should matter particularly to a planner who represents a population.  



Characterizing Uncertainty Regarding Objective Probability Distributions 

 

To characterize uncertainty with enough concreteness to be useful to the study of planning, 

I draw on my econometric research on partial identification. 

 

A fundamental difficulty when studying planning is the identification problem arising from 

the unobservability of counterfactual outcomes. 

 

At most one can observe the outcomes that have occurred under realized policies. The 

outcomes of unrealized policies are logically unobservable. 

 

Yet determination of an optimal policy requires comparison of all feasible policies. 

 

For this and many other reasons, planners usually have only partial knowledge of the 

welfare achieved by alternative policies.  



I first connected identification with decisions under uncertainty in Manski (2000), writing: 

“This paper connects decisions under ambiguity with identification problems in 
econometrics. Considered abstractly, it is natural to make this connection. Ambiguity 
occurs when lack of knowledge of an objective probability distribution prevents a 
decision maker from solving an optimization problem. Empirical research seeks to draw 
conclusions about objective probability distributions by combining assumptions with 
observations. An identification problem occurs when a specified set of assumptions 
combined with unlimited observations drawn by a specified sampling process does not 
reveal a distribution of interest. Thus, identification problems generate ambiguity in 
decision making.” 
 

I followed Ellsberg (1961) in using the word ambiguity to signify uncertainty when one 

specifies a set of feasible states of nature but does not place a probability distribution on 

the state space. Synonyms include deep uncertainty and Knightian uncertainty. 

 

Statistical imprecision in empirical analysis is also relevant to planning, but identification 

is generally the deeper and more profound source of uncertainty.  



What are the objective uncertainties with which actual social planning must cope? 

 

They are many and varied. For now, I will simply list those I have studied. 

 

These include numerous identification problems in medical risk assessment and prediction 

of treatment response. See Manski (Patient Care under Uncertainty 2019). 

 

There is uncertainty in the epidemiological models used to predict the spread of infectious 

diseases, which inform choice of vaccination policy (Manski, PNAS 2010; JPET 2017). 

 

There is uncertainty in the climate models used to predict climate change, which inform 

choice of climate policy (Manski, Sanstad, and DeCanio, PNAS 2021) and in the discount 

rate used to form a welfare function (DeCanio, Manski, and Sanstad, EE 2022).  



Challenging identification problems arise when studying the preferences and behavior of 

human populations. 

 

Knowledge of preferences is essential to policy evaluation when welfare is utilitarian. 

 

An ability to predict behavior is required to evaluate policy consequences whatever the 

welfare function may be. 

 

I have examined how uncertainties about preferences and behavior complicate evaluation 

of income tax policies, where a central consideration is the income-leisure preferences of 

potential workers (Manski, QE 2014; EJ 2014). 

 

I have shown how uncertainty about the effect of policing on criminal behavior complicates 

evaluation of proactive policing programs (Manski, EJ 2006).  



Planning with Incredible Certitude 

 

Analyses of public policy regularly express certitude about the consequences of alternative 

policy choices. Expressions of uncertainty are rare. Yet predictions often are fragile. 

 

Conclusions may rest on critical unsupported assumptions or on leaps of logic. Then the 

certitude of policy analysis is not credible. 

 

One can resolve the tension between the credibility and power of assumptions by posing 

assumptions of varying strength and determining the conclusions that follow. 

 

In practice, policy analysis tends to sacrifice credibility in return for strong conclusions. 

 

Why so? 

  



Analysts and policy makers respond to incentives. 

 

The scientific community rewards strong novel findings. 

 

The public wants unequivocal policy recommendations. 

 

These incentives make it tempting to maintain assumptions far stronger than can be 

persuasively defended, in order to draw strong conclusions. 

 

Expressing certitude also has been advocated in philosophy of science. 

 

When there are multiple explanations for available data, philosophers recommend using a 

criterion such as ‘simplicity’ to choose one of them. 

  



Manski (EJ 2011) introduced a typology of practices that contribute to incredible certitude. 

I have since elaborated in Manski (PPUW 2013; JEL 2015, PNAS 2019, EaP 2020): 

 

The typology is 

* conventional certitude: A prediction that is generally accepted as true but is not 

necessarily true. 

* dueling certitudes: Contradictory predictions made with alternative assumptions. 

* conflating science and advocacy: Specifying assumptions to generate a predetermined 

conclusion. 

* wishful extrapolation: Using untenable assumptions to extrapolate. 

* illogical certitude: Drawing an unfounded conclusion based on logical errors. 

* media overreach: Premature or exaggerated public reporting of policy analysis. 

 

I have provided illustrative examples and have offered suggestions to improve practices. 

  



Perspectives on Social Welfare 

 

Given a choice set and welfare function, analysis of optimal planning is straightforward in 

abstraction, although solution of the optimization problem may be difficult in practice. 

 

The subtleties in research on planning are conceptual rather than mathematical. 

 

If analysis is to be useful as more than a theoretical exercise, the welfare function should 

express normative properties acceptable to some meaningful part of the relevant society. 

 

The choice set should be realistic, comprising options that may actually be available. 

 

Analysis should recognize that policy outcomes may be uncertain. 

  



 

Specification of the welfare function has vexed economists and philosophers in broad 

terms, as well as policy analysts in particular contexts. 

 

Most research by economists has supposed that the welfare function should aggregate the 

personal welfares of the individuals who compose society. 

 

Yet it has long been understood that, in general, a heterogeneous society cannot develop a 

consensus social welfare function. 

 

The Arrow (1950) Possibility Theorem diminished the residual hope that a heterogeneous 

society might be able to devise at least a coherent non-dictatorial welfare function. 

 

How then should research on planning proceed? The literature is vast and varied.  



The New Welfare Economics 

 

One route was taken in the 1930s and 1940s by the economists who initiated study of the 

new welfare economics (Hicks, 1939). 

 

Wary of any criterion to choose among policies that benefit some people but harm others, 

they retreated to the study of Pareto efficiency with extension to fictional redistributions 

proposed by Kaldor (1939) and Hicks (1939). 

 

This restriction on their domain of concern drastically limited their ability to study actual 

planning problems. This led Chipman and Moore (1978) to write: 

“In this paper we shall argue that, judged in relation to its basic objective of enabling 

economists to make welfare prescriptions without having to make value judgments and, 

in particular, interpersonal comparisons of utility, the New Welfare Economics must be 

considered a failure.”  



Utilitarian and Maximin Welfare 

 

In research that studies planning when policies benefit some people but harm others, it has 

been common among economists to specify a utilitarian welfare function. 

 

The standard theory of rational individual behavior under certainty requires only an ordinal 

concept of personal welfare. 

 

A utilitarian welfare function specifies interpersonally comparable cardinal personal 

welfares and sums them. Bentham (1776) may have had this in mind when he wrote: 

“a fundamental axiom, it is the greatest happiness of the greatest number that is the 

measure of right and wrong.” 

 

One need not sum personal welfares to develop welfare functions that respect Pareto 

efficiency. The Rawls (1971) maximin function has received attention outside economics.  



Non-Personalist Welfare Functions 

 

I have so far discussed research that assumes the welfare function aggregates personal 

welfare. Sen (1977) called this welfarism. I prefer the word “personalism.” 

 

Non-personalist welfare functions place direct societal value on certain ethical concepts, 

beyond their possible manifestations as determinants of personal welfare. 

 

These concepts have been given many seemingly simple labels, including justice, fairness, 

equity, and liberty. 

 

These labels are difficult to interpret formally. See Manski, Mullahy, and Venkataramani 

(PNAS 2023). 

 

 



Pragmatic Welfare Functions 

 

Research in welfare economics and moral philosophy has mainly been abstract. 

 

Studies of concrete planning problems have commonly used pragmatic welfare functions. 

 

I use the word ‘pragmatic’ to mean that researchers motivate their welfare functions by 

some combination of conjecture regarding societal values, empirical study of population 

preferences, and concern for analytical tractability. 

 

For example, the literature on optimal taxation stemming from Mirrlees (1971) has 

assumed a utilitarian welfare function and has placed various restrictions on the population 

distribution of income-leisure preferences. 

  



Research on government spending to optimize macroeconomic growth has assumed 

utilitarian welfare and a representative infinite-lived household (e.g., Barro, 1990). 

 

Integrated assessment studies of optimal climate policy has assumed that the objective is 

to maximize present-discounted gross world product (e.g., Nordhaus, 2008). 

 

Analyses of optimal medical care often assume that the objective is to maximize the 

population mean quality-adjusted life years (QALYS) net of treatment cost.  

  



 

When academic researchers specify pragmatic welfare functions, they may believe that 

these functions have sufficient social acceptability to make them worthy of study. 

 

They usually do not argue that actual planners should necessarily use these welfare 

functions to make decisions. 

 

The less ambitious goal is to learn what decisions would be optimal if specified welfare 

functions were to be used. 

 

This perspective is maintained throughout my own work. 

 



Uncertainty in Consequentialist Decision Theory 

 

I now deepen the discussion of uncertainty in decision theory begun in the Introduction. 

 

Maximization of welfare expresses a consequential perspective on decision making. Given 

a choice setting, the goal is to do as well as possible in achieving a specified objective. 

 

The starting point is to suppose that the planner faces a predetermined choice set C and 

believes that the true state of nature s* lies in a state space S. 

 

The welfare function w(∙, ∙): C × S ⇾ R1 maps actions and states into welfare. 

 

The planner wants to maximize w(∙, s*) over C but does not know s*. 

 

Hence, maximization is infeasible except in special cases.  



The state space S provides the basic decision theoretic expression of uncertainty. States of 

nature that are not elements of S are presumed impossible to occur. 

 

The decision maker does not contemplate the possible existence of ‘unknown unknowns.’ 

 

Discussions of the state space often consider it to express uncertainty purely about the 

physical and social environment within which choice takes place. 

 

A state space can also express uncertainty about the welfare function. 

 

This may occur when the planner is utilitarian. 

 

The planner must know the preferences of the population to maximize welfare, but this 

knowledge may not be available.  



The state space is a subjective primitive of the decision problem. 

 

However, being subjective does not imply that it is an arbitrary construction. 

 

Credibility is fundamental in consequential decision theory in general and in the study of 

social planning specifically. 

 

If planning decisions are to enhance well-being in the real world, the planner should specify 

a state space that expresses some reasonable sense of credibility. 

 

Scientific research seeks to provide at least a partially objective basis for specification of 

the state space. 

 

This basis is obtained by combining plausible theory with careful empirical analysis. 

 



Decision Criteria 

 

It is generally accepted that decisions should respect dominance. 

 

Action c ∈ C is weakly dominated if there exists a d ∈ C such that w(d, s) ≥ w(c, s) for all 

s ∈ S and w(d, s) > w(c, s) for some s ∈ S. 

 

To choose among undominated actions, decision theorists have proposed various ways of 

using w(, ∙) to form functions of actions alone, which can be optimized. 

 

One should only consider undominated actions, but it often is difficult to determine which 

actions are undominated. Hence, it is common to optimize over all feasible actions. 

 

Here I discuss settings without sample data. Wald (1950) extended the theory to settings 

where the planner observes sample data.  



A familiar idea is to place a subjective probability distribution π on the state space, average 

state-dependent welfare with respect to π, and maximize subjective average welfare over 

C. The criterion solves 

 

(1)       max  ∫w(c, s)dπ. 
           c ∈ C 

 

Another idea seeks an action that, in some sense, works uniformly well over all of S. This 

yields the maximin and minimax-regret (MMR) criteria. 

 

The maximin criterion maximizes the minimum welfare attainable across S, solving the 

problem 

 

(2)           max     min    w(c, s). 
               c ∈ C    s ∈ S 
  



The MMR criterion solves 

 

(3)      min    max    [max w(d, s) − w(c, s)]. 
          c ∈ C   s ∈ S     d ∈ C 
 

Here max d ∊ C w(d, s) − w(c, s) is the regret of action c in state s. 

 

The true state being unknown, one evaluates c by its maximum regret over all states and 

selects an action that minimizes maximum regret. 

 

The maximum regret of an action measures its maximum distance from optimality across 

states. Hence, maximum regret is uniform nearness to optimality. 

 

Note: The above considers polar cases in which a planner asserts either a complete 

subjective distribution on the state space, or none. A planner might also assert a partial 

subjective distribution, placing lower and upper probabilities on states.  



Learning Objective Probability Distributions 

 

In many planning settings, it has become standard to specify the state space as a set of 

objective probability distributions that may possibly describe the system under study. 

 

Haavelmo (1944) did so when he introduced The Probability Approach in Econometrics. 

 

Studies of treatment choice do so when they consider the population to be treated to have 

a distribution of treatment response. 

 

Research seeks to enhance the credibility of planning by constructive combination of 

theory and empirical analysis to provide information about the possible distributions. 

  



The Koopmans (1949) formalization of identification analysis contemplated unlimited data 

collection that enables one to shrink the state space, eliminating distributions that are 

inconsistent with theory and with the information revealed by observation. 

 

Note: Sample data generally are not informative enough to shrink the state space. Wald’s 

statistical decision theory shows how sample data can be informative, nonetheless. 

 

For most of the 20th century, econometricians commonly thought of identification as 

binary. A feature of an objective probability distribution is either identified or it is not. 

 

Empirical researchers combined available data with assumptions that yield point 

identification, and they reported point estimates of parameters. 

 

Many economists recognized that point identification often requires strong assumptions 

that are difficult to motivate. However, they saw no other way to perform inference.   



Yet there is enormous scope for fruitful inference using weaker and more credible 

assumptions that partially identify population parameters. 

 

A parameter is partially identified if the sampling process and maintained assumptions 

reveal that the parameter lies in a set, its identification region or identified set, that is 

smaller than the logical range of the parameter but larger than a single point. 

 

There were isolated contributions to analysis of partial identification as early as the 1930s, 

but the subject remained at the fringes of econometric consciousness and did not spawn 

systematic study. 

 

A coherent body of research took shape in the 1990s and has since grown rapidly. A 

textbook exposition is Manski (Identification for Prediction and Decision 2007).  



  

The modern literature on partial identification emerged out of concern with traditional 

approaches to inference with missing outcome data. 

 

Empirical researchers have commonly assumed that missingness is random, in the sense 

that the observability of an outcome is statistically independent of its value. 

 

Yet this and other point-identifying assumptions have been criticized as implausible. 

 

It was natural to ask what random sampling with partial observability of outcomes reveals 

about outcome distributions if nothing is known about the missingness process, or if 

assumptions weak enough to be widely credible are imposed. 

  



Studying inference with missing outcome data led to analysis of treatment response. 

 

A common objective of empirical research is to predict treatment response conditional on 

specified covariates, using data from a random sample of the population. 

 

Analysis must contend with the problem that counterfactual outcomes are not observable; 

hence, findings on partial identification with missing outcome data are applicable. 

 

Analysis of treatment response poses more than a generic missing-data problem. 

 

One reason is that observations of realized outcomes, when combined with suitable 

assumptions, can provide information about counterfactual ones. 

 

Another is that practical problems of treatment choice motivate research on treatment 

response and thereby determine what population parameters are of interest.  



Whatever the specific subject under study, a common theme runs through research on 

partial identification. 

 

One first asks what the sampling process alone reveals about the population of interest and 

then studies the identifying power of assumptions that aim to be credible in practice. 

 

This conservative approach to inference makes clear the conclusions one can draw in 

empirical research without imposing untenable assumptions. 

 

It establishes a domain of consensus among analysts who may hold disparate beliefs about 

what assumptions are appropriate. 

 

It also makes plain the limitations of the available data. When credible identification 

regions turn out to be large, we should face up to the fact that the available data do not 

support inferences as tight as we might like to achieve.  



 

Findings on partial identification imply that empirical research may shrink the state space 

for decision making but not reduce it to a single state of nature. 

 

Let S be the state space without observation of the unlimited data assumed in an 

identification study. 

 

Let S0 ⊂ S be the shrunken state space with these data. 

 

Then the decision criteria posed earlier have the same forms, but with S0 replacing S. 

  



Minimax-Regret Planning 

 

Maximization of subjective average welfare places a subjective distribution on the state 

space, whereas maximin and MMR do not. 

 

Concern with the basis for specification of a subjective distribution motivated Wald (1950) 

to study the minimax criterion (maximin in my description), writing: 

“a minimax solution seems, in general, to be a reasonable solution of the decision 

problem when an a priori distribution . . . . does not exist or is unknown.” 

 

I am similarly concerned with decision making with no subjective distribution on states. 

 

However, I have mainly measured performance of decisions by maximum regret rather 

than by minimum welfare.  



The maximin and MMR criteria both provide ex ante evaluations of the worst result that a 

decision maker may experience ex post. 

 

However, the criteria are equivalent only in special cases, particularly when optimal 

welfare is invariant across states. They differ more generally. 

 

Whereas maximin considers the worst absolute outcome that an action may yield across 

states, MMR considers the worst outcome relative to what is achievable in a given state. 

 

A conceptual appeal of using maximum regret to measure performance is that it quantifies 

how lack of knowledge of the true state of nature diminishes the quality of decisions. 

 

The term “maximum regret” is shorthand for the maximum sub-optimality of a decision 

criterion across the feasible states of nature. A decision with small maximum regret is 

uniformly near optimal across all states. I think this a desirable property.  



Diversified Treatment under Ambiguity 

 

To show how study of planning under uncertainty can matter in practice, consider the study 

of diversified treatment under ambiguity initiated in Manski (IPD 2007), expanded in 

Manski (IER 2009), and applied in Cassidy and Manski (PNAS 2019). 

 

I considered settings in which a planner can treat persons differentially. Examples include 

medical treatment, sentencing of offenders, and active labor-market programs. 

 

The planner may make a singleton allocation, assigning all observationally identical 

persons to the same treatment. Or the planner may choose a fractional allocation, randomly 

assigning positive fractions of these persons to different treatments. 

 

Fractional allocations cope with ambiguity through diversification. 

 



Let there be two feasible treatments, A and B. 

 

A Type A error occur when treatment A is chosen but is actually inferior to B. A Type B 

error occurs when B is chosen but is inferior to A. 

 

The singleton allocation assigning everyone to treatment A entirely avoids type B errors 

but may yield Type A errors, and vice versa for singleton assignment to treatment B. 

 

Fractional allocations make both types of errors but reduce their potential magnitudes. 

 

Bayesian and maximin planning may yield singleton or fractional allocations, depending 

on the specifics of the problem. 

 

The MMR allocation of two treatments under ambiguity is always fractional.  



The Institutional Separation of Research on Planning and Actual Planning 

 

I conclude by extending remarks in Public Policy in an Uncertain World (2013). 

 

I observed there that modern democratic societies have created an institutional separation 

between policy analysis and decision making, with professional analysts reporting findings 

to representative governments. 

 

Separation of the tasks of analysis and decision making, the former aiming to inform the 

latter, appears advantageous from the perspective of division of labor. 

 

Having researchers study planning problems and provide their findings to law makers and 

civil servants enables these planners to focus on the challenging task of policy choice, 

without having to perform their own research.  



I also observed that the current practice of policy analysis with incredible certitude does 

not serve society well. 

 

The problem is that the consumers of policy analysis cannot trust the producers. 

 

To improve analysis and to increase trust, research on planning should transparently face 

up to uncertainty rather than hide it.  

 

Some think this idea naïve or impractical. 

 

I have repeatedly heard policy analysts assert that policy makers are either psychologically 

unwilling or cognitively unable to cope with uncertainty. 

  



A more optimistic possibility is that incredible certitude is a modifiable social norm. 

 

Salutary change can occur if awareness grows that incredible certitude is harmful. 

 

Then society will want researchers to provide reasonable policy recommendations 

recognizing the subtlety of planning under uncertainty, not unequivocal ones lacking 

foundation. 
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Diversified Treatment under Ambiguity 

Charles F. Manski 

International Economic Review, Vol. 50, No. 4, 2009, pp. 10131041. 

 

I will discuss the study of diversified treatment under ambiguity initiated in Manski (IPD 

2007), expanded in Manski (IER 2009), and applied in Cassidy and Manski (PNAS 2019). 

 

I considered settings in which a planner can treat persons differentially. Examples include 

medical treatment, sentencing of offenders, and active labor-market programs. 

 

The planner may make a singleton allocation, assigning all observationally identical 

persons to the same treatment. 

 

Or the planner may choose a fractional allocation, randomly assigning positive fractions 

of these persons to different treatments.  



Fractional allocations cope with ambiguity through diversification. 

 

Note: Diversification has long been studied in the theory of financial portfolio allocation, 

assuming maximization of expected utility. 

 

Suppose that there are two feasible treatments, labelled A and B. 

 

A Type A error occur when treatment A is chosen but is actually inferior to B. A Type B 

error occurs when B is chosen but is inferior to A. 

 

The singleton allocation assigning everyone to treatment A avoids type B errors but may 

yield Type A errors, and vice versa for singleton assignment to treatment B. 

 

Fractional allocations make both types of errors but reduce their potential magnitudes. 

  



One-Period Problems with Individualistic Treatment and Linear Welfare 

 

I begin with a simple leading case. 

 

Each member j of a population J of observationally identical persons has a response 

function yj(): mapping treatments t into outcomes yj(t). 

 

P[y()] is the population distribution of treatment response. The population is large, with 

P(j) = 0 for all j  J. 

 

The task is to allocate the population to treatments A and B. 

 

An allocation δ  [0, 1] randomly assigns a fraction δ of the population to treatment B and 

1  δ to treatment A. 

  



A utilitarian planner wants to maximize mean personal welfare. 

 

Let uj(t)  uj[y(t), t] be the personal welfare of person j when this person receives treatment 

t and realizes outcome yj(t). This welfare is cardinal and interpersonally comparable. 

 

Let α  E[u(A)] and β  E[u(B)] be mean welfare if all members of the population receive 

treatment A or B. Then mean welfare with allocation δ is 

 

                         W(δ)  =  α(1  δ) + βδ  =  α + (β  α)δ. 

 

δ = 1 is optimal if β  α and δ = 0 if β  α. 

 

The problem is treatment choice when the planner has partial knowledge of (α, β). 

  



Let S index the feasible states of nature. 

 

Let the planner know that (α, β) lies in a bounded set [(αs, βs), s  S]. 

 

Let αL  min s  S αs, βL  min s  S βs, αU  max s  S αs, and βU  max s  S βs. 

 

The planner faces ambiguity if αs > βs for some values of s and αs < βs for others.  

 

A Bayesian planner places a subjective distribution π on S and solves  

 

         max     Eπ(α) + [Eπ(β)  Eπ(α)]δ, 
       δ  [0, 1] 
 

where Eπ(α) = αsdπ and Eπ(β) = βsdπ. 

 

Thus, a Bayesian planner makes a singleton choice if Eπ(β) ≠ Eπ(α).  



A maximin planner solves 

 

              max          min   αs  +  (βs  αs)δ. 
            δ  [0, 1]      s  S 
 

If (αL, βL) is feasible, the decision is δ = 0 if βL < αL, δ = 1 if βL > αL, and all δ if βL = αL. 

 

Thus, a maximin planner makes a singleton choice if (αL, βL) is feasible and βL ≠ αL. 

 

The regret of allocation δ in state s is the difference between the maximum achievable 

welfare and the welfare achieved with δ. Maximum welfare in state s is max (αs, βs). The 

minimax-regret criterion is 

 
                min         max    {max (αs, βs)  [αs + (βs  αs)δ]}. 
             δ  [0, 1]     s  S 
 
 
Regret with allocation δ in state s is max (αs, βs)  [αs + (βs  αs)δ].  



Manski (IPD 2007, Chapter 11) derived the MMR treatment allocation. 

 

Let S(A)  {s  S: αs > βs} and S(B)  {s  S: βs > αs}. 

 

Let M(A)  max s  S(A) (αs  βs); M(B)  max s  S(B) (βs  αs). 

 

If (αL, βU) and (αU, βL) are feasible,  M(A) = αU  βL; M(B) = βU  αL. 

 

The MMR allocation to treatment B is   δMR = M(B)/[M(A) + M(B)]. 

 

Thus, the MMR allocation of two treatments is always fractional under ambiguity. 

 

Note: The allocation is not always fractional with more than two treatments (Stoye, 2007). 

  



Welfare Monotone in Mean Personal Welfare 

 

Let W(δ) = f[α + (β  α)δ], where f() is strictly increasing. 

 

The Bayes decision is generically singleton if f() is convex, but it may be fractional if f() 

has concave segments. In finance, this is the well-known finding that a risk-seeking 

investor, whose utility is convex in income, does not diversify but a risk-averse investor, 

whose utility is concave in income, may diversify. 

 

The shape of f() does not affect the maximin decision. The reason is that the maximin 

criterion only uses ordinal, not cardinal properties of the welfare function. 

 

Manski (IER 2009) shows that the MMR allocation is fractional whenever f() is continuous 

and the planner faces ambiguity. If f() = log() and {(αL, βU), (αU, βL)} are feasible, then 

the MMR allocation is δMR  =  [αU(βU  αL)]/[αU(βU  αL) + βU(αU  βL)].  



 

Deontological Welfare Functions 

 

Deontological ethics supposes that choices may have intrinsic value. Equal treatment of 

equals is sometimes thought to be an important deontological principle. 

 

Fractional allocations adhere to the principle in the ex-ante sense that all persons have equal 

probabilities of receiving particular treatments. 

 

Fractional allocations are inconsistent with equal treatment in the ex post sense that all 

persons do not actually receive the same treatment. 

 

Manski (2009) studied welfare functions that express concern with ex post equal treatment 

by subtracting a fixed cost from welfare when the treatment allocation is not singleton. The 

MMR allocation may be singleton or fractional, depending on the specifics of the case.  



Adaptive Diversification in Sequential Planning Problems  

 

Manski (2009) considered sequential planning when, in each period, a planner chooses 

treatments for the current cohort of a population. 

 

Now learning is possible. Observing outcomes for earlier cohorts informs treatment choice 

for later cohorts. 

 

Fractional allocations generate randomized experiments, yielding outcome data on both 

treatments. Sampling variation is not an issue when cohorts are large. 

 

I considered the adaptive minimax-regret (AMR) criterion, which applies the static 

minimax-regret criterion each period using the information available at the time. 

 

This criterion treats each cohort as well as possible, given existing knowledge.  



Tuberculosis Diagnosis and Treatment under Ambiguity 
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Summary 

 

1.6 million persons worldwide died from tuberculosis (TB) in 2017. 

 

A challenge in fighting TB is to improve capacity for rapid and accurate diagnosis. 

 

A new TB diagnostic test called Xpert was endorsed by the WHO in 2010. 

 

Trials demonstrated that Xpert is faster and has greater sensitivity and specificity than 

smear microscopy – the most common diagnostic test. 

 

However, subsequent trials found no impact of Xpert on morbidity and mortality.  



We present a decision-theoretic model of how a clinician might decide whether to order 

XPert or other tests for TB and whether to treat a patient, with or without test results. 

 

We study the conditions in which it is optimal to perform empirical treatment; that is, 

treatment without diagnostic testing. 

 

We examine the implications for decision making of partial knowledge of TB prevalence 

or test accuracy, which generates ambiguity about the best testing and treatment policy. 

 

In the presence of ambiguity, we show the usefulness of adaptive diversification of testing 

and treatment. 

  



Optimal Diagnosis and Treatment Decisions 

 

We first study decision-making when a clinician knows enough to make optimal diagnosis 

and treatment decisions. 

 

We consider a clinician who cares for a population of patients. 

 

We assume that this patient population is predetermined and that patients always comply 

with the clinician's decisions. 

 

We assume that treatment response is individualistic. In particular, treatment decisions do 

not affect disease transmission.  



When a patient appears at a clinic, the clinician initially observes covariates x that may 

include demographic attributes, medical history, and indicators of health status. 

 

The clinician can prescribe a treatment immediately (empirical treatment) or order a test 

that may yield further evidence. 

 

In the latter case, the clinician prescribes a treatment after observation of the test result. 

 

In the context of TB, treatment t = B means prescription of antibiotics and t = A means a 

decision not to prescribe antibiotics. 

  



Let s indicate whether the clinician orders the diagnostic test, with s = 1 or s = 0. 

 

Let r denote the test result. 

 r = p (positive) suggests that the patient has TB. 

 r = n (negative) suggests the absence of TB. 

 

The feasible actions may be expressed as a decision tree. 

 

The clinician chooses s = 0 or s = 1with knowledge of x. 

 

If she chooses s = 0, she chooses t = A or t = B with knowledge of x. 

 

If she chooses s = 1, she chooses t = A or t = B with knowledge of (x, r).  



Let δS(x) be the fraction of patients with covariates x who are tested. The clinician can 

choose δS(x) to be any fraction. 

 

When considering treatment, we need to distinguish three types of patients. 

 

Among patients with covariates x who are not tested, let δT0(x) be the fraction receiving B. 

  

Among patients who are tested and have test outcome r, let δT1(x, r) be the fraction who 

receive B. 

  



Welfare function 

 

We assume that the clinician aggregates the benefits and harms of making a specific testing 

and treatment decision for a given patient into a scalar welfare measure. 

 

Let y(s, t) summarize the clinician's overall assessment of the benefits and harms that would 

occur if she were to make testing decision s and treatment decision t. 

 

Patients may respond heterogeneously, so y(s, t) may vary across patients. 

 

We suppose that the objective of the clinician is to optimize care on average across the 

patients in her practice. 

 

Mean welfare across the population of patients is determined by the fraction of those in 

each covariate group that the clinician assigns to each testing-treatment option.  



Let P(x) denote the fraction of patients with covariate value x. 

 

For r = p or n, let f(r|x) denote the fraction of patients with covariates x who would have 

test result r if they were to be tested. 

 

For each possible value of (s, t), let E[y(s, t)|x] be the mean welfare that would result if all 

patients with covariates x were to receive (s, t). 

 

Let E[y(s, t)|x, r] be the mean welfare that would result if all patients with covariates x and 

test result r were to receive (s, t). 

 

Let δ = [δS(x), δT0(x), δT1(x, r), x ∊ X, r ∊ {p, n}] denote any specified testing-treatment 

allocation. 

  



The mean welfare W(δ) that results with allocation δ is obtained by averaging the mean 

welfare values E[y(s, t)|x] and E[y(s, t)|x, r] across the groups who receive them. Thus, 

 

(1)  W(δ)   =    Σ P(x)[[1 - δS(x)][1 - δT0(x)]E[y(0, A)|x] + [1 - δS(x)]δT0(x)E[y(0, B)|x] 
                      x ∊ X 
 
         +     Σ f(r|x){δS(x)[1 - δT1(x, r)]E[y(1, A)|x, r] + δS(x)δT1(x, r)E[y(1, B)|x, r]}]. 
               r ∊ {p, n} 
  



Optimal Testing and Treatment 

 

An optimal testing and treatment decision sets 

 

(2a)           δS(x) = 1  if   Σ f(r|x)[max{E[y(1, A)|x, r], E[y(1, B)|x, r]}]  
                                      r ∊ {p, n} 
                                                     >  max{E[y(0, A)|x], E[y(0, B)|x]},   

                          = 0 otherwise. 

 

(2b)           δT0(x) = 1   if   E[y(0, B)|x] > E[y(0, A)|x],  = 0 otherwise. 

(2c)           δT1(x, p) = 1   if   E[y(1, B)|x, p] > E[y(1, A)|x, p],  = 0 otherwise. 

(2d)          δT1(x, n) = 1   if   E[y(1, B)|x, n] > E[y(1, A)|x, n],  = 0 otherwise. 

 

Empirical treatment is optimal when the inequality in (2a) does not hold and the inequality 

in (2b) does hold. Empirical treatment is not optimal otherwise. 



Risk of Illness and Treatment Decisions 

 

The notation y(s, t) leaves implicit how illness affects patient welfare. 

 

Let z = 1 if the patient is ill and z = 0 otherwise. 

 

Let U(z, s, t) be the assessment of benefits and harms with knowledge of z. 

 

Assume that the clinician does not know z when choosing (s, t). 

 

Then testing and treatment decisions depend on a patient’s risk of illness rather than on 

realized illness outcomes. 

  



To formalize this, replace E[y(s, t)|x] and E[y(s, t)|x, r] with 

 

E[U(z, s, t)|x]  =  P(z = 0|x)E[U(0, s, t)|x] + P(z = 1|x)E[U(1, s, t)|x], 

 

E[U(z, s, t)|x, r]  =  P(z = 0|x, r)E[U(0, s, t)|x, r] + P(z = 1|x, r)E[U(1, s, t)|x, r].                    

 

The earlier characterization of optimal testing and treatment holds, with E[U(z, s, t)|x] and 

E[U(z, s, t)|x, r] replacing E[y(s, t)|x] and E[y(s, t)|x, r].  

 

To simplify further computations, we write  

 

E[U(z, s, t)|x]  =  (1 - Px)Ux(0, s, t) + PxUx(1, s, t), 

 

E[U(z, s, t)|x, r]  =  (1 - Pxr)Uxr(0, s, t) + PxrUxr(1, s, t).  



With this notation, the treatment decision criteria are as follows: 

 

(2b’)  treatment with no test result: 

choose B if (1 - Px)Ux(0, 0, B) + PxUx(1, 0, B)  >  (1 - Px)Ux(0, 0, A) + PxUx(1, 0, A), 

choose A otherwise. 

 

(2c’)   treatment with positive test result: 

choose B if (1 - Pxp)Ux(0, 1, B) + PxpUx(1, 1, B)  >  (1 - Px)Uxp(0, 1, A) + PxpUx(1, 1, A), 

choose A otherwise. 

 

(2d’)    treatment with negative test result: 

choose B if (1 - Pxn)Ux(0, 1, B) + PxnUx(1, 1, B)  >  (1 - Pxn)Ux(0, 1, A) + PxnUx(1, 1, A), 

choose A otherwise. 



Note on Measuring the Accuracy of Diagnostic Tests 

 

Px is the base rate or the prevalence of the illness. 

Pxp is the positive predictive value of a test and 1 - Pxn is the negative predictive value. 

 

An ideal test would have Pxp = 1 and Pxn = 0.  In practice, 1 > Pxp > Pxn > 0. 

 

The medical literature commonly measures test accuracy by sensitivity and specificity. 

 

Sensitivity is P(r = p|x, z = 1). Specificity is P(r = n|x, z = 0). 

 

Sensitivity and specificity do not provide the information that a clinician would want to 

have to inform patient care. 

   

 



Threshold Risk Assessments for Choice between Surveillance and Aggressive Treatment 

 

Manski (QE 2018) shows that criteria (2b'-2d') yield simple solutions when treatment A 

is surveillance of a patient and B is aggressive treatment. This analysis fits TB. 

 

It is often credible to make various assumptions about patient welfare when comparing 

surveillance and aggressive treatment. In particular, 

 

 (i) Health is better than illness:  Ux(0, s, t)  >  Ux(1, s, t)   for all (s, t). 

 (ii) Testing is costly/harmful:  Ux(z, 0, t)  >  Ux(z, 1, t)   for all (z, t). 

 (iii) Surveillance is better when healthy:  Ux(0, s, A)  >  Ux(0, s, B), all s. 

 (iv) Aggressive treatment is better when ill:  Ux(1, s, B)  >  Ux(1, s, A), all s. 

 

These assumptions are realistic in the TB context.  



Under these assumptions, aggressive treatment is optimal if the risk of illness equals or 

exceeds a threshold that equalizes mean welfare under treatments A and B. 

 

Surveillance is better if risk is less than or equal to the threshold. 

 

In the absence of testing, risk of illness is measured by Px and the threshold is 

 
                                                          Ux(0, 0, A) − Ux(0, 0, B) 
           P*

x0  ≡   −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−   .                      
                              [Ux(0, 0, A) − Ux(0, 0, B)] + [Ux(1, 0, B) − Ux(1, 0, A)] 
 

 

With testing, risk of illness is measured by Pxp or Pxn respectively. The threshold is 

 
                                                          Ux(0, 1, A) − Ux(0, 1, B) 
           P*

x1  ≡   −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−   .                      
                              [Ux(0, 1, A) − Ux(0, 1, B)] + [Ux(1, 1, B) − Ux(1, 1, A)] 
  



How Testing Affects Treatment 

 

In general, response to this question may be complex because P*
x0 and P*

x1 may differ. 

 

Substantial simplification occurs if the thresholds are equal. Let the common value be P*
x.   

 

Note: A sufficient condition for equality is the assumption that testing imposes an additive 

treatment-invariant cost on welfare; that is, if Ux(z, 0, t)  − Ux(z, 1, t)  =  K > 0 for some K. 

 

Then testing affects optimal treatment if and only if Pxn < P*
x < Pxp. 

 

Given this inequality, a patient with a positive test result receives treatment B and one with 

a negative test result receives A. 

 

In the absence of testing, the patient might receive either A or B.



Testing and Treatment under Ambiguity 

 

Optimal testing and treatment is feasible if one knows Ux(∙, ∙, ∙), (Px, Pxn, Pxp), and fx. 

 

A clinician with incomplete knowledge may not be able to optimize. 

 

One may in principle study decision making using standard criteria, including 

maximization of subjective expected welfare, maximin, and minimax-regret. 

 

Maximization of subjective expected welfare is a standard dynamic programming problem, 

but it requires specification of a subjective distribution on the state space, which we find 

difficult to motivate. 

 

Study of maximin and minimax regret appears to require complex new analysis.  



Piecemeal Minimax-Regret Decision Making 

 

We propose a piecemeal minimax-regret criterion. 

 

We consider each of the four component decisions in isolation from one another. 

 

These are (1) choice to test or not to test, (2) choice between A and B without testing, (3) 

choice between A and B with testing and a positive result, (4) choice between A and B 

with testing and a negative result. 

 

Each is a decision between two options, making piecemeal decision making relatively 

simple to study. 

 

Piecemeal decisions are realistic in settings where each component decision may be 

performed by a different clinician.  



 

We extend the study of minimax-regret decision making in Manski (2009). 

 

The extension is especially simple if we suppose that Ux(∙, ∙, ∙) is known. Then the threshold 

risk assessment P*
x is known. 

 

Considerable ambiguity may remain due to incomplete knowledge of (Px, Pxn, Pxp) and fx. 

 

Piecemeal analysis applies minimax-regret separately to each component decision. 

 

In each case, the result is a singleton allocation of patients in the absence of ambiguity and 

a fractional allocation with ambiguity. 

 

A fractional allocation means diversification.  



Adaptive Diversification 

 

Finally, consider adaptive use of the piecemeal criterion across a sequence of cohorts. 

 

Suppose that the distributions of test results and treatment response among patients remain 

stable over time. 

 

Suppose that observation of patients eventually reveals whether they are ill. 

 

Then complete learning eventually occurs if δS(x) > 0 for some cohort. 

 

Randomized testing reveals fx. Randomized treatment after testing reveals Pxp and Pxn. 



Ambiguity in the TB context  

 

To optimize, the clinician must know a patient’s risk of illness conditional on each test 

result and the probability of a positive test result. 

 

There are many reasons why these parameters are subject to ambiguity in the TB context. 

 

We emphasize incomplete conditioning of research on patient covariates, which prevents 

use of available evidence to make personalized testing and treatment decisions. 

 

When epidemiological studies estimate prevalence, they report findings conditional on a 

small subset of the patient attributes that a clinician observes. The same issue arises when 

trials of diagnostic tests report predictive values. 

 

We use data for patients in Cape Town, South Africa to illustrate. 
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Background

• “Statistical Treatment Rules for Heterogeneous Populations,” Econometrica 72, 2004, 221-
246. 

• “Sufficient Trial Size to Inform Clinical Practice,” Proceedings of the National Academy of 
Sciences 113, 2016, 10518-10523.

• “Trial Size for Near-Optimal Choice Between Surveillance and Aggressive Treatment: 
Reconsidering MSLT-II,” The American Statistician 73:sup1, 2019, 305-311.



Example of current practice

• Cao et al., “A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-
19,” NEJM, 18 March 2020.

• RCT
• 99 patients assigned to receive lopinavir–ritonavir + ”standard care”
• 100 patients assigned to “standard care” alone
• Measured outcomes up to 28 days after randomization



Reported trial outcomes

• Primary Finding: “In a modified intention-to-treat analysis, lopinavir–ritonavir led 
to a median time to clinical improvement that was shorter by 1 day than that 
observed with standard care (hazard ratio, 1.39; 95% CI, 1.00 to 1.91).”

• Secondary Finding: “Mortality at 28 days was similar in the lopinavir–ritonavir 
group and the standard-care group (19.2% vs. 25.0%; difference, −5.8 percentage 
points; 95% CI, −17.3 to 5.7).” 



Conclusions from the trial

• Cao et al. “no benefit was observed with lopinavir–ritonavir treatment beyond 
standard care.”

• U.S. NIH panel guidelines then recommended against the use
of lopinavir/ritonavir writing: “lopinavir/ritonavir was studied in a small
randomized controlled trial in patients with COVID-19 with negative results.”

• This trial was the main piece of evidence, summarized as: “No difference in
primary outcome (time to clinical improvement) was observed, and 28-day
mortality was similar between groups.”



Questions

• How should we measure precision of an RCT?
• Maximum expected loss in patient welfare for treatment chosen based on an 

RCT relative to the unknown best treatment.  (maximum regret)
• This depends on how the trial results are translated into clinical decisions. 

(statistical treatment rule) 

• How should we use the results of clinical trials to decide which treatment to use?
• Prevailing practice is to use a two-sided 5% hypothesis test to reach a binary 

conclusion: Standard care if the null isn’t rejected; innovation if the null is 
rejected with a significant positive estimate of average treatment effect.

• We argue for the Empirical Success rule: choose the treatment with better 
average outcome and measure the outcome that patients want to maximize!



What happens in a trial with 100:99 patients using 28-day 
mortality as the outcome?
• Let mortality rate with standard care = 0.25 and use the standard t-test rule:

• Maximum expected loss occurs when the new treatment has mortality rate 0.548 and standard 
care has rate 0.661. Then expected loss is (0.661 − 0.548) x error probability 0.624 = 0.071. 

Mortality rate with new treatment

0.35 0.30 0.25 0.20 0.15

% of trials after which standard care will 
be prescribed:

99.98% 99.7% 97.5% 86.76% 57.36%

Loss from choosing standard care: 0 0 0 0.05 0.10

% of trials after which new treatment 
will be prescribed:

0.02% 0.3% 2.5% 13.24% 42.64%

Loss from choosing treatment: 0.10 0.05 0 0 0

Expected loss: 0.0000 0.0002 0 0.0434 0.0574



• Same scenarios, using the empirical success rule

• Maximum expected loss occurs when the new treatment has mortality rate 0.527 and standard 
care has rate 0.473. Then expected loss is (0.527 − 0.473) x error probability 0.226 = 0.012. The 
same expected loss occurs when standard care has mortality 0.527 and the new treatment 0.473. 

Mortality rate with new treatment

0.35 0.30 0.25 0.20 0.15

% of trials after which standard care will 
be prescribed:

94.28% 79.61% 51.64% 21.18% 4.22%

Loss from choosing standard care: 0 0 0 0.05 0.10

% of trials after which treatment will be 
prescribed:

5.72% 20.39% 48.36% 78.82% 95.78%

Loss from choosing treatment: 0.10 0.05 0 0 0

Expected loss: 0.0057 0.0102 0 0.0106 0.0042



Why use the empirical success rule?

• Theoretical study proves that it exactly or approximately minimizes maximum 
expected loss

• Exactly optimal in balanced trials with binary outcomes (Stoye, JoE, 2009)
• Asymptotically optimal in other two-arm trials (Hirano & Porter, ECMA, 2009)

• Treats Type I and Type II errors symmetrically
• Hypothesis testing treats the two errors asymmetrically. Maximum loss when the 

innovation is better is 250 times greater than maximum loss when it is worse.



Why we shouldn’t treat the two options asymmetrically

• “Standard care” for COVID-19 has been postulated without evidence than it is 
better than other options.

• If we were to start with a different definition of standard care, we would be stuck 
with it for a long time.

• Clinical equipoise
• EMA: “There should be equipoise (“genuine uncertainty within the expert 

medical community [...] about the preferred treatment”) at the beginning of a 
randomised trial.”

• One might motivate asymmetric decision-making after trials by having 
asymmetric Bayesian priors,

• but interpreting ethical guidelines for starting trials through a Bayesian lens 
suggests that experts must

1. Have disagreeing priors
2. Some priors must favor one treatment, some the other



Multiple outcomes (side effects)

• Hypothesis testing does not protect against side effects outweighing benefits in 
primary outcome:

• In sufficiently large trials, even small differences in “primary outcomes” will 
be detected, leading to headline conclusions that a new therapy is “effective”

• Researcher definitions of primary outcomes often differ from patient-relevant 
outcomes (e.g., mortality)

• Empirical success rule can be applied to weighted averages of all patient-relevant 
outcomes observed in the trial

• provided that patient-relevant outcomes are reported.



What sample sizes are sufficient?

• For two-armed trials with binary outcomes, using the empirical success rule 
yields these maximum expected losses:

Sample sizes Near-optimality
20:20 0.0269
50:50 0.017
100:100 0.012
200:200 0.0085
500:500 0.0054
1000:1000 0.0038
4000:4000 0.0019
15000:15000 0.001



Downside of large sample sizes required by conventional 
testing rules

• Delay: It takes longer to recruit patients; hence, longer to reach conclusions.
• Crowds out trials of other treatments.
• Statistical significance requirement impedes subgroup analyses

• There may be substantial heterogeneity in treatment effectiveness and the 
prevalence of side effects (e.g., by age)

• The welfare weights attached to different outcome measures may vary with 
patient attributes.



Clinical trial landscape

• There are many alternative treatments in trials now
• Each trial has a different set of inclusion criteria, a different PI, and only tests 

1 innovation against its own definition of standard care.
• Study populations differ across trials.

• It will be difficult to compare alternative treatments across trials.



Mutli-arm trials for Covid-19

• UK nationwide ”Recovery” trial started with 5 arms
• Standard care
• Lopinavir-Ritonavir
• Low dose corticosteroids (dexamethasone)
• Hydroxychloroquine 
• Azithromycin

• Patients were assigned to treatments in a 2:1:1:1:1 ratio

• WHO organized an international “Solidarity” trial with 5 arms
• Standard care
• Remdesivir
• Lopinavir-Ritonavir
• Lopinavir-Ritonavir plus Interferon beta-1a
• Chloroquine or hydroxychloroquine

• These trials allow comparisons of multiple treatments on same population.



Evaluating multi-arm trials such as Recovery

• The Recovery protocol calls for results to be analyzed using Dunnett’s test. This is a 
multiple t-test procedure, with 0.05 Type I error probability that at least one test yields a 
positive statistically significant ATE. Presumably, the innovation with highest average 
outcome will be selected among those that pass the significance test. Otherwise, 
standard care will be selected.

• We contrast this with the empirical success rule, which selects the treatment with the 
highest average outcome, regardless of statistical significance.

• In practice, 3 treatment arms were stopped at different times. The results for each 
treatment were analyzed separately as if coming from a two-arm trial.



Standard care A B C D

Sample size in each arm 500 250 250 250 250
Mortality rate of each treatment 0.25 0.15 0.20 0.30 0.35
Panel A: What happens if treatment decisions are made using two-sided Dunnett's test at 5% significance

% of trials after which new treatment will be 
prescribed 25.65% 70.60% 3.75% 0 0
Loss from prescribing each treatment 0.1 0 0.05 0.15 0.2
Probability of error times the magnitude of loss 0.0257 0 0.0019 0 0
Expected loss given these mortality rates 0.0275
Panel B: What happens if treatment decisions are made using the empirical success rule

% of trials after which new treatment will be 
prescribed 0.02% 92.95% 7.03% 0 0
Loss from prescribing each treatment 0.1 0 0.05 0.15 0.2
Probability of error times the magnitude of loss 0 0 0.0035 0 0
Expected loss given these mortality rates 0.0035



What sample sizes are sufficient?

• For five-armed trials with binary outcomes and 2:1:1:1:1 sample ratio, choosing 
the treatment using the empirical success rule and Dunnett’s test rule imply the 
following maximum expected losses:

• It is slightly better to divide the sample into equal-sized arms for the ES rule.

Sample sizes per arm
Near-optimality using 
Empirical Success rule

Near-optimality using 
Dunnett’s test rule

100:50:50:50:50 0.0362 0.1224
200:100:100:100:100 0.0256 0.0855
500:250:250:250:250 0.0160 0.0532
1000:500:500:500:500 0.0112 0.0380
2000:1000:1000:1000:1000 0.0080 0.0274



Near-optimality of empirical success rule with patient-specific 
treatment and multiple outcomes

• The above calculations concern settings where patients are observationally 
identical and trial outcomes are binary.

• In clinical practice, trial outcomes may take multiple values. Trials of COVID-19 
drugs may report mortality outcomes and time to recovery for patients who 
survive. Patients may vary in treatment response by age, gender, and 
comorbidities.

• Methodological research has shown how to compute or bound the near-
optimality of the empirical success rule when applied in a broad range of settings. 



Near-optimality with binary primary and secondary outcomes

• Manski and Tetenov (2019) study near-optimality of the empirical success rule 
when there are two treatments and patient welfare is a weighted sum of binary 
primary and secondary outcomes. The primary outcome is survival. The secondary 
one denotes whether the patient suffers a specified side effect.

• When a patient does not suffer the side effect, we let welfare equal 1 if a patient 
survives and equal 0 if he does not survive. When a patient experiences the side 
effect, welfare is lowered by a specified fraction h. Thus, a patient with the side 
effect has welfare 1 − h if he survives and –h if he does not survive.

• We develop an algorithm to compute the near-optimality of the empirical success 
rule. 



Near-optimality with bounded outcomes

• Exact computation of near-optimality becomes onerous when outcomes can take many discrete 
values or are continuous.

•  When outcomes are bounded, large-deviations inequalities yield upper bounds on the near-
optimality of the empirical success rule. These bounds are simple to compute and are sufficiently 
informative to provide useful guidance to clinicians.

• Manski (2004) used the Hoeffding inequality for sample averages to derive an upper bound on 
near-optimality when there are two treatments.

• Manski and Tetenov (2016) extended the analysis to multi-arm trials. Let L be the number of 
treatments and V be the range of the outcome. When the trial has a balanced design, with n 
subjects per arm, the upper bounds on near-optimality are (2e) –½V(L − 1)n–½ and V(ln L)½n–½. The 
former is tighter than the latter for two or three treatments. The latter is tighter for four or more 
treatments. 



Near-optimality with heterogeneous patients

• Patient response to treatments may vary with observed covariates. A clinician can  
assess the near-optimality of a decision criterion when applied to patients with 
similar covariates.

• In principle, a clinician may view each group of patients with similar covariates as 
a separate population and may apply the empirical success rule separately to each 
group. 

• In practice, the ability to differentially treat patients with different covariates is 
limited by the failure of medical researchers to report how trial findings vary with 
covariates. Research articles often report only subgroup findings that are 
statistically significant.

• Information is lost when reporting research findings is tied to statistical 
significance. The analysis of this paper makes clear that estimates of treatment 
effects need not be statistically significant to be clinically useful.



Topics for future research
• We have considered treatment choice using data from one trial with full validity.

•  Internal validity may be compromised by non-compliance and loss to follow up. External validity 
may be compromised by measurement of surrogate outcomes and study of patients who differ from 
those that clinicians treat in practice. The concept of near-optimality is applicable when analyzing 
data from trials with limited validity, but the calculations made in this paper require modification.

• A clinician may learn the findings of multiple trials and may be informed by observational data. 
Near-optimality is well-defined in these settings, but methods for application are yet to be 
developed.

• A further issue concerns dynamic treatment choice when new trials and observational data may 
emerge in the future. The concept of near-optimality should be extendable, but methodology is yet 
to be developed.

• Dynamic analysis of treatment choice made with hypothesis tests may be especially difficult, because 
testing views standard care and new treatments asymmetrically. As new data accumulate, the designation 
of standard care may change, leading to a change in the null hypothesis when new trials are evaluated. 



Technical Appendix
We use concepts and notation in Manski (2004) and Manski and Tetenov (2016, 2019).

The clinician must assign one of L treatments studied in the trial to each member of treatment 
population J.

Denote treatments by T = {1, 2, …, L}, with t = 1 being standard care.

Each j ∈ J has a response function yj(⋅): T → Y mapping treatments t ∈ T into patient-relevant 
outcomes yj(t) ∈ Y. Outcomes can be multi-valued and multi-dimensional. Treatment response is 
individualistic.

The distribution P[y(⋅)] of the random function y(⋅): T → Y describes treatment response across the 
population. The set of feasible distributions is {Ps, s ∈ S}, S indexing feasible states of nature.

In Tables 2 and 4, we include in S all logically possible outcome distributions.



Patient welfare is a known function u: Y → R of individual outcomes.

For binary outcomes Y = {0, 1}, with 1 denoting success, and u(y) = y. For two-
dimensional outcomes y = (yp, yse), where yp denotes the primary outcome and yse a 
side effect, Manski and Tetenov (2019) considered welfare function u(y) = yp − hyse. 

Consider data generation. Ψ denotes the sample space. Qs denotes the sampling 
distribution on Ψ in state of nature s. Qs is the distribution of trial outcomes.

We consider trials that randomize a predetermined number of subjects nt to each 
treatment t. The set nT ≡ [nt, t ∈ T] of sample sizes defines the design. The total 
number of subjects is 𝑁𝑁 ≡ ∑𝑡𝑡∈𝑇𝑇 𝑛𝑛𝑡𝑡. The data ψ are the N pairs of individual 
treatment assignments ti and outcomes yi:  ψ = [(ti, yi), i = 1, 2, …, N].

Qs is determined by the distribution of treatment response Ps and the trial design, 
with Qs(yi|ti) = Ps(y(ti)). 



A statistical treatment rule maps sample data into a treatment allocation. A feasible rule is a function that 
randomly allocates persons across the different treatments. Let Δ denote the space of functions that map 
T into the unit interval and that satisfy the adding-up condition: δ ∈ Δ  ⇒   ∑ t ∈ T δ(t, ψ) = 1,  ∀ ψ  ∈  Ψ. Each 
function δ ∈ Δ defines a statistical treatment rule.

The mean welfare of treatment t in state of nature s is denoted by μst ≡ Es[u(y(t))]. The maximum mean welfare 
achievable in state s is max

𝑡𝑡∈𝑇𝑇
𝜇𝜇𝑠𝑠𝑡𝑡.

After data ψ are observed, the fraction δ(t, ψ) of patients will be treated with treatment t, resulting in mean 
patient welfare  ∑𝑡𝑡∈𝑇𝑇 𝜇𝜇𝑠𝑠𝑡𝑡𝛿𝛿 𝑡𝑡,𝜓𝜓 . The mean welfare of patients across repeated realizations of the trial is

                               ∫Ψ∑𝑡𝑡∈𝑇𝑇 𝜇𝜇𝑠𝑠𝑡𝑡𝛿𝛿 𝑡𝑡,𝜓𝜓 𝑑𝑑𝑄𝑄𝑠𝑠 𝜓𝜓 = ∑𝑡𝑡∈𝑇𝑇 𝜇𝜇𝑠𝑠𝑡𝑡𝐸𝐸𝑠𝑠 𝛿𝛿 𝑡𝑡,𝜓𝜓 ,

where 𝐸𝐸𝑠𝑠 𝛿𝛿 𝑡𝑡,𝜓𝜓 = ∫Ψ𝛿𝛿 𝑡𝑡,𝜓𝜓 𝑑𝑑𝑄𝑄𝑠𝑠 𝜓𝜓  is the expected (across samples) fraction of persons assigned to t.

Application of rule δ in state of nature s yields expected loss (regret) 

(A1) max
𝑡𝑡∈𝑇𝑇

𝜇𝜇𝑠𝑠𝑡𝑡 − ∑𝑡𝑡∈𝑇𝑇 𝜇𝜇𝑠𝑠𝑡𝑡𝐸𝐸𝑠𝑠 𝛿𝛿 𝑡𝑡,𝜓𝜓 . 
 
The near-optimality (maximum regret) of rule δ is the maximum of (A1) over all feasible states of nature:
(A2) max

𝑠𝑠  𝑆𝑆
max
𝑡𝑡∈𝑇𝑇

𝜇𝜇𝑠𝑠𝑡𝑡 − ∑𝑡𝑡∈𝑇𝑇 𝜇𝜇𝑠𝑠𝑡𝑡𝐸𝐸𝑠𝑠 𝛿𝛿 𝑡𝑡,𝜓𝜓 . 



Hypothesis Testing Rules
First consider rules based on hypothesis tests for univariate outcomes y. Denote the sample mean of y 
observed in arm t of the trial by �𝑦𝑦𝑡𝑡 = 1

𝑛𝑛𝑡𝑡
∑𝑖𝑖:𝑡𝑡𝑖𝑖=𝑡𝑡 𝑦𝑦𝑖𝑖 . To test the null hypothesis that all treatments have the same 

outcome distribution, use �𝜎𝜎2 = 1
𝑁𝑁−𝐿𝐿

∑𝑡𝑡∈𝑇𝑇 ∑𝑖𝑖:𝑡𝑡𝑖𝑖=𝑡𝑡 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑡𝑡 2 as the estimator of common variance. The t-
statistic for comparing the mean outcome of treatment t = 2,…,L with that of standard care equals 𝜏𝜏𝑡𝑡 =

�𝑦𝑦𝑡𝑡−�𝑦𝑦1
�𝜎𝜎 1/𝑛𝑛𝑡𝑡+1/𝑛𝑛1

 . Let c be the critical value adjusted for multiplicity. We use the t-distribution for two-arm trials and 

the Dunnett’s test critical value for multiple comparisons for multi-arm trials.

The test rule prescribes treatment 1 (standard care) to everyone if all t-statistics are below the critical value.:
 𝛿𝛿𝐻𝐻 1,𝜓𝜓 ≡ 1 max

𝑡𝑡∈ 2,…,𝐿𝐿
𝜏𝜏𝑡𝑡 ≤ 𝑐𝑐 .

If some t-statistics comparing treatments 2,…,L to standard care exceed the critical value, these treatments are 
considered statistically significantly better than standard care. We assume that among these treatments the 
one with the largest mean outcome in the trial will be prescribed (with equal probability if there is a tie). 

 𝛿𝛿𝐻𝐻 𝑡𝑡,𝜓𝜓 ≡
1 𝜏𝜏𝑡𝑡>𝑐𝑐, �𝑦𝑦𝑡𝑡= max

𝑡𝑡′∈ 2,…,𝐿𝐿
�𝑦𝑦𝑡𝑡′

∑𝑡𝑡′∈ 2,…,𝐿𝐿 1 𝜏𝜏𝑡𝑡>𝑐𝑐, �𝑦𝑦𝑡𝑡= max
𝑡𝑡′∈ 2,…,𝐿𝐿

�𝑦𝑦𝑡𝑡′
.



The Empirical Success Rule

Let �𝑢𝑢𝑡𝑡 = 1
𝑛𝑛𝑡𝑡
∑𝑖𝑖:𝑡𝑡𝑖𝑖=𝑡𝑡 𝑢𝑢 𝑦𝑦𝑖𝑖  denote the average welfare observed in treatment arm t = 

1, 2, …, L.

The empirical success rule prescribes the treatment with the largest observed 
average patient welfare. If there is a tie, all treatments with the largest observed 
average patient welfare are prescribed with equal probability.

 𝛿𝛿𝐸𝐸𝑆𝑆 𝑡𝑡,𝜓𝜓 ≡
1 �𝑢𝑢𝑡𝑡= max

𝑡𝑡′∈ 1,…,𝐿𝐿
�𝑢𝑢𝑡𝑡′

∑𝑡𝑡′∈ 1,…,𝐿𝐿 1 �𝑢𝑢𝑡𝑡= max
𝑡𝑡′∈ 1,…,𝐿𝐿

�𝑢𝑢𝑡𝑡′
.



Computing near-optimality for two-arm trials with binary 
outcomes

When computing the results in Table 2, S is the set of all distributions of binary 
outcomes with means p1 ≡ E[y(1)], p2 ≡ E[y(2)], (p1, p2) ∈ [0, 1]2.

Let m1 and m2 denote the number of positive outcomes in each arm of the trial. ψ 
= (m1, m2) is a sufficient statistic for the sample. Hence, it is sufficient to consider 
the sample space Ψ = {0, 1, …, n1}×{0, 1, …, n2}. The probability density function of 
ψ is a product of two binomial density functions. 

The function (A1) is continuous in (p1, p2) but may have multiple global and local 
maxima. We approximate the maximum in (A2) by grid search using 1000 possible 
values for each parameter equally spaced on [0,1]: {0.0005, 0.0015, …, 0.9995}.



Computing near-optimality for multi-arm trials with binary 
outcomes
In Table 4, S is the set of all distributions of binary outcomes with means pt ≡ E[y(t)], t = 1, …, L, (p1, …, pL) ∈ [0, 1]L. Let mt 
denote the number of positive outcomes in arm t of the trial. ψ = (m1, …, mL) is a sufficient statistic for the sample. Hence, we 
consider the sample space Ψ = {0, 1, …, n1}×…×{0, 1, …, nL}.

The large size of the sample space makes it impractical to evaluate (A1) exactly. Given each value of (p1, …, pL) we simulate a 
large number of trial outcomes to approximate Qs. Our computations of the maximum of (A2) proceed in three steps.

(1) We conduct a grid search using 51 possible values for each parameter pt∈[0, 0.02, …, 1]. For each combination of 
parameters, we approximate the sampling distribution Qs by simulating 100,000 trial outcomes. The results of this grid search 
suggest that the largest expected loss for the empirical success rule occurs when the parameters have the form p1 = a, p2 = p3 
= p4 = p5 = b, a > b. The largest expected loss for the Dunnett’s test rule occurs when p1 = a, p2 = b, p3 = p4 = p5 = c, b > a, b > c.

(2) We conduct a grid search over these two lower-dimensional parameter spaces using 101 possible parameter values from 
[0, 0.01, …, 1] for a, b, and c. In this step we approximate Qs by simulating 1,000,000 trial outcomes.

(3) We take 10 parameter combinations yielding the largest estimated expected loss for each decision rule in step 2 and re-
compute expected loss by simulating 100,000,000 trial outcomes. We do this to verify that our results are not affected by 
bias resulting from approximating Qs by simulation.
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Economists have long recognized that the relative merits of alternative income tax policies 

depend on the preferences of persons for income and leisure. 

 

Income-leisure preferences play both positive and normative roles in analysis of tax policy. 

 

The positive role is that preferences yield labor supply and other decisions that determine 

tax revenue. 

 

The normative role is that social welfare aggregates personal preferences in utilitarian 

policy evaluation. 



Among the simplifying assumptions that Mirrlees (1971) made in his seminal study of 

optimal utilitarian income taxation, he stated: 

“The State is supposed to have perfect information about the individuals in the 

economy, their utilities and, consequently, their actions.” 

 

He recognized the difficulty of inference on population preferences, writing: 
“The examples discussed confirm, as one would expect, that the shape of the optimum 

earned-income tax schedule is rather sensitive to the distribution of skills within the 

population, and to the income-leisure preferences postulated. Neither is easy to 

estimate for real economies.” 

 

I studied identification of income-leisure preferences using revealed-preference analysis of 

labor supply in Manski (2014). I reached this pessimistic conclusion: 

“As I see it, we lack the knowledge of preferences necessary to credibly evaluate 

income tax policies.” 

  



Taxation and Labor Supply 

 

Standard economic theory does not predict the direction or magnitude of the response of 

labor supply to income taxation. To the contrary, it shows that a worker may rationally 

respond in disparate ways. 

 

As tax rates increase, a person may rationally decide to work less, work more, or not change 

his labor supply at all. The silence of theory on labor supply has long been appreciated; see 

Robbins (1930). 

 

Modern labor economics envisions labor supply as a complex sequence of schooling, 

occupation, and work effort decisions made under uncertainty over the life course, perhaps 

with bounded rationality. However, we need only consider a simple static scenario to see 

that a person may respond to income taxes in disparate ways. 



Suppose that a person with a predetermined wage and no unearned income allocates each 

day between paid work and the various non-paid activities that economists have 

traditionally called leisure. 

 

Let a proportional income tax reduce his wage by the prevailing tax rate, yielding his net 

wage. 

 

Assume that the person allocates time to maximize utility, which is an increasing function 

of net income and leisure. 

 

Different utility functions imply different relationships between the tax rate and labor 

supply. 

  



The labor supply implied by utility functions in the CES family increases or decreases with 

the tax rate depending on the elasticity of substitution. 

 

Other utility functions imply that labor supply is backward-bending. 

 

Still other utility functions yield more complex non-monotone relationships between net 

wage and labor supply. See Stern (1986). 

 

Given that theory does not predict how income taxation affects labor supply, prediction 

requires empirical analysis. 

 

Robbins (1930) emphasized this, writing: 

“we are left with the conclusion . . . . that any attempt to predict the effect of a change 

in the terms on which income is earned must proceed by inductive investigation of 

elasticities.”  



Economists have performed a huge number of empirical studies of labor supply. 

 

Reading the literature concerned with uncompensated (Marshallian) elasticities of labor 

supply, I was struck to find that while authors may differ on the magnitude of elasticities, 

they largely agree on the sign. 

 

The consensus has been that increasing tax rates usually reduces work effort. Keane (2011) 

stated the directionality of the effect without reservation, writing: 

“the use of labor income taxation to raise revenue causes people to work less.” 

 

Considering the effect of a rise in a proportional tax, Meghir and Phillips (2010) wrote: 

“in most cases this will lead to less work, but when the income effect dominates the 

substitution effect at high hours of work it may increase effort.” 

  



Here and elsewhere, researchers may recognize the theoretical possibility that effort may 

increase with tax rates but view this as an empirical rarity rather than a regularity. 

 

This view has been accepted in official government forecasts of the response of labor 

supply to income taxation.  See Congressional Budget Office (2007). 

 

Curiously, the opposite consensus prevailed early in the twentieth century. Gilbert and 

Pfouts (1958) cite assertions by Pigou and Knight in the 1920s that increasing tax rates 

increases work effort. 

 

Examining the models of labor supply used in empirical research, I became concerned that 

the prevailing consensus on the sign of uncompensated elasticities may be an artifact of 

model specification rather than an expression of reality. 

  



Models of labor supply differ across studies, but they have generally shared two key 

restrictive assumptions. 

 

First, they suppose that labor supply varies monotonically with net wages. 

 

Thus, model specifications do not generally permit backward-bending labor supply 

functions or other non-monotone relationships. 

 

Second, they suppose that the response of labor supply to net wage is homogeneous within 

broad demographic groups. 

 

With occasional exceptions, researchers specify hours-of-work equations that permit hours 

to vary additively across group members but that assume constant treatment response. 

  



The literature contains some precedent for my concern that empirical findings on labor 

supply may be artifacts of model specification. Concluding his detailed comparison of 

alternative labor supply functions, Stern (1986) wrote: 

“Our general conclusion must be in favour of diversity of functions and great caution 

in drawing policy conclusions on results based on a particular form.” 

 

Stern and other writers such as Blundell and MaCurdy (1999) have called attention to the 

potential detrimental consequences of restrictive functional-form assumptions. 

 

The reality may be that persons have heterogeneous income-leisure preferences and, 

consequently, heterogeneous labor-supply functions. 

 

If so, estimates of models that assume monotonicity and homogeneity of labor supply can 

at most characterize the behavior of an artificial “representative” person. The estimates 

may not have even this limited interpretation.  



In light of the above, I examined identification of income-leisure preferences. 

 

I studied inference when data on time allocation under status-quo tax policies are 

interpreted through the lens of standard theory. 

 

I found it productive to study the classical static model in which persons with separable 

preferences for private and public goods must allocate one unit of time to work and leisure. 

 

I considered the use of revealed preference analysis to predict labor supply and tax revenue 

under a proposed policy that would alter persons’ status-quo tax schedules. 

 

The policies that I had in mind use tax revenue to produce public goods or to redistribute 

income from persons who pay positive income tax to ones who pay negative tax. 

  



Basic Revealed-Preference Analysis 

 

I first assumed only that persons prefer to have more income and leisure. 

 

Basic revealed-preference analysis of the type pioneered by Samuelson (1938) shows that 

observation of a person=s time allocation under a status-quo tax policy may bound his 

allocation under a proposed policy or may have no implications, depending on the tax 

schedules and the person=s status-quo time allocation. 

 

Basic analysis assuming only that more-is-better generically does not predict the sign of 

labor-supply response to change in the tax schedule. 

 

I call this a “basic” analysis of revealed preference because it maintains no assumptions 

about preferences except that individual utility is an increasing function of net income and 

leisure. In short, more is better. 



Tax Policy and Labor Supply 

 

In the absence of assumptions restricting the population distribution of preferences, 

predicting population labor supply under a proposed tax policy simply requires aggregation 

of individual predictions. Hence, the analysis focuses on one person. 

 

Let person j be endowed with wage wj, unearned income zj, and one unit of time. The 

person must allocate the time endowment between leisure and work. If he allocates a 

fraction L ∈ [0, 1] to leisure and 1 − L to work, he receives gross income wj(1 − L) + zj. 

 

The status-quo tax policy, denoted S, subtracts the work-dependent tax revenue RjS(L) from 

gross income, leaving j with net income YjS(L)  ≡  wj(1 − L) + zj − RjS(L). 

 

Taxes may be positive or negative. The RjS(⋅) notation allows the status-quo tax schedule 

to be specific to person j.  



Person j chooses a value of L from a set Λj ⊂ [0, 1] of feasible leisure alternatives. For 

example, Λj = {0, ½, 1} means that the feasible options are full-time work (L = 0), half-

time work (L = ½), and no work (L = 1). 

 

Preferences are expressed in the utility function Uj(⋅, ⋅), whose arguments are (net income, 

leisure). Utility is strictly increasing in both arguments. Let LjS ∈ Λj denote the amount of 

leisure that j chooses under tax schedule RjS(⋅). 

 

Utility maximization implies  

                    Uj[YjS(LjS), LjS]  ≥  Uj[YjS(L), L],  all  L ∈ Λj. 

 

Using Uj(⋅, ⋅) to express preferences suppresses the possible dependence of preferences on 

public goods produced with tax revenue under policy S. This is innocuous if preferences 

are separable in private and public goods. 

  



Predicting Labor Supply under a Proposed Tax Schedule 

 

Suppose that one observes the wage, unearned income, and other tax-relevant attributes of 

person j. One also observes the leisure LjS chosen by j under tax schedule RjS(⋅). 

 

Let RjT(⋅) denote the tax schedule if j were to face a proposed tax policy T. What can one 

predict about time allocation under RjT(⋅)? 

 

The answer depends on the value of LjS and on the budget sets {[YjS(L), L], L ∈ Λj} and 

{[YjT(L), L], L ∈ Λj} that j faces under the status-quo and proposed tax schedules. 

 

I give an illustration, modestly extending the revealed-preference argument of Samuelson. 

 

Policy S has a two-rate progressive schedule and T has a proportional one, the latter 

crossing the former from above when leisure equals L*
j. Person j has no unearned income.  



 

Figure 1: Net Income with Progressive and Proportional Tax Schedules 

 

Let LjS ∈ [0, L*
j], and consider any L > L*

j. 

[YjT(LjS), LjS] is feasible under policy T. This pair is preferred to [YjS(LjS), LjS]. 

[YjS(L), L] is feasible under policy S. This pair is preferred to [YjT(L), L]. 

Observation that j chose [YjS(LjS), LjS] reveals that j prefers this pair to [YjS(L), L]. 

Hence, he prefers [YjT(LjS), LjS] to [YjT(L), L]. Thus, under T, j would not choose L > L*
j.  
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Prediction When Downward-Sloping Net-Income Functions Cross Once 

 

Basic revealed-preference analysis is complex in general, but it is simple when, as in Figure 

1, the net income functions YjS(⋅) and YjT(⋅) implied by the status-quo and proposed tax 

schedules are both downward sloping. 

 

Let Λj< denote the feasible leisure values such that the (income, leisure) pairs in the RjT(⋅) 

budget set are strictly smaller than some pair in the RjS(⋅) budget set. That is, 

             Λj<  ≡  {L< ∈ Λj: [YjT(L<), L<] < [YjS(L), L] for some L ∈ Λj}. 

 

Let Λj> denote the leisure values such that the (income, leisure) pairs in the RjT(⋅) budget 

set are strictly larger than [YjS(LjS), LjS], the pair that j chooses under policy S. That is, 

      Λj>  ≡  {L> ∈ Λj: [YjT(L>), L>] > [YjS(LjS), LjS]}. 

 

Define Λj≤ and Λj≥ analogously, with weak inequalities replacing the strict ones.  



When tax schedules are downward sloping, basic analysis can have predictive power for 

labor supply only if the two net-income functions cross at least once. 

 

To see that a crossing is necessary for predictive power, consider a policy T such that YjT(L) 

≥ YjS(L) for all L ∈ [0, 1]. Thus, at all L a person pays weakly less tax under T than S. 

 

Then set Λj< is empty because YjT(L<) < YjS(L) ⇒ L< > L. 

 

Similarly, consider T such that YjT(L) ≤ YjS(L) for L ∈ [0, 1]. Thus, at all L a person pays 

weakly more tax under T than S. Then Λj≥ is empty because YjT(L<) > YjS(LjS) ⇒ L< < LjS. 

  

Policy comparison is simple when schedules S and T cross once. Observation that LjS ≤ L*
j 

implies that j would not choose L > L*
j. Observation that LjS > L*

j has no predictive power. 

The sign of labor supply response is predictable only if LjS is at a corner or equals L*
j.  



Restrictions on the Preference Distribution 

 

A huge distance separates basic revealed preference analysis from the practice of empirical 

analysis of labor supply. 

 

The models used in empirical studies usually suppose that labor supply responds 

monotonically to variation in net wage. Moreover, it is common to assume that time 

allocation differs across persons only via a person-specific additive constant. 

 

I explored the identifying power of assumptions restricting the distribution of preferences 

across persons. 

 

I supposed that one observes the time allocation of each person in a population whose 

members may have heterogeneous preferences, wages, and face various status-quo tax 

schedules.  



I found it analytically helpful to suppose that persons choose among a finite set of feasible 

(income, leisure) values rather than the continuum often assumed in the literature. 

 

I used the discrete-choice framework of Manski (IER 2007) to characterize preferences and 

to predict aggregate labor supply and tax revenue when various assumptions restrict the 

distribution of preferences. 

 

I studied the identifying power of two classes of assumptions. 

 

The first assumes exogenous variation in choice sets. That is, groups of persons who face 

different choice sets have the same distribution of preferences. Exogenous variation makes 

the choice set an instrumental variable. 

 

The second restricted the shape of the preference distribution. For example, one may 

assume all persons have CES preferences, with heterogeneous parameters.  



These assumptions have identifying power, yielding partial rather than point identification 

of the preference distribution. 

 

Computation of the identification region is challenging but tractable in some cases. 

 

The classical static model is simplistic to warrant application in substantive study of labor 

supply. Nevertheless, I found it revealing to perform computational experiments that show 

the identifying power of alternative assumptions on the preference distribution. 

 

Considering a setting with choice data on labor supply observed under a progressive tax 

schedule, the task was to predict tax revenue per capita under a proposed proportional 

schedule. I showed the identifying power of these assumptions: 

(1) more is better + (2) persons in specified wage groups have the same preference 

distribution + (3) preferences are CES + (4) CES utility functions in a wage group 

have the same elasticity of substitution.  



Enriching the Data for Identification of Preferences 

 

I do not expect new theory will sharpen knowledge of preferences. Richer data may.  

 

1. Resume the performance of randomized experiments with tax policy that began with the 

negative income tax experiments. Randomized experiments can make it credible to assume 

that groups who face different tax schedules have the same distribution of preferences. 

 

2. Obtain repeated observations from individuals. With a static model of labor supply, it is 

useful to observe an individual with varying wages, unearned income, or tax schedules. 

Transitivity implies that basic revealed preference analysis has increasing predictive power 

as more choices are observed. However, this interpretation of data rests on the static model. 

 

3. Pose choice scenarios with hypothetical wages or tax schedules, and ask persons to 

predict their choice behavior in these scenarios.  



Implications for Utilitarian Policy Evaluation 

 

A familiar exercise in normative public economics poses a utilitarian social welfare 

function and ranks tax policies by the welfare they achieve. 

 

Performing this ranking requires knowledge of income-leisure preferences both to predict 

tax revenues and to compute the welfare achieved by alternative policies. 

 

My analysis reached highly cautionary findings about present knowledge of income-leisure 

preferences, carrying implications for evaluation of tax policy. 

 

Partial knowledge of preferences implies that one can only partially predict tax revenue 

and one can only partially evaluate the utilitarian welfare of policies. 

 

Thus, choice of tax policy becomes a problem of planning under ambiguity.  



Choosing Size of Government under Ambiguity: 
Infrastructure Spending and Income Taxation 

 
Charles F. Manski 

 
The Economic Journal, Vol. 124, May 2014, pp. 359-376. 

 

 

The optimal size of government has been a subject of continuing debate. 

 

Disagreements may stem in part from the fact that “size of government” is an imprecise 

termCpersons using it may not interpret it the same way. 

 

Persons with a common understanding of the term may disagree on what size is optimal. 

 

They may have different normative perspectives on social welfare or different beliefs about 

the outcomes yielded by alternative policy choices.  



Attempting to shed light on the optimal size of government, economists have studied 

planning problems. 

 

A standard exercise specifies a set of feasible policies and a social welfare function, 

typically utilitarian. The planner is assumed to know the welfare achieved by each policy. 

The analysis characterizes the optimal policy. 

 

A body of research stimulated by Mirrlees (1971) has studied use of income taxation to 

redistribute income. Economists have derived optimal tax schedules assuming the planner 

knows the income-leisure preferences of the population. 

 

Another, following Barro (1990), has considered the use of public spending to promote 

growth. Economists have derived optimal tax-financed spending levels under the 

assumption that the planner knows the consumption preferences of the population and how 

public spending affects aggregate output.  



Lack of knowledge of the welfare achieved by alternative policies limits the relevance of 

optimization studies to actual policy choice. 

 

I examined choice of size of government as a problem of planning under ambiguity. 

 

I focused on tax-financed public spending for infrastructure that aims to enhance private 

productivity. My focus on infrastructure spending was similar to the growth literature. 

 

My formalization of the planning problem stemmed from the one used by Mirrlees to study 

optimal income taxation. I posed a static setting where each person allocates time to paid 

work and other activities (leisure). Persons have predetermined heterogeneous wages. An 

income tax schedule is applied to gross income, yielding net income. 

 

Persons allocate time to maximize utility. Social welfare is utilitarian.  



I departed from the Mirrlees setup in three main ways. 

 

First, government chooses how much to spend on infrastructure and on activities that 

directly affect personal utility. 

 

Second, persons may have heterogeneous preferences. 

 

Third, the planner may have partial knowledge of population preferences and of the 

productivity of infrastructure spending. 

  



Partial knowledge generates two distinct difficulties. 

 

First, the planner may be unable to predict tax revenue with certitude and, thus, may not 

know if a policy will yield a balanced budget. Second, he may be unable to determine the 

welfare achieved by a policy. I bypassed the first issue and focused on the second. 

 

The first issue is difficult to address in generality. Satisfactory evaluation of policies that 

may not yield balanced budgets requires study of a dynamic planning problem that permits 

surpluses and deficits to occur and recognizes their intertemporal welfare implications. 

 

To bypass the complexity of dynamic policy evaluation under ambiguity, I considered 

settings in which the planner can ensure budget balance by choosing components of 

policies sequentially rather than simultaneously. 

  



When budget balance can be ensured by sequential choice of policy components, planning 

may be studied using established criteria for static decision making under ambiguity. 

 

I did so in a setting that is simple enough to yield easily interpretable closed-form findings. 

 

In this setting, the planner only considers tax schedules that make the tax proportional to 

income. 

 

Persons have Cobb-Douglas income-leisure preferences and no non-labor income. 

 

These assumptions imply that time-allocation choices are invariant to policy and they 

enable the planner to achieve budget balance by first choosing the level of public spending, 

then observing the resulting population income, and finally choosing the tax rate to balance 

the budget.  



For further simplicity, I assumed that all public spending is on infrastructure and that wages 

are person-specific positive constants multiplied by an aggregate production function 

expressing the wage-enhancing effect of spending on infrastructure. 

 

Finally, I assumed that the planner has partial knowledge of the aggregate production 

function, obtained by observing the outcome of a status quo policy and by assuming that 

public spending enhances wages but with diminishing marginal returns. 

 

Then the space of possible states of nature indexes all concave-monotone aggregate 

production functions that yield the outcome of the status quo policy. 

  



In this setting, I showed that the planner can reasonably choose a wide range of spending 

levels. Thus, a society can rationalize having a small or large government. 

 

The choice made depends on the decision criterion that the planner uses to cope with 

ambiguity. I considered planning that maximizes subjective expected welfare or that uses 

one of several criteria−maximin, minimax-regret, or a Hurwicz criterion−that do not place 

a subjective probability distribution on unknown quantities. 

 

I drew conclusions that are methodologically constructive and substantively cautionary. 

 

The methodologically constructive conclusion was that, when performing normative 

research on size of government, economists need not impose assumptions strong enough 

to yield optimal policies. 

 

Decision theory provides a formal framework for study of planning under ambiguity.  



The substantively cautionary conclusion was that study of planning with credible 

assumptions shows that a wide range of policy choices can be rationalized. 

 

The only way to achieve credible conclusions about the desirable size of government is to 

vastly improve current knowledge of population preferences and the productivity of public 

spending. 

 

There is no immediate way to achieve this, but a research program with a suitably long-run 

perspective may make progress possible. 
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Introduction 

 

Integrated assessment (IA) models enable quantitative evaluation of the benefits and 

costs of alternative climate policies. 

 

Policy comparisons are performed by considering a planner who seeks to make optimal 

trade-offs between the costs of carbon abatement and the damages from climate change. 

 

The planning problem has been formalized as a control problem with these components: 

(1) equations coupling GHG emissions and abatement to the accumulation of GHGs in 

the atmosphere and resulting temperature increases. 

(2) a damage function that quantifies economic effects of climate change in terms of 

the loss of global economic output as a function of temperature increases. 

(3) an abatement cost function that expresses the cost of actions to reduce GHG 

emissions relative to a stipulated baseline emissions trajectory.  



Costs and damages are expressed as percentage reductions in gross world product. 

 

The problem is to minimize the costs of abatement and damages over a time horizon. 

 

Studying climate policy as a control problem presumes that a planner knows enough to 

make optimization feasible, but physical and economic uncertainties abound. 

 

Physical scientists have performed multi-model ensemble (MME) analysis. Lacking a 

consensus climate model, they have developed multiple models. To cope with inter-

model structural uncertainty, they compute simple or weighted averages of the outputs of 

MMEs. Choosing appropriate weights has been problematic. 

 

Economists have estimated multiple damage functions and abatement cost functions. In 

general, economists have not performed MME analyses that combine multiple functions 

by averaging. They have reported disparate findings from separate studies.  



Manski, Sanstad, and DeCanio (PNAS 2021) framed structural uncertainty in climate 

modeling as a problem of partial identification, generating deep uncertainty. 

 

This problem refers to situations in which the underlying mechanisms, dynamics, or laws 

governing a system are not completely known and cannot be credibly modeled 

definitively even in the absence of data limitations in a statistical sense. 

 

We proposed use of the minimax-regret (MMR) decision criterion to account for deep 

climate uncertainty in integrated assessment without weighting climate model forecasts. 

 

We developed a theoretical framework for cost-benefit analysis of climate policy based 

on MMR and we applied it computationally with a simple illustrative IA model. 

  



It is important to recognize deep uncertainty in both the physical and economic 

components of IA models. 

 

Perhaps the most contentious economic issue has been how a planner should assess the 

costs and benefits of policies across generations. 

 

In our new paper, we study choice of climate policy that minimizes maximum regret with 

deep uncertainty regarding both the correct climate model and the appropriate 

intergenerational assessment of policy consequences. 

  



Economists have long framed intergenerational policy assessment using a discount rate. 

 

They have evaluated climate policies by the present discounted value of the sum of 

abatement costs and the corresponding damages. 

 

There has been considerable debate about what discount rate to use. The choice is 

consequential. 

 

Low rates favor policies that reduce GHG emissions aggressively and rapidly. 

High rates favor policies that act modestly and slowly. 

 

To express deep uncertainty, we suppose that the appropriate discount rate lies within an 

interval that covers the spectrum of rates used in the literature. 

  



Our mathematical analysis is a straightforward generalization of M-S-D. 

 

There we supposed that the correct climate model is one of six prominent models in the 

literature on climate science, whereas the correct economic model is known. 

 

We supposed that a planner compares six policies, each of which chooses an emissions 

abatement path that is optimal under one and only one of the six climate models. 

 

Regret is the loss in welfare if the model used in policy making is not correct and, 

consequently, the chosen abatement path is actually sub-optimal. 

 

The MMR rule chooses a policy that minimizes the maximum regret, or largest degree of 

sub-optimality, across all six climate models.  



Here we suppose that the correct climate model is one of the six examined in M-S-D. 

 

We characterize uncertainty about the discount rate by supposing that it takes one of the 

seven values  {0.01, 0.02, . . . , 0.07}, a range that covers the rates commonly used. 

 

This range reflects both empirical uncertainty about the future of the economy and 

normative uncertainty (or perhaps disagreement) about how the current population values 

the welfare of future generations. 

 

Given joint uncertainty about the climate model and the discount rate, we suppose that a 

planner compares forty-three policies. 

 

Forty-two policies entail choosing an emissions abatement path that is optimal under one 

of the {discount rate, climate model} pairs. The remaining one is a passive policy in 

which the planner chooses no abatement.  



The MMR criterion chooses a policy that minimizes maximum regret across all forty-

three potential policies. 

 

The MMR analysis points to use of a discount rate of 0.02 for climate policy. 

 

The MMR decision rule keeps the maximum future temperature increase below 2℃ for 

most of the parameter values used to weight costs and damages. 

  



Prevalent Approaches to Climate and Discount-Rate Uncertainty 

 

Averaging Outputs of MMEs of Climate Models 

 

All climate models are based on a specific set of deterministic nonlinear partial 

differential equations describing large-scale atmospheric dynamics. 

 

Implementation of the equations is subject to numerous practical choices involving 

discretization, solution methods, and other details. 

 

Some components of the system – such as cloud formation and heat transfer between land 

surfaces and the atmosphere – are not yet fully understood and must be approximated. 

 

For these reasons, multiple climate models have been developed and are in use, each 

reflecting different but credible choices in model design and implementation.  



Existing models yield different projections of the global climate. 

 

The range of projections produced by different models is a gauge of deep uncertainty 

about the climate system given the current state-of-the-science. 

 

Virtually all methods of MME analysis combine model outputs into single projections of 

future climate variables. 

 

However, climate researchers have recognized persistent methodological problems in 

combining model projections. 

  



A common technique is to take the simple average across model projections of policy-

relevant variables. 

 

Researchers may compute weighted average projections when they believe that models 

can be ranked with respect to relative accuracy. 

 

However, model performance with respect to historical data does not imply skill in 

predicting the future climate. 

 

Combining MME outputs into single projected trajectories of the future global climate 

remains a challenging and unresolved problem. 

 

The recent IPCC physical sciences report states: 

“…despite some progress, no universal, robust method for weighting a multi-model 

projection ensemble is available…”  



Uncertainties and Disagreements Regarding the Discount Rate 

 

The economic losses from climate change are represented by damage functions that give 

the decreases in world-wide output resulting from increases in mean global temperature. 

 

Economists study dynamic optimization by a planner, which entails discounting to 

quantify the present value of future economic costs and benefits. 

 

The appropriate magnitude of the discount rate has been contentious. 

 

Controversy persists in part because choice of a discount rate is not only an empirical 

question regarding the future of the economy. 

 

It is also a normative question, concerning social preferences for equity across future 

generations.  



 

A simple version of the famous Ramsey formula provides a transparent expression of the 

interplay of normative and empirical considerations in choosing a discount rate. 

 

Let the social welfare function be additively separable in the utility of future generations. 

 

Let ρ be the rate at which the planner discounts the utility of future generations. 

 

Let the utility of a representative consumer be an increasing and concave function of 

consumption, with constant elasticity (− η) of marginal utility. 

 

Let g be the annualized growth rate of consumption between time 0 and a future time t. 

 

Ramsey showed that it is optimal to discount future consumption between the present 

(time 0) and time t at the rate      𝛿𝛿 =  𝜌𝜌 +  𝜂𝜂𝜂𝜂.        



                                                           

From the perspective of the present, the empirical value of g may be uncertain. This 

uncertainty is similar conceptually to the uncertainty that climate modelers face as they 

attempt to project the future trajectory of climate variables. 

 

ρ formalizes how the planner views intergenerational equity, with ρ = 0 if the planner 

gives equal weight to the welfare of all future generations and ρ > 0 if the planner 

weights welfare more heavily in the near future than in the distant future. 

 

η formalizes the desirability of intergenerational consumption equity. 

 

A planner may feel normative uncertainty about what values of ρ and η to use.  



Supposing that the planner aims to represent society, a source of this uncertainty may be 

normative disagreements within the present population. 

 

Such disagreements were evident in a dispute between Nordhaus (2007), who used the 

value ρ = 0.03, and Stern (2006), who used ρ = 0.001. 

 

Stern concluded that policy should seek to reduce GHG emissions aggressively and 

rapidly. Nordhaus favored policies that act more modestly and slowly. 

 

We argue against any attempt to cope with empirical and normative uncertainty by 

choosing a single discount rate. 

 

Instead, we study formation of climate policy recognizing a set of possibly appropriate 

discount rates.  



Minimax-Regret Policy Evaluation 

   

To begin, we specify the control problem that a planner would solve with no uncertainty. 

 

The Optimal-Control Problem 

 

Let Bt represent baseline GHG emissions at time t, At be GHG abatement actions at time t 

under some climate policy, measured in the same units as emissions, C(At) be the cost of 

these actions, and  𝐸𝐸𝑡𝑡
𝐴𝐴𝑡𝑡 =  𝐵𝐵𝑡𝑡 −  𝐴𝐴𝑡𝑡 be the resulting net emissions. 

 

We refer to At and Et
 At as “paths” or “trajectories,” and we assume that abatement paths 

are chosen from some space of feasible paths. 

  



 

Emissions paths are used as inputs to a climate model M. 

 

We focus on the global mean temperatures projected by M as a function of these paths. 

 

Let T(Et
 At, M) be the global mean temperature at time t determined by the GHG trajectory 

Et
 At when it is predicted by the climate model M. 

 

Then a damage function  can be written as D�T�Et
 At, M��. 

 

For abatement path At and climate model M, denote the associated total cost (abatement 

plus damages) at time t as 

                                                   ℂ(At, M) ≡ C(At) + D �T�Et
 At, M��  



A policymaker seeks to minimize the present value of cost over a planning horizon. As 

usual in the climate economics literature, we assume an infinite horizon. 

 

The control problem given climate model M is to solve 

                                                            min
𝐴𝐴𝑡𝑡

� ℂ(𝐴𝐴𝑡𝑡,𝑀𝑀)𝑒𝑒−𝛿𝛿𝑡𝑡𝑑𝑑𝑑𝑑
∞

0
                                                                      

where δ is the discount rate. 

 

We suppose that the optimal 𝐴𝐴𝑡𝑡 is chosen with commitment at time zero. That is, it is not 

updated over time as new climate or cost information is obtained. 

 

Under certain assumptions, this optimization problem has a unique solution.  

  



The Minimax-Regret Decision Rule 

 

Let Δ = {δ1,…, δK} be a set of discount rates and  M = {M1,…,MN} be a model ensemble. 

 

The planner now faces the problem of minimizing cost over the horizon while 

recognizing joint {discount rate, model} uncertainty. 

 

For rate δi and model Mj, let  𝐴𝐴𝑡𝑡;𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗
∗  be the optimal abatement path defined by   

                                                               𝐴𝐴𝑡𝑡;𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗
∗ =  arg  min

𝐴𝐴𝑡𝑡
� ℂ(𝐴𝐴𝑡𝑡,𝑀𝑀𝑗𝑗)𝑒𝑒−𝛿𝛿𝑖𝑖𝑡𝑡
∞

0
𝑑𝑑𝑑𝑑 

Let  ℂ∗ �𝐴𝐴𝑡𝑡;𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗
∗ , δi,𝑀𝑀𝑗𝑗�  be the associated minimum cost: 

                                                        ℂ∗ �𝐴𝐴𝑡𝑡;𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗
∗ ,𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑗𝑗� = � ℂ(𝐴𝐴𝑡𝑡∗,𝑀𝑀𝑗𝑗)𝑒𝑒−𝛿𝛿𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑

∞

0
 

 



Now consider any feasible abatement trajectory At. The regret ℝ(𝐴𝐴𝑡𝑡, 𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑗𝑗) associated 

with At, when discount rate δi and climate model Mj describe the world, is the difference 

between the cost of At and the cost of the optimal policy associated with δi  and Mj: 

                                        ℝ�𝐴𝐴𝑡𝑡,𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑗𝑗� = � ℂ�𝐴𝐴𝑡𝑡,𝑀𝑀𝑗𝑗�𝑒𝑒−𝛿𝛿𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑 −  ℂ∗ �𝐴𝐴𝑡𝑡;𝛿𝛿𝑖𝑖𝑀𝑀𝑗𝑗
∗ , 𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑗𝑗�

∞

0
 

  

To apply the MMR rule, the planner considers each feasible abatement path At and finds 

the model and discount rate combination that maximizes regret, solving the problem 

                             max
𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗

 ℝ(𝐴𝐴𝑡𝑡,𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑖𝑖)

= max
𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗

 �� ℂ�𝐴𝐴𝑡𝑡,𝑀𝑀𝑗𝑗�𝑒𝑒−𝛿𝛿𝑖𝑖𝑡𝑡𝑑𝑑𝑑𝑑 −  ℂ∗(𝐴𝐴𝑡𝑡;𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗
∗ , 𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑗𝑗)

∞

0
�   

The MMR solution is to find At to solve the problem 

                                                                  min
𝐴𝐴𝑡𝑡

�max
𝛿𝛿𝑖𝑖,𝑀𝑀𝑗𝑗

 ℝ(𝐴𝐴𝑡𝑡, 𝛿𝛿𝑖𝑖 ,𝑀𝑀𝑗𝑗)�                                   

 



Rather than use the MMR rule, one might use the minimax rule, which embodies the 

principle of preparing for the worst case. 

 

MMR analysis uses information in a more nuanced and less conservative way. 

 

If a climate policy maker selects one model and discount rate from an ensemble and 

chooses an emissions abatement path that is optimal for that {model, rate} pair, regret is 

the excess cost of that abatement path if a different (model, rate) pair is the correct one. 

 

Thus, regret measures the potential sub-optimality of policies. 

 

Choosing a policy to minimize maximum regret means choosing one to minimize the 

maximum degree of sub-optimality across the set of policies under consideration.  



Use of Δ to Express Empirical and Normative Uncertainty 

 

The term “uncertainty” has usually referred to incomplete knowledge of the empirical 

environment of a decision maker, called the “state of nature” or the “state of the world.” 

 

This notion of uncertainty applies to incomplete knowledge of the future global 

temperature, abatement costs, and damages under alternative climate policies. 

 

We also consider uncertainty about the discount rate. 

 

Our use of the set Δ to express both empirical and normative uncertainty regarding the 

discount rate departs from the usual decision-theoretic focus on empirical uncertainty. 

  



Normative uncertainty may have an empirical source, namely incomplete knowledge of 

the population preferences that a utilitarian planner would seek to maximize. 

 

The planner may face the difficult task of representing a population whose members may 

not be clear about their time preferences or concern with intergenerational inequalities. 

 

Using Δ to express normative uncertainty is a more radical departure from the decision-

theoretic norm if normative disagreements exist within the present population. 

 

A segment of the population may strongly value intergenerational equity whereas another 

segment may be less concerned with the fate of future generations. 

 

Then one may think it necessary to abandon the idealization of a utilitarian planner and 

replace it with conceptualization of policy making as a non-cooperative political game.  



We nonetheless find it attractive to study MMR decision making in this setting. 

 

The MMR rule has some appeal as a broadly acceptable mechanism for policy choice. 

 

Recall that the regret of a policy in a specified state of nature measures its degree of sub-

optimality in that state, and maximum regret measures the maximum degree of sub-

optimality across all states. 

 

Suppose that the members of a heterogeneous present population disagree on what 

{discount rate, model} should be considered the “true” state of nature. 

 

Then use of the MMR rule to choose policy minimizes the maximum degree of sub-

optimality that will be experienced across the population. 

  



Computational Model 

 

To show the consequences of adoption of the MMR decision rule, we present a simple IA 

model that summarizes the essential economic and physical mechanisms. 

 

The standard in the literature has been to report results about a century into the future. 

 

Analyzing the uncertainty associated with discount rates necessitates attention to longer 

time horizons. 

 

Phenomena in the more distant future that are negligible in economic terms with high  

discount rates become salient with low rates. 

  



Model Details 

 

As a simple expression of complex climate dynamics, we use Matthews et al. (2009). 

 

They showed that the “carbon-climate response” (CCR), the change in global mean 

temperature over periods of decades or longer, varies approximately linearly with the 

increase in cumulative carbon emissions over the same period. 

 

Net cumulative emissions is  

                                                            𝐄𝐄𝑡𝑡
𝐴𝐴𝑡𝑡 = � 𝐸𝐸𝑡𝑡

𝐴𝐴𝑡𝑡𝑑𝑑𝑑𝑑 = � (𝐵𝐵𝑡𝑡 − 𝐴𝐴𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡

0

𝑡𝑡

0
 

 

There is no requirement that (Bt – At) be non-negative. At exceeding Bt implies adoption 

of mitigation measures that yield negative net emissions. 

 



The CCR vary across climate models. The CCR parameter m for model Mj is estimated 

by determining the model’s projected temperature response when driven by a carbon 

emissions path according to 

                                                               𝑇𝑇𝑡𝑡 =  𝑚𝑚𝑗𝑗𝐄𝐄𝑡𝑡
𝐴𝐴𝑡𝑡 ,                  𝑗𝑗 = 1, … .6  

where T henceforth indicates the temperature increase over its initial value at time t = 0. 

 

We estimate mj with historic and projected emissions and temperature data from model j. 

 

Our model ensemble M comprises six Earth System Models (ESMs). These ESMs were 

used in the Climate Model Intercomparison Project Phase 5 (CMIP5). 

  



Table 1 
Earth system models used to estimate Carbon-Climate Response (CCR) 

parameters, with estimated CCR values (℃ per teraton carbon) 

Model and model number CCR 

1.    GFDL-ESM-2G - Geophysical Fluid 
Dynamics Laboratory Earth System Model 

version 2G 
0.00157 

2.    BCC-CSM-1 - Beijing Climate Center 
Climate System Model version 1.1 0.00186 

3.     FIO-ESM - FIO-ESM - First Institute of 
Oceanography Earth System Model 0.00194 

4.    Had-GEM2-ES - Hadley Global 
Environmental Model 2 - Earth System 0.00229 

5.    IPSL-CM5A-MR - Institut Pierre Simon 
Laplace Coupled Model 5A - Medium 

Resolution 
0.00236 

6.    MIROC-ESM - Model for 
Interdisciplinary Research on Climate - 

Earth System Model 
0.00244 

 

 



We specify abatement cost and climate damage functions in quadratic form to implement 

the IA model as an optimal control problem, allowing for plausible non-linearity in these 

functions as the abatement effort At and the global temperature increase Tt at time t: 

 

                                                                    𝐶𝐶(𝐴𝐴𝑡𝑡) = 1
2 𝛼𝛼𝐴𝐴𝑡𝑡

2                                                                           

                                                                  𝐷𝐷(𝑇𝑇𝑡𝑡) =   12 𝛽𝛽𝑇𝑇𝑡𝑡
2                                                                            

 

The quadratic form and value of α are derived from Dietz and Venmans (2019). 

 

The quadratic form and the value of β are taken from Nordhaus and Moffat (2017).  

 

  



A baseline emissions trajectory Bt is derived from the “Representative Concentration 

Pathway (RCP) 8.5” scenario in its extended version to year 2500. 

 

This envisions a relatively high growth rate of global carbon emissions from fossil fuel 

use through the 21st century, followed by a peak plateau period of constant emissions 

until 2150, and then a decline to a very low level by 2250. 

 

A smoothed functional form having the same general shape as the RCP 8.5 was fitted by 

nonlinear least squares. The fitted equation for Bt is 

                                                  𝐵𝐵𝑡𝑡 =  �𝜃𝜃𝑑𝑑 + 𝐵𝐵0
exp(𝜃𝜃𝜃𝜃)�  exp (−𝜃𝜃(𝑑𝑑 − 𝜑𝜑)) .                            

  



The control problem is to minimize, for a given discount rate and model, the present 

value of abatement costs plus climate damages over an infinite horizon, subject to the 

dynamic relationship between cumulative emissions and temperature: 

                                                            min
𝐴𝐴𝑡𝑡

�
1
2

(𝛼𝛼𝐴𝐴𝑡𝑡2 + 𝛽𝛽𝑇𝑇𝑡𝑡2)
∞

0
𝑒𝑒−𝛿𝛿𝑡𝑡𝑑𝑑𝑑𝑑 

subject to 

                                                              𝑑𝑑
𝑑𝑑𝑡𝑡
𝐄𝐄𝑡𝑡
𝐴𝐴𝑡𝑡 = 𝐸𝐸𝑡𝑡

𝐴𝐴𝑡𝑡 =  𝐵𝐵𝑡𝑡 −  𝐴𝐴𝑡𝑡     

                                                                     𝑇𝑇𝑡𝑡 = 𝑚𝑚𝐄𝐄𝑡𝑡
𝐴𝐴𝑡𝑡 

                                                                    𝐄𝐄0
𝐴𝐴𝑡𝑡 =  𝐄𝐄0 

 

The last equation specifies an initial condition for net cumulative emissions. 

  



First-order necessary conditions include two coupled differential equations in abatement 

and the atmospheric greenhouse gas concentration associated with the optimal abatement: 

                                                              𝑑𝑑𝐴𝐴𝑡𝑡
𝑑𝑑𝑡𝑡

=  𝛿𝛿 𝐴𝐴𝑡𝑡 −  𝛽𝛽𝑚𝑚
2

𝛼𝛼
 𝐄𝐄𝑡𝑡

𝐴𝐴𝑡𝑡                                                                               

                                                            𝑑𝑑𝐄𝐄𝑡𝑡
𝐴𝐴𝑡𝑡

𝑑𝑑𝑡𝑡
=  𝐵𝐵𝑡𝑡 −  𝐴𝐴𝑡𝑡                                                                         

These equations can be solved in closed form for 𝐴𝐴𝑡𝑡 and 𝐄𝐄𝒕𝒕
𝑨𝑨𝒕𝒕. 

 

The model satisfies convexity properties implying that the first-order conditions are 

sufficient for these to be unique optimal solutions to the control problem. 

  



The left-hand panel of Figure 1 shows the baseline Bt and the optimal abatement At for a 

particular set of parameters. 

 

The right-hand panel shows net cumulative emissions under At  and under a policy of no 

abatement (At = 0 for all t). 
 

Figure 1 – Trajectories of  Bt, optimal 𝐴𝐴𝑡𝑡, 𝐄𝐄𝑡𝑡
𝐴𝐴𝑡𝑡, and 𝐄𝐄𝑡𝑡

noabatement

for  m = 0.002286,  α = 0.000125,  β = 0.018, and δ = 0.05

Bt

𝐄𝐄𝒕𝒕
𝐴𝐴𝒕𝒕

𝐄𝐄𝒕𝒕
noabatement

GtC GtC

Year Year

At

 
  



MMR Analysis 

 

We discussed our climate model ensemble M above. We specify the possible discount 

rates as Δ = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}. There are thus forty-two 

combinations of (δ, m) expressing the range of deep uncertainty.  

 

Regrets can be calculated for any feasible abatement path At. 

 

To keep calculation tractable, and because a planner may restrict attention to policies that 

are optimal in some state of nature, we consider policies that are optimal for some (δ, m) 

in Δ x M. There are 42 such policies, and a 43rd when “No Abatement” is a possibility. 

 

To explore the sensitivity of the MMR policy to the α and β parameters, we calculated the 

MMR for nine combinations of α and β.  



Table 2 
Values of MMR, uncertain Model and  δ, for combinations of  α  and  β 

Potential values of δ:  {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07} 
 

Baseline RCP 8.5 (fitted):  𝐵𝐵𝑡𝑡 = (𝜃𝜃𝑑𝑑 + 𝐵𝐵0
exp(𝜃𝜃𝜃𝜃} exp�−𝜃𝜃(𝑑𝑑 − 𝜑𝜑)� ;  𝜃𝜃 → 0.0123125, 𝜑𝜑 → 339.565 

α = 0.000075 
β = 0.014 

−−−−−−−−− 

  
α = 0.000075 

β = 0.018 
−−−−−−−−− 

  
α = 0.000075 

β = 0.022 
−−−−−−−−−

 

Model δ MMR   Model δ MMR   Model δ MMR 

IPSL 0.02 0.172 
 

  HAD 0.02 0.172 
 

  HAD 0.02 0.178 
 

             
             

α = 0.000125    
β = 0.014 

−−−−−−−−−
 

  α = 0.000125 
β = 0.018 

−−−−−−−−−
 

  α = 0.000125 
β = 0.022 

−−−−−−−−−
 

Model δ MMR   Model δ MMR   Model δ MMR 

MIROC 0.02 0.266 
  

  IPSL 0.02 0.273 
 

  IPSL 0.02 0.284 
 

             
             

α = 0.0002    
β = 0.014 

−−−−−−−−− 

  
α = 0.0002 
β = 0.018 

−−−−−−−−−
 

  α = 0.0002 
β = 0.022 

−−−−−−−−−
 

Model δ MMR   Model δ MMR   Model δ MMR 

MIROC 0.02 0.478 
 

  MIROC 0.02 0.436 
 

  MIROC 0.02 0.423 



For all (α, β) combinations, the discount rate corresponding to the MMR solution is 0.02. 

 

The IA model allows for calculation of the maximum temperature increase that will be 

reached for any policy path, and how long it will take to reach that temperature. 

 

Because the actual state of the world is unknown, the temperature increase under the 

MMR policy cannot be known at the time the policy decision is made. 

 

What is known is that it will be less than or equal to the maximum over all six models, 

which will occur if MIROC is the true model because m6 is the greatest of the CCRs. 

 

We find that the MMR decision rule keeps the maximum future temperature increase 

below 2℃ above the 1900-09 level for most parameter values.  



Table 3 
Values of Maximum Temperature Increase (Tmax) in ℃ and Years after 2000 when reached, 

  

α = 0.000075 
β = 0.014 

−−−−−−−−− 

  
α = 0.000075 

β = 0.018 
−−−−−−−−− 

  
α = 0.000075 

β = 0.022 
−−−−−−−−−

 

MMR 
Model Years Tmax 

  MMR 
Model Years Tmax 

  MMR 
Model Years Tmax 

IPSL 124 1.248   HAD 121 1.056   HAD 118 0.879 

             
             

α = 0.000125    
β = 0.014 

−−−−−−−−−
 

  α = 0.000125 
β = 0.018 

−−−−−−−−−
 

  α = 0.000125 
β = 0.022 

−−−−−−−−−
 

MMR 
Model Years Tmax 

  MMR 
Model Years Tmax 

  MMR 
Model Years Tmax 

MIROC 134 1.831   IPSL 130 1.564   IPSL 125 1.315 

             
             

α = 0.0002    
β = 0.014 

−−−−−−−−− 

  
α = 0.0002 
β = 0.018 

−−−−−−−−−
 

  α = 0.0002 
β = 0.022 

−−−−−−−−−
 

MMR 
Model Years Tmax 

  MMR 
Model Years Tmax 

  MMR 
Model Years Tmax 

MIROC 149 2.660   MIROC 141 2.187   MIROC 135 1.859 

 



Discussion 

 

The MMR rule provides a reasonable way to form climate policy with  empirical 

uncertainty about the climate and normative uncertainty regarding the discount rate. 

 

Our computational analysis offers a new reason for using a low discount rate in climate 

policy analysis, on the order of 2% per annum. 

 

This discount rate encompasses the pure rate of time preference, intergenerational 

inequality aversion, projection of the economy’s future rate of growth, and other factors 

that potentially can affect the discount rate. 

  



MMR decision making copes with deep uncertainty without adopting the extreme 

conservatism of minimax decisions. 

 

MMR enables a planner to deal with heterogeneous populations, who may not themselves 

be clear about their time preferences or concern with intergenerational equity. 

 

There is no scientific or economic reason that everyone should hold the same normative 

values. Some people may have only a vague understanding of discounting. 

 

We also find it appealing to view MMR as a consensus-building mechanism. 

 

Calculating regrets enables people with different values to see how implementation of 

alternative policies might play out from their perspectives. 

  



Our IA model is simple and computationally tractable. 

 

This is partially because we have not considered all possible sources of uncertainty. 

 

The appropriate baseline emissions path is highly uncertain. 

 

The abatement cost and climate damage functions are also uncertain. 

 

We have addressed this partially by sensitivity analysis, calculating MMR solutions with 

various parameters (α, β) on abatement cost and climate damages. 

 

It would be desirable to expand the analysis to encompass deep uncertainty about the 

correct values for these weights, a formidable computational task. 
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