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Abstract

Social interactions determine many economic behaviors, but information on social ties does
not exist in most publicly available and widely used datasets. We present results on the
identification of social networks from observational panel data that contains no information
on social ties between agents. In the context of a canonical social interactions model, we
provide sufficient conditions under which the social interactions matrix, endogenous and ex-
ogenous social effect parameters are globally identified if networks are constant over time.
We also provide an extension of the method for time-varying networks. We then describe
how high-dimensional estimation techniques can be used to estimate the interactions model
based on the Adaptive Elastic Net Generalized Method of Moments. We employ the method
to study tax competition across US states. The identified social interactions matrix implies
that tax competition differs markedly from the common assumption of competition between
geographically neighboring states, providing further insights into the long-standing debate on
the relative roles of factor mobility and yardstick competition in driving tax setting behavior
across states. Most broadly, our identification and application show that the analysis of social
interactions can be extended to economic realms where no network data exists.
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1 Introduction

In many economic environments, behavior is shaped by social interactions between agents. In in-
dividual decision problems, social interactions have been key to understanding outcomes as diverse
as educational test scores, the demand for financial assets, and technology adoption (Sacerdote,
2001; Bursztyn et al., 2014; Conley and Udry, 2010). In macroeconomics, the structure of firms’
production and credit networks propagate shocks, or help firms to learn (Acemoglu et al., 2012;
Chaney, 2014). In political economy and public economics, ties between jurisdictions are key to
understanding tax setting behavior (Tiebout, 1956; Shleifer, 1985; Besley and Case, 1994).

Underpinning all these bodies of research is some measurement of the underlying social ties
between agents. However, information on social ties does not exist in most publicly available and
widely used datasets. To overcome this limitation, studies of social interaction either postulate ties
based on common observables or homophily, or elicit data on networks. However, it is increasingly
recognized that postulated and elicited networks remain imperfect solutions to the fundamental
problem of missing data on social ties, because of econometric concerns that arise with either
method, or simply because of the cost of collecting network data.1

Two consequences are that (i) the classes of problems in which social interactions occur are
understudied, because social networks data is missing or too costly to collect; and (ii) there is no
way to validate social interactions analysis in contexts where ties are postulated. In this paper, we
tackle this challenge by deriving sufficient conditions under which global identification of the entire
structure of social networks is obtained, using only observational panel data that itself contains
no information on network ties. Our identification results allow the study of social interactions
without data on social networks, and the validation of structures of social interaction where social
ties have hitherto been postulated. The recovered networks are economically meaningful to explain
the effects under study, since they are entirely estimated from the data itself, and not driven by
ex ante assumptions on how individuals interact.

A researcher is assumed to have panel data on individuals i = 1, ..., N for instances t = 1, ..., T .
An instance refers to a specific observation for i and need not correspond to a time period (for
example, if i refers to a firm, t could refer to market t). The outcome of interest for individual i in

1As detailed in de Paula (2017), elicited networks are often self-reported and can introduce error to the outcome
of interest. Network data can be censored if only a limited number of links can feasibly be reported. Incomplete
survey coverage of nodes in a network may lead to biased aggregate network statistics. Chandrasekhar and Lewis
(2016) show that even when nodes are randomly sampled from a network, partial sampling leads to non-classical
measurement error and biased estimation. Collecting social network data is also a time- and resource-intensive
process. In response to these concerns, a nascent strand of literature explores cost-effective alternatives to full
elicitation to recover aggregate network statistics (Breza et al., 2020).
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instance t is yit and is generated according to a canonical structural model of social interactions:2

yit = ρ0

N∑
j=1

W0,ijyjt + β0xit + γ0

N∑
j=1

W0,ijxjt + αi + αt + ϵit. (1)

Outcome yit depends on the outcomes of other individuals to whom i is socially tied, yjt, and xjt

includes characteristics of those individuals.3 W0,ij measures how the outcome and characteristics
of j causally impact the outcome for i. The network is initially assumed to be fixed over time,
and we later provide an extension of the method for time-varying networks. As outcomes for all
individuals obey equations analogous to (1), the system of equations can be written in matrix
notation, where the structure of interactions is captured by the adjacency matrix, denoted by W0.
Our approach allows for unobserved heterogeneity across individuals αi and common shocks to
individuals αt. This framework encompasses a classic linear-in-means specification as in Manski
(1993). In his terminology, ρ0 and γ0 capture endogenous and exogenous social effects, and αt

captures correlated effects. The distinction between endogenous and exogenous peer effects is
critical, as only the former generates social multiplier effects. In line with the literature, we
maintain that the same W0 governs the structure of both endogenous and exogenous effects. We
later discuss relaxing this assumption when more than one regressor is used.

Manski’s seminal contribution set out the reflection problem of separately identifying endoge-
nous, exogenous, and correlated effects in linear models. However, it has been somewhat overlooked
that he also set out another challenge in the identification of the social network in the first place.4

This is the problem we tackle, and thus, we expand the scope of identification beyond ρ0, β0, and
γ0. Our point of departure from much of the literature is therefore to presume W0 is entirely un-
known to the researcher. We derive sufficient conditions under which all the entries in W0, and the
endogenous and exogenous social effect parameters, ρ0 and γ0, are globally identified from “reduced
form” parameters. By identifying the social interactions matrix W0, our results allow the recovery
of aggregate network characteristics, such as the degree distribution and patterns of homophily,
as well as node-level statistics such as the strength of social interactions between nodes, and the
centrality of nodes. Such aggregate and node-level statistics often map back to underlying models
of social interaction (Ballester et al., 2006; Jackson et al., 2017; de Paula, 2017).

2Blume et al. (2015) present micro-foundations for this estimating equation based on non-cooperative games of
incomplete information for individual choice problems.

3In the case in which t is considered to be a time period, xit may also include lagged values of yit.
4Manski (1993) highlights difficulties (and potential restrictions) in identifying ρ0, β0 and γ0 when all individuals

interact with each other, and when this is observed by the researcher. In (1), this corresponds to W0,ij = N−1, for
i, j = 1, . . . , N . At the same time, he states (p. 536), “I have presumed that researchers know how individuals form
reference groups and that individuals correctly perceive the mean outcomes experienced by their supposed reference
groups. There is substantial reason to question these assumptions (...) If researchers do not know how individuals
form reference groups and perceive reference-group outcomes, then it is reasonable to ask whether observed behavior
can be used to infer these unknowns (...) The conclusion to be drawn is that informed specification of reference
groups is a necessary prelude to analysis of social effects.”
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Our identification strategy is new and fundamentally different from those employed elsewhere
in the literature and does not rely on requirements about network sparsity. However, it delivers
sufficient conditions that are mild and relate to existing results on the identification of social effects
parameters when W0 is known (Bramoullé et al., 2009; De Giorgi et al., 2010; Blume et al., 2015).
The intuition for our identification result is simple: model (1) has N2 reduced-form parameters,
and there are N(N − 1) + 3 structural unknowns (as no unit affects itself, so W0,ii = 0). So
there are more equations than unknowns if N ≥ 2, and we demonstrate those can be solved
for the parameters of interest under the assumptions we invoke. Our identification result is also
useful in other estimation contexts, such as when a researcher has partial knowledge of W0,5 or
in navigating between priors on reduced-form and structural parameters in a Bayesian framework
(see, e.g., Gefang et al., 2023), thus avoiding issues the raised by Kline and Tamer (2016).

Global identification is a necessary requirement for consistency of extremum estimators such as
those based on the GMM (Hansen 1982; Newey and McFadden 1994). Our identification analysis
provides primitives for this condition. To estimate the model, we employ the Adaptive Elastic
Net GMM method (Caner and Zhang, 2014), as this allows us to deal with a potentially high-
dimensional parameter vector (in comparison to the time dimension in the data) including all
the entries of the social interactions matrix W0, although other estimation protocols may also be
entertained (e.g. using Bayesian methods or a priori information).6

We showcase the method using Monte Carlo simulations based on stylized random network
structures as well as real-world networks. In each case, we take a fixed network structure W0 and
simulate panel data as if the data generating process were given by (1). We then apply the method
to the simulated panel data to recover estimates of all elements in W0, as well as the endogenous
and exogenous social effect parameters (ρ0, γ0). The networks considered vary in size, complexity,
and their aggregate and node-level features. In small samples, we find that the majority of links
are identified even for T = 5, and the proportion of true non-links (zeros in W0) captured correctly
as zeros is over 85% even when T = 5. Of course, there are important limitations to the use of the
method in small-T cases. Biases are expected and manifest themselves in two ways. First, weak
links can be shrunk to zero, and the strength of strong edges can be overestimated. Second, the
estimates of ρ and γ can suffer from small-sample bias, being analogous to well-known results for
autoregressive time series models. Both properties rapidly improve with T . For instance, biases
in the estimation of endogenous and exogenous effects parameters (ρ̂, γ̂) fall quickly with T and
are close to zero for large sample sizes. The endogenous and exogenous social effects are also

5One such example is the nascent literature of Aggregate Relational Data (ARD) as in Breza et al. (2020).
Another possibility is that individuals are known to belong to subgroups, so W0 is block diagonal.

6The Elastic Net was introduced by Zou and Hastie (2005) in part to circumvent difficulties faced by alternative
estimation protocols (e.g., LASSO) when the number of parameters, p, exceeds the number of observations, n
(where p and n follow the notation in that paper). Whereas the theoretical results on the large-sample properties
of elastic net estimators usually have not exploited sparsity, several articles have demonstrated their performance
in data scenarios where this occurs. In Section 3, we provide an informal discussion on the performance in our
context.
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correctly captured as T increases. A fortiori, we estimate aggregate and node-level statistics of
each network, demonstrating the accurate recovery of key players in networks, for example.

In the final part of our analysis, we apply the method to shed new light on a classic real-
world social interactions problem: tax competition between US states. The literatures in political
economy and public economics have long recognized the behavior of state governors might be
influenced by decisions made in “neighboring” states. The typical empirical approach has been to
postulate the relevant neighbors as being geographically contiguous states. Our approach allows
us to infer the set of “economic” neighbors determining social interactions in tax setting behavior
from panel data on outcomes and covariates alone. In this application, the panel data dimensions
cover mainland US states, N = 48, for the years 1962-2015, T = 53.

The identified network structure of tax competition differs markedly from the assumption of
competition between geographic neighbors. The identified economic network has fewer edges, and
we identify non-adjacent states that influence tax setting behaviors. Differences in the structure
of the identified economic and geography-based networks are reflected in the far lower clustering
coefficient in the former (.042 versus .419). With the recovered social interactions matrix we es-
tablish, beyond geography, which covariates correlate to the existence of ties between states and so
shed new light on hypotheses for social interactions in tax setting: factor mobility and yardstick
competition (Tiebout, 1956; Shleifer, 1985; Besley and Case, 1994). The identified network high-
lights significant predictors of tax competition between states beyond distance: political homophily
reduces the likelihood of a link, suggesting any yardstick competition driving social interactions
occurs when voters compare their governor to those of the opposing party in other states. Tax
haven states appear to be less influential in tax setting behaviors, easing concerns over a race-to-
the-bottom in tax setting. Labor mobility between states does not robustly predict the existence
of economic ties between states in tax setting behavior.

Given the relatively long study period in this application, at a final stage of analysis we extend
our method to allow the strength of social interactions in tax competition (ρ0, γ0) and the structure
of links in the economic network (W0) to vary over time as we change the weight placed on
observations from any given time period. We document the gradual increase in strength of social
interactions over time, and the changing nature of the network of interactions. We utilize these
findings to conduct counterfactual simulations of the general equilibrium propagation of tax shocks
from a given state to all other mainland US states, and how these general equilibrium effects of
the same policy shock vary as we place weight on observations later in our study period.

Our paper contributes to the literature on the identification of social interactions models.
The first generation of papers studied the case where W0 is known, so only the endogenous and
exogenous social effects parameters needed to be identified. It is now established that if the known
W0 differs from the linear-in-means example where all units are linked with equal weights, ρ0 and
γ0 can be identified (Bramoullé et al., 2009; De Giorgi et al., 2010). Intuitively, identification in
those cases can use peers-of-peers, are not necessarily connected to individual i and can be used
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to leverage variation from exclusion restrictions in (1), or can use groups of different sizes within
which all individuals interact with each other (Lee, 2007). Bramoullé et al. (2009) show these
conditions are met if I, W0, and W 2

0 are linearly independent, which is shown to hold generically
by Blume et al. (2015). However, as made precise in Section 2, the linear algebraic arguments
employed by Bramoullé et al. (2009) or Blume et al. (2015) do not apply when W0 is unobserved,
and other arguments have to be used instead.7

Blume et al. (2015) investigate the case when W0 is partially observed and show that if two indi-
viduals are known not to be directly connected, the parameters of interest in a model related to (1)
can be identified. Blume et al. (2011) take an alternative approach: suggesting a parameterization
of W0 according to a pre-specified distance between nodes. We do not impose such restrictions, but
note that partial observability of W0 or placing additional structure on W0 is complementary to
our approach, as it reduces the number of parameters in W0 to be retrieved. Bonaldi et al. (2015)
and Manresa (2016) estimate models like (1) when W0 is not observed, but where ρ0 is set to zero
so there are no endogenous social effects. They use sparsity-inducing methods from the statistics
literature, but the presence of ρ0 in our case complicates identification because it introduces issues
of simultaneity that we address.8

Rose (2015) also presents related identification results for linear models like (1), assuming the
sparsity of the neighborhood structure. Intuitively, given two observationally equivalent systems,
sparsity guarantees the existence of pairs that are not connected in either. Since observationally
equivalent systems are linked via the reduced-form coefficient matrix, this pair allows one to identify
certain parameters in the model. Having identified those parameters, Rose (2015) shows that one
can proceed to identify other aspects of the structure (see also Gautier and Rose, 2016). This
is related to the ideas in Blume et al. (2015), who show identification results can be leveraged
if individuals are known not to be connected. Our main identification results do not rely on
properties of sparse networks, and make use of plausible and intuitive conditions, whereas the
auxiliary rank conditions necessary may be computationally complex to verify. More recently,
Lewbel et al. (2022) propose an estimation strategy for the parameters ρ0, β0, and γ0 of model (1)
in the absence of network links if many different groups can be observed. Battaglini et al. (2022)
estimate a structural model specifically for the case of unobserved social connections in the US
Congress.

Finally, in the statistics literature, Lam and Souza (2020) study the penalized estimation of
model (1) when W0 is not observed, assuming the model and social interactions are identified.
The statistical literature on graphical models has investigated the estimation of neighborhoods

7Alternative identification approaches when W0 is known focus on higher moments (variances and covariances
across individuals) of outcomes (de Paula, 2017) and rely on additional restrictions on higher moments of ϵit. Note
that (1) is a spatial autoregressive model. In that literature, W0 is also typically assumed to be known (Anselin,
2010).

8Manresa (2016) allows for unit-specific β0 parameters. While in many applications those are taken to be
homogeneous, we also discuss extensions on how heterogeneity in those parameters can be handled when ρ0 ̸= 0 in
Appendix B.
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defined by the covariance structure of the random variables at hand (Meinshausen and Buhlmann,
2006). This corresponds to a model where yt = (I − ρ0W0)

−1ϵt is jointly normal (abstracting from
covariates). On a graph with N nodes corresponding to the variables in the model, an edge between
two nodes (variables) i and j is absent when these two variables are conditionally independent given
the other nodes. In the model above, the inverse covariance matrix is (I − ρ0W0)

⊤Σ−1
ϵ (I − ρ0W0),

where Σϵ is the variance covariance structure for ϵt. The discovery of zero entries in this matrix
is not equivalent to the identification of W0 and involves Σϵ (as do identification strategies using
higher moments when W0 is known).9

We build on these papers by studying the problem where W0 is potentially entirely unknown
to the researcher. In so doing, we open up the study of social interactions to realms where social
network data does not exist. In our case, we consider the definition of the network as the one that
mediates, together with the variables xit, the outcome process yit according to Equation (1). The
identified network may be a combination of elicited types of social interactions – such as friendship
formation, lending and borrowing relations, links with relatives – or different from elicited data,
as long as the links are relevant in determining the outcomes. In our case, and in line with the
literature, the network ties Wij are considered to be deterministic parameters or predetermined.
Alternatively, the networks are assumed to be the outcome of a stochastic process, such as the
latent space model (Hoff et al., 2002; Breza et al., 2020) or Exponential Random Graphs models
(Holland and Leinhardt, 1981).

Our conclusions discuss how our approach can be modified, and assumptions weakened, to
integrate partial knowledge of W0. We discuss further applications and the steps required to
simultaneously identify models of network formation and the structure of social interactions. The
practical use of our proposed method has already been demonstrated in applications. For example,
Fetzer et al. (2021) study the impact on conflict of the transition of security responsibilities between
international and Afghan forces. Our proposed method is used to control for violation of SUTVA-
type hypotheses that might occur because of spillover and displacement effects of insurgent forces
across districts. Since the pattern of displacement is unobserved – and, in fact, insurgents have
incentives to obfuscate their strategy – the current method is applied to fully recover the network
and bound the effects of the end of the military occupation on conflict.10

We proceed as follows. Section 2 presents our core result: the sufficient conditions under which
the social interactions matrix, endogenous and exogenous social effects are globally identified.
Section 3 describes the high-dimensional techniques used for estimation based on the Adaptive
Elastic Net GMM method and presents simulation results from stylized and real-world networks.
Section 4 applies our methods to study tax competition between US states. Section 5 concludes.
The Appendix provides proofs and further details on estimation and simulations.

9Meinshausen and Buhlmann (2006)’s and Lam and Souza (2020)’s neighborhood estimates rely on (penalized)
regressions of yit on y1t, . . . , yi−1,t, yi+1,t, . . . , yN,t, which do not address the endogeneity in estimating W0.

10Zhou (2019) applies our identification results, focusing on unobserved networks with grouped heterogeneity, to
suggest a nonlinear least squares procedure for estimation on a single network observation.
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2 Identification

2.1 Setup

Consider a researcher with panel data covering i = 1, . . . , N individuals repeatedly observed over
t = 1, . . . , T instances. The number of individuals N in the network is fixed but potentially large.
The aim is to use this data to identify a social interactions model with no data on actual social ties.
For expositional ease, we first consider identification in a simpler version of the canonical model
in (1), where we drop individual-specific (αi) and time-constant fixed effects (αt) and assume xit

is a one-dimensional regressor for individual i and instance t. We later extend the analysis to
include individual-specific, time-constant fixed effects and allow for multidimensional covariates
xk,it, k = 1, . . . , K. We adopt the subscript “0” to denote parameters generating the data, and
non-subscripted parameters are generic values in the parameter space:

yit = ρ0

N∑
j=1

W0,ijyjt + β0xit + γ0

N∑
j=1

W0,ijxjt + ϵit. (2)

As the outcomes for all individuals i = 1, . . . , N obey equations analogous to (2), the system of
equations can be more compactly written in matrix notation as:

yt = ρ0W0yt + β0xt + γ0W0xt + ϵt. (3)

The vector of outcomes yt = (y1t, . . . , yNt)
′ assembles the individual outcomes in instance t; the

vector xt does the same with individual characteristics. yt, xt, and ϵt have dimension N × 1, the
social interactions matrix W0 is N × N , and ρ0, β0, and γ0 are scalar parameters. We do not
make any distributional assumptions on ϵt beyond E(ϵt|xt) = 0 (or E(ϵt|zt) = 0 for an appropriate
instrumental variable zt if xt is endogenous). We assume the network structure is predetermined
and constant, and that the number of individuals N is fixed and repeated. In reality, networks
may evolve over time. We thus later expand the method for dynamic network cases. The network
structure W0 is a parameter to be identified and estimated.

The social interaction model (3) has been widely studied (Manski, 1993; Manresa, 2016; and
Blume et al., 2015, among many others), but it is also restrictive in at least two senses. First,
we consider Wij to be fixed and predetermined, and not through models of strategic network
formation (Jackson and Wolinsky, 1996; de Paula et al., 2018) or of stochastic nature, as in the
class of Exponential Random Graphs (Holland and Leinhardt, 1981) or Latent Distance models
(Hoff et al., 2002; Breza et al., 2020). If there is feedback between outcome determination and link
formation, and especially if this involves unobservables, it would be important to model network
formation more explicitly.
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A regression of outcomes on covariates corresponds, then, to the reduced form for (3),

yt = Π0xt + νt, (4)

with Π0 = (I − ρ0W0)
−1(β0I + γ0W0) and νt ≡ (I − ρ0W0)

−1ϵt. If W0 is observed, Bramoullé et al.
(2009) note that a structure (ρ, β, γ) that is observationally equivalent to (ρ0, β0, γ0) is such that
(I − ρ0W0)

−1(β0I + γ0W0) = (I − ρW0)
−1(βI + γW0). This can be written as a linear equation in

I,W0, and W 2
0 , and identification is established if those matrices are linearly independent. If W0 is

not observed, the putative unobserved structure comprises W0, and an observationally equivalent
parameter vector will instead satisfy (I−ρ0W0)

−1(β0I+γ0W0) = (I−ρW )−1(βI+γW ). Following
the strategy in Bramoullé et al. (2009) would lead to an equation in I,W,W0, and WW0, so the
insights obtained in that paper do not carry over to the case we study when W0 is unknown.

We establish identification of the structural parameters of the model, including the social
interactions matrix W0, from the coefficients matrix Π0. Without data on the network W0, we treat
it as an additional parameter in an otherwise standard model relating outcomes and covariates.
Our identification strategy relies on how changes in covariates xit reverberate through the system
and impact yit, as well as outcomes for other individuals. These are summarized by the entries of
the coefficient matrix Π0, which, in turn, encode information about W0 and (ρ0, β0, γ0). A non-zero
partial effect of xit on yjt indicates the existence of direct or indirect links between i and j. When
ρ0 = 0 (and Π0 = β0I + γ0W0), only direct links produce such a correlation. When ρ ̸= 0, both
direct and indirect connections may generate a non-zero response, but distant connections will lead
to a lower response. Our results formally determine sufficient conditions to precisely disentangle
these forces.

We set out six assumptions underpinning our main identification results. Three of these are
entirely standard. A fourth is a normalization required to separately identify (ρ0, γ0) from W0,
and the fifth is closely related to known results on the identification of (ρ0, γ0) when W0 is known
(Bramoullé et al., 2009). The sixth assumption pertains to the relation between the nature of
repeated multiple observations of the outcome and covariates and restrictions on the stability of
W . These Assumptions (A1-A6) deliver an identified set of up to two points.

Our first assumption explicitly states that no individuals affect themselves and is a standard
condition in social interaction models:

(A1) (W0)ii = 0, i = 1, . . . , N .

Assumption (A1) rules out applications with self-influence. For example, Input-Output matri-
ces typically feature (W0)ii > 0, as firms tend to source from other firms in the same industry.
With Assumption (A1), we can omit elements on the diagonal of W0 from the parameter space.
We thus can denote a generic parameter vector as θ = (W12, . . . ,WN,N−1, ρ, γ, β)

′ ∈ Rm, where
m = N (N − 1) + 3, and Wij is the (i, j)-th element of W . Reduced-form parameters can be tied
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back to the structural model (3) by letting Π : Rm → RN2 define the relation between structural
and reduced-form parameters:

Π(θ) = (I − ρW )−1 (βI + γW ) ,

where θ ∈ Rm, and Π0 ≡ Π(θ0).
As ϵt (and, consequently, νt) is mean-independent from xt, E[ϵt|xt] = 0, the matrix Π0 can

be identified as the linear projection of yt on xt. We do not impose additional distributional
assumptions on the disturbance term, except for conditions that allow us to identify the reduced-
form parameters in (4). If xt is endogenous, i.e., E[ϵt|xt] ̸= 0, a vector of instrumental variables
zt may still be used to identify Π0. In either case, identification of Π0 requires variation of the
regressor across individuals i and through instances t. In other words, either E[xtx

′
t] (if exogeneity

holds) or E[xtz
′
t] (otherwise) is full-rank.

Our next assumption controls the propagation of shocks and guarantees that they die as they
reverberate through the network. This provides adequate stability and is related to the concept of
stationarity in network models. It implies the maximum eigenvalue norm of ρ0W0 is less than one
and ensures (I − ρ0W0) is a non-singular matrix. As the variance of yt exists, the transformation
Π(θ0) is well-defined, and the Neumann expansion (I − ρ0W0)

−1 =
∑∞

j=0(ρ0W0)
j is appropriate.

(A2)
∑N

j=1 |ρ0(W0)ij| < 1 for every i = 1, . . . , N , ∥W0∥ < C for some positive C ∈ R and |ρ0| < 1.

We next assume that network effects do not cancel out, another standard assumption. As we will
show, this assumption rules out the pathological case in which endogenous and exogenous effects
exactly cancel each other out:

(A3) β0ρ0 + γ0 ̸= 0.

The need for this assumption can be shown by expanding the expression for Π(θ0), which is possible
by (A2):

Π(θ0) = β0I + (ρ0β0 + γ0)
∞∑
k=1

ρk−1
0 W k

0 . (5)

If Assumption (A3) were violated, β0ρ0 + γ0 = 0 and Π0 = β0I, so the endogenous and exogenous
effects would balance each other out, and network effects would be altogether eliminated in the
reduced form.11

Identification of the social effects parameters (ρ0, γ0) requires that at least one row of W0 adds
to a fixed and known number. Otherwise, ρ0 and γ0 cannot be separately identified from W0.
Clearly, no such condition would be required if W0 were observed.

11One important case is when networks do not determine outcomes, which we interpret as ρ0 = γ0 = 0 or with W0

representing the empty network. From equation (5), it is clear that if Π(θ0) is not diagonal with constant entries,
then it must be that (ρ0β0 + γ0) ̸= 0, which implies that ρ0 ̸= 0 or γ0 ̸= 0, and also that W0 is non-empty. Taken
together, this suggests that the observation that Π(θ0) is not diagonal is sufficient to ensure that network effects
are present and Assumption (A3) is not violated.
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(A4) There is an i such that
∑

j=1,...,N(W0)ij = 1.

Letting Wy ≡ ρ0W0 and Wx ≡ γ0W0 denote the matrices that summarize the influence of peers’
outcomes (the endogenous social effects) and characteristics on one’s outcome (the exogenous social
effects), respectively, the assumption above can be seen as a normalization. In this case, ρ0 and γ0

represent the row-sum for individual i in Wy and Wx, respectively.12

The fifth assumption allows for a specific kind of network asymmetry. We require the diagonal
of W 2

0 not to be constant as one of our sufficient conditions for identification.

(A5) There exists l, k such that (W 2
0 )ll ̸= (W 2

0 )kk, i.e., the diagonal of W 2
0 is not proportional to

ι, where ι is the N × 1 vector of ones.

In unweighted networks, the diagonal of the square of the social interactions matrix captures
the number of reciprocated links for each individual or, in the case of undirected networks, the
popularity of those individuals. Assumption (A5) hence intuitively suggests differential popularity
across individuals in the social network.

This assumption is related to the network asymmetry condition proposed elsewhere, such as in
Bramoullé et al. (2009). They show that when W0 is known, the structural model (2) is identified
if I, W0, and W 2

0 are linearly independent. Given the remaining assumptions, this condition is
satisfied if (A5) is satisfied, but the converse is not true: one can construct examples in which I,
W0, and W 2

0 are linearly independent when W 2
0 has a constant diagonal, so Π0 does not pin down

θ0. See Example 1 in Appendix A. The strengthening of this hypothesis is the formal price to pay
for the social interactions matrix W0 being unknown to the researcher.

Before proceeding to our formal results, we provide a very simple illustration to shed light
on how the assumptions above come together to provide identification. Suppose the observed
reduced-form matrix is,

Π0 =
1

455

 275 310 0

310 275 0

0 0 182

 ,

and that, following (A4), the first row is normalized to one. From the third row and column of Π0,
we see there is no path of any length connecting the individual in row 3 to or from those in rows 1
or 2, since her outcome is not affected by their covariates and their outcomes are not affected by her
covariates. In other words, individual 3, is isolated and (W0)13 = (W0)23 = (W0)31 = (W0)32 = 0.
On the other hand, individuals 1 and 2 cannot be isolated, as their covariates are correlated with
the other individual’s outcome, reflecting (A5).13 Due to the row-sum normalization of the first

12Alternatively, one could normalize ρ∗ = 1 and rescale the network accordingly. In this case, W ∗ = ρ0W0 would
be identified instead. Also, Wx = γ0

ρ0
W ∗ so γ0 would be identified relative to ρ0. Wy and Wx would be unchanged.

13If on the other hand, (W0)ij = 0.5, i ̸= j in violation of (A5), and all agents were connected, the model would
not be identified.
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row, (W0)12 = 1. Using (A3), it can be seen that W0 is symmetric if Π0 is symmetric. We thus
find that (W0)21 = 1. This and (A1) map all elements of W0, and thus,

W0 =

 0 1 0

1 0 0

0 0 0

 .

As the third individual is isolated, she will only be affected by her exogenous xi and not by
endogenous or exogenous peer effects. Hence, the (3, 3) element of Π0 is equal to β0 = 182

455
= .4.

To find ρ0, note that (I − ρ0W0)Π0 = β0I + γ0W0. Hence, focusing on the (1,1) elements of the
matrices above, we find that 275

455
− ρ0

310
455

= .4, implying ρ0 = .3 (complying with (A2)). Finally, γ0
is identified from entry (1, 2), giving γ0 =

310
455

− .3275
455

= .5.
Our final assumption articulates the need for a constant network W0 observed over multiple

instances of yt and xt:

(A6) yt and xt are observed for individuals i = 1, . . . , N , and instances t = 1, . . . , T , and the
network W0 does not depend on t

Here, “instances” can refer to time but also to settings in which the same units are observed
over multiple episodes. For example, if i are firms, then t can be segmented markets in which
they operate. For simplicity, we refer to an instance as a time period. If Π0 is known, the main
identification result we articulate below will state that W0, ρ0, β0 and γ0 are globally identified.
However, in practice, Π0 is rarely observed and thus all quantities need to be estimated. For this
purpose, when Π0 is not known, multiple observations of yt and xt with a constant W0 are required
to implement the estimator. We expand on estimation requirements in Section 3.1.

Importantly, the main identification results (for a given Π0) could, in principle, be applied for
each time period t. That is, one can write a version of Equation (3) as

yt = ρ0W0tyt + β0xt + γ0W0txt + ϵt,

where W0t is time-varying and, consequently, the reduced-form interaction matrix Π0t = (I −
ρ0W0t)

−1(Iβ0+W0tγ0) is also time-varying. If the reduced-form matrices were known, the identifi-
cation results we develop below could be applied to the reduced-form element by element for each
Π0t. Again, one rarely observes Π0t, for all t ∈ [1, T ]. This observation will motivate an extension
of the method, presented in Section 2.3.3, where Assumption (A6) is relaxed and W0 is allowed to
vary with t.

In an extension, we allow the network W0t to vary over time and introduce kernel weights. Akin
to the nonparametric regression Y = f(X) + ϵ, f is identified if E(ϵ|X) = 0, and it is possible to
estimate f using neighboring observations if f is sufficiently smooth or varies slowly. Similar
considerations extend to varying-coefficient models and, in particular, time-varying coefficient

12



models where local stability conditions as those discussed in Dahlhaus (2012) are usually invoked
(see also Hastie and Tibshirani (1993) and their Example (e)).

2.2 Main Identification Results

Under the assumptions above, we can begin to identify parameters related to the network. These
results are then useful for our main identification theorems. Let λ0j denote an eigenvalue of W0

with corresponding eigenvector v0,j for j = 1, . . . , N . Assumptions (A2) and (A3) allow us to
identify the eigenvectors of W0 directly from the reduced form. As |ρ0| < 1:

Π0v0,j = β0v0,j + (ρ0β0 + γ0)
∞∑
k=1

ρk−1
0 W k

0 v0,j

=

[
β0 + (ρ0β0 + γ0)

∞∑
k=1

ρk−1
0 λk

0,j

]
v0,j

=
β0 + γ0λ0,j

1− ρ0λ0,j

v0,j. (6)

The infinite sum converges as |ρ0λ0,j| < 1 by (A2). The equation above implies that v0,j is also
an eigenvector of Π0 with the associated eigenvalue λΠ,j =

β0+γ0λ0,j

1−ρ0λ0,j
. The fact that eigenvectors of

W0 are also eigenvectors of Π0 has a useful implication: eigencentralities may be identified from
the reduced form, even when W0 is not identified. As detailed in de Paula (2017) and Jackson
et al. (2017), such eigencentralities often play an important role in empirical work as they allow a
mapping back to underlying models of social interaction.14

Now let Θ ≡ {θ ∈ Rm : Assumptions (A1)-(A6) are satisfied} be the structural parameter
space of interest. Our identification argument is structured as follows: a) we first establish local
identification of the mapping Π(θ) using classical results on the rank of the gradient of Rothenberg,
1971 (Theorem 1); b) we then show that Π(θ) is proper (Corollary 1); and c) has a connected image
(Lemma 2, in the Appendix); d) allowing us to state the cardinality of the pre-image Π−1(Π̄) is
constant for any Π̄ in the image of Π(·), and that the cardinality is at most 2 (Theorem 2). We
then provide additional conditions to narrow the identified set to a singleton (Corollaries 2-4).

We now formally present our results. Our first theorem establishes local identification of the
mapping. A parameter point θ0 is locally identifiable if there exists a neighborhood of θ0 containing
no other θ which is observationally equivalent. Using classical results in Rothenberg (1971), we
show that our assumptions are sufficient to ensure that the Jacobian of Π relative to θ is non-
singular, which, in turn, suffices to establish local identification.

Theorem 1. Assume (A1)-(A6). θ0 ∈ Θ is locally identified.
14To identify the eigencentralities, we identify the eigenvector that corresponds to the dominant eigenvalue. If W0

is non-negative and irreducible, this is the (unique) eigenvector with strictly positive entries, by the Perron-Frobenius
theorem for non-negative matrices (see Horn and Johnson, 2013, p. 534).
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An immediate consequence of local identification is that the set {θ ∈ Θ : Π(θ) = Π(θ0)} is
discrete (i.e., its elements are isolated points). The following corollary establishes that Π is a
proper function, i.e. the inverse image Π−1(K) of any compact set K ⊂ RN2 is also compact
(Krantz and Parks, 2013, p. 124). Since it is discrete, the identified set must be finite.

Corollary 1. Assume (A1)-(A6). Then Π(·) is a proper mapping. Moreover, the set {θ : Π(θ) =

Π(θ0)} has a finite number of elements.

Under additional assumptions, the identified set is at most a singleton in each of the partitioning
sets Θ− ≡ Θ ∩ {ρβ + γ < 0} and Θ+ ≡ Θ ∩ {ρβ + γ > 0}.15

Since Θ = Θ− ∪ Θ+, if the sign of ρ0β0 + γ0 is unknown, the identified set contains, at most,
two elements. In the theorem that follows, we show global identification only for θ ∈ Θ+, since
arguments are mirrored for θ ∈ Θ−.

Theorem 2. Assume (A1)-(A6). Then for every θ ∈ Θ+, we have Π(θ) = Π(θ0) ⇒ θ = θ0. That
is, θ0 is globally identified with respect to the set Θ+.

Similar arguments apply if Theorem 2 instead were to be restricted to θ ∈ Θ−. The proof of the
corollary below is immediate and therefore omitted.

Corollary 2. Assume (A1)-(A6). If ρ0β0 + γ0 > 0, then the identified set contains at most one
element, and similarly if ρ0β0 + γ0 < 0. Hence, if the sign of ρ0β0 + γ0 is unknown, the identified
set contains, at most, two elements.16

We now turn our attention to the problem of identifying the sign of ρ0β0 + γ0 from the obser-
vation of Π0. This would then allow us to establish global identification using Theorem 2. It is
apparent from (5) that if ρ0 > 0 and (W0)ij ≥ 0, for all i, j = {1, . . . , N}, the off-diagonal elements
of Π0 identify the sign of ρ0β0 + γ0.

Corollary 3. Assume (A1)-(A6). If ρ0 > 0 and (W0)ij ≥ 0, the model is globally identified.

Real-world applications often suggest endogenous social interactions are positive (ρ0 > 0), in
which case global identification is fully established by Corollary 3. On the other hand, if ρ0 < 0

(e.g., if outcomes are strategic substitutes), ρk0 in (5) alternates signs with k, and the off-diagonal
elements no longer carry the sign of ρ0β0 + γ0. Nonetheless, if W0 is non-negative and irreducible
(i.e., not permutable into a block-triangular matrix or, equivalently, a strongly connected social
network), the model is also identifiable without further restrictions on ρ0:

15The global inversion results we use are related to, but different from, variations on a classic inversion result of
Hadamard that has been used in the literature. In contrast, we employ results on the cardinality of the pre-image
of a function, relying on less stringent assumptions. While the Hadamard result requires the image of the function
to be simply-connected (Theorem 6.2.8 of Krantz and Parks, 2013), the results we rely on do not.

16Under some special conditions, the mirror image of θ0 can be characterized from equation (5). If −W0 satisfies
Assumption (A4), we may set ρ∗ = −ρ0, β∗ = β0, γ∗ = −γ0 and W ∗ = −W0. Then, ρ0β0+γ0 = −(ρ∗β∗+γ∗). Also
note that

∑∞
k=1 ρ

k−1
0 W k

0 = −
∑∞

k=1(ρ
∗)k−1(W ∗)k, so (ρ0β0+ γ0)

∑∞
k=1 ρ

k−1
0 W k

0 = (ρ∗β∗+ γ∗)
∑∞

k=1(ρ
∗)k−1(W ∗)k.

It follows that Π(θ0) = Π(θ∗), where θ∗ = (ρ∗, β∗, γ∗,W ∗).
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Corollary 4. Assume (A1)-(A6), (W0)ij ≥ 0 and W0 is irreducible. If W0 has at least two real
eigenvalues or |ρ0| <

√
2/2, then the model is globally identified.

Corollary 4 requires that W0 be irreducible, i.e., that it is not permutable into a block upper-
triangular matrix. In the context of directed graphs, this is similar to requiring that the matrix
be strongly connected, that is, that any node can be reached from any other node. The corollary
then rules out cases when the network is not connected, for example, if there are two disjoint
groups (with no connection across groups), or a star network pointing from the center towards
the edges. The corollary holds if there are at least two real eigenvalues, or if ρ0 is appropriately
bounded. Since W0 is non-negative, it has at least one real eigenvalue by the Perron-Frobenius
theorem. If W0 is symmetric, for example, its eigenvalues are all real, and Corollary 4 holds. It
also holds if (W0)ij ≤ 0, as we can rewrite the model as ρW0 = −ρ|W0|, where |W0| is the matrix
whose entries are the absolute values of the entries in W0. However, Corollary 4 rules out cases
that mix positive (W0)ij ≥ 0 and negative interactions (W0)ij ≤ 0. In any case, the bound on |ρ0|
is sufficient and holds in most (if not all) empirical estimates we are aware of obtained from either
elicited or postulated networks, and in our application on tax competition.

2.3 Extensions

We present three extensions of the method for individual fixed effects, common shocks, and time-
varying W . Appendix B describes extensions for multivariate covariates and heterogeneous β0.

2.3.1 Individual Fixed Effects

We observe outcomes for i = 1, . . . , N individuals repeatedly through t = 1, . . . , T instances.
If t corresponds to time, it is natural to think of there being unobserved heterogeneity across
individuals, αi, to be accounted for when estimating Π0. The structural model (2) is then,

yit = ρ0

N∑
j=1

W0,ijyjt + β0xit + γ0

N∑
j=1

W0,ijxjt + αi + ϵit,

which can be written in matrix form as

yt = ρ0W0yt + xtβ0 +W0xtγ0 + α∗ + ϵt,

where α∗ is the vector of fixed effects. Individual-specific and time-constant fixed effects can be
eliminated using the standard subtraction of individual time averages. Defining ȳt = T−1

∑T
t=1 yt,

x̄t = T−1
∑T

t=1 xt, and ϵ̄t = T−1
∑T

t=1 ϵt,

yt − ȳt = ρ0W0 (yt − ȳt) + (xt − x̄t) β0 +W0 (xt − x̄t) γ0 + ϵt − ϵ̄t,
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if W0 does not change with time. Identification from the reduced form follows from previous
theorems, since Π0 is unchanged when regressing yt − ȳt on xt − x̄t.17

2.3.2 Common Shocks

We next allow for unobserved common shocks to all individuals in the network in the same instance
t. Such correlated effects αt can confound the identification of social interactions. As we have not
placed any distributional assumption on the covariance matrix of the disturbance term, our analysis
readily incorporates correlated effects that are orthogonal to xt. When this is not the case, one
possibility is to model the correlated effects αt explicitly. The model then is,

yt = ρ0W0yt + xtβ0 + γ0W0xt + αtι+ ϵt,

where αt is a scalar capturing shocks in the network common to all individuals. Let Π01 =

(I − ρ0W0)
−1 and Π02 = (β0I + γ0W0) such that Π0 = Π01Π02. The reduced-form model is

yt = Π0xt + αtΠ01ι+ vt.

We propose a transformation to eliminate the correlated effects: exclude the individual-invariant
αt, subtracting the mean of the variables in a given period (global differencing). For this purpose,
define H = 1

n
ιι′. We note that in empirical and theoretical work, it is customary to strengthen

Assumption (A4) and require that all rows of W0 sum to one if no individual is isolated (see for
example Blume et al., 2015). This strengthened assumption is usually referred to as row-sum
normalization, and is stated below:

(A4′) For all i = 1, ...N , we have that
∑

j=1,...,N(W0)ij = 1.

This can be written compactly as W0ι = ι. In this case, W0 can be interpreted as the normalized
adjacency matrix. Under row-sum normalization we have that,

(I −H) yt = (I −H) (I − ρ0W0)
−1 (β0I + γ0W0)xt + (I −H) (I − ρ0W0)

−1 ϵt

= (I −H)Π0xt + (I −H) vt,

because (I −H) (I − ρ0W0)
−1 αtι = 0 if Assumption (A4′) holds. It then follows that Π̃0 =

(I −H)Π0 is identified. The next proposition shows that, under row-sum normalization of W0, Π0

is identified from Π̃0 (and, as a consequence, the previous results immediately apply).

Proposition 1. If W0 is non-negative, irreducible, and row-sum normalized, Π0 is identified from
Π̃0.

17As is the case in panel data, this would require strict exogeneity (E[ϵs|xt] = 0 for any s and t) or predetermined
errors (E[ϵs|xt] = 0 for s ≥ t) so that the matrix Π0 can be consistently estimated.
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Under row-sum normalization of W0, a common group-level shock affects individuals homo-
geneously since (I − ρ0W0)

−1αtι = αt(I + ρ0W0 + ρ20W
2
0 + · · · )ι = αt

1−ρ0
ι, which is a vector with

no variation across entries. Consequently, global differencing eliminates correlated effects and
(I −H) (I − ρ0W0)

−1 αtι = (I − ρ0W0)
−1 αt (I −H) ι = 0. Absent row-sum normalization, global

differencing does not ensure correlated effects are eliminated. To see this, note that (I − ρ0W0)
−1

is no longer row-sum normalized and αt(I − ρ0W0)
−1ι does not have constant entries.

The next proposition makes this point formally: that the stronger Assumption (A4′) is necessary
to eliminate group-level shocks by showing it is not possible to construct a data transformation
that eliminates group effects in the absence of row-sum normalization.

Proposition 2. Define rW0 = (I − ρ0W0)
−1ι. If in space Θ = {θ ∈ Rm : Assumptions (A1)-(A6)

are satisfied}, there are N matrices W
(1)
0 , . . . ,W

(N)
0 such that [r

W
(1)
0

· · · r
W

(N)
0

] has rank N , then

the only transformation such that (I − H̃)(I − ρ0W0)
−1ι = 0 is H̃ = I.

It is useful to be able to test for row-sum normalization (A4′) as it enables common shocks to
be accounted for in the social interactions model. This is possible as

Π0ι = β0ι+ (ρ0β0 + γ0)
∞∑
k=1

ρk−1
0 W k

0 ι

=

[
β0 + (ρ0β0 + γ0)

∞∑
k=1

ρk−1
0

]
ι

=
β0 + γ0
1− ρ0

ι. (7)

The last equality follows from the observation that, under row-normalization of W0, W k
0 ι = W0ι =

ι, k > 0. This implies Π0 has constant row-sums, which suggests row-sum normalization is testable.
In the Appendix, we derive a Wald test statistic to do so.18

2.3.3 Time-varying W

We now relax Assumption (A6), which states that W0 does not vary across the time periods
t = 1, . . . , T . The version of Equation (3) with time-varying network is

yt = ρ0W0tyt + β0xt + γ0W0txt + ϵt,

with the reduced-form matrix Π0t = (I − ρ0W0t)
−1(Iβ0 +W0tγ0). We note that the identification

results developed in Subsection 2.2 can, in principle, be applied element by element to each Π0t,
leading to the identification of a time-varying W0t (and, potentially, of the parameters ρ0, β0 and
γ0).

18For ease of explanation, in the Appendix, we derive the test under the asymptotic distribution of the OLS
estimator. The test generally holds with minor adjustments for estimators with known asymptotic distributions.
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In practice, implementing any estimation strategy with a time-varying Π0t (or W0t) is not
feasible using only observation from the single time period t. We instead adopt a kernel-weighted
version. Define period-specific weights ωt, and consider the transformed data ỹs = ωs(t)ys and
x̃s = ωs(t)xs, s = 1, . . . , T . Evidently, uniform weights ωs = 1, s = 1, . . . , T are equivalent to the
strategy not considering time-varying networks, and assuming that the networks are fixed within
those windows. Alternatively, one could estimate Wt in time windows by setting ωt = 1[t ≤ t ≤ t̄],
where t and t̄ are the start and end of the time window for which Wt is estimated. In this case, the
minimum effective window length t̄−t can be computed as we discuss in Section 3.1. In the context
of DSGE models with time-varying parameters, Kapetanios et al. (2019) suggests a Gaussian kernel
with positive weights throughout the entire sample. As in nonparametric regression with smooth
kernel weights, it also assumes that the network evolves slowly over time. We further discuss this
strategy in the estimation section, and it is implemented in the empirical application section below.

3 Implementation

We now transition from our core identification results to their practical implementation. In prac-
tice, Ordinary Least Squares (OLS) can only be used to estimate θ if T ≫ N , which is in practice
unlikely to be met, as this is a high-dimensional problem. Our preferred approach makes use of
penalized estimation techniques that can be used for any given T . More specifically, we make use
of the Adaptive Elastic Net GMM (Caner and Zhang, 2014), which is based on the penalized GMM
objective function. Given the identification results presented in Section 2, the population moments
used in forming the GMM objective function will be satisfied at the true parameter vector.

After setting out the estimation procedure, we showcase the method using Monte Carlo simu-
lations based on stylized and real-world network structures. In each case, we take a fixed network
structure W0, and simulate panel data as if the data generating process were given by the model
in (1). We apply the method to the simulated panel data to recover estimates of all elements in
W0, as well as the endogenous and exogenous social effect parameters.

3.1 Estimation

The parameter vector to be estimated is high-dimensional: θ = (W12, . . . ,WN,N−1, ρ, γ, β)
′ ∈ Rm,

where m = N (N − 1) + 3 and Wij is the (i, j)-th element of the N ×N social interactions matrix
W0. To be clear, in a network with N individuals, there are N(N−1) potential interactions because
an individual could interact with everyone else but herself (which would violate Assumption A1).
As a consequence, even with a modest N , there are many more parameters to estimate, and m

is large. For example, a network with N = 50 implies more than 2,000 parameters to estimate.
While we consider N (and thus m) fixed, we still refer to θ as high-dimensional. OLS estimation
requires m ≪ NT (⇒ N ≪ T ), so many more time periods than individuals: a requirement often
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met in finance data sets (van Vliet, 2018) or in other fields (see, e.g., Section 4.2 in Rothenhäusler
et al., 2015). Instead, to estimate a large number of parameters with limited data, we utilize
high-dimensional estimation methods, which are the focus of a rapidly growing literature.

Sparsity is a key assumption underlying many high-dimensional estimation techniques. In the
context of social interactions, we say that W0 is sparse if m̃, the number of non-zero elements of
W0, is such that m̃ ≪ NT . The notion of sparsity thus depends on the number of time periods.
Sparsity corresponds to assuming that individuals influence or are influenced by a small number
of others, relative to the overall size of the potential network and the time horizon in the data. As
such, sparsity is typically not a binding constraint in social networks analysis.19

In the estimation of sparse models, the “effective number of parameters” (or “effective degrees
of freedom”) relates to the number of variables with non-zero estimated coefficients (Tibshirani
and Taylor, 2012). In the context of the current social network model, this is equivalent to m

parameters, where m = dN(N − 1) +K and d is the network density defined as m̃/(N(N − 1)).
The Adaptive Elastic Net GMM estimator presented by Caner and Zhang (2014) converges at a
rate of

√
NT/m̃ =

√
NT/[dN(N − 1) +K] = O(

√
T/(dN)) (see remark 7 in Caner and Zhang,

2014). Hence the quality of the large sample results relies on a comparison between T and dN . In
line with this, we thus require NT ≫ dN(N − 1)+K. For example, in the high-school network of
Coleman (1964) that is part of our simulation exercise, N = 70 and d = 0.076. Assuming K = 3,
N(N − 1)× d+ 3 = 370.1.20

Finally, to reiterate, our identification results themselves do not depend on the sparsity of
networks. In particular, Assumptions (A1)-(A6) do not impose restrictions on the number of links
in W0, or m̃.21 The identification results presented in Section 2 apply more broadly and irrespective
of the estimation procedure.

Our preferred approach estimates the interaction matrix in the reduced form while penalizing
and imposing sparsity on the structural object W0. We impose sparsity and penalization in the
structural-form matrix W0 because this is a weaker requirement than imposing sparsity and penal-
ization in the reduced-form matrix Π0.22 To do so, we use the Adaptive Elastic Net GMM (Caner

19Common stylized networks are sparse, such as the star, lattice (each individual is a source of spillover only to
one other individual), or interactions in pairs, triads or small groups (De Giorgi et al., 2010). Real-world economic
networks are also sparse. The sparsity in AddHealth friendship network is around 98%. Sparsity of the production
networks in the US is above 99% (Atalay et al., 2011).

20As pointed out by a referee, variation in x will also matter for estimation precision. This is reflected in the
asymptotic distribution for this estimator, shown later in this subsection.

21If N → ∞, Assumption (A2) would imply vanishing (W0)ij entries. As highlighted previously, we consider N
to be fixed, in line with many practical applications. Furthermore, Assumption (A2) is used to represent inverse
matrices as Neumann series in our identification results. What is necessary for this to hold is that a sub-multiplicative
norm on ρW be less than one. Here we use a specific norm (i.e., the maximum row-sum norm), but other (induced)
norms are also possible (i.e., the 2-norm or the 1-norm) (see Horn and Johnson, 2013, Chapter 5.6).

22Note that even if W is sparse, Π may not be sparse. In Appendix C.1, we show that [Π0]ij = 0 if, and only
if, there are no paths between i and j in W0, so the pair is not connected. So, sparsity in Π0 is understood as W0

being “sparsely connected”, which is a stronger assumption than sparsity in W0.

19



and Zhang, 2014), which is based on the penalized GMM objective function,

GNT (θ, p) ≡ gNT (θ)′ MTgNT (θ) + p1

N∑
i,j=1
i ̸=j

|Wi,j|+ p2

N∑
i,j=1
i ̸=j

|Wi,j|2 (8)

where θ = (W1,2, . . . ,WN,N−1 ρ, γ, β)
′ with dimension m = N(N − 1) + 3, and p1 and p2 are

the penalization terms. The term gNT (θ)′MTgNT (θ) is the unpenalized GMM objective function
with moment conditions based on orthogonality between the structural disturbance term and the
covariates: gNT (θ) =

∑T
t=1 [x1tet(θ)

′ · · · xNtet(θ)
′]′, et(θ) = yt − ρWyt − βxt − γWxt. There

are q ≡ N2 moment conditions since xit is orthogonal to ejt for each i, j = 1, . . . , N . Hence,
the GMM weight matrix MT is of dimension N2 × N2, symmetric, and positive definite. For
simplicity, we use MT = IN2×N2 . Note that if xt is econometrically endogenous, one can also exploit
moment conditions with respect to available instrumental variables.23 Given the identification
results presented in Section 2, if θ ̸= θ0 and does not belong to the identified set, then Π(θ) ̸= Π(θ0).
Consequently, the populational version of the GMM objective function is uniquely minimized at
the true parameter vector θ0.

The penalization terms in Equation (8) are what makes this different from a standard GMM
problem. The first term, p1

∑N
i,j=1,i ̸=j |Wi,j|, penalizes the sum of the absolute values of Wij, i.e.,

the sum of the strength of links, for all node-pairs. Depending on the choice of p1, some Wi,j’s will
be estimated as exact zeros. A larger share of parameters will be estimated as zeros if p1 increases.
The second term, p2

∑N
i,j=1,i ̸=j |Wi,j|2, penalizes the sum of the square of the parameters. This

term has been shown to provide better model-selection properties, especially when explanatory
variables are correlated (Zou and Zhang, 2009). The first-stage estimate is

θ̃(p) = (1 + p2/T ) · argmin
θ∈Rm

GNT (θ, p) (9)

where (1 + p2/T ) is a bias-correction term also used by Caner and Zhang (2014).
Implementing the numerical optimization embedded in Equation (9) is computationally chal-

lenging, as m = N(N − 1) + 3 may entail a large number of function arguments. We instead im-
plement the following modification to use fast Least-Angle Regression (LARS) algorithms (Efron
et al., 2004). For any given ρ, β, and γ, the expression for et(θ) is linear in W :

et(θ) = yt − xtβ −W (ρyt + xtγ) = ỹit(β)−Wx̃t(ρ, γ)

where ỹit(β) ≡ yt−xtβ and x̃t(ρ, γ) ≡ ρyt+xtγ and, following the strategy above, is instrumented
23For expositional ease, we describe estimation in the context of the reduced-form model (4), thereby abstaining

from individual fixed or correlated effects. As the GMM estimator uses moments between the structural disturbance
terms and covariates, this endogeneity is built into the estimation procedure.
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with xt. This motivates a two-step optimization routine:

min
θ∈Θ=Θ1×Θ2

GNT (θ, p) = min
(ρ,β,γ)∈Θ1

[
min

Wij∈Θ2

GNT (θ, p)

]
,

where the expression in brackets has a computationally efficient solution through the LARS algo-
rithm. The numerical optimization is then subsequently conducted over the parameter space of
(ρ, β, γ) only. We also impose row-sum normalization. Details of the implementation are expanded
in Appendix Subsection C.2.

A second (adaptive) step provides improvements by re-weighting the penalization by the inverse
of the first-step estimates (Zou, 2006):

θ̃∗(p) = (1 + p2/T ) · argmin
θ∈Θ


gNT (θ)′MTgNT (θ) + p∗1

∑
{i,j:W̃ij ̸=0,
i,j=1,...,N,

i ̸=j}

|Wi,j|
|W̃i,j|c

+ p2
∑

{i,j:W̃ij ̸=0,
i,j=1,...,N,

i ̸=j}

|Wi,j|2


,

(10)
where W̃i,j is the (i, j)-th element of the first-step estimate of W . We follow Caner and Zhang
(2014) and set c = 2.5. If W̃i,j < 0.05, we set W̃i,j = 0.05. This ensures that the second-stage
estimates can be non-zero even if the first-stage estimates were zero or small. The computational
improvement – described above for the first-stage estimator – is also applied in the adaptive stage.

As a third and final step, we fix the support of θ̃∗(p), S = {ρ, β, γ} ∪ {Wij : W̃ ∗
ij ̸= 0} and

estimate the final parameters without penalization. This takes as arguments only the elements of
θ̃∗(p) that were estimated as non-zero in the adaptive step. In essence, this step boils down to a
standard GMM approach,

θ̂S(p) = argmin
θ∈S

{
gNT (θ)′MTgNT (θ)

}
. (11)

Importantly, Caner and Zhang (2014) show that the third-step estimator is asymptotically normal,
with a known and easy-to-compute distribution,

δ′
[(
Ĝ′MT Ĝ

)−1 ·
(
Ĝ′MTΩMT Ĝ

)
·
(
Ĝ′MT Ĝ

)−1
]1/2

·
√

NT/m̃ · (θ̂S − θ0)
d−→ N(0, 1),

where Ĝ ≡ Ĝ(θ̂) = ∇gNT (θ) and Ω ≡ E[gNT (θ)gNT (θ)
′].24 This allows us to conduct hypothesis

testing and inference on the ρ, β, γ and the non-zero elements of W .
We write p = (p1, p

∗
1, p2) as the final set of penalization parameters. Conditional on p, the

estimate of the procedure is θ̂(p). As in Caner and Zhang (2014, p. 35), the penalization parameters
24This applies in the case of small p2. In the case of large p2, the asymptotic distribution is pre-multiplied by

Kn =
I+p2[Ĝ(θ̂)′Ω̂−1Ĝ(θ̂)]

−1

1+p2/NT . See Theorem 4 of Caner and Zhang (2014).
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p are chosen by the BIC criterion. This balances model fit with the number of parameters included
in the model.25

In Appendix C.2, we provide further implementation details, including the choice of initial
conditions. Of course, other estimation methods are available, and our identification results do
not hinge on any particular estimator. Our aim is to demonstrate the practical feasibility of using
the Adaptive Elastic Net estimator rather than claim it is the optimal estimator.26

3.2 Simulations

We showcase the method using Monte Carlo simulations. We describe the simulation procedures,
results, and robustness checks in more detail in Appendix D.1. Here, we just provide a brief
overview to highlight how well the method works to recover social networks even in relatively
short panels.

For each simulated network, we take a fixed network structure W0 and simulate panel data
as if the data generating process were given by (1). We then apply the method to the simulated
panel data to recover estimates of all elements in W0, as well as the endogenous and exogenous
social effect parameters (ρ0, γ0). Our result identifies entries in W0 and so naturally recovers links
of varying strength. It is long recognized that link strength might play an important role in social
interactions (Granovetter, 1973). Data limitations often force researchers to postulate some ties to
be weaker than others (say, based on interaction frequency). In contrast, our approach identifies
the continuous strength of ties, W0,ij, where W0,ij > 0 implies node j influences node i.

The stylized networks we consider are a random network and a political party network in which
two groups of nodes each cluster around a central node. The real-world networks we consider are
the high-school friendship network in Coleman (1964) from a small high school in Illinois, and one
of the village networks elicited in Banerjee et al. (2013) from rural Karnataka, India.

Summary statistics for each network are presented in Panel A of Table A1. The four networks
differ in their size, complexity, and the relative importance of strong and weak ties. For example,
the Erdös-Renyi network only has strong ties, while the political party network has twice as many
strong as weak ties. For the real-world networks, the mean out-degree distributions are higher, so
the majority of ties are weak, with the high school network having around 80% of its edges being
weak ties. All four networks are also sparse.

25Following Caner and Zhang, 2014, the choice of p, which we denote as p̂, is the one that minimizes

BIC(p) = log

[
gNT

(
θ̂(p)

)′
MT gNT

(
θ̂(p)

)]
+A

(
θ̂(p)

)
· log T

T

where A
(
θ̂(p)

)
counts the number of non-zero coefficients among {W1,2, . . . ,WN,N−1}, and larger than a numerical

tolerance, which we set at 10−5. See also Zou et al. (2007).
26See the alternative approaches of Gautier and Tsybakov (2014), Manresa (2016), Lam and Souza (2016), and

Gautier and Rose (2016).
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For the stylized networks, we assess the performance of the estimator for a fixed network size,
N = 30. We simulate the real-world networks using non-isolated nodes in each (so N = 70 and 65

respectively).27

We evaluate the procedure over varying panel lengths (starting from short panels with T = 5),
using various metrics. Given our core contribution is to identify the social interactions matrix,
we first examine the proportion of true zero entries in W0 estimated as zeros and the proportion
of true non-zero entries estimated as non-zeros. A global perspective of the proximity between
the true and estimated networks can be inferred from their average absolute distance between
elements. This is the mean absolute deviation of Ŵ and Π̂ relative to their true values, defined
as MAD(Ŵ ) = 1

N(N−1)

∑
i,j,i̸=j |Ŵij − Wij,0| and MAD(Π̂) = 1

N(N−1)

∑
i,j,i̸=j |Π̂ij − Πij,0|. As

these metrics are closer to zero, more of the elements in the true matrix are correctly estimated.
Finally, we evaluate the procedure’s performance using averaged estimates of the endogenous
and exogenous social effect parameters, ρ̂ and γ̂. In keeping with the estimation strategy in our
empirical application, we report unpenalised GMM.

3.3 Results

Figure A1 shows the simulation results as evaluated using the six metrics described above. Panel
A shows that for each network, the proportion of zero entries in W0 correctly estimated as zeros is
above 95% even when T = 5. The proportion approaches 100% as T grows. Conversely, Panel B
shows the proportion of strong non-zero entries estimated as non-zeros (defined as larger than 0.3)
is also high for a small T . It is above 70% from T = 5 for the Erdös-Renyi network, being at least
85% across networks for T = 25, and increasing as T grows. As discussed above, the Adaptive
Elastic Net estimator may only recover strong edges well, and not necessarily the weaker ones, due
to the well-known issue with shrinkage estimators that they tend to shrink small parameters to
zero. We return to this issue below.

Panels C and D show that for each simulated network, the mean absolute deviation between
estimated and true networks for Ŵ and Π̂ falls quickly with T and is close to zero for large sample
sizes. Finally, Panels E and F show that biases in the endogenous and exogenous social effects
parameters, ρ̂ and γ̂, also fall in T (we do not report the bias in β̂ since it is close to zero for all
T ). The fact that biases are not zero is as expected for a small T , being analogous to well-known
results for autoregressive time series models.28

Figure A2 shows that, as T increases, the procedure detects weaker links. The figure also shows
that, with low sample sizes, weak edges are generally not detected. This pattern is consistent with
the well-known fact that small parameters are likely shrunk to zero due to the penalization (Belloni
and Chernozhukov, 2011). The absence of weak edges also implies that the strength of strong edges

27Like Bramoullé et al. (2009), we exclude isolated nodes because they do not conform to row-sum normalization.
28The bias in spatial auto-regressive models with a small number of observations even when the network is observed

is similarly documented by Smith (2009), Neuman and Mizruchi (2010), Wang et al. (2014), and others.
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may also be over-estimated, since rows are normalized to one. In Panel A, we show the distribution
of the estimates of Ŵij, with T = 25 and for the high-school network. We show the distribution for
the five most common values of W0,ij. We find that most edges weaker than .5 are not detected;
edges with a strength of .75 are substantially more likely to be estimated as non-zeros. When they
are detected as non-zeros, they are more likely to be over-estimated. When we estimate W with
T = 150, Panel B shows that virtually all edges with strength greater than .5 are estimated as
non-zeros, and most edges with strength .375 are also detected. We further see are more continuous
distribution of estimates of edge strength. Only edges smaller than .25 are not detected. Panels
C and D show a similar conclusion for the village network.

Figure A3 shows the simulated and actual networks under T = 100 time periods. The network
size is set to N = 30 in the two stylized networks, N = 70 for the high school network, and
N = 65 for the village household network. In comparing the simulated and true networks, Figure
A3 distinguishes between kept edges, added edges, and removed edges. Kept edges are depicted in
blue: these links are estimated as non-zero in at least 5% of the iterations, and are also non-zero in
the true network. Added edges are depicted in green: these links are estimated as non-zero in at
least 5% of the iterations but the edge is zero in the true network. Removed edges are depicted in
red: these links are estimated as zero in at least 5% of the iterations but are non-zero in the true
network. Figure A3 further distinguishes between strong and weak links: strong links are shown
as solid edges (W0,ij > .3), and weak links are shown as dashed edges.

Panel A of Figure A3 compares the simulated and true Erdös-Renyi networks. All links are
recovered. For the political party network, Panel B shows that all strong edges are correctly
estimated. However, around half the weak edges are recovered (blue dashed edges), with the
others being missed (red dashed edges). As discussed above, this is not surprising given that
shrinkage estimators force small non-zero parameters to zero. Hence, a larger T is needed to
achieve similar performance to the other simulated networks in terms of detecting weak links. For
the more complex and larger real-world networks, Panel C shows that in the high-school network,
the strong edges are all recovered. However, around half the weak edges are missing (red dashed
edges), and there are a relatively small number of added edges (green edges): these amount to 87

edges, or approximately 1.9% of the 4, 534 zero entries in the true high-school network. A similar
pattern of results is seen in the village network in Panel D: the strong edges are all recovered, and
here the majority of weak edges are also recovered.

Panel B of Table A1 compares the network- and node-level statistics calculated from the recov-
ered social interactions matrix Ŵ to those in Panel A from the true interactions matrix W0. The
random Erdös-Renyi network is perfectly recovered. For the political party network, the number
of recovered edges is slightly lower than in the true network (41 vs. 45), and all edges are classified
as strong. The mean of the in- and out-degree distributions are slightly lower in the recovered net-
work, and all three nodes with the highest out-degree are correctly captured (nodes 1, 11, and 28),
include both party leaders (individuals 1 and 11). We then move to discussing the performance in
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the two real-world networks. In the high-school network, 30% of all edges are correctly recovered,
and they are all strong edges. As already noted in Figure A2, weak edges are not well estimated
in the high-school network. This draws two main consequences. First, the average in- and out-
degrees are smaller in the recovered network relative to the true network. Second, we over-estimate
the number of strong edges (61 vs. 113). This is a downside of row-sum normalization: because
some weak edges get estimated as zeros, the non-zeros are over-estimated so that the row adds
to one. We do, however, recover all three individuals with the highest out-degree. Finally, in the
village network, half the edges are recovered. The same phenomena of underestimating weak and
overestimating strong edges are again observed. We again recover the three households with the
highest out-degree (nodes 16, 35, and 57).

In the Appendix, we show the robustness of the simulation results to (i) varying network sizes
and (ii) alternative parameter choices and richening the structure of shocks across nodes. We
also demonstrate the gains from using the Adaptive Elastic Net GMM estimator over alternative
estimators, such as the Adaptive Lasso and OLS.

4 Application: Tax Competition between US States

We apply our results to shed new light on a classic social interactions problem: tax competition
between US states (Wilson, 1999). Defining competing “neighbors” remains the central empirical
challenge in this literature. Theory provides some guidance on the issue through two mechanisms
driving interactions across jurisdictions: factor mobility and yardstick competition.

On factor mobility, Tiebout (1956) first argued that labor and capital can move in response to
differential tax rates across jurisdictions. Factor mobility leads naturally to the postulated social
interactions matrix being (i) geographic neighbors, given labor mobility, and (ii) jurisdictions with
similar economic or demographic characteristics, given capital mobility (Case et al., 1989).

Yardstick competition is driven by voters making comparisons between states to learn about
their own politician’s quality (Shleifer, 1985). Besley and Case (1995) formalize the idea in a model
where voters use taxes set by governors in other states to infer their own governor’s quality. Yard-
stick competition leads naturally to the postulated interactions matrix being “political neighbors”:
states that voters make comparisons to.

In this application, the number of nodes and time periods is relatively low: the data covers
mainland US states, N = 48, for the years 1962-2015, T = 53. Our approach identifies the
structure of social interactions among “economic neighbors”, denoted Wecon. We contrast this
against a null that state taxes are influenced by geographic neighbors, Wgeo, as shown in Panel
A of Figure 1A. With Wecon recovered, we can establish, beyond geography, what predicts the
strength of ties between states and provide fresh insights on drivers of tax competition.

Before using the real data, we confirm the estimator’s performance when the true network is
Wgeo in simulated settings. In line with the findings of the previous section, Panel B of Figure 1A
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shows that (i) the procedure recovers strong edges frequently (more specifically, 89% of the true
strong edges are recovered) and (ii) performance deteriorates when recovering weak edges (72%).
In all cases, the estimator does not add edges not in the true network. This suggests recovered
economic links that deviate from geographic links may indeed carry signal, while weak links may
not get detected. Finally, the estimator for ρ and γ may show some downward bias with the sample
sizes in the application, consistent with the simulations in Appendix Figure A1.

4.1 Data and Empirical Specification

We denote state tax liabilities for state i in year t as τit, covering state taxes collected from real per
capita income, sales, and corporate taxes. We extend the sample used by Besley and Case (1995),
that runs from 1962-1988 (T = 26).29 The outcome considered, ∆τit, is the change in tax liabilities
between years t and (t − 2) because it might take a governor more than a year to implement a
tax program. Their model implies a standard social interactions specification for the tax setting
behavior of state governors:

∆τit = ρ0

N∑
j=1

W0,ij∆τjt +
K∑
k=1

N∑
j=1

W0,ijxjktγ0,k +
K∑
k=1

β0,kxikt + αi + αt + ϵit, (12)

where k = 1, . . . , K are the covariates for state i in period t. Tax setting behavior is determined
by (i) endogenous social effects arising through neighbors’ tax changes (

∑N
j=1W0,ij∆τjt); (ii) ex-

ogenous social effects arising through neighbors’ characteristics (
∑N

j=1 W0,ijxjkt); and (iii) state i’s
characteristics (xikt), including income per capita, the unemployment rate, and the proportions of
young and elderly in the state’s population. All specifications include state and time effects (αi,

αt). Due to the inclusion of the time effects αt, we normalize the rows of Wecon to one. Table A6
presents descriptive statistics for the Besley and Case (1995) sample and our extended sample.

Much of the earlier literature on tax competition has focused on endogenous social effects and
ignored exogenous social effects by setting γ = 0. Our identification result allows us to relax this
restriction and estimate the full typology of social effects described by Manski (1993). This is
important because only endogenous social effects lead to social multipliers from tax competition,
and they are crucial to identify as they can lead to a race-to-the-bottom or suboptimal public
goods provision (Brennan and Buchanan, 1980; Wilson, 1986; Oates and Schwab, 1988).

29Besley and Case (1995) test their political agency model using a two-equation set-up: (i) on gubernatorial re-
election probabilities and (ii) on tax setting. Our application focuses on the latter because this represents a social
interaction problem. They use two tax series: (i) TAXSIM data (from the NBER), which runs from 1977-1988 and
(ii) state tax liabilities series constructed from data published annually in the Statistical Abstract of the US, that
runs from 1962-1988. All their results are robust to either series. We extend the second series.
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4.2 Preliminary Findings

Table 1 presents our preliminary findings and comparison to Besley and Case (1995). Throughout
this section, we refer to “OLS estimates” as the estimates of the main equation (12) when W0

is postulated as Wgeo or Wecon and ρ0, γ0,k, and β0,k are estimated by OLS.30 Column 1 shows
those estimates where the postulated social interactions matrix is based on geographic neighbors,
exogenous social effects are ignored and the panel includes all 48 mainland states but runs only
from 1962-1988 as in Besley and Case (1995). Social interactions influence gubernatorial tax
setting behavior: ρ̂OLS = .375. Column 2 shows this to be robust to instrumenting neighbors’ tax
changes using the instrument set proposed by Besley and Case (1995): namely, instrumenting for
∆τjt using geographic neighbors’ lagged changes in per capita income and unemployment rates.
These instruments are in the spirit of using exogenous social effects to instrument for neighbors’
tax changes. ρ̂2SLS is more than double the magnitude of ρ̂OLS, suggesting tax setting behaviors
across jurisdictions are strategic complements.

Columns 3 and 4 replicate both specifications over the longer sample, confirming Besley and
Case’s (1995) finding on social interactions to be robust. ρ̂2SLS is again more than double ρ̂OLS.
The result in Column 4 implies that for every dollar increase in the average tax rates among
geographic neighbors, a state increases its own taxes by 64 cents. This is similar to the headline
estimate of Besley and Case (1995).31

4.3 Endogenous and Exogenous Social Interactions

We now move beyond much of the earlier literature to first establish whether there are endogenous
and exogenous social interactions in tax setting. We first focus on the endogenous and exogenous
social interaction parameters, and in the next subsection, we detail the identified social interac-
tions matrix, Ŵecon. To do so, we need to modify slightly how we instrument for neighbors’ tax
changes: the instrument set proposed by Besley and Case (1995) based on geographic neighbors’
characteristics will generally be weaker when estimating the full specification in (12) because the
instruments are now directly controlled for in (12). We use an Adaptive Elastic Net GMM ap-
proach, which instruments neighbors’ tax changes with the characteristics of all other states. With
the inclusion of endogenous and exogenous social effects, this represents our preferred approach.

Columns 1 and 2 of Table 2 show OLS and GMM estimates for ρ obtained from the Adaptive
Elastic Net procedure, where we still set γ = 0 but use our preferred instrument set: ρ̂GMM = .709 >

30We postulate that W is Wecon obtained by running the procedure in Section 3, retrieving Ŵ , and re-running
model (12) with W = Ŵ . For such OLS estimates, we use robust standard errors and ignore the sampling uncertainty
in the estimated Wecon.

31Nor is the magnitude very different from earlier work examining fiscal expenditure spillovers. For example,
Case et al. (1989) find that US state governments’ levels of per-capita expenditure are significantly impacted by
the expenditures of their neighbors, with a one-dollar increase in neighbors’ expenditures leading to a seventy-cent
increase in own-state expenditures.
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ρ̂OLS = .649. Columns 3 and 4 estimate the full model in (12). Relative to when exogenous social
effects are assumed away (γ = 0), the OLS and GMM estimates of ρ are smaller, but we continue to
find robust evidence of endogenous social interactions in tax setting. The specification in Column
4 represents our preferred one: ρ̂GMM = .452 (with a standard error of .132). This value meets the
requirements on ρ in Corollaries 3 and 4 for global identification.32

4.4 Identified Social Interactions Matrix

Figure 1B shows how the structures of economic (Ŵecon) and geographic networks (Wgeo) differ,
where connected edges imply that two states are linked in at least one direction (state i causally
impacts state taxes in j, and/or vice versa). This comparison makes clear whether all states
geographically adjacent to i matter for its tax setting behavior and whether there are non-adjacent
states that influence its tax rate.

The left-hand panel of Figure 1B shows the network of geographic neighbors (whose edges are
colored blue), onto which we superimpose edges not identified as links in Wecon; dropped edges are
in red. The vast majority of geographically adjacent states are irrelevant for tax setting behavior.
The right-hand panel of Figure 1B adds new edges identified in Ŵecon that are not part of Wgeo;
these added edges are in green and represent non-geographically adjacent states through which
social interactions occur. For tax-setting behavior, economic distance is imperfectly measured if
we simply assume interactions depend only on physical distance.

Table 3 summarizes the comparison between Wgeo and Ŵecon. Wgeo has 214 edges, while Ŵecon

has only 49. Ŵecon and Wgeo have 9 edges in common. Hence, the vast majority of geographical
neighbors (205/214 = 96%) are not relevant for tax setting. Ŵecon has 40 edges that are absent in
Wgeo, and the identified social interactions are more spatially dispersed than under the assumption
of geographic networks. This is reflected in the far lower clustering coefficient in Ŵecon than in
Wgeo (.042 versus .419).33

4.5 Links and Reciprocity

Our estimation strategy identifies the continuous strength of links, W0,ij, where W0,ij > 0 is
interpreted as state j influencing outcomes in state i. This is useful because recent developments
in tax competition theory, using insights from the social networks literature, suggest links need
not be reciprocal (Janeba and Osterleh, 2013).

Table 3 reveals that only 12.2% of edges in Ŵecon are reciprocal (all edges in Wgeo are reciprocal
by definition). Hence, tax competition is both spatially disperse and asymmetric. In most cases

32Table A7 shows the full set of exogenous social effects (so Columns 1 and 2 refer to the same specifications as
Columns 3 and 4 in Table 2). Exogenous social effects operate through economic neighbors’ unemployment rate,
demographic characteristics, and their governor’s age.

33The clustering coefficient is the frequency of the number of fully connected triplets over the total number of
triplets.
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where tax setting in state i is influenced by taxes in state j, the opposite is not true.
Given common time shocks αt in (12), row-sum normalization is required and ensures

∑
j W0,ij =

1. Hence, for every state i, there will be at least one economic neighbor state j∗ that impacts it, so
W0,ij∗ > 0. This just reiterates that social interactions matter. On the other hand, our procedure
imposes no restriction on the derived columns of Ŵecon. It could be that a state does not affect
any other state. To see this in more detail, the final rows of Table 3 report the degree distribution
across states, splitting for in-networks and out-networks. In Wgeo, the in-degree is by construction
equal to the out-degree, as all ties are reciprocal. The greater sparsity of the network of economic
neighbors is reflected in the degree distribution being lower for Ŵecon than Wgeo. In Ŵecon, the
dispersion of in- and out-degree networks is very different (as measured by the standard deviation),
being nearly nine times higher for the in-degree. Hence one reason for so few reciprocal ties being
in the economic network is that out-degree network ties are rarely also in-degree ties.

This asymmetry in Ŵecon further suggests that some highly influential states drive tax setting
behavior in other states. To see which states these are, Figure 2 shows a histogram for the number
of out-degree links from states. Twenty states have an out-degree of zero, so their tax rates have
no direct impact on any other state’s tax setting behavior. The most influential states in terms of
the highest out-degree are Alabama (directly impacts tax setting behavior in five other states) and
South Carolina, Pennsylvania, and Montana (which each directly impact tax setting behavior in
four other states). Taking South Carolina as an example, the four states that it directly impacts
include its geographic neighbor, Georgia, as well as non-geographic neighbors Missouri, Montana,
and Virginia.

4.6 Factor Mobility or Yardstick Competition?

We use Ŵecon to shed light on the roles of factor mobility and yardstick competition in driving
tax competition. To do so, we estimate the factors correlated with the existence of links between
states i and j in Ŵecon relative to Ŵgeo. For state pairs with non-zero links in either Ŵecon or
Ŵgeo, we define a dummy outcome Ŵecon,ij = 1 if a link between states i and j is estimated under
Ŵecon and Ŵecon,ij = 0 if a link between states i and j exists under Ŵgeo but not under Ŵecon. We
examine correlates of links using the following dyadic regression:

Ŵecon,ij = λ0 + λ1Xij + λ2Xi + λ3Xj + uij, (13)

estimated using a linear probability model. The elements Xij, Xi, and Xj correspond to charac-
teristics of the pair of states (i, j), state i, and state j, respectively. Covariates are time-averaged
over the sample period, and robust standard errors are reported.

Table 4 presents the dyadic regression results. Column 1 controls only for the distance between
states i and j: this is highly predictive of an economic link between them. This reflects that the
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economic network of state i often comprises states are in the same region, but not necessarily
contiguous to state i. Column 2 adds two Xij covariates to capture the economic and demographic
homophily between states i and j. GDP homophily is the absolute difference in the states’ GDP
per capita. Demographic homophily is the absolute difference in the share of young people (aged
5-17) plus the absolute difference of the share of elderly people (aged 65+) across the states. GDP
homophily does not predict economic ties, whereas demographic homophily does.

Columns 3-5 then sequentially add in several sets of controls. For labor mobility, we use net
state-to-state migration data to control for the net migration flow of individuals from state i to
state i (defined as the flow from i to j minus the flow from j to i).34 We then add a political
homophily variable between states. For any given year, this is set to one if a pair of states have
governors of the same political party. As this is time-averaged over our sample, this element
captures the share of the sample in which the states have governors of the same party. Lastly, we
include whether state j is considered a tax haven (and so might have disproportionate influence
on other states). Based on Findley et al. (2012), the following states are coded as tax havens:
Nevada, Delaware, Montana, South Dakota, Wyoming, and New York.

Column 5 shows that with this full set of controls, distance remains a robust predictor of the
existence of economic links between states. However, the identified economic network highlights
additional significant predictors of tax competition between states: political homophily reduces the
likelihood of a link, suggesting any yardstick competition driving social interactions occurs when
voters compare their governor to those of the opposing party in other states. Tax haven states
appear to be especially less influential in the tax setting behaviors of other states. This mirrors
what was observed in Figure 2, where some of the prominent tax havens – Nevada, Delaware, and
New York – were all identified to have zero out-degree links. The relatively weak influence of tax
haven states eases concerns over a race-to-the-bottom in tax setting behaviors.

Column 6 controls for state i and state j fixed effects. This reinforces the idea that distance
and political homophily correlate to the strength of influence states tax setting has on others (the
tax haven dummy cannot be separately identified in this specification). Labor mobility between
states does not robustly predict the existence of economic ties.

4.7 Dynamics

As in our identification result, our empirical approach has taken the network structure as fixed over
the entire sample period. In the context of tax competition over our study period, this might be a
strong assumption. We examine the issue in more detail by allowing the estimated Wecon matrix

34We also experimented with alternative measures of labor migration, and the results were qualitatively the
same. State-to-state migration data are based on year-to-year address changes reported on individual income tax
returns filed with the IRS. The data cover filing years 1991 through 2015 and include the number of returns filed,
which approximates the number of households that migrated, and the number of personal exemptions claimed, which
approximates the number of individuals who migrated. The data are available at https://www.irs.gov/statistics/soi-
tax-stats-migration-data (accessed September 2017).
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to vary over time by changing the weight placed on observations from any given time period. More
precisely, for any given time period t, we weight observations using a Gaussian kernel with its
center varying period-by-period from 1962 to 2015. The variance of the kernel is set such that 75%
of the weight is given to the first half of the data (i.e., pre-1988) when the kernel is centered in 1962.
Figure A4 shows the kernel employed as we vary its center: the solid kernel is centered in 1962,
the start of our sample – when we place the most weight on observations from 1962. The static
case considered previously is akin to using a uniform kernel over all periods. This kernel weighting
approach is outlined in Section 2.3.3. We fully describe the algorithm in Appendix Section C.2.

We begin by considering time-varying estimates of the endogenous and exogenous social inter-
action parameters from the full model in (12). The results for the endogenous social interactions
parameter are shown in Figure 3, where the shaded areas are the 95% confidence intervals of
the period-by-period estimates. Panel A shows that OLS estimates of ρ̂ drift up over time, so the
strength of endogenous interactions increases from around .35 in the late 1960s to .50 by the 2010s.
In all periods, we can reject the null that the endogenous social effect is zero. Recall the earlier
static estimate was ρ̂OLS = .375.

Panel B shows the estimated endogenous social effect when we use GMM based on the charac-
teristics of all other states as IVs. This also drifts up from around .35 in the late 1960s to .50 by
the 2010s. In the majority of periods, we can reject the null of no endogenous social effect.35

Figure 4 shows the evolution of Ŵecon over time as we center the kernel on different periods,
following the same color-coding as in Figure 1. In all periods, geography-based edges play little
role, and over time, the economic network becomes denser. This highlights not only that economic
networks for tax competition always differ starkly from geography-based networks, but that the
nature of economic networks relevant to tax competition has changed steadily over time.

Figure 5 shows how the features of Ŵecon evolve as we place greater weight from early to later
periods. For each statistic, we plot the period-by-period estimate when we center the kernel in
any given period. The resulting smoothed estimates are then shown. To ease exposition, networks
edges with W0,ij < 1/47 are removed. This cutoff is chosen as, in theory, states can only link at
maximum with 47 other states. Panel A shows the share of edges that are kept from the previous
estimate (centered in the previous period). We see relatively high stability in Ŵecon with the
smoothed estimate suggesting more than 60% of edges always being kept from one estimate to the
next, with this stability increasing from the late 1980s.

Panel B shows how the overlap between Ŵecon and Wgeo varies over time, as measured by the
share of edges that are only present in Ŵecon. There is little overlap between the two networks over
the entire sample. The smoothed estimate suggests that at least 80% of identified edges in Ŵecon

are never in Wgeo. The divergence between economic and geographic neighbors becomes starker
from the mid-1980s onwards.

35Standard errors are estimated without imposing the restriction that parameters vary slowly over time, and
fluctuations across periods reflect variations in the network across periods.

31



Panels C and D show how the clustering and reciprocity of links in Ŵecon vary as we shift
the weight to later observations. Clustering of Ŵecon increases from the 1960s through to the
early 2000s. Thereafter, social interactions in tax competition become sparser. We also observe a
reversal in the extent to which social interactions are reciprocal, with reciprocity rising to a peak
in the early 1980s – when 20% of ties were reciprocal – and slowly falling thereafter.

Taken together, the results suggest the nature of tax competition between US states has changed
over time through two mechanisms: (i) the strength of endogenous social interactions (ρ̂) has
increased over time and (ii) the network of states interacted with (Ŵecon) varies over time. This has
important implications for policy evaluation: the same intervention might have different spillover
effects if implemented at different moments in time due to the evolution of ρ̂ and Ŵecon. We
consider this next using counterfactual simulations.

4.8 Counterfactuals

We use a counterfactual exercise to contrast how shocks to tax setting in a given state propagate
under Ŵecon, relative to what would have been predicted under Wgeo. We do so for both static and
dynamic estimates of Ŵecon. We focus on South Carolina (SC), a state with one of the highest
out-degree, as shown in Figure 2. We consider a scenario in which SC exogenously increases its
taxes per capita by 10%. We measure the differential change in equilibrium state taxes in state j

under the two network structures using the following statistic:

Υj = log(∆τjt|Ŵecon)− log(∆τjt|Wgeo), (14)

so that positive (negative) values imply equilibrium taxes being higher (lower) under Ŵecon.36

Starting with the static case, Panel A of Figure 6 shows for each mainland US state the spillover
effects through the economic network of tax competition. This highlights positive spillovers on tax
rates in many states that are not geographic neighbors of SC. Panel B graphs Υj to make precise
how spillovers derived from Ŵecon diverge from those predicted under Wgeo. In 26 states, Υj

is smaller than .01% because both networks predict negligible spillovers to those states. In the
remaining 22 mainland states, there is a wide discrepancy between the equilibrium state tax rates
predicted under Ŵecon relative to Wgeo: Υj varies from −1 to 4.03. The long-run effect in SC itself
is also higher under Ŵecon than under Wgeo. The former states that given feedback effects, the
long-run increase in tax rates in SC from a 10% increase is 11.4%, while the geographically based
network implies a smaller equilibrium increase of 10.3%.

As Ŵecon is spatially more dispersed than Wgeo, the general equilibrium effects are different
under the two network structures. Table 5 summarizes the general equilibrium implications for
tax inequality under Ŵecon and the Wgeo counterfactual. The average tax rate increase under

36For Wgeo, we calculate the counterfactual at ρ̂GMM = .452, the endogenous effect parameter estimated in our
preferred specification, Column 4 of Table 2.
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Ŵecon is three times that estimated under Wgeo. Moreover, the dispersion of tax rates across
states increases under Ŵecon relative to Wgeo. Finally, assuming interactions are based solely on
geographic neighbors, we miss the fact that many states have relatively small tax increases.

We can repeat the exercise using the dynamically estimated economic network. Throughout, we
calculate the general equilibrium effects of the same policy experiment: SC increasing its taxes per
capita by 10%. These general equilibrium effects vary over the sample period because the strength
of social interactions in tax competition vary (ρ̂GMM), as shown in Figure 3, and identified economic
neighbors vary over time (Ŵecon), as shown in Figure 4. The results are summarized in Figure 7.
Placing weight on the early or later part of the sample generates similar changes in average tax
rates and their variance in general equilibrium – with both being lower than simulated under the
static model. Placing more weight on the middle of the sample period generates higher changes in
average tax rates and their variance in general equilibrium.

The differential general equilibrium impacts found as we place different weights across sample
observations links to recent discussions on the external validity of internally valid causal impacts
based on micro-evidence. While the earlier literature has emphasized the potential interaction of
treatment effects with aggregate shocks (Rosenzweig and Udry, 2020) or how behavioral responses
to social insurance policies vary over the business cycle (Kroft and Notowidigdo, 2016), our anal-
ysis provides another explanation for the changing impacts of policies where social interactions
determine behavior: changes in the strength of social interactions and the network of economic
interactions.

5 Discussion

In a canonical social interactions model, we provide sufficient conditions under which the social
interactions matrix, and endogenous and exogenous social effects are all globally identified, even
absent information on social links. Our identification strategy is novel and may bear fruit in
other areas. The method is immediately applicable to other classic social interactions problems,
but where data on social links is either missing or partial. In fields such as macroeconomics,
political economy, and trade, there are core areas of research where social interactions across
jurisdictions/countries etc. drive key outcomes, panel data exist over many periods, and the
number of nodes is relatively fixed. Moreover, while our discussion and application have focused on
a continuous policy response (state taxes), our methods can also be applied to the extensive margin
of policy adoption and diffusion. Such diffusion models might generate network interactions where
some states influence the later adoption of economic and social policies in other jurisdictions. This
issue is studied by DellaVigna and Kim (2022) in the context of US state policies – they examine
the diffusion of over 700 policies in the past 70 years. Their work also suggests the nature of
interactions across states has changed: while geographic proximity is a good predictor of policy
diffusion, they also find that since 2000, political alignment across states has become the strongest
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predictor of diffusion.
In finance, high-frequency panel data is readily available and relevant for the study of core

research questions. For example, a long-standing question has been whether CEOs are subject to
relative performance evaluation, and if so, what is the comparison set of firms/CEOs used (Edmans
and Gabaix, 2016). More generally, our method can be readily applied to a large class of economic
questions around contagion, risk, and the fragility of economic and environmental systems. For
example, since the financial crisis of 2008, it has become clear that linkages between actors such as
firms or banks are complex and often hidden, yet because endogenous network interactions cause
feedback loops and have multiplier effects, they can have enormous implications for the evolution
of a financial crisis or the propagation of supply shocks in aggregate. Identifying such synchronicity
is a critical first step to putting in place policies to reduce the fragility of economic systems (van
Vliet, 2018; Elliott and Golub, 2022; Goldstein et al., 2022).

Advances in the availability of administrative data, data from social media, mobile technologies,
and online economic transactions all offer new possibilities to identify social interactions with long
panels or high-frequency data collection, where data on social ties will typically be missing.

Three further directions for future research are of note. First, under partial observability of W0

(as in Blume et al., 2015), the number of parameters in W0 to be retrieved falls quickly. Our ap-
proach can then still be applied to complete knowledge of W0, such as if Aggregate Relational Data
is available, and this could be achieved with potentially weaker assumptions for identification, and
in even shorter panels. To illustrate possibilities, Figure A5 shows results from a final simulation
exercise in which we assume the researcher starts with partial knowledge of W0. We do so for
Banerjee et al. (2013) village family network, showing simulation results for scenarios in which the
researcher knows the social ties of the three (five, ten) households with the highest out-degree. For
comparison, we also show the earlier simulation results when W0 is entirely unknown. This clearly
illustrates that with partial knowledge of the social network, performance on all metrics improves
rapidly for any given T .

Second, we have developed our approach in the context of the canonical linear social interactions
model (1). This builds on Manski (1993) when W0 is known to the researcher, and the reflection
problem is the main challenge in identifying endogenous and exogenous social effects. However,
the reflection problem is functional-form dependent and may not apply to many non-linear models
(Blume et al., 2011, Blume et al., 2015). An important topic for future research is to extend the
analysis to non-linear social interaction settings. Relatedly, the canonical social interaction model
assumes that the same W0 governs the endogenous and exogenous channels. Despite the relaxation
we propose in Section 2.3.3, we see this as a limitation of the current method, and future research
is needed to allow for a fully flexible approach.

Finally, an important part of the social networks literature examines endogenous network for-
mation (Jackson et al., 2017; de Paula, 2017). Our analysis allows us to begin probing the issue
in two ways. First, the kind of dyadic regression analysis in Section 4 on the correlates of entries
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in W0,ij suggests factors driving link formation and dissolution. Second, this leads naturally to a
broad agenda going forward, to address the challenge of simultaneously identifying and estimating
time varying models of network formation and social interaction, all in cases where data on social
networks is not required.
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Geographic network edges
Removed (geographic) edges in economic network
New edges added in economic networks

Figure 1A: Network Graph of US States, Geographic Neighbors

Notes: Panel A represents the continental US states (N=48). An edge is drawn between a pair of states if they share a geographic border. State abbreviations are as used by US Post Office
(http://about.usps.com/who-we-are/postal-history/state-abbreviations.pdf). Panel B is the outcome of a simulation exercise where the true network is the geographic network. 1,000 Monte Carlo iterations
were performed. The true parameters are rho_0=.3, \beta_0=.4 and \gamma_0=.5. All specifications include time and node fixed effects. Kept edges are depicted in blue: these links are estimated as non-
zero in at least 5% of the iterations and are also non-zero in the true network. Added edges are depicted in green: these links are estimated as non-zero in at least 5% of the iterations but the edge is zero
in the true network. Removed edges are depicted in red: these links are estimated as zero in at least 5% of the iterations but are non-zero in the true network. The figure further distinguish between strong
and weak links: strong links are shown in thick edges (with strength is greater than or equal to .3).

Figure 1B: Network Graph of US States, Identified Economic Neighbors

Notes: Figure 1B represents the continental United States (N=48). The economic network is derived from our preferred specification, where we penalize geographic neighbors to states, and allow for
exogenous social effects. A blue edge is drawn between a pair of states if they are geographic neighbors and were estimated as connected. A red edge is drawn between a pair of states if they are
geographic neighbors but were not estimated as connected. A green edge is drawn between a pair of states if they are not geographic neighbors and were estimated connected. The left hand side graph
just shows red and blue edges. The right hand side shows all three types of edges. State abbreviations are as used by US Post Office (http://about.usps.com/who-we-are/postal-history/state-
abbreviations.pdf).

A. Geographic Network B. Geographic Network (recovered in simulations)

A. Economic Network (kept and removed edges only) B. Economic Network (all edges)
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Figure 2: Out-degree Distribution

Notes: The out-degree distribution calculated from geographic neighbor's network (W-geo) is shown in
blue. The distribution calculated from economic neighbor's network in (W-econ) is shown in red. State
abbreviations are as used by US Post Office (http://about.usps.com/who-we-are/postal-history/state-
abbreviations.pdf).



A. OLS B. GMM

Notes: Panel A shows the OLS estimates of the endogenous social effects estimate (rho) with a Gaussian kernel with center varying period-by-period from 1962 to 2015. The variance of the kernel is set such that
75% of the weight is given to the first half of the data (i.e. pre-1988) with the kernel centered at 1962. Panel B shows the GMM estimates. Shaded areas are the 95% confidence intervals of the period-by-period
estimates. Robust standard errors are shown in Panel A and standard errors based on the Caner and Zhang (2014) procedure are shown in Panel B.

Figure 3: Dynamic Endogenous Social Effects (rho)
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Geographic network edges
New edges added in economic networks

Notes: Each Figure represents the continental United States (N=48). The economic network is derived from our preferred specification, where we allow for exogenous social effects. A blue edge is drawn between a pair of states if they are geographic neighbors and
were estimated as connected. A green edge is drawn between a pair of states if they are not geographic neighbors and were estimated connected. State abbreviations are as used by US Post Office (http://about.usps.com/who-we-are/postal-history/state-
abbreviations.pdf).

Figure 4: Dynamic Network Graph of US States, Identified Economic Neighbors
Centered in 1965 Centered in 1975 Centered in 1985

Centered in 1995 Centered in 2005 Centered in 2015
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Figure 5: Dynamic Network Graph of US States, Identified Economic Neighbors

Notes: The panels show various statistics of the estimated economic networks using a Gaussian kernel with its center varying period-by-period from 1962 to 2015. the variance of
the kernel is set such that 75% of the weight is given to the first half of the data (i.e. pre-1988) with the kernel centered at 1962. Panel A shows the share of edges kept from the
network in the previous period. Panel B shows the share of edges in W-econ only (compared to W-geo). Panel C shows the clustering coefficient of the estimated economic
networks. Panel D shows the share of reciprocated edges in the economic network. In all networks, edges smaller than 1/47 are removed. This cutoff is chosen as, in theory,
states can only link at maximum with 47 other states. The blue line shows the smoothed estimates across time periods.

A. Share of edges kept from previous network B. Share of edges in W-econ only

C. Clustering D. Reciprocity
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Positive values: higher equilibrium taxes under economic than geographic neighbors
Negative values: lower equilibrium taxes under economic than geographic neighbors

Figure 7: Dynamic General Equilibrium Impacts of SC Tax Rise Shocks

Panel A. Average tax increase

Notes: The panels show equilibrium impulse responses in taxes set in each state as a result of South Carolina increasing its tax change by 10%. These are based on estimated economic networks using a Gaussian kernel with 
its center varying period-by-period from 1962 to 2015. The variance of the kernel is set such that 75% of the weight is given to the first half of the data (i.e. pre-1988) with the kernel centered at 1962. Panel A shows the 
average tax increase for the kernel centered in each period (in gray dots) and the smoothed line (in blue). The horizontal dashed line corresponds to the average tax increase if the network was considered to be static. Panel B 
shows a similar construction for the variance of tax increase across states.

Panel B. Variance tax increase

Figure 6: General Equilibrium Impacts of South Carolina Tax Rises

Notes: This shows the equilibrium impulse responses in taxes set in each state as a result of South Carolina increasing its tax change by 10%. We compare these derived tax changes under the identified economic network
structure, relative to that assumed under a geographic neighbors structure. We graph the log change in equilibrium taxes under economic neighbors, minus the log change in equilibrium taxes under geographic neighbors.
Positive values (red shaded) states indicate higher equilibrium taxes under economic neighbors than geographic neighbors, and negative values (blue shaded) states indicate lower equilibrium taxes under economic neighbors
than geographic neighbors.

State's Reaction to 10% increase in SC taxes
Panel A. Economic Network Panel B. Economic Network, relative to Geographic Network
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0.06

0.09

0.12

1970 1980 1990 2000 2010
Center of the kernel

0.175

0.200

0.225

0.250

1970 1980 1990 2000 2010
Center of the kernel



Table 1: Geographic Neighbors
Dependent variable: Change in per capita income and corporate taxes
Coefficient estimates, standard errors in parentheses

(1) OLS

(2) 2SLS: IVs are 
Characteristics of 

Geographic 
Neighbors

(3) OLS

(4) 2SLS: IVs are 
Characteristics of 

Geographic 
Neighbors

Geographic Neighbors' Tax Change (t - [t-2]) .375*** .868*** .271*** .642***
(.080) (.359) (.050) (.200)

Period 1962-1988 1962-1988 1962-2015 1962-2015
First Stage (F-stat) 14.2 24.2
Controls Yes Yes Yes Yes
State and Year Fixed Effects Yes Yes Yes Yes
Observations 1,296 1,248 2,544 2,544

Besley and Case (1995) Sample

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. In all specifications, a pair of states are considered neighbors if they share a geographic border. The sample
covers 48 mainland US states. In Columns 1 and 2 the sample runs from 1962 to 1988 (as in Besley and Case (1995)). In Columns 3 and 4 the sample is extended to run from
1962 to 2015. The dependent variable is the change in state i's total taxes per capita in year t. OLS regressions estimates are shown in Columns 1 and 3. Columns 2 and 4
show 2SLS regressions where each geographic neighbor's tax change is instrumented by lagged neighbor's state income per capita and unemployment rate. All regressions
control for state i’s income per capita in 1982 US dollars, state i’s unemployment rate, the proportion of young (aged 5-17) and elderly (aged 65+) in state i’s population, and
the state governor's age. All specifications include state and time fixed effects. With the exception of governor's age, all variables are differenced between period t and period t-
2. Robust standard errors are reported in parentheses.

Extended Sample



Table 2: Economic Neighbors
Dependent variable: Change in per capita income and corporate taxes
Coefficient estimates, standard errors in parentheses

(1) OLS (2) GMM (3) OLS (4) GMM

Economic Neighbors' Tax Change (t - [t-2]) .649*** .709*** .402*** .452***
(.047) (.035) (.044) (.132)

Period
Controls Yes Yes Yes Yes
State and Year Fixed Effects Yes Yes Yes Yes
Observations 2,544 2,544 2,544 2,544

1962-2015 1962-2015

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The sample covers 48 mainland US states running from 1962 to 2015. The dependent
variable is the change in state i's total taxes per capita in year t. We allow for exogenous social effects in Columns 3 and 4. OLS regressions estimates
are shown in Columns 1 and 3. Columns 2 and 4 show the GMM estimates where each economic neighbors' tax change is instrumented by the
characteristics of all states. All regressions control for state i’s income per capita in 1982 US dollars, state i’s unemployment rate, the proportion of
young (aged 5-17) and elderly (aged 65+) in state i’s population, and the state governor's age. All specifications include state and time fixed effects.
With the exception of governor's age, all variables are differenced between period t and period t-2. Columns 1 and 3 report robust standard errors in
parentheses. Columns 2 and 4 report standard errors adopting the procedure described in Caner and Zhang (2014).

No Exogenous Social Effects Exogenous Social Effects



Table 3: Geographic Versus Economic Networks
Geographic Network Economic Network

Number of Edges 214 49
Edges in Both Networks 9 9
Edges in W-geo only 205
Edges in W-econ only 40
Clustering .419 .042
Reciprocated Edges 100% 12.2%

out-degree 1.021 (0.144)
in-degree 1.021 (1.246)

Degree Distribution Across Nodes (states)

4.458 (1.597)

Notes: This compares statistics derived from the geographic network of US states to those from the
estimated economic network among US states. The number of edges, edges in both networks, edges in W-
geo only, edges in W-econ only, counts the number of edges in those categories. Reciprocated edges is the 
frequency of in-edges that are reciprocated by out-edges (by construction, this is 100% for geographic
networks). The clustering coefficient is the frequency of the number of fully connected triplets over the total
number of triplets. The degree distribution across nodes counts the average number of connections
(standard deviation in parentheses): we show this separately for in-degree and out-degree (by construction,
these are identical for geographic networks). 



Table 4: Predicting Links to Economic Neighbors
Linear Probability Model
Dependent variable = 1 if Economic Link Between States Identified, = 0 if geographically linked
Robust standard errors in parentheses

Distance
Economic and 
Demographic 

Homophily
Labor Mobility Yardstick 

Competition Tax Havens Fixed Effects

(1) (2) (3) (4) (5) (6)

Distance  .890*** .921***  .921*** .940*** .940***  1.287*** 
(.081)  (.082)  (.082)  (.091)  (.091)  (.120)  

Distance sq. -.135*** -.139*** -.139*** -.144*** -.145*** -.255***
(.025)  (.024)  (.025)  (.027)  (.027)  (.039)  

GDP Homophily -.063   -.063   -.083   -.092   -.219   
(.078)  (.079)  (.082)  (.085)  (.348)  

Demographic Homophily -1.745*** -1.745*** -1.047*   -.960   .579   
(.552)  (.554)  (.605)  (.604)  (1.240)   

Net Migration           -.033  -.020  -.185  -.039
          (.603) (.577) (.612) (1.48) 

Political Homophily                     -.337*** -.321*** -.287*  
                    (.120)  (.119)  (.155)  

Tax Haven                               -.093**           
                              (.036)            

Origin and destination FE No No No No No Yes
Adjusted R-squared .664 .664 .664 .651 .657 .831
Observations 254 254 254 212 212 212

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The specifications in all Columns are cross-sectional linear probability models where
the dependent variable is equal to 1 if an economic clink between states is identified, and zero if a geographic link exists between the states. A
pair of states is considered a first-degree geographic neighbor if they share a border. Distance and distance squared are calculated from the
centroids of states' capital cities. GDP homophily is the absolute difference of states' GDP per capita. Demographic homophily is the absolute
difference of share of young (aged 5-17) plus the absolute difference of the share of elderly in states' population (aged 65+). Net migration (in
millions) based on individuals tax returns (Source: Internal Revenue Service, https://www.irs.gov/statistics/soi-tax-stats-migration-data). Political
homophily is equal to one if a pair of states have governors of same party at given year. Nevada, Delaware, Montana, South Dakota, Wyoming
and New York are considered tax haven states. Time averages are taken for all explanatory variables. Robust standard errors are shown in
parentheses.



Table 5: General Equilibrium Impacts of South Carolina Tax Rises
Geographic Neighbor 

Network
Economic Neighbor 

Network Ratio

Average tax increase 0.03 0.08 3.10
Variance tax increase 0.15 0.19 1.30
Tax dispersion 0.01 0.32 34.41

States with tax increase > 0.05% 12 26 2.17
States with tax increase > 0.5% 7 23 3.29
States with tax increase > 1% 4 20 5.00
States with tax increase > 2.5% 3 15 5.00
States with tax increase > 5% 3 15 5.00

Notes: This shows the equilibrium impulse responses in taxes set in each state as a result of South Carolina increasing its tax change by 10%. The rho
coefficient is derived from our preferred specification to estimate the economic network where we allow for exogenous social effects (based on a sample
of 48 mainland US states running from 1962 to 2015). We compare these derived tax changes under the identified economic network structure, relative
to that assumed under a geographic neighbors structure. The final Column shows the ratio of the same statistic derived under each network.
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A Proofs

Example 1

To see how the assumption of Bramoullé et al. (2009) grants identification when W0 is known,
choose constants c1, c2, and c3 such that c1I + c2W0 + c3W

2
0 = 0. Focusing on the diagonal

elements of this condition, we see that if the diagonal of W 2
0 is not proportional to the diagonal

of I, then c1 = c3 = 0 because diag(W0) = 0. It follows that c2 = 0 if at least one (off-diagonal)
element of W0 is non-zero. However, the converse is not true, so if Assumptions A1-A6 do not
hold, one can construct examples where Π0 does not pin down θ0. Take, for instance, N = 5 with
θ0 and θ where β = β0 = 1, ρ = 1.5, ρ0 = 0.5, γ = −2.5, and γ0 = 0.5:

W0 =


0 0.5 0 0 0.5

0.5 0 0.5 0 0

0 0.5 0 0.5 0

0 0 0.5 0 0.5

0.5 0 0 0.5 0

 and W =


0 0 0.5 0.5 0

0 0 0 0.5 0.5

0.5 0 0 0 0.5

0.5 0.5 0 0 0

0 0.5 0.5 0 0

 .

Both W and W0 violate (A5) ((W 2)kk = (W 2
0 )kk = 0.5 for any k), and ρ violates (A2). Nonetheless,

I,W0, and W 2
0 are linearly independent and, likewise, so are I,W , and W 2. In this case, both

parameter sets produce Π = (I − ρ0W0)
−1(β0I + γ0W0) = (I − ρW )−1(βI + γW ). This arises

∗de Paula: University College London, CeMMAP and IFS, a.paula@ucl.ac.uk; Rasul: University College London
and IFS, i.rasul@ucl.ac.uk; Souza: Queen Mary University, p.souza@qmul.ac.uk.
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even as W and W0 represent very different network structures: any pair connected under W is not
connected under W0 and vice versa.

Theorem 1

Proof. The local identification result follows Rothenberg (1971). Under the assumptions in our
model, the parameter space Θ ⊂ Rm is an open set (recall that m = N(N − 1) + 3). This
corresponds to Assumption I in Rothenberg (1971). We have that

∂Π

∂Wij

= ρ (I − ρW )−1∆ij (I − ρW )−1 (βI + γW ) + (I − ρW )−1 γ∆ij

∂Π

∂ρ
= (I − ρW )−1W (I − ρW )−1 (βI + γW )

∂Π

∂γ
= (I − ρW )−1W

∂Π

∂β
= (I − ρW )−1 ,

where ∆ij is the N × N matrix with 1 in the (i, j)-th position and zero elsewhere. Write the
N2 × m derivative matrix ∇Π ≡ ∂vec(Π)

∂θ′
. By assumption, row i in matrix W sums up to one,

incorporated through the restriction that φ ≡
∑N

j=1,j ̸=iWij − 1 = 0 for the unit-normalized row
i. The derivative of the restriction φ is the m-dimensional vector ∇′

W ≡ ∂φ
∂θ′

=
[
e′i ⊗ ι′N−1 01×3

]
(where ei is an N -dimensional vector with 1 in the ith component and zero otherwise). Following
Theorem 6 of Rothenberg (1971), the structural parameters θ ∈ Θ are locally identified if, and
only if, the matrix ∇ ≡ [∇′

Π ∇′
W ]′ has rank m.1

If ∇ does not have rank m, there is a nonzero vector c ≡
(
cW12 , . . . , cWN,N−1

, cρ, cγ, cβ
)′ such

that ∇ · c = 0. This implies that

cW12

∂Π

∂W12

+ · · ·+ cWN,N−1

∂Π

∂WN,N−1

+ cρ
∂Π

∂ρ
+ cγ

∂Π

∂γ
+ cβ

∂Π

∂β
= 0 (1)

and, for the unit-normalized row i (see A4),∑
j ̸=i,j=1,...,n

cWij
= 0. (2)

1For a parameter vector to be locally identified, Rothenberg (1971) requires that the derivative matrix ∇ have
rank m at that point and that this vector be (rank-)regular. A (rank-)regular point of the parameter space is one
for which there is a neighborhood where the rank of ∇ is constant (see Definition 4 in Rothenberg, 1971). Because
we show that the derivative matrix has rank m at every point in the parameter space, this also guarantees that
every point in the parameter space is (rank-)regular.
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Pre-multiplying equation (1) by (I − ρW ) and substituting the derivatives,

N∑
i,j=1,i ̸=j

cWij

[
ρ∆ij (I − ρW )−1 (βI + γW ) + γ∆ij

]
+

+cρW (I − ρW )−1 (βI + γW ) + cγW + cβI = 0.

Define C ≡
∑N

i,j=1,i ̸=j cWij
∆ij. Since the spectral radius of ρW is strictly less than one by A2, one

can show (by representing (I − ρW )−1 as a Neumann series, for instance) that (βI + γW ) and
(I − ρW )−1 commute. Then, the expression above is equivalent to

ρC (βI + γW ) (I − ρW )−1 + γC + cρW (βI + γW ) (I − ρW )−1 + cγW + cβI = 0.

Post-multiplying by (I − ρW ), we obtain

ρC (βI + γW ) + γC (I − ρW ) + cρW (βI + γW ) + cγW (I − ρW ) + cβ (I − ρW ) = 0

which, upon rearrangement, yields

(γ + ρβ)C + cβI + (βcρ − cβρ+ cγ)W + (cργ − ρcγ)W
2 = 0. (3)

Because Cii = 0 and Wii = 0 (by A1), we have that cβ+(cργ − ρcγ) (W
2)ii = 0 for all i = 1, . . . , N .

Since by Assumption (A5) there isn’t a constant κ such that diag (W 2
0 ) = κι, then cβ = cργ−ρcγ =

0. Plugging back in (3), we obtain

(γ + ρβ)C + (βcρ + cγ)W = 0.

which implies that C = −βcρ+cγ
γ+ρβ

W , since γ + ρβ ̸= 0 by Assumption (A3). Taking the sum of the
elements in row i, we get

(γ + ρβ)
∑

j ̸=i,j=1,...,n

cWij
+ (βcρ + cγ) = 0.

Note that, by equation (2),
∑

j ̸=i,j=1,...,n cWij
= 0. So, βcρ + cγ = 0 and C = −βcρ+cγ

γ+ρβ
W = 0. This

implies that cWij
= 0 for any i and j. Combining βcρ + cγ = 0 with cργ − ρcγ = 0 obtained above,

we get that cρ (ρβ + γ) = 0. Since ρβ + γ ̸= 0, then cρ = 0. Given that βcρ + cγ = 0, it follows
that cγ = 0. This shows that θ ∈ Θ is locally identified.

Corollary 1

Proof. The parameter θ0 being locally identified (see Theorem 1) implies that the set {θ : Π(θ) =

Π(θ0)} is discrete. If it is also compact, then the set is finite. To establish that, we now show that

3



Π is a proper function: the inverse image Π−1(K) of any compact set K ⊂ Rm is also compact
(see Krantz and Parks, 2013, p. 124).

Let A be a compact set in the space of N×N real matrices. Since it is a compact set in a finite
dimensional space, it is closed and bounded. Since Π is a continuous function of θ, the pre-image
of a compact set, which is closed, is also closed. Because ∥W∥ is bounded and ρ ∈ (−1, 1), their
corresponding coordinates in θ ∈ Π−1(A) are bounded. Suppose the coordinates for β or γ in
θ ∈ Π−1(A) are not bounded. One can find a sequence (θk)

∞
k=1 such that |βk| → ∞ or |γk| → ∞.

Denote the Frobenius norm of the matrix A as ∥A∥. By the submultiplicative property ∥AB∥ ≤
∥A∥ · ∥B∥,

∥βI + γW∥ ≤ ∥I − ρW∥ ·
∥∥(I − ρW )−1 (βI + γW )

∥∥ = ∥I − ρW∥ · ∥Π∥ .

It follows that

∥βI + γW∥
∥I − ρW∥

≤ ∥Π∥ .

Given W has zero main diagonal,

∥βI + γW∥2 = β2 ∥I∥2 + γ2 ∥W∥2 = β2N + γ2 ∥W∥2 .

Also, ∥I − ρW∥2 = N + ρ2 ∥W∥2 ≤ N + ρ2C, for some constant C ∈ R by Assumption (A2). We
then have that √

β2N + γ2 ∥W∥2√
N + ρ2C

≤ ∥Π∥ .

By Assumption (A2), the denominator above is bounded. Hence, |βk| → ∞ ⇒ ∥Π(θk)∥ → ∞.
We now use the fact that

∑
j Wij = 1 to show that there is a lower bound on ∥W∥2, and so

|γk| → ∞ ⇒ ∥Π(θk)∥ → ∞. To see this, note that

min
s.t.

∑
j Wij=1

∥W∥2 ≥ min
s.t.

∑
j Wij=1

N∑
j=1

W 2
ij.

Since the objective function in above is convex, it can be shown that it is minimized at Wij =
1

N−1
, j ̸= i and, consequently, ∥W∥2 ≥ (N − 1) 1

(N−1)2
= 1

N−1
. Hence, if |γk| → ∞, the numerator

in the lower bound for ∥Π∥ above also goes to infinity. Consequently, A is not compact.
Therefore, if A is compact, the coordinates in θ ∈ Π−1(A) corresponding to β and γ are also

bounded. Hence, Π−1(A) is bounded (and closed). Consequently, it is compact.
For a given reduced-form parameter matrix Π, the set {θ : Π(θ) = Π(θ0)} is then compact.

Since it is also discrete, it is finite.
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The following lemmas are used in proving Theorem 2.

Lemma 1. Assume (A1)-(A6). If γ0 = 0, W0 is such that (W0)1,2 = (W0)2,1 = 1 and (W0)ij = 0

otherwise, with ρ0 ̸= 0 and β0 ̸= 0, then θ0 ∈ Θ is identified.

Proof. Take θ = (W12, . . . ,WN,N−1, ρ, γ, β) ∈ Θ possibily different from θ0 such that the models
are observationally equivalent, so Π0 = Π. Then,

(I − ρ0W0)
−1(β0I + γ0W0) = (I − ρW )−1(βI + γW ).

Since γ0 = 0 and (I − ρW )−1 and (βI + γW ) commute (see the proof for Theorem 1 ), it follows
that

Π0 = Π ⇔ β0(I − ρ0W0)
−1 = (βI + γW )(I − ρW )−1

or, equivalently,

β0(I − ρW ) = (I − ρ0W0)(βI + γW ).

This last equation implies that

(β0 − β)I − (γ + β0ρ)W + ρ0βW0 + ρ0γW0W = 0. (4)

We first note that (W0W )N,N = 0 since (W0)N,i = 0 for any 1 ≤ i ≤ N and, by Assumption (A1),
(W )N,N = (W0)N,N = 0. So β0 = β. Taking elements (i, j) such that i ≥ 3 and i ̸= j in equation
(4), and using the fact that β0 = β, we find that −(γ + β0ρ)(W )ij = −(γ + βρ)(W )ij = 0 for any
(i, j) such that i ≥ 3 and i ̸= j. By Assumption (A3), γ + βρ ̸= 0 and it follows that (W )ij = 0

for any (i, j) such that i ≥ 3 and i ̸= j. In fact, since (W )i,i = 0 by Assumption (A1), we get that
(W )ij = 0 for any (i, j) such that i ≥ 3.

Using Assumption (A1) and since β0 = β, elements (1, 1) and (2, 2) in equation (4) imply
that ρ0γ(W )2,1 = ρ0γ(W )1,2 = 0. Given that ρ0 ̸= 0, we get that γ(W )2,1 = γ(W )1,2 = 0.
From element (1, 2) in equation (4), we find that −(γ + β0ρ)(W )1,2 + ρ0β = 0 or, equivalently,
(ρ0−ρ(W )1,2)β0−γ(W )1,2 = 0. Given that γ(W )1,2 = 0 and β0 ̸= 0, it must be that ρ0−ρ(W )1,2 =

0. Making the analogous argument for element (2, 1), we would also obtain that ρ0 − ρ(W )2,1 = 0.
If both (W )1,2 and (W )2,1 are equal to zero, using the fact that Wij = 0 for any (i, j) such that

i ≥ 3, we would then obtain that W 2 is equal to a matrix of zeros, which contradicts Assumption
(A5). Hence, (W )1,2 ̸= 0 or (W )2,1 ̸= 0. If (W )1,2 ̸= 0, using the fact that γ(W )1,2 = 0, we get
that γ = 0. Equivalently, if (W )2,1 ̸= 0, and using the fact that γ(W )2,1 = 0, we again get that
γ = 0. So, in either case, γ = γ0 = 0.

Taking element (1, j) in equation (4), with j ≥ 3, we get that −(γ + ρβ0)W1,j + γρ0(W )2,j =

−ρβ0W1,j = 0. Similarly, element (2, j), with j ≥ 3 implies that −(γ + ρβ0)W2,j + γρ0(W )1,j =
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−ρβ0W2,j = 0. Then, from −ρβ0(W )1,j = −ρβ0(W )2,j = 0 for j ≥ 3, it follows that −ρ(W )1,j =

−ρ(W )2,j = 0 since β0 ̸= 0.
From ρ0 − ρ(W )1,2 = 0, if (W )1,2 ̸= 0, we get that ρ = ρ0/(W )1,2 ̸= 0. Equivalently, if

(W )2,1 ̸= 0, we get that ρ = ρ0/(W )2,1 ̸= 0. Since (W )1,2 ̸= 0 or (W )2,1 ̸= 0, we obtain that ρ ̸= 0.
Then, because −ρ(W )1j = ρ(W )2j = 0 for j ≥ 3, we have that (W )1j = (W )2j = 0 for j ≥ 3.

Given that ρ0−ρ(W )1,2 = 0, ρ0−ρ(W )2,1 = 0 and ρ ̸= 0, we obtain that (W )1,2 = (W )2,1 =
ρ0
ρ
.

Since (W )1,j = 0 for j ̸= 2, (W )2,j = 0 for j ̸= 1 and (W )ij = 0 for i ≥ 3, by Assumption
(A5) we get that (W )1,2 = (W )2,1 = 1 and ρ = ρ0. Hence, ((W )1,2, . . . , (W )N,N−1, ρ, γ, β) =

((W0)1,2, . . . , (W0)N,N−1, ρ0, γ0, β0).

Lemma 2. Assume (A1)-(A2) and (A4)-(A6). The image of Π(·), for θ ∈ Θ+, is path-connected
and, therefore, connected.

Proof. Take θ and θ∗ ∈ Θ+. Consider first the subvectors corresponding to the adjacency matrices
W and W ∗. Without loss of generality, let 1, . . . , N be ordered such that (W 2)11 > (W 2)22.
Consider the adjacency matrix W∗ corresponding to the network of unweighted directed connections
{(1, 2), (2, 1)} and {(3, 4), (4, 5), . . . , (N − 1, N), (N, 3)}. Note that diag(W 2

∗ ) = (1, 1, 0, . . . , 0) and
this is an admissible adjacency matrix under assumptions (A1)-(A2) and (A4)-(A6). We first show
that W is path-connected to W∗.

Consider the path given by

W (t) = tW∗ + (1− t)W

which implies that

(W (t)2)11 = (1− t)2(W 2)11 + t2 + (1− t)t(W12 +W21)

(W (t)2)22 = (1− t)2(W 2)22 + t2 + (1− t)t(W12 +W21).

Since (W (t)2)11 − (W (t)2)22 = (1 − t)2[(W 2)11 − (W 2)22] > 0 for t ∈ [0, 1) and W (1) = W∗,
(A5) is satisfied for any matrix W (t) such that t ∈ [0, 1]. Since all rows in W∗ sum to one and
(W∗)ii = 0 for any i, it is straightforward to see that W (t) also satisfies (A1) and (A4). Finally,∑N

j=1 |Wij(t)| ≤ t
∑N

j=1 |(W∗)ij|+ (1− t)
∑N

j=1 |Wij| ≤ 1 for every i = 1, . . . , N , and W (t) satisfies
Assumption (A2).

If W ∗ is such that (W ∗2)11 ̸= (W ∗2)22, the convex combination of W ∗ and W∗ is also seen to
satisfy (A1)-(A2) and (A4)-(A6), and a path between W and W ∗ can be constructed via W∗. If,
on the other hand (W ∗2)11 = (W ∗2)22, suppose without loss of generality that (W ∗2)11 ̸= (W ∗2)33.
In this case, one can construct a path between W ∗ and W∗∗ where W∗∗ represents the network of
unweighted directed connections {(1, 3), (3, 1)} and {(2, 4), (4, 5), . . . , (N − 1, N), (N, 2)}.
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Like W (t) above, this path can be seen to satisfy assumptions (A1)-(A2) and (A4)-(A6). Now
note that a path can also be constructed between W∗ and W∗∗, as their convex combination also
satisfies (A1)-(A2) and (A4)-(A6). For example, note that Ŵ (t) = tW∗ + (1− t)W∗∗ is such that
(Ŵ (t)2)11 = t2 + (1 − t)2 and (Ŵ (t)2)NN = 0, so (Ŵ (t)2)11 − (Ŵ (t)2)NN > 0 for any t ∈ (0, 1)

and both Ŵ (0) and Ŵ (1) satisfy (A5). Hence, we can construct a path W (t) between W and W ∗

through W∗ and W∗∗.

Furthermore, ρ(t) = tρ∗+(1−t)ρ, β(t) = (tρ∗β∗+(1−t)ρβ)/(tρ∗+(1−t)ρ), γ(t) = tγ∗+(1−t)γ

are such that

f(t) ≡ ρ(t)β(t) + γ(t) = t(ρ∗β∗ + γ∗) + (1− t)(ρβ + γ) > 0,

since θ∗ and θ ∈ Θ+. (Note also that |ρ(t)| < 1, so Assumption (A2) is satisfied.) These facts
taken together imply that

θ(t) ≡ (W (t)12, . . . ,W (t)N,N−1, ρ(t), γ(t), β(t)) ∈ Θ+.

That is, Θ+ is path-connected and therefore connected. Since Π(·) is continuous on Θ+, Π(Θ+) is
connected.

Theorem 2

Proof. The proof uses Corollary 1.4 in Ambrosetti and Prodi (1995, p. 46),2 which we reproduce
here with our notation for convenience: Suppose the function Π(·) is continuous, proper, and locally
invertible with a connected image. Then, the cardinality of Π−1(Π) is constant for any Π in the
image of Π(·).

The mapping Π(θ) is continuous and proper (by Corollary 1), with a connected image (Lemma
2), and non-singular Jacobian at any point (as per the proof for Theorem 1), which guarantees local
invertibility. Following Corollary 1.4 in Ambrosetti and Prodi (1995, p. 46) reproduced above, we
obtain that the cardinality of the pre-image of Π(θ) is finite and constant. Take θ ∈ Θ+ such that
γ = 0, (W )1,2 = (W )2,1 = 1 and (W )i,j = 0 otherwise, with ρ ̸= 0 and β ̸= 0. By Lemma 1, that
cardinality is one.

Corollary 3

Proof. Since ρ ∈ (0, 1) and Wij ≥ 0,
∑∞

k=1 ρ
k−1W k is a non-negative matrix. By (5), the off-

diagonal elements of Π(θ) are equal to the off-diagonal elements of (ρβ + γ)
∑∞

k=1 ρ
k−1W k, and

the sign of those elements identifies the sign of ρβ + γ. By Theorem 2, the model is identified.
2Related results can be found in Ambrosetti and Prodi (1972) and de Marco et al. (2014).
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Corollary 4

Proof. Since W0 is non-negative and irreducible, there is a real eigenvalue equal to the spectral
radius of W0 corresponding to the unique eigenvector whose entries can be chosen to be strictly
positive (i.e., all the entries share the same sign). A generic eigenvalue of W0, λ0, corresponds to
an eigenvalue of Π0 according to:

λΠ0 = β0 + (ρ0β0 + γ0)
λ0

1− ρ0λ0

If λ0 = a0 + b0i where a0, b0 ∈ R and i =
√
−1, then

λΠ0 = β0 + (ρ0β0 + γ0)
a0(1− ρ0a0)− ρ0b

2
0

(1− ρ0a0)2 + ρ20b
2
0

+ (ρ0β0 + γ0)
b0

(1− ρ0a0)2 + ρ20b
2
0

i.

If the eigenvalue λ0 is real, b0 = 0 and the corresponding eigenvalue λΠ0 is also real. Differentiating
Re(λΠ0), the real part of λΠ0 , with respect to Re(λ0) = a0, we get

∂Re(λΠ0)

∂a0
=

(1− ρ0a0)
2 − ρ20b

2
0

[(1− ρ0a0)2 + ρ20b
2
0]

2
× (ρ0β0 + γ0). (5)

If the eigenvalue λ0 is real, expression (5) becomes:

∂Re(λΠ0)

∂a0
=

∂λΠ0

∂a0
=

1

(1− ρ0a0)2
× (ρ0β0 + γ0).

The fraction multiplying ρ0β0 + γ0 is positive. If ρ0β0 + γ0 < 0, the real eigenvalues of Π0 are
decreasing on the real eigenvalues of W0. Consequently, the eigenvector corresponding to the
largest (real) eigenvalue of W0 will be associated with the smallest real eigenvalue of Π0. If, on the
other hand, ρ0β0 + γ0 > 0, the eigenvector corresponding to the largest real eigenvalue of W0 will
correspond to the largest real eigenvalue of Π0. Since that eigenvector is the unique eigenvector
that can be chosen to have strictly positive entries, the sign of ρ0β0 + γ0 is identified by the
λΠ0 eigenvalue it is associated with and whether it is the largest or smallest real eigenvalue. By
Theorem 2, the model is identified.

If there is only one real eigenvalue, note that the denominator in the fraction in (5) is positive.
The minimum value of the numerator subject to |λ0|2 = a20 + b20 ≤ 1 is given by

min
a0,b0

(1− ρ0a0)
2 − ρ2b20 s.t. a20 + b20 ≤ 1.
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The Lagrangean for this minimization problem is given by

L (a0, b0;µ) = (1− ρ0a0)
2 − ρ2b20 + µ(a20 + b20 − 1)

where µ is the Lagrange multiplier associated with the constraint a20 + b20 ≤ 1. The Kuhn-Tucker
necessary conditions for the solution (a∗0, b

∗
0, µ

∗) of this problem are given by

(∂a0 :) ρ0(1− ρ0a
∗
0)− µ∗a∗0 = 0

(∂b0 :) (ρ20 − µ∗)b∗0 = 0

µ∗(a∗20 + b∗20 − 1) = 0

a∗20 + b∗20 ≤ 1 and µ∗ ≥ 0.

Let ρ0 ̸= 0. (Otherwise, the objective function above is equal to one irrespective of a0 or b0, and
the partial derivative is ρ0β0+γ0). If µ∗ = 0, ∂b0 implies that b∗0 = 0. Then, ∂a0 will have a∗0 = ρ−1

0 ,
which violates a∗20 + b∗20 ≤ 1.

Hence, a solution should have µ∗ > 0. In this case, there are two possibilities: b∗0 = 0 or
b∗0 ̸= 0. If b∗0 ̸= 0, condition ∂b0 implies that µ∗ = ρ20, and ∂a0 then gives a∗0 = (2ρ0)

−1. Because
the constraint is binding, b∗20 = 1 − (4ρ20)

−1. In this case, a∗20 ≤ 1 and b∗20 ≥ 0 requires that
|ρ0| ≥ 1/2. The value of the minimised objective function in this case is 1/2− ρ20. This is positive
if |ρ0| <

√
2/2.

The other possibility is to have b0 = 0. Because the constraint is binding, a0 = 1 and the
objective function takes the value (1− ρ0)

2 > 0. Since (1− ρ0)
2 − 1/2 + ρ20 = 2ρ20 − 2ρ0 + 1/2 ≥ 0,

this solution is dominated by the previous one when |ρ0| ≥ 1/2.
Consequently, the fraction multiplying ρ0β0+γ0 is non-negative, and it can be ascertained that

sgn
[
∂Re(λΠ0)

∂a0

]
= sgn[ρ0β0 + γ0]

as long as |ρ0| <
√
2/2.

If ρ0β0 + γ0 < 0, the real part of the eigenvalues of Π0 is decreasing on the real part of the
eigenvalues of W0. Since the dominant eigenvalue for W0 will be real and thus the one with the
largest real part, we only need to focus on the real part of the eigenvalues. Consequently, the
eigenvector corresponding to the eigenvalue of W0 with the largest real part will correspond to the
eigenvalue of Π0 with the smallest real part. If, on the other hand, ρ0β0 + γ0 > 0, the eigenvector
corresponding to the eigenvalue of W0 with the largest real part will correspond to the eigenvalue
of Π0 with the largest real part. Since that eigenvector is the unique eigenvector that can be
chosen to have strictly positive entries, the sign of ρ0β0 + γ0 is identified by the λΠ0 eigenvalue it
is associated with.

By Theorem 2, the model is identified.
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Proposition 1

Proof. From equation (6), we observed that Π0vj = λΠ0,jvj, where vj is an eigenvector of both W0

and Π0 with the corresponding eigenvalue λΠ0,j =
β0+γ0λ0,j

1−ρ0λ0,j
. Defining c as the row-sum of Π0, we

also have that

Π̃0(I −H)vj = (I −H)Π0(I −H)vj = (I −H)Π0vj − (I −H)Π0Hvj

= λΠ0,j(I −H)vj − (I −H)cHvj = λΠ0,j(I −H)vj − (H −H2)cvj

= λΠ0,j(I −H)vj − (H −H)cvj = λΠ0,j(I −H)vj,

where the third equality is obtained from Π0H = cH, where c = β0+γ0
1−ρ0

, and the fifth equality
holds since H is idempotent. So, Π̃0 and Π0 have common eigenvalues, with the corresponding
eigenvector ṽj = vj − v̄jι for Π̃0, where v̄j =

1
N
ι′vj, j = 1, . . . , N .

If Π0 is diagonalizable, since λΠ0,j and ṽj are observed from Π̃0, identification of Π0 is equiva-
lent to identification of v̄j. In order to handle non-diagonalizable matrices, we relate the Jordan
canonical forms for Π0 and Π̃0. (If Π0 is diagonalizable, the Jordan canonical form will coincide
with its eigendecomposition.) In this case, Π0 = MJM−1,where J is the Jordan form and M is
a matrix comprised of ordinary and generalized eigenvectors. The generalized eigenvectors can
be obtained recursively from ordinary eigenvectors.3 We have established above that if vj is an
ordinary eigenvector for Π0, ṽj = vj − v̄jι is an ordinary eigevector for Π̃0, corresponding to the
same eigenvalue. If this eigenvalue has multiplicity larger than one, let xj be the initial generalized
eigenvector for Π0, obtained as Π0xj = λΠ0,jxj + vj. Then, notice that

Π̃0(I −H)xj = (I −H)Π0(I −H)xj = (I −H)Π0xj − (I −H)Π0Hxj

= λΠ0,j(I −H)xj + (I −H)vj − (I −H)cHxj = λΠ0,j(I −H)xj + (I −H)vj,

where we reproduce similar steps as above. This implies that x̃j = xj − xj is a generalized
eigenvector for Π̃0 obtained from the ordinary eigevector ṽj. If additional generalized eigevectors
are needed for the Jordan block, they can be obtained recursively from xj and x̃j. Notice also that
both Π0 and Π̃0 will have the same Jordan form J since their eigenvalues are the same. Hence, to
establish identification, it suffices to establish identification of vj and xj.

To establish identification of v̄j, note that Π0(ṽj+ v̄jι) = λΠ0,j(ṽj+ v̄jι) since vj is an eigenvector
of Π0. Consider an alternative constant v̄∗j ̸= v̄j that satisfies the previous equation. Then,

Π0ι(v̄j − v̄∗j ) = λΠ0,jι(v̄j − v̄∗j ).

3“The search for the Jordan form of A becomes a search for these strings of vectors, each one headed by an
eigenvector. For each i, either Axi = λixi or Axi = λixi + xi−1. The vectors xi go into the columns of M , and
each string produces a single block in J .” (Strang, 2006)

10



Since Π0ι = c, vj must satisfy (c− λΠ0,j)(v̄j − v̄∗j ) = 0. For j = 2, . . . , N , |λ0,j| < 1 which implies
that c ̸= λΠ0,j. So, v̄j = v̄∗j and therefore is identified. For j = 1, λΠ0,1 = c with eigenvector v1 = ι

if W0 is non-negative and irreducible, since it corresponds to λ0,1 = 1, which is a simple eigenvalue
with both algebraic and geometric multiplicity equal to one by the Perron-Frobenius theorem.

Now consider xj and assume, without loss, that it is a generalized eigenvector obtained from
vj as above. In this case, Π0(x̃j + x̄jι) = λΠ0,j(x̃j + x̄jι) + (ṽj + v̄jι). Since we have established
the identification vj above, consider an alternative constant x̄∗

j ̸= x̄j that satisfies the previous
equation. Then, similar arguments as those used above allow one to obtain identification for xj

and analogously for possible successive generalized eigenvectors. This then allows us to reconstruct
the Jordan decomposition for Π0 from the Jordan decomposition of Π̃0.

Proposition 2

Proof. Under row-sum normalization and |ρ0| < 1, (I − ρ0W0)
−1ι = ι + ρ0W0ι + ρ20W

2
0 ι + · · · =

ι+ρ0ι+ρ20ι+ · · · = ι 1
1−ρ0

, so Π01 ≡ (I−ρ0W )−1 has constant row-sums. If row-sum normalization
fails, Π01 may not have constant row-sums. Define hij as the (ij)-th element of H̃. The first row
of the system (I − H̃)(I − ρ0W )−1ι = (I − H̃)rW0 = 0 is h∗

11rW0,1 − h12rW0,2 − · · · − h1NrW0,N = 0

where h∗
11 = 1−h11 and rW0,l is the l-th element of rW0 . If there are N possible W0, W

(1)
0 , . . . ,W

(n)
0 ,

such that [r
W

(1)
0

· · · r
W

(N)
0

] has rank N , then h∗
11 = h12 = · · · = h1N = 0. Since the same reasoning

applies to all rows, H̃ is the trivial transformation H̃ = I.

B Extensions

Extension: Multivariate Covariates

Allowing for multivariate xt of dimension n× k, the reduced-form model (4) is,

yt =
K∑
k=1

Π0,kxk,t + νt,

where Π0,k = (I − ρ0W0)
−1 (β0,kI + γ0,kW0), xk,t refers to the k-th column of xt, and β0,k and

γ0,k select the k-th element of K-dimensional β0 and γ0, respectively. The previous identification
results then apply element by element to each Π0,k, k = 1, . . . , K. In fact, we only then need to
maintain Wx = γ0W0 and γ0 ̸= 0 for one covariate. It is therefore possible to allow the structure of
endogenous and exogenous social effects to differ for K − 1 of the covariates. With K covariates,
equation (3) is,

yt = ρ0W0yt +
K∑
k=1

β0,kxk,t +
K∑
k=1

γ0,kW0,kxk,t + ϵt.
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Let W0,k = W0 be the case for k = 1. Then, having identified ρ0 and W0 from Π0,1,

(I − ρ0W0)Π0,k = β0,kI + γ0,kW0,k,

for k = 2, . . . , K. The parameter β0,k then corresponds to the diagonal elements of (I − ρ0W0)Π0,k

and the off-diagonal entries correspond to the off-diagonal elements of γ0,kW0,k. If Assumption
(A4) holds for every k = 1, . . . , K, we can identify γ0,k and thus W0,k for every k = 1, . . . , K.4

Extension: Heterogeneous β0

While many applications assume β0 to be homogeneous across individual units, we here consider
possible avenues allowing for heterogeneous coefficients. In a slight abuse of notation, consider for
this subsection β0 in equation system (3) to be diag(β01, . . . , β0N)N×N . Instead of a homogeneous
scalar, β0 is a diagonal matrix with the individual-specific coefficients β01, . . . , β0N along its diago-
nal. When ρ0 = 0 as in Manresa (2016), Π0 = β0+ γ0W0. In this case, under Assumption (A1), β0

is identified from the diagonal elements in Π0 and γ0W0 is identified from its off-diagonal elements.
With multiple covariates, as long as the coefficients are homogeneous for one of the covariates,

one can also identify heterogeneous coefficients on the remaining covariates, as done in the previous
subsection. For example, let there be K covariates and β0,k = diag(β01,k, . . . , β0N,k) for k =

1, . . . , N . Suppose β01,k = · · · = β0N,k for one of these covariates, and let k = 1 without loss of
generality. Having identified ρ0 and W0 from Π0,1,

(I − ρ0W0)Π0,k = β0,k + γ0,kW0,k,

for k = 2, . . . , K. Then, under Assumption (A1), β0,k, is identified from the diagonal elements in
(I − ρ0W0)Π0,k and γ0,kW0,k is identified from its off-diagonal elements for k = 2, . . . , K − 1.

Alternatively, when γ0 = 0, one can apply traditional simultaneous equation methods to at-
tain identification. For example, let B ≡ [(I − ρ0W0)

′, −(β0 + γ0W )′]′2N×N and R(N−1)×2N =

[0(N−1)×(N+1) IN−1]. The restriction that γ0 = 0 in the first equation in equation system (3) can
then be expressed as RB·,1 = 0(N−1)×1, where B·,1 is the first column in B. The rank condition for

4If x is a scalar, Π = (I − Wy)
−1(βI + Wx), where we absorb ρ and γ into the neighborhood matrices for

simplicity. Supposing both Wy and Wx have zero diagonals (Assumption (A1)) one has 2N(N − 1) + 1 structural
parameters against N2 elements in Π. Since 2N(N − 1) + 1 > N2 for N > 1 one would not be able to identify
the parameters of interest without further information. Blume et al. (2015) also study the case in which the
social structure mediating endogenous and exogenous social effects might differ. When Wx is known and there is
partial knowledge of the endogenous social interaction matrix W0, they show that the parameters of the model
can be identified (their Theorem 6). Analogously, when there are enough unconnected nodes in each of the social
interaction matrices represented by Wx and W0, and the identity of those nodes is known, identification is also
(generically) possible (their Theorem 7).
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the identification of the first equation is then given by,

RB =

 0 −β0,2 . . . 0

. . .

0 0 . . . −β0,N


having rank equal to N − 1 (see Theorem 9.2 in Wooldridge, 2002). This will be the case if
β0,2, . . . , β0,N ̸= 0. Intuitively, this guarantees that individual specific covariates are valid in-
strumental variables for their outcomes. Hence, if β0,1, . . . , β0,N are each different from zero,
identification from Π0 is obtained.

More generally, because there are N2 equations corresponding to the entries in Π0 and, allow-
ing for heterogeneity in β0 and imposing assumptions (A1)-(A6), there are N2 + 1 parameters,
further restrictions (like row-sum normalization) would be necessary. We conjecture that adequate
restrictions would deliver positive identification results, but we focus on the more conventional
setting with homogeneous β0.

C Estimation

C.1 Sparsity of W0 and Π0

Define M̃ as the number of nonzero elements of Π0. We say that Π0 is sparse if M̃ ≪ NT . Denote
the number of connected pairs in W0 via paths of any length as m̃c. We equivalently say that
W0 is “sparsely connected” if m̃c ≪ NT . We show that the sparsity of Π0 is related to the sparse
connectedness of W0.

Proposition 3. Π0 is sparse if, and only if, the number of unconnected pairs W0 is large.

Proof. For |ρ0| < 1, we have that

Π0 = β0I + (ρ0β0 + γ0)
∞∑
k=1

ρk−1
0 W k

0 .

Given that ρ0β0 + γ0 ̸= 0, it follows directly that [Π0]ij = 0 if, and only if, there are no paths
between i and j in W0. Therefore, the sparsity of Π0 translates into a large number of (i, j)

unconnected pairs in W0.

On the one hand, sparsity does not imply sparse connectedness. A circular graph is clearly
sparse, but all nodes connect with all other nodes through a path of length at most N

2
. On

the other hand, sparse connectedness implies sparsity and therefore is a stronger requirement.
To see this, take any arbitrary network G with m̃ (G) non-zero elements and m̃c (G) connected
pairs. Now consider the operation of “completing” G: for every connected (i, j) pair, add a direct
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link between (i, j) if nonexistent in G and denote the resulting matrix as C (G). It is clear that
m̃ (G) ≤ m̃ (C (G)). Yet, m̃ (C (G)) = m̃c (G).

C.2 Adaptive Elastic Net

In this section, we detail the algorithm, the computational steps, and the property of the estimator
as derived in Caner and Zhang (2014). For any given choice of p = (p1, p

∗
1, p2), the algorithm is

composed of three main steps pertaining to the estimation of the Elastic Net (step 5 below), the
Adaptive Elastic Net version (step 6), and the Unpenalised Post-GMM estimator (step 7). Other
steps deal with the selection of the initial conditions and other details of the implementation. The
runtime for a given set of penalization parameters (that is, steps 1-7 below) is expected to be
around 2-3 mins for N = 30 and 15-20 mins for N = 70. The increase in the computational time
is due to the fact that the number of parameters to estimate grows at an N2 rate.5

1. For any choice of penalization parameters p = (p1, p
∗
1, p2), run steps 2-7 below.

2. Data is standardised (subtracting the mean and dividing by the standard error), and indi-
vidual and time effects are removed.

a. For the dynamic versions, use time weights ωt, which are chosen by the practitioner and
applied after standardization.

3. Initial conditions are set at (ρ, β, γ) = (0.5, β̂ols, 0), where β̂ols is the OLS regression of yit on
xit after demeaning.

4. The derivatives of the objective function with respect to all wij are computed, and set to
wij = 0 for the derivatives that are smaller than a small number η. This number can be
chosen to be equal to p1 following Caner and Zhang (2014). To be conservative, we choose
η = min(p1, 0.01). Those wij are set at zero for all the algorithm that follow.

5. Elastic Net. We devise an algorithm in the following manner.

a. For any given (ρ, β, γ), we write,

yt − xtβ︸ ︷︷ ︸
≡ỹit

= W (ρyt + xtγ)︸ ︷︷ ︸
≡x̃t

+ϵt,

which is endogenous due to the mechanical dependence of x̃t on yt, so it is instrumented
with xt. This expression is implemented through a fast Least-Angle Regression algo-
rithm (LARS) from Caner et al. (2018) (Section 4.2) that extends the original LARS

5Benchmarked on a 2020 Macbook Pro with an M1 processor and 16gb RAM.
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algorithm to the GMM case. We obtain Ŵ for any given (ρ, β, γ). At this stage, only
impose that |wij| ≤ 1 and, in particular, do not impose row-sum normalization.

b. Use the L-BFGS-B algorithm to minimize the objective function and obtain (ρ̃, β̃, γ̃),
and then compute W̃ from step 5a.

6. Adaptive Elastic Net. Use W̃ to compute the adaptive weights. Following Caner and Zhang
(2014), we select the adaptive weight penality as w−κ

ij if wij > 0.05 where κ = 2.5. If
wij < 0.05, we set 0.05−κ. This ensures that the second-stage estimates can be nonzero even
if the first-stage estimates were zero or small.

a. We then run a version of the algorithm described in step 5a, with the difference that
we impose row-sum normalization. Due to this, we can no longer use a restriction-free
LARS algorithm. We instead use CVXR, a convex optimization routine package in R.

b. Similar to step 5b, we use the L-BFGS-B package to solve for (ρ̂, β̂, γ̂) and compute the
associated Ŵ .

7. Unpenalised Post-GMM. Re-estimate (ρ, β, γ) and W on the support estimated in the pre-
vious step. In other words, the zero elements of Ŵ are set to zero, i.e., the GMM objective
function is estimated under the restriction that {Wij = 0 : Ŵij = 0} and setting the penal-
ization to zero. Asymptotic standard errors are also computed at this step.

8. Re-compute steps 1-6 on a grid for (p1, p∗1, p2) and choose the penalization parameter by BIC.

We implement the following modifications and adjustments of the algorithm for the empirical
analysis presented in Section 4. Steps 4′ and 8′ provide more stability to the period-by-period
estimates by avoiding small-sample biases in the estimation of the derivative and of the information
criteria.

2a′. We use uniform weights ωt = 1 and a Gaussian kernel with a center varying period by period
from t = 1963 to 2015, i.e., ranging from the beginning to the end of the sample. The
variance of the kernel is set such that 75% of the weight is given to the first half of the data
(pre-1988), when the center of the kernel is at the beginning of the sample at t = 1963.

4′. We compute the derivative under uniform weights, store it, and input the derivative for
each dynamic-network version. This is computationally efficient (given that the numerical
approximation of the derivative is intensive) and ensures that the derivative is computed
from the full sample.

8′. The grid for the dynamic-network versions is set around the penalization parameters chosen
under the uniform kernel. More specifically, we run the procedure for the penalization param-
eters for one point in all directions in the grid and select the dynamic-network penalization
parameters by BIC.
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C.3 OLS

For the purpose of estimation, it is convenient to write the model in the stacked form. Let
x = [x1, . . . , xT ]

′ be the T × N matrix of explanatory variables, yi = [yi1, . . . , yiT ]
′ be the T × 1

vector of response variables for individual i, and π0
i = [π0

i1, . . . , π
0
iN ]

′, where π0
ij is a short notation

for the (i, j)-th element of Π0. The concise model is then

yi = xπ0
i + vi (6)

for each i = 1, . . . , N , where also vi = [vi1, . . . , viT ]
′. Model (6) can then be estimated equation by

equation. Denote π0 = [π0
1
′
, . . . , π0

N
′
]′. Stacking the full set of N equations,

y = Xπ0 + v (7)

where y = [y1, . . . , yN ], X = IN ⊗ x, π0 = vec (Π′
0), and v = [v1, . . . , vN ]. If the number of

individuals in the network N is fixed and much smaller than the number of data points avail-
able, N2 ≪ NT , equation (7) can be estimated via ordinary least squares (OLS). Under suitable
regularity conditions, the OLS estimator π̂ = (X ′X)−1X ′y is asymptotically distributed,

√
NT (π̂ − π0)

d−→ N
(
0, Q−1ΣQ−1

)
where QT ≡ 1

NT
X ′X, Q ≡ p limT→∞QT , ΣT ≡ 1

NT
X ′vv′X, and Σ ≡ p limT→∞ΣT . The proof is

standard and omitted here. As noted above, in typical applications, it is customary to row-sum
normalize matrix W . If no individual is isolated, one obtains that, by equation (5),

Π0ιN = β0ι+ (ρ0β0 + γ0)
∞∑
k=1

ρk−1
0 W k

0 ι

=
β0 + γ0
1− ρ0

ι (8)

where ιN is the N -length vector of ones. The last equality follows from the observation that, under
row-normalization of W0, W kι = Wι = ι, k > 0. Equation (8) implies that Π0 has constant row-
sums, which implies that row-sum normalization is, in principle, testable. This suggests a simple
Wald statistic applied to the estimates of π0. Under the null hypothesis,

√
NTRπ̂

d−→ N
(
0, RQ−1ΣQ−1R′)

where R = [IN−1 ⊗ ι′N ;−ιN−1 ⊗ ι′N ]. The Wald statistic is W = NT (Rπ̂)′ (Q−1ΣQ−1)
−1

(Rπ̂) ∼
χ2
N−1, which is a convenient expression for testing row-sum normalization of W0. We also note
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that the asymptotic distribution of θ̂ can be immediately obtained by the Delta Method,

√
T (θ̂ − θ0)

d−→ N
(
0,∇′−1

θ Q−1ΣQ−1∇θ

)
where ∇θ is the gradient of θ̂ with respect to π̂. We note that the derivation of the Wald statistic
for testing the row-sum normalization and the asymptotic distribution of θ̂ does not depend on
the OLS implementation, and can be easily adjusted for any estimator for which the asymptotic
distribution is known.

D Simulations

D.1 Set-up

The simulations are based on two stylized random network structures and two real-world networks.
These networks vary in their size, complexity, and aggregate and node-level features. All four
networks are also sparse. Networks (i) and (ii) are stylized, while (iii) and (iv) are based on real
data:

(i) Erdös-Renyi network: We randomly pick exactly one element in each row of W0 and set that
element to 1. This is a random graph with in-degree equal to 1 for every individual (Erdös
and Renyi, 1960). Such a network could be observed in practice if connections were formed
independently of one another. With N = 30, the resulting density of links is 3.45%.

(ii) Political party network: There are two parties, each with a party leader. The leader directly
affects the behavior of half the party members. We assume that one party has twice members
as the other. More specifically, we assume individuals i = 1, . . . , N

3
are affiliated with Party

A and led by individual 1; individuals i = N
3
+ 1, . . . , N are affiliated with Party B and led

by individual N
3
+1. This difference in party size allows us to evaluate our ability to recover

and identify central leaders, even in the smaller party. To test the procedure further, we
add one random link per row to represent ties that are not determined by links to the party
leader. We simulate this network for various choices of N . If N is not a multiple of three,
we round N

3
to the nearest integer. With N = 30, this network has a density of 5.17%.

(iii) Coleman’s (1964) high school friendship network survey: In 1957−8, students in a small high
school in Illinois were asked to name “fellows that they go around with most often.” A link
was considered if the student nominated a peer in either survey wave. The full network has
N = 73 nodes, of which 70 are non-isolated and so have at least one link to another student.
On average, students named just over five friendship peers. This network has a density of
7.58%. Furthermore, the in-degree distribution shows that most individuals received a small
number of links, while a small number received many peer nominations.
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(iv) Banerjee et al.’s (2013) village network survey: These authors conducted a census of house-
holds in 75 villages in rural Karnataka, India, and survey questions included several about
relationships with other households in the village. To begin with, we use social ties based
on family relations (later examining insurance networks). We focus on village 10, which is
comprises N = 77 households and so similar in size to network (iii). In this village, there are
65 non-isolated households, with at least one family link to another household. This network
has a density of 5.07%.

We simulate the real-world networks (iii) and (iv) using the non-isolated nodes in each (so
N = 70 and 65 respectively). We proceed as follows for each network. First, for each node, we
randomly assign one of its links to have three times the strength of other links. As the underlying
data generating process is assumed to allow for common time effects (αt), we then set the weight
of all the node’s other links to be equal and such that row-sum normalization (A4′) is complied
with. For example, if in a given row of W0 there are two links, one will be randomly selected to
be set to .75, and the other will be set to .25. If there are three links, one is set to .6 and the
other two are set to each have weight .2 to maintain row-sum normalization, and so on. For the
Erdös-Renyi network, there are thus only strong ties, as each node has only one link to another
node.

As we consider larger networks, we typically expect them to have more nonzero entries in
each row of W0, but row-sum normalization means that each weaker link will be of lower value.
This works against the detection of weaker links using estimation methods involving penalization
because they impose that small-parameter estimates shrink to zero.6 Finally, to aid exposition, we
set a threshold value for link strength to distinguish “strong” and “weak” links. A strong (weak)
link is defined as one for which W0,ij > (≤) .3.

Panel data for each of the four simulations is generated as

yt = (I − ρ0W0)
−1(xtβ +W0xtγ + αtι+ α∗ + ϵt),

where αt is a (scalar) time effect and α∗ is a N × 1 vector of fixed effects, drawn respectively from
N(1, 1) and N(ι, IN×N) distributions. We consider T = {5, 10, 15, 25, 50, 75, 100, 125, 150}. The
true parameters are set to ρ0 = .3, β0 = .4, and γ0 = .5 (thus satisfying Assumption A3). The
exogenous variable (xt) and error term (ϵt) are simulated as standard Gaussian, both generated
from N(0N , IN×N) distributions. This is similar to the variance terms set in other papers, e.g., Lee
(2004). We later conduct a series of robustness checks to evaluate the sensitivity of the simulations
to alternative parameter choices and the presence of common and individual-level shocks. For each
combination of parameters, we conduct 1, 000 simulation runs.

6Caner and Zhang (2014) state that “local to zero coefficients should be larger than T− 1
2 to be differentiated

from zero.”

18



D.2 Robustness

Table A2 presents results for the recovered stylized networks under varying network sizes, N =

{15, 30, 50}. Differences between the true and estimated networks are fairly constant as N in-
creases: even for small N = 15, a large proportion of zeros and non-zeros are correctly estimated.
In all cases, biases in ρ̂ and γ̂ decrease with larger T .

Table A3 conducts robustness checks on the sensitivity of the estimates to parameter choices
for the stylized networks. We consider the true parameters ρ0 = {.1, .3, .7, .9}, γ0 = {.3, .7}, and
β0 = {.2, .6}. We also introduce a common shock in the disturbance variance-covariance matrix
by varying q in

ϵt ∼ N

0,


1 q · · · q

q 1 · · · q
...

... . . . ...
q q · · · 1




where we consider q = {.3, .5, .8, 1}. We find the procedure to be robust to the true values of ρ0,
β0, γ0, and q. The method performs well in all scenarios.

The next set of robustness checks demonstrates the gains from using the Adaptive Elastic Net
GMM estimator over alternative estimators. Table A4 shows simulation results using Adaptive
Lasso estimates of the interaction matrix Π0, so estimating and penalizing the reduced-form. The
Adaptive Lasso estimator performs worse, and increased sample sizes are necessary to achieve
similar performance compared to the Adaptive Elastic Net GMM. Table A5 then shows the per-
formance of the procedure based on OLS estimates of Π0. Given OLS requires m ≪ NT , we
use a time dimension ten times larger, T = {500, 1000, 1500}, and still find a deterioration in
performance compared to the Adaptive Elastic Net GMM estimator.7

Taken together, these robustness checks suggest the Adaptive Elastic Net GMM estimator
is preferred over Adaptive Lasso and OLS estimators. As discussed in the text, the procedure
recovers true strong links. In finite samples, weak links can be detected as zeros due to the
shrinkage estimator employed. In turn, row-sum normalization may imply that the strength of
strong edges is over-estimated. We also showed that a fortiori, the procedure can recover network-
and node-level statistics. It does so in networks that vary in size and complexity, and as the
underlying social interactions model varies in the strength of endogenous and exogenous social
effects, and the structure of shocks.

7As opposed to the penalized estimates, all OLS estimates are different from zero. We compute the “% True
Zeroes” as the proportion of true zero elements in the social interaction matrix that are estimated as smaller than
.05.

19



References
Ambrosetti, A. and G. Prodi (1972). On the Inversion of Some Differentiable Mappings with

Singularities between Banach Spaces. Annali di Matematica Pura ed Applicata, 93, 231–46.

——— (1995). A Primer of Nonlinear Analysis, Cambridge University Press.

Banerjee, A., A. G. Chandrasekhar, E. Duflo, and M. O. Jackson (2013). The Diffusion
of Microfinance. Science, 341, 1236498.

Blume, L. E., W. A. Brock, S. N. Durlauf, and R. Jayaraman (2015). Linear Social
Interactions Models. Journal of Political Economy, 123, 444–96.

Bramoullé, Y., H. Djebbari, and B. Fortin (2009). Identification of Peer Effects Through
Social Networks. Journal of Econometrics, 150, 41–55.

Caner, M., X. Han, and Y. Lee (2018). Adaptive Elastic Net GMM Estimation With Many
Invalid Moment Conditions: Simultaneous Model and Moment Selection. Journal of Business
and Economic Statistics, 36, 24–46.

Caner, M. and H. H. Zhang (2014). Adaptive Elastic Net for Generalized Method of Moments.
Journal of Business and Economic Statistics, 32, 30–47.

Coleman, J. S. (1964). Introduction to Mathematical Sociology, London Free Press Glencoe.

de Marco, G., G. Gorni, and G. Zampieri (2014). Global Inversion of Functions: an Intro-
duction. ArXiv:1410.7902v1.

Erdös, P. and A. Renyi (1960). On the Evolution of Random Graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5, 17–60.

Krantz, S. G. and H. R. Parks (2013). The Implicit Function Theorem, Birkhauser.

Lee, L.-F. (2004). Asumptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial
Autoregressive Models. Econometrica, 72, 25.

Manresa, E. (2016). Estimating the Structure of Social Interactions Using Panel Data.
Manuscript.

Rothenberg, T. (1971). Identification in Parametric Models. Econometrica, 39, 577–91.

Strang, G. (2006). Linear algebra and its applications, Belmont, CA Thomson, Brooks/Cole.

Wooldridge, J. (2002). Econometric Analysis of Cross Section and Panel Data, The MIT Press.

20



A. % of zeros B. % of non-zeros

C. Mean Absolute Deviation of      D. Mean Absolute Deviation of

E. Endogenous Social Effect, F. Exogenous Social Effect,

Figure A1: Simulation Results, Adaptive Elastic Net GMM

Notes: These simulation results are based on the Unpenalised GMM algorithm, with penalization parameters chosen by BIC,
under various true networks and time periods T= 25, 50, 75, 100, 125 and 150. In all cases, 1000 Monte Carlo iterations were 
performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. In Panel A, the % of zeroes refers to the
proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05. In Panel B, the % of
non-zeros refers to the proportion of true elements greater than .3 in the social interaction matrix that are estimated as non-
zeros. In Panels C and D, the Mean Absolute Deviations are the mean absolute error of the estimated network compared to
the true network for the social interaction matrix W and the reduced form matrix respectively. In Panels E and F, the true
parameter values are marked in the horizontal red lines. The recovered parameter are the estimated parameters averaged
across iterations. All specifications include time and node fixed effects.
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Figure A2: Simulation Results, Adaptive Elastic Net GMM, Distribution of Main 
Estimates

High-School Friendship Network

Notes: These simulation results are based on the Unpenalised GMM algorithm, with penalization parameters chosen by BIC, under the high-school 
network. In all cases, 1000 Monte Carlo iterations were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. Panels A and C
shows the distribution of the estimates of W by their true value and T=25. We show the distribution of the estimated elements of W in five distinct
values of W true values. Panels B and D shows the corresponding distribution for T=150. All specifications include time and node fixed effects.

Village Network
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Figure A3: Simulated and True Networks

Notes: These simulation results are based on the Unpenalised GMM algorithm, with penalization parameters chosen by BIC, under
various true networks and time periods T=50, 100 and 150. In the two stylized networks (Erdos-Renyi and political party), we set N=30,
and the real world networks, the high school friendship and village network are based on N=65 and 70 non-isolated nodes respectively.
Party leaders in the political party network are marked in black in Panel B. In all cases, 1,000 Monte Carlo iterations were performed. The
true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. All specifications include time and node fixed effects. Kept edges are depicted
in blue: these links are estimated as non-zero in at least 5% of the iterations and are also non-zero in the true network. Added edges are
depicted in green: these links are estimated as non-zero in at least 5% of the iterations but the edge is zero in the true network.
Removed edges are depicted in red: these links are estimated as zero in at least 5% of the iterations but are non-zero in the true
network. The figures further distinguish between strong and weak links: strong links are shown in thick edges (whose strength is greater
than or equal to .3), and weak links are shown as thin edges.
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Figure A4: Kernel Used for Dynamic Specifications



A. % of zeros B. % of non-zeros

C. Mean Absolute Deviation of      D. Mean Absolute Deviation of         

E. Endogenous Social Effect, F. Exogenous Social Effect,

Figure A5: Simulation Results, Adaptive Elastic Net GMM
Partial Knowledge of W0, Village Network

Notes: These simulation results are based on the Banerjee et al. (2013) village network, using the Adaptive Elastic Net GMM algorithm, with
penalization parameters chosen by BIC, under various assumptions about knowledge of the true network and time periods T=25, 50, 100, 125
and 150. The “Village" case refers to the simulation implemented without knowledge about the true network. "Village (top 3)" refers to the case
where all connections of the three households with highest out-degrees are assumed to be known. "Village (top 5)" and "Village (top 103)" are
analogously defined. In all cases, 1000 Monte Carlo iterations were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5.
In Panel A, the % of zeroes refers to the proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05.
In Panel B, the % of non-zeros refers to the proportion of true elements greater than .3 in the social interaction matrix that are estimated as
non-zeros. In Panels C and D, the Mean Absolute Deviations are the mean absolute error of the estimated network compared to the true
network for the social interaction matrix W and the reduced form matrix respectively. In Panels E and F, the true parameter values are marked in 
the horizontal red lines. The recovered parameter are the estimated parameters averaged across iterations. All specifications include time and
node fixed effects.
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Erdos-Renyi Political Party High school Village
Coleman (1964) Banerjee et al. (2013)

Number of nodes 30 30 70 65

(a) Network-wide statistics

     Number of edges 30 45 366 240
     Number of strong edges 30 30 61 65
     Number of weak edges 0 15 305 180
     Number of reciprocated edges 2 2 184 242
     Clustering coefficient .000 .037 .404 .327
     Number of components 2 1 1 4
     Size of maximal component 20 30 70 51
     Standard deviation of the
     diagonal of squared W

(b) Node-level statistics

     In-degree distribution 1.00 (1.05) 1.50 (2.49) 5.23 (3.64) 3.50 (2.39)
     Out-degree distribution 1.00 (0.00) 1.50 (0.51) 5.23 (2.04) 3.50 (2.37)
     Nodes with highest out-degree { 7, 11, 26 } { 1, 11, 28 } { 21, 22, 69 } { 16, 35, 57 }

(a) Network-wide statistics

     Number of edges 30 41 112 124
     Number of strong edges 30 41 112 124
     Number of weak edges 0 0 0 0
     Number of reciprocated edges 2 2 24 84
     Clustering coefficient .000 .027 .330 .441
     Number of components 2 1 2 7
     Size of maximal component 20 30 68 42

(b) Node-level statistics

     In-degree distribution 1.00 (1.05) 1.37 (1.88) 1.61 (1.44) 1.77 (1.37)
     Out-degree distribution 1.00 (0.00) 1.37 (0.49) 1.61 (0.82) 1.77 (1.05)
     Nodes with highest out-degree { 7, 11, 26 } { 1, 11, 28 } { 21, 22, 69 } { 16, 35, 57 }

A. True Networks

Table A1: True and Recovered Networks

Notes: Panel A refers to the true networks. Panel B refers to the recovered networks. In each Panel, the summary statistics are divided into network-wide 
and node-level statistics. Strong edges are defined as those with strength greater than or equal to .3. For the in-degree and out-degree distribution, the
mean is shown and the standard deviation is in parentheses. The nodes with the highest out-degree are those with the greatest influence on others,
and are calculated as the column-sum of the social interaction matrix. The recovered network statistics are calculated over the average network across
simulations with T=100.

.254 .254 .084 .205

B. Recovered Networks



Table A2: Simulation Results, Adaptive Elastic Net GMM, Alternative Network Sizes

T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150 T=50 100 150

% True Zeroes .945 .960 .974 .985 .975 .976 .997 .997 .991 .939 .958 .975 .973 .964 .969 .993 .993 .985
(.016) (.014) (.011) (.006) (.006) (.005) (.001) (.001) (.003) (.017) (.015) (.012) (.007) (.007) (.006) (.002) (.002) (.003)

% True Non-Zeroes .973 .996 1.000 .986 .998 1.000 .993 .999 1.000 .949 .980 .993 .937 .964 .973 .974 .989 .995
(.045) (.017) (.004) (.023) (.007) (.004) (.013) (.004) (.001) (.063) (.038) (.022) (.048) (.037) (.032) (.025) (.016) (.012)
.027 .014 .008 .009 .009 .008 .004 .001 .003 .037 .024 .019 .023 .018 .015 .013 .007 .007
(.009) (.006) (.004) (.004) (.002) (.002) (.002) (.001) (.001) (.008) (.005) (.004) (.004) (.003) (.002) (.002) (.001) (.001)
.030 .017 .011 .012 .010 .008 .005 .002 .003 .038 .026 .021 .023 .018 .016 .012 .007 .008
(.008) (.005) (.003) (.004) (.002) (.002) (.002) (.001) (.001) (.007) (.005) (.003) (.004) (.002) (.002) (.002) (.001) (.001)
.270 .281 .282 .280 .304 .300 .279 .298 .309 .242 .250 .246 .199 .241 .232 .205 .250 .272
(.070) (.046) (.037) (.039) (.030) (.025) (.026) (.018) (.017) (.082) (.053) (.043) (.056) (.042) (.036) (.033) (.023) (.022)
.409 .405 .403 .403 .402 .402 .402 .400 .400 .411 .404 .399 .404 .402 .401 .404 .400 .401
(.043) (.029) (.024) (.030) (.020) (.017) (.024) (.016) (.013) (.046) (.030) (.025) (.031) (.021) (.017) (.025) (.016) (.013)
.618 .549 .518 .563 .572 .552 .519 .505 .529 .593 .508 .471 .561 .560 .512 .483 .469 .513
(.071) (.045) (.031) (.043) (.034) (.027) (.025) (.019) (.019) (.079) (.051) (.037) (.057) (.042) (.037) (.028) (.023) (.024)

Notes: These simulation results are based on the Unpenalised GMM algorithm, with penalization parameters chosen by BIC, under various true networks, network sizes and time periods
T=50, 100 and 150. In all cases, 1000 Monte Carlo iterations were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. The % of true zeroes refers to the proportion of
true zero elements in the social interaction matrix that are estimated as smaller than .05. The % of true non-zeroes refers to the proportion of true elements greater than .3 in the social
interaction matrix that are estimated as non-zeros. The Mean Absolute Deviations are the mean absolute error of the estimated network compared to the true network for the social
interaction matrix W and the reduced form matrix respectively. The recovered parameter are the estimated parameters averaged across iterations. All specifications include time and node
fixed effects. Standard errors across iterations are in parentheses.
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Table A3: Simulation Results, Adaptive Elastic Net GMM, Alternative Parameters

.1 .5 .7 .9 .2 .6 .3 .7 .3 .5 .8 1.0 .1 .5 .7 .9 .2 .6 .3 .7 .3 .5 .8 1.0

% True Zeroes .967 .987 .995 .985 .993 .979 .964 .985 .981 .987 .998 1.000 .963 .978 .986 .989 .990 .966 .959 .978 .971 .976 .991 .999
(.006) (.004) (.003) (.006) (.005) (.006) (.007) (.004) (.005) (.004) (.002) .000 (.007) (.006) (.005) (.004) (.005) (.007) (.007) (.006) (.006) (.006) (.004) (.001)

% True Non-Zeroes .999 .998 .970 .437 .978 1.000 .989 1.000 1.000 1.000 1.000 1.000 .966 .976 .969 .791 .901 .992 .910 .990 .991 .997 1.000 1.000
(.004) (.008) (.039) (.131) (.032) .000 (.020) .000 .000 .000 .000 .000 (.037) (.033) (.042) (.102) (.071) (.017) (.058) (.021) (.020) (.010) .000 .000
.012 .004 .003 .031 .004 .006 .015 .004 .005 .003 .000 .000 .018 .013 .011 .020 .014 .014 .023 .011 .013 .011 .007 .005
(.002) (.001) (.003) (.006) (.003) (.002) (.003) (.001) (.002) (.001) (.000) (.000) (.002) (.002) (.002) (.005) (.003) (.002) (.003) (.002) (.002) (.001) (.001) (.001)
.008 .008 .015 .219 .005 .008 .011 .007 .006 .004 .002 .001 .012 .022 .046 .232 .013 .016 .015 .017 .014 .012 .009 .008
(.001) (.002) (.009) (.056) (.003) (.002) (.002) (.002) (.001) (.001) (.001) (.000) (.001) (.003) (.005) (.014) (.003) (.002) (.002) (.002) (.002) (.001) (.001) (.001)
.091 .496 .683 .811 .278 .302 .302 .296 .299 .297 .291 .292 .052 .401 .555 .692 .203 .249 .222 .231 .240 .244 .239 .238
(.029) (.020) (.020) (.108) (.026) (.023) (.035) (.020) (.021) (.018) (.012) (.006) (.035) (.034) (.033) (.046) (.033) (.035) (.047) (.029) (.033) (.027) (.020) (.014)
.403 .400 .398 .482 .208 .602 .404 .401 .401 .401 .400 .399 .401 .399 .398 .406 .210 .601 .403 .399 .401 .400 .399 .398
(.017) (.017) (.017) (.090) (.016) (.017) (.017) (.017) (.014) (.012) (.007) (.001) (.017) (.017) (.018) (.027) (.015) (.017) (.017) (.017) (.014) (.012) (.008) (.003)
.589 .515 .487 .452 .506 .545 .395 .720 .530 .510 .485 .481 .539 .476 .434 .362 .429 .538 .379 .656 .502 .486 .448 .436
(.030) (.022) (.022) (.300) (.025) (.028) (.035) (.023) (.021) (.016) (.010) (.005) (.039) (.032) (.031) (.065) (.034) (.037) (.041) (.034) (.029) (.023) (.014) (.010)

B. Political party

Notes: These simulation results are based on the Adaptive Elastic Net GMM algorithm, with penalization parameters chosen by BIC, under various true networks, network sizes, time periods T=100 and parameter values. In all cases, 1000
Monte Carlo iterations were performed. The % of true zeroes refers to the proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05. The % of true non-zeroes refers to the proportion of true
elements greater than .3 in the social interaction matrix that are estimated as non-zeros. The Mean Absolute Deviations are the mean absolute error of the estimated network compared to the true network for the social interaction matrix W and
the reduced form matrix respectively. The recovered parameter are the estimated parameters averaged across iterations. All specifications include time and node fixed effects. Standard errors across iterations are in parentheses.
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T=500 1000 1500 T=500 1000 1500 T=500 1000 1500 T=500 1000 1500 T=500 1000 1500 T=500 1000 1500

% True Zeroes .935 .959 .974 .975 .987 .991 .979 .988 .992 .957 .969 .974 .974 .983 .986 .982 .990 .992
(.052) (.043) (.034) (.009) (.005) (.005) (.012) (.007) (.005) (.015) (.013) (.013) (.019) (.011) (.009) (.010) (.004) (.003)

% True Non-Zeroes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)
.073 .058 .040 .013 .010 .011 .009 .008 .007 .031 .031 .031 .020 .019 .018 .009 .007 .008
(.108) (.098) (.075) (.011) (.003) (.015) (.023) (.028) (.026) (.010) (.008) (.007) (.029) (.020) (.016) (.013) (.002) (.002)
.250 .152 .079 .007 .006 .005 .008 .006 .003 .018 .015 .015 .017 .010 .008 .007 .004 .004
(.451) (.363) (.263) (.004) (.001) (.004) (.029) (.029) (.006) (.004) (.003) (.002) (.060) (.022) (.010) (.020) .000 .000
.429 .379 .332 .225 .267 .277 .144 .208 .227 .272 .274 .277 .243 .259 .259 .109 .172 .200
(.277) (.224) (.162) (.097) (.043) (.037) (.121) (.100) (.066) (.064) (.043) (.033) (.132) (.077) (.055) (.111) (.086) (.069)
.358 .365 .370 .374 .378 .379 .379 .384 .385 .371 .374 .376 .370 .375 .377 .376 .381 .383
(.190) (.051) (.045) (.012) (.008) (.007) (.012) (.008) (.006) (.020) (.014) (.011) (.013) (.008) (.007) (.013) (.007) (.005)
.373 .384 .404 .525 .462 .445 .625 .533 .501 .445 .422 .415 .465 .419 .411 .601 .507 .471
(.438) (.283) (.139) (.111) (.049) (.040) (.113) (.087) (.069) (.062) (.040) (.031) (.115) (.067) (.052) (.112) (.090) (.072)

Notes: These simulation results are based on the Adaptive Lasso algorithm, with penalization parameters chosen by BIC, under various true networks, network sizes and time periods T=50, 100 and 150. In 
all cases, 1000 Monte Carlo iterations were performed. The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. The % of true zeroes refers to the proportion of true zero elements in the social
interaction matrix that are estimated as smaller than .05. The % of true non-zeroes refers to the proportion of true elements greater than .3 in the social interaction matrix that are estimated as non-zeros.
The Mean Absolute Deviations are the mean absolute error of the estimated network compared to the true network for the social interaction matrix W and the reduced form matrix respectively. The
recovered parameter are the estimated parameters averaged across iterations. All specifications include time and node fixed effects. Standard errors across iterations are in parentheses.

Table A4: Simulation Results, Adaptive Lasso
A. Erdos-Renyi B. Political party
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T=500 1000 1500 T=500 1000 1500 T=500 1000 1500 T=500 1000 1500 T=500 1000 1500 T=500 1000 1500

% True Zeroes .748 .823 .873 .774 .841 .882 .796 .852 .892 .752 .828 .877 .775 .842 .883 .795 .854 .893
(.050) (.034) (.023) (.033) (.020) (.013) (.044) (.023) (.012) (.031) (.023) (.021) (.031) (.019) (.022) (.039) (.025) (.013)

% True Non-Zeroes 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)
.078 .049 .037 .059 .043 .035 .054 .041 .033 .062 .043 .035 .058 .042 .035 .053 .040 .033
(.070) (.037) (.018) (.023) (.015) (.002) (.019) (.016) (.001) (.039) (.004) (.003) (.026) (.011) (.015) (.023) (.017) (.001)
.134 .051 .028 .054 .030 .024 .058 .030 .023 .054 .029 .023 .052 .031 .026 .051 .030 .023
(.306) (.157) (.078) (.080) (.025) (.025) (.073) (.023) (.001) (.124) (.035) (.002) (.074) (.035) (.037) (.055) (.025) (.001)
.342 .313 .303 .233 .249 .270 .269 .255 .263 .303 .302 .301 .218 .252 .284 .238 .247 .262
(.223) (.103) (.057) (.167) (.109) (.086) (.191) (.092) (.063) (.102) (.048) (.035) (.172) (.120) (.088) (.203) (.112) (.077)
.433 .402 .396 .401 .393 .396 .483 .392 .395 .389 .395 .396 .388 .393 .395 .427 .392 .395
(.460) (.183) (.017) (.240) (.008) (.007) (.607) (.010) (.005) (.028) (.014) (.010) (.110) (.008) (.007) (.440) (.013) (.005)
.488 .507 .516 .687 .620 .574 .602 .641 .600 .568 .522 .518 .719 .618 .559 .719 .649 .602
(.635) (.267) (.065) (.405) (.142) (.106) (.822) (.156) (.084) (.231) (.052) (.042) (.286) (.150) (.103) (.555) (.138) (.103)

Notes: These simulation results are based on OLS estimates, under various true networks, network sizes and time periods T=500, 1000 and 1500. In all cases, 1000 Monte Carlo iterations were performed.
The true parameters are rho-0=.3, beta-0=.4 and gamma-0=.5. The % of true zeroes refers to the proportion of true zero elements in the social interaction matrix that are estimated as smaller than .05. The
% of true non-zeroes refers to the proportion of true elements greater than .3 in the social interaction matrix that are estimated as non-zeros. The Mean Absolute Deviations are the mean absolute error of
the estimated network compared to the true network for the social interaction matrix W and the reduced form matrix respectively. The recovered parameter are the estimated parameters averaged across
iterations. All specifications include time and node fixed effects. Standard errors across iterations are in parentheses.

Table A5: Simulation Results, OLS
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Table A6: Summary Statistics, Tax Competition Application
Obs Mean SD Min q25 Median q75 Max

State total tax per capita 1,248 0.371 0.266 0.036 0.145 0.300 0.530 1.345
State income per capita 1,248 10.617 2.248 4.452 9.120 10.587 12.141 19.409
Unemployment rate 1,248 5.868 2.209 1.800 4.200 5.500 7.000 17.800
Proportion of young 1,248 0.258 0.029 0.180 0.240 0.260 0.280 0.340
Proportion of elderly 1,248 0.106 0.020 0.050 0.090 0.110 0.120 0.180
State governor's age 1,248 51.088 7.441 33.000 45.000 50.000 56.000 73.000

State total tax per capita 2,544 1.016 0.798 0.036 0.300 0.858 1.579 4.298
State income per capita 2,544 13.394 3.850 4.452 10.564 13.025 15.866 27.974
Unemployment rate 2,544 5.754 2.037 1.800 4.300 5.400 6.800 17.800
Proportion of young 2,544 0.235 0.033 0.170 0.210 0.230 0.260 0.340
Proportion of elderly 2,544 0.118 0.023 0.050 0.100 0.120 0.130 0.190
State governor's age 2,544 53.538 8.049 33.000 47.000 53.000 59.000 78.000

Notes: Summary statistics of variables (in levels) used in subsequent regressions. Besley and Case sample runs from 1962 to 1988 and extended
sample until 2015. State total tax per capita is the sum of sales, income and corporation tax in thousands of 1982 US dollars. State income per
capita in thousands of 1982 US dollars. Proportion of young is the proportion of the population between 5 and 17 years. Proportion of elderly is the
proportion of the population aged 65 or older. State governor's age in years. Data sources: State total tax per capita, Census of Governments
(1972, 1977, 1982, 1987, 1992-2016) and Annual Survey of Government Finances (all other years); State income per capita, Bureau of Economic
Analysis; Unemployment rate, Bureau of Labor Statistics; Proportion of young (aged 5-17) and elderly (aged 65+), Census Population & Housing
Data; State governor's age and political variables manually sourced from individual governor's webpages on Wikipedia.

A. Besley and Case sample (1962-1988)

B. Extended sample (1962-2015)



Table A7: Exogenous Social Effects
Dependent variable: Change in per capital income and corporate taxes
Coefficient estimates, standard errors in parentheses

(1) OLS (2) GMM

Economic Neighbors' tax change (t - [t-2]) .402*** .452***
(.044) (.132)

Economic Neighbors' income per capita .041*** .043
(.007) (.066)

Economic Neighbors' unemployment rate 1.062 17.401***
(1.826) (.026)

Economic Neighbors' population aged 5-17 790.8*** 3253.387***
(303.5) (.032)

Economic Neighbors' population aged 65+ -1155.7*** 3712.6***
(328.9) (.022)

Economic Neighbors' governor age -0.274 2.358***
(.264) (.035)

Period
First Stage (F-stat) 10.5
Controls Yes Yes
State and Year Fixed Effects Yes Yes
Observations 2,544 2,544

1962-2015

Notes: *** denotes significance at 1%, ** at 5%, and * at 10%. The sample covers 48 mainland US states running from
1962 to 2015. The dependent variable is the change in state i's total taxes per capita in year t. In the OLS and GMM
regressions, the economic neighbors' effect is calculated as the weighted average of economic neighbors-of-neighbors
variables. Column 2 shows the GMM estimates where each economic neighbors' tax change is instrumented by the
characteristics of all states. All regressions control for state i’s income per capita in 1982 US dollars, state i’s unemployment
rate, the proportion of young (aged 5-17) and elderly (aged 65+) in state i’s population, and the state governor's age. All
specifications include state and time fixed effects. With the exception of governor's age, all variables are differenced
between period t and period t-2. Column 1 reports robust standard errors in parentheses. Column 2 reports standard errors
adopting the procedure described in Caner and Zhang (2014).
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