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Abstract

This paper studies identification in a binary choice panel data model with
choice probabilities depending on a lagged outcome, additional observed re-
gressors and an unobserved unit-specific effect. It is shown that with two
consecutive periods of data identification is not possible (in a neighborhood of
zero), even in the logistic case.
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1 Foreword from the editors

In 1993 Gary Chamberlain released Harvard Institute of Economic Research (HIER)

discussion paper no. 1656, titled “Feedback in Panel Data”. The material in this

paper appears to be a revision and extension of ideas that circulated at least as early

as 1991, in a draft paper titled “Sequential Moment Conditions in Panel Data”.

Some of the material in the earlier, 1991, paper appeared as a, now well-known,

comment in the Journal of Business and Economic Statistics (Chamberlain, 1992).

The “Feedback in Panel Data” paper, however, remained unpublished for many years.

Prior to his passing in 2020, Gary submitted a version of the feedback paper

to the Journal of Econometrics in connection with a conference that was held in

his honor at Harvard University (Chamberlain, 2022) (Manuel Arellano was among

the participants at this conference). Before its eventual publication in 2022, the

“Feedback in Panel Data” paper was not widely circulated and, to our knowledge,

unavailable in any form online.

One version of the 1993 paper included a fifth and final section titled “Binary

Response”. This material was not published as part of Chamberlain (2022). The

“Binary Response” section contained two sets of results. The first, dealing with the

identification of static binary choice models, can be found in Chamberlain (2010).

The second part, which is reproduced below, deals with the identification of dynamic

binary choice models.

Gary establishes that with two consecutive observations of a binary dependent

variable, identification is not possible (in a neighborhood of zero), even in the logistic

case. This result is not widely known, although it has been cited by, for example,

Honoré & Kyriazidou (2000). Publishing this material makes it easily available to

researchers worldwide for the first time.

Gary was a great admirer of Manuel Arellano’s research and they engaged in

many intellectual exchanges over the years. Gary would no doubt have wanted to

celebrate and honor Manuel’s considerable achievements and scholarship. Including

this short note in this special issue provides a way to do so.

Stéphane Bonhomme, Bryan Graham and Laura Hospido.
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2 Identification in dynamic binary response

The outcome variable is binary. There are two periods of observation on each unit

(T = 2). The random vector (yi1, yi2, x
′
i1, x

′
i2, ci) is independently and identically

distributed for i = 1, ..., n. We observe z′i = (yi1, yi2, x
′
i1, x

′
i2); the (scalar) latent

variable ci ∈ R is not observed. The binary variable yit = 0 or 1, and x′i = (x′i1, x
′
i2)

has support X ⊂ RJ ×RJ .

We assume that

Pr(yi1 = 1|xi, ci) = F (β′
0xi1 + ci) (1)

Pr(yi2 = 1|xi, yi1, ci) = F (α0 + β′
0xi2 + γ0yi1 + ci).

The distribution function F is given as part of the prior specification; it is strictly

increasing on the whole real line with a bounded, continuous derivative, and with

lims→∞ F (s) = 1 and lims→−∞ F (s) = 0. The parameter space is Θ = Θ1×Θ2×Θ3,

where Θ1 is an open subset of R, Θ2 is an open subset of RJ , and Θ3 is an open

subset of R, and θ′0 ≡ (α0, β
′
0, γ0) ∈ Θ. We assume that Θ contains a neighborhood

of 0. Define

p(x, c, θ) =


[1− F (β′x1 + c)] [1− F (α + β′x2 + c)]

[1− F (β′x1 + c)]F (α + β′x2 + c)

F (β′x1 + c) [1− F (α + β′x2 + γ + c)]

F (β′x1 + c)F (α + β′x2 + γ + c)

 .

Theorem 1. If X is bounded, then there is a point (α, γ) ∈ Θ1 × Θ3 such that

identification fails in (1) for all θ0 in a neighborhood of (α, 0, γ).

Proof. Define

H(x, c1, ..., c4, θ) = [p(x, c1, θ), ..., p(x, c4, θ)] .

Suppose that for some (α, γ) ∈ Θ1 × Θ3 and points c1, ..., c4 ∈ R, we have
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H(x, c1, ..., c4, θ
∗) nonsingular, where θ∗ = (α, 0, γ). Consider a convex combination

a =
4∑

j=1

p(x, cj, θ
∗)π∗

j = H(x, c1, ..., c4, θ
∗)π∗,

where π∗′ = (π∗
1, ..., π

∗
4), π

∗
j > 0, and

∑4
j=1 π

∗
j = 1. Let

π0(x) = H(x, c1, ..., c4, θ0)
−1a,

where θ0 ̸= θ∗ is any point in Θ sufficiently close to θ∗ that the inverse exists and

π0j(x) > 0 for all x ∈ X; there is such a neighborhood of θ∗ because X is bounded.

Note that l′H = l′, where l is a 4×1 vector of ones; hence l′H−1 = l′ and l′π0(x) = 1.

Hence
4∑

j=1

p(x, cj, θ0)π0j(x) =
4∑

j=1

p(x, cj, θ
∗)π∗

j ,

and we cannot distinguish θ0 from θ∗.

We conclude that for every (α, γ) ∈ Θ1×Θ3 we must have H(x, c1, ..., c4, (α, 0, γ))

singular for every choice of c1, ..., c4 ∈ R. Otherwise identification fails for all θ0 in

some neighborhood of (α, 0, γ). So there must exist scalars ψ1, ..., ψ4 (not all zero)

such that

ψ′p(x, c, (α, 0, γ)) = ψ1 [1− F (c)] [1− F (α + c)] + ψ2 [1− F (c)]F (α + c)

+ ψ3F (c) [1− F (α + γ + c)] + ψ4F (c)F (α + γ + c) = 0

for all c ∈ R. Letting c → ∞ gives ψ4 = 0. Letting c → −∞ gives ψ1 = 0. Hence

we have

ψ2 [1− F (c)]F (α + c) + ψ3F (c) [1− F (α + γ + c)] = 0

for all (α, γ) ∈ Θ1 ×Θ3 and all c ∈ R.
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Set γ = 0. Letting Q ≡ F/(1− F ), we must have

ψ2Q(α + c) + ψ3Q(c) = 0;

setting c = 0 gives ψ3/ψ2 = −Q(α)/Q(0), and so

Q(α + c) = Q(α)Q(c)/Q(0)

for all α ∈ Θ1 and all c ∈ R. The only positive, continuously differentiable solution

to this form of Cauchy’s equation is

Q(s) = exp(ϕ1 + ϕ2s);

then, from F = Q/(1 +Q) it follows

F (s) = exp(ϕ1 + ϕ2s)/ [1 + exp(ϕ1 + ϕ2s)] .

Now set α = 0. Then, with G = 1− F , we have

ψ2G(c) + ψ3G(γ + c) = 0;

setting c = 0 gives ψ2/ψ3 = −G(γ)/G(0), and so

G(γ + c) = G(γ)G(c)/G(0)

for all γ ∈ Θ3 and all c ∈ R. The only positive, continuously differentiable solution

to this form of Cauchy’s equation is

G(s) = exp(τ1 + τ2s),

which implies that

F (s) = 1− exp(τ1 + τ2s).
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So we have

exp(τ1 + τ2s) = 1− F (s) = [1 + exp(ϕ1 + ϕ2s)]
−1 ,

τ1 + τ2s = − log [1 + exp(ϕ1 + ϕ2s)] ,

and taking the derivative with respect to s gives

τ2 = −ϕ2F (s).

But this is a contradiction, since F is strictly increasing. So it is not possible to

maintain the singularity condition on H, and identification fails for all θ0 in some

neighborhood of (α, 0, γ). Q.E.D.
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