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1 Introduction

Minimum distance estimation is a popular approach to estimate structural econometric
models through moments matching. For example, labor economists posit different mod-
els of earnings dynamics and estimate them by minimizing the weighted distance between
the sample cross-period covariance and model implied population covariance.1 Empirical
researchers most frequently use either an identity weighting matrix, which assigns equal
weights to the moments, or an inverse-variance diagonal weighting matrix.2 The inverse
sample covariance matrix of the moments, despite being the optimal weighting matrix in
a standard asymptotic framework, is susceptible to large estimation errors and may result
in substantial finite-sample bias in the minimum distance estimator, as documented by
Altonji and Segal (1996) and others.

This paper proposes a new approach to weight the moments, aiming for better finite-
sample estimation and inference of the structural parameters. This new approach em-
ploys a combination of cross-fitting estimation and regularized weighting matrix esti-
mation. We also suggest using cross-fitting to estimate the asymptotic variance of the
minimum distance estimator. We consider a many-moment asymptotic framework where
the number of moments p and the sample size n increase simultaneously. Compared to a
standard fixed p asymptotic framework, this setup allows us to derive asymptotic results
that provide a better approximation to the finite-sample bias due to sampling errors in
the p × p dimensional weighting matrix. To accommodate applications in the earnings
dynamics literature, we focus on the case n, p → ∞ and p/n → 0 such that the number
of moments is large and it is substantially smaller than the sample size. We compare
the proposed method with common alternative weighting schemes and demonstrate its
desirable theoretical properties and excellent finite-sample performances.

Cross-fitting uses independent data splits to compute the weighting matrix and the
sample moments, then ensembles these sample-splitting estimators to achieve the effi-
ciency of a full sample estimator. It can be combined with any method to construct the
weighting matrix. In the many-moment framework, we show that this cross-fitting pro-
cedure reduces the asymptotic bias of the minimum distance estimator. Specifically, the
full sample estimator has a substantial first order asymptotic bias unless the weighting
matrix converges fast enough. In contrast, this asymptotic bias is eliminated by the cross-
fitting procedure without any requirement on the rate of convergence of the weighting
matrix. To capture this difference in the first order asymptotic bias between the full sam-

1See Abowd and Card (1989), MaCurdy (1982), Meghir and Pistaferri (2004), Guvenen (2007), and Altonji,
Smith, and Vidangos (2013) for some examples on earnings dynamics models and their estimation.

2Recent papers that apply equal-weighting include Baker and Solon (2003) and Meghir and Pistaferri
(2004). Applications of diagonal weighting include Hyslop (2001), Blundell, Pistaferri, and Preston (2008),
and Autor, Kostøl, Mogstad, and Setzler (2019).
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ple estimator and the cross-fitting estimator, it is essential to let p grow along with n. In
a standard fixed p asymptotic setup, this difference disappears. The theoretical advan-
tages of the cross-fitting estimator suggest that it is more robust against sampling errors
in the weighting matrix, and this is reflected in the performance of cross-fitting in our
simulation exercises.

Cross-fitting also yields significant benefits when applied to estimate the asymptotic
variance of the minimum distance estimator. Theoretically, the cross-fitting estimator and
the full sample estimator have the same asymptotic variance. Therefore, one can construct
standard errors using either the full sample method or the cross-fitting method. How-
ever, their finite-sample performances differ considerably. In simulations, we find that
confidence intervals based on cross-fitting standard errors perform well, but those based
on full sample standard errors often undercover severely. Indeed, cross-fitting minimum
distance estimation together with the optimal weighting matrix (inverse sample covari-
ance) was considered by Altonji and Segal (1996) as their independently weighted optimal
minimum distance estimator (IWOMD). However, they used the full sample method to
calculate the standard error, which resulted in poor coverage probabilities. Applying the
cross-fitting standard error results in a remarkable improvement. Nevertheless, we sug-
gest combining cross-fitting with a regularized weighting matrix, rather than this optimal
weighting matrix.

Regularized weighting matrix estimation could be viewed as a data-dependent exten-
sion of the extreme regularization achieved by equal weighting and diagonal weighting.
All methods control sampling noise in the weighting matrix by reducing the number
of parameters to estimate. The new weighting matrix proposed here is based on the
graphical lasso (GLasso) estimator of an inverse covariance matrix (Friedman, Hastie,
and Tibshirani, 2008). It allows some off-diagonal elements to be non-zero and estimate
them together with the diagonal elements. The degree of regularization is data driven.

We show that in several examples motivated by the earnings dynamics literature, such
as the covariance structure model, the oracle weighting matrix is sparse, i.e., it only has a
small number of non-zero off-diagonal elements. This oracle weighting matrix is defined
as the inverse of the true population covariance of the moments, and the sparse pattern
is an implication of the economic model. While the oracle weighting matrix delivers the
smallest variance for the minimum distance estimator, it is infeasible. Under the sparsity
condition shown in these examples, the GLasso weighting matrix is a consistent estimator
of the oracle weighting matrix. In consequence, the cross-fitting minimum distance esti-
mator based on the GLasso weighting matrix is asymptotically unbiased and achieves the
same level of efficiency as one with oracle weighting. This is our recommended estimator.

We investigate the finite-sample properties of our proposed estimator with two sets of
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simulation studies. In the first simulation study, we revisit the original design of Altonji
and Segal (1996) and compare the proposed estimator with the estimators considered
there under both their original design and the many-moment design. In the second simu-
lation study, we consider the model in Baker and Solon (2003) to study earnings dynamics
in an empirically rich environment. This model captures transitory and permanent in-
come shocks, autoregressive lag dependence, time-varying volatilities, life-cycle effects,
and cohort effects. We draw the simulated data using their structural model and param-
eter estimates. Overall, we find that the proposed estimator has the best performance in
terms of bias, root mean square error, and coverage probability of the confidence interval.
We also show that the different estimators have an important impact when we replicate
an earnings inequality decomposition exercise from Baker and Solon (2003).

Relation to the Literature. Altonji and Segal (1996) investigate the small-sample bias of
the optimal minimum distance estimator due to the correlation between sampling errors
in the weighting matrix and sample errors in the moments. They provide extensive sim-
ulation evidence in favor of the equally weighted estimator. Clark (1996) supports this
recommendation with additional simulation evidence based on nonlinear models. Both
papers contain references to earlier research that report difficulties in empirical appli-
cations of the optimal minimum distance estimator, particularly in covariance structure
models. This paper provides a new solution to this long-existing problem and investigates
it both in theory and in simulation.

The many-moment asymptotic framework where p increases with n has been used
to study many instrumental variables (e.g., Bekker, 1994).3 Han and Phillips (2006) and
Newey and Windmeijer (2009) study an asymptotic bias due to a large number of moment
conditions in a generalized method of moments (GMM) framework, when the weighting
matrix is non-random. This source of bias is irrelevant for a minimum distance estimator
even with many moments. Estimation based on many moments typically requires p to
be much smaller than n.4 One notable exception is Belloni, Chernozhukov, Chetverikov,
Hansen, and Kato (2018), who suggest a new regularized minimum distance estimator
for cases where the number of moments and parameters could be both much larger than
n. None of these papers study estimation bias due to weighting matrix sampling errors,
the question in Altonji and Segal (1996) and here.

This cross-fitting minimum distance estimator is related to the double/debiased ma-
chine learning methods, where cross-fitting is applied to attenuate the over-fitting bias

3This framework is used extensively to study many weak instruments, see, e.g., Chao and Swanson (2005),
Andrews and Stock (2007), Newey and Windmeijer (2009), Mikusheva and Sun (2021).

4For example, Newey and Windmeijer (2009) consider p = o(n1/3) for consistency and p = o(n1/2) for
asymptotic normality for the continuous updating estimator in a linear model.
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after estimating a high-dimensional function by machine learning methods, see Cher-
nozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018) for a review
on double/debiased machine learning and references therein for other applications of
sample-splitting methods in machine learning and semi-parametric estimation. Here our
nuisance parameter is a large scale weighting matrix. Cross-fitting relaxes regularity con-
ditions in both cases but operates through distinct channels.5

The regularized weighting matrix we use is taken from the machine learning litera-
ture on estimation of high-dimensional inverse covariance matrices. In addition to the
GLasso estimator we adopt, many other estimators are available, see e.g., Bickel and Lev-
ina (2008), Cai, Liu, and Luo (2011), Fan, Liao, and Mincheva (2011), among others. Each
of these method works under certain notions of sparsity. To link these machine learning
methods to structural economic applications, it is crucial to demonstrate the economic
model satisfies the particular sparsity condition required by the chosen method. We
make considerable efforts in this direction.

This paper also contributes to empirical studies of earnings dynamics. The nature
of earnings risk, and its separation into persistent and transitory components, is conse-
quential for many decisions that individuals and households make over the life-cycle.
For example, earnings risk is important in determining life-cycle labor supply (Abowd
and Card, 1989), consumption and savings (Gourinchas and Parker, 2002), and portfolio
choice behaviour (Angerer and Lam, 2009). We provide a novel method that enables effi-
cient estimation and robust inference for both the structural parameters and the variance
decomposition. To ensure the applicability of our proposed method to these applications,
we validate the required conditions and conduct simulation studies using an empirical
model from this literature.

The rest of the paper is organized as follows. Section 2 discusses the proposed estima-
tor based on cross-fitting and regularized weighting matrix estimation. An algorithm for
the proposed estimator is provided at the end of this section. Section 3 provides a theo-
retical justification of the proposed estimator in a many-moment asymptotic framework.
Sections 4 and 5 contain two simulation studies: one is based on the design in Altonji and
Segal (1996) and one is based on a fully-fledged empirical model from Baker and Solon
(2003). Section 6 concludes. The appendix contains proofs and additional supplementary
materials.

5Another important method in double/debiased machine learning is using moments that satisfy the
Neyman orthogonality condition. This condition is automatically satisfied once we view the weighting
matrix as a nuisance parameter in a minimum distance estimation problem.
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2 Minimum Distance Estimation and Weighting

A structural model posits that, at the true parameter vector θ0, the moment condition
E[mi] = f (θ0) holds for the i.i.d. observed data mi : i = 1, . . . , n, and some known
function f (θ) : Θ→ Rp. We can estimate θ0 by the minimum distance estimator

θ̂ = arg min
θ∈Θ

(m− f (θ))′ Ŵ (m− f (θ)) , (2.1)

where m = n−1 ∑n
i=1 mi is the sample average of the observed moments and Ŵ is a

symmetric and positive definite weighting matrix that is possibly data-dependent. As
we consider models that are over-identified, the weighting matrix plays a crucial role in
the asymptotic and finite-sample properties of this minimum distance estimator.6 Let
Σ = Var(mi). The optimal weighting matrix is WO = Σ−1. We call this the oracle
weighting matrix because it is typically unknown in practice.

Let Σ̂ = n−1 ∑n
i=1(mi − m)(mi − m)′ denote the sample covariance matrix. In prac-

tice, commonly used weighting matrices include (i) equal weighting, with Ŵ the identity
matrix; (ii) diagonal weighting, with Ŵ only taking the diagonal elements of Σ̂−1; (iii)
inverse covariance weighting, i.e., Ŵ = Σ̂−1. In a standard asymptotic framework where
p is fixed, Σ̂−1 is a consistent estimator of WO, and the inverse covariance weighting is
also called the optimal weighting. In finite samples, Σ̂−1 is susceptible to large sampling
errors, especially when the dimension p is large. Furthermore, noisy estimation of the
weighting matrix can translate into large bias in the minimum distance estimates.

We propose two channels to reduce bias in the minimum distance estimator through
weighting matrix choices. The first channel is cross-fitting, a sample splitting method that
ensures independence of the weighting matrix and the sample moments by construction.
We also provide a cross-fitting estimator of the asymptotic variance of the minimum dis-
tance estimator. In the many-moment framework where p → ∞, we show that the cross-
fitting approach eliminates a first-order asymptotic bias due to weighting matrix sampling
errors. The second channel is regularized estimation of the weighting matrix. Exploiting
the sparse patterns implied by many economic models, we suggest data-dependent reg-
ularization that allows for a small number of non-zero off-diagonal elements. In practice,
we suggest combining these two approaches. We discuss cross-fitting and regularized
weighting matrix estimation in Section 2.1 and Section 2.2, respectively. We conclude this
section by summarizing the recommended algorithm.

6See Chamberlain (1984) for a detailed analysis of the minimum distance estimator in a standard frame-
work.
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2.1 Cross Fitting and Bias Reduction

For a given weighting matrix Ŵ, we propose to estimate θ through cross-fitting and cal-
culate the standard error of this estimator using the cross-fitting formula provided below.
We first describe the cross-fitting procedure and provide some heuristic arguments on
why it reduces the first-order asymptotic bias of the minimum distance estimator in the
many-moments framework. A specific regularized weighting matrix Ŵ is provided in the
following subsection.

Cross-Fitting Estimator. Split the sample randomly into a fixed number of K disjoint
subsets of size nk = n/K for k ∈ {1, . . . , K}. We refer to the observations in each subset as
folds. Let Ik denote the set of indices in each fold k ∈ {1, . . . , K} and I−k = {1, . . . , K}\Ik.

For observations in each fold k, we let mk = n−1
k ∑i∈Ik

mi be the sample mean and
similarly define Σ̂k = n−1

k ∑i∈Ik
(mi − mk)(mi − mk)

′ as the sample covariance. Using
observations in the other folds, i.e., i ∈ I−k, we compute the weighting matrix Ŵ−k. The
fold-k minimum distance estimator is

θ̂(k) = arg min
θ∈Θ

(mk − f (θ))′ Ŵ−k (mk − f (θ)) , (2.2)

where the sample moments mk and the weighting matrix Ŵ−k are independent. The
K-fold cross-fitting estimator is

θ̂∗ =
1
K

K

∑
k=1

θ̂(k). (2.3)

Cross-Fitting Standard Error. One can show that the asymptotic variance of the cross-
fitting estimator is the usual sandwich formula Ω = (F′WF)−1F′WΣWF(F′WF), where
F = ∂ f (θ0)/∂θ is the Jacobian matrix, and W is the limit of Ŵ, see Theorem 3.1 below. We
suggest estimating Ω using the following cross-fitting estimator

Ω̂∗ =
1
K

K

∑
k=1

Ω̂(k), where Ω̂(k) = (F̂′kŴ−k F̂k)
−1F̂′kŴ−kΣ̂kŴ−k F̂k(F̂′kŴ−k F̂k)

−1, (2.4)

F̂k = ∂ f (θ̂(k))/∂θ, Σ̂k, and Ŵ−k, are all computed specifically for fold k. This variance
estimator Ω̂∗ delivers the cross-fitting standard error.

In the literature, it is a standard practice to estimate the variance matrix Ω by replacing
F, Σ, and W, with F̂ = ∂ f (θ̂)/∂θ, Σ̂, and Ŵ, respectively. All of these are computed with
the full sample. This full sample variance estimator delivers the full sample standard
error. Although both methods yield consistent estimation of the asymptotic variance, we
show that confidence intervals based on cross-fitting standard errors have significantly
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better finite-sample performances than those based on full sample standard errors.

Bias Reduction. Through the lens of a many-moment framework, we now heuristically
illustrate how the cross-fitting method reduces estimation bias due to weighting matrix
estimation noise. Consider the linear model f (θ) = Fθ with mi ∼ N ( f (θ0), Σ). We
assume ||Ŵ −W|| →p 0 for some non-random matrix W. The full-sample minimum
distance estimator is

√
n(θ̂ − θ0) = (F′ŴF)−1

F′W
√

ng(θ0)︸ ︷︷ ︸
A

+ F′(Ŵ −W)
√

ng(θ0)︸ ︷︷ ︸
B

 , (2.5)

where
√

ng(θ0) = n−1/2 ∑n
i=1(mi − f (θ0)) ∼ N (0, Σ). The first term, denoted by A, is

based on the non-random limit W, and it follows a zero mean normal distribution. How-
ever, the second term, denoted by B, can have different asymptotic limits for the full
sample estimator and the cross-fitting estimator in the many-moment case where p→ ∞.
For the cross-fitting estimator, we always have B →p 0 because Ŵ −W and

√
ng(θ0) are

independent by construction. We prove this result through a conditioning argument in
Theorem 3.1 below.

In contrast, the bias term B may not converge to 0 in probability for the full sample
estimator even if Ŵ is consistent. This differs from the standard result for a finite number
of moments. The estimation error in Ŵ −W could be correlated with the sampling error
in
√

ng. As this correlation effect accumulates across moments, it results in a non-zero
limit when the dimension p is high.

To illustrate this bias, consider the linear example above with the parameter θ being a
scalar, Σ = Ip, and F = (1, 0, . . . , 0)′ ∈ Rp. The weighting matrix estimator is Ŵ = WO +

∆. The first column and first row of ∆ are c0 p−1√ng(θ0) and its transpose, respectively,
for some constant c0, and all the other elements of ∆ are zero. The weighting matrix
estimator Ŵ is consistent because ||∆|| = Op(p−1/2) with p→ ∞, where || · || denotes the
spectral norm of a matrix. In this case, the bias term B = c0 p−1||

√
ng(θ0)||2 →p c0. For

the bias term B to converge to 0 in probability for the full sample estimator, the weighting
matrix has to converge faster than p−1/2. In our design, it converges at exactly p−1/2

rate for c0 ̸= 0. In (2.5), the leading term A follows a standard normal distribution and
the normalization factor (F′ŴF)−1 →p 1. We conduct a Monte Carlo simulation based
on this example with p being the nearest integer to

√
n and c0 = 10. Figure 1 presents

histograms of the t-statistic for two methods: (i) full sample estimator coupled with the
full sample standard error and (ii) cross-fitting estimator coupled with the cross-fitting
standard error with K = 2. This figure confirms that the full sample estimator is biased
and the bias does not disappear with a large sample. The cross-fitting method eliminates
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Figure 1: Bias reduction under cross-fitting. Figure presents histograms of the t-statistic under
two sample sizes when using (i) the full sample estimator with the full sample standard error and
(ii) the K = 2 cross-fitting estimator with the cross-fitting standard error. Black line is the standard
normal density. See the text for a description of the many-moment simulation design.

the bias effectively.
In sum, in the many-moment framework where p → ∞, the cross-fitting estimator is

more robust than the full sample estimator. The cross-fitting estimator has zero asymp-
totic bias as long as the weighting matrix is consistent, without any requirement on the
rate of convergence. The standard full sample estimator, in contrast, could have a substan-
tial bias. This provides a theoretical justification for our observation that the cross-fitting
estimator has better finite-sample performance than its full sample counterpart that uses
the same weighting matrix estimation method.

2.2 Regularized Weighting Matrix Estimation

Regularized estimation of large inverse covariance matrices is well studied in the statistics
and machine learning literature, see Fan, Liao, and Liu (2016) for a review. These studies
postulate different notions of sparsity, and use various shrinkage methods to achieve
dimension reduction and improved estimation accuracy. Therefore, before suggesting a
specific regularized estimator for WO, we first present some empirical examples of interest
and demonstrate the sparsity patterns in them. Here we define the sparsity measure as the
number of non-zero off-diagonal elements in the p× p dimensional matrix WO relative to
the number of moments p. Although the total number of off-diagonal elements increases
at the rate p2, we show that most of them are zeros in these examples and that the number
of non-zero elements increases linearly with p.

Motivated by the literature on earnings dynamics, we consider panel data xi,t for
i = 1, . . . , n and t = 1 . . . , T, where n is much larger than T. In such a setting, the moment
mi may comprise means or autocovariances over time for individual i. In our examples
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here, we provide very stylised illustrations to show how the time series properties of the
moments yield the desired sparse structure. We also illustrate that zero partial correlation
among moments from the same time period could also lead to sparse structures in the
weighting matrix. A fully-fledged empirical model is presented in Section 5.

Example 1. Matching Mean Structure Across Time. Consider the following AR(1)
process with additive time fixed effects: xi,t = µt + ρ(xi,t−1 − µt) + ui,t, where µt is the
fixed effect, ui,t is i.i.d. across i and t with E[ui,t] = 0 and Var[ui,t] = σ2

u . Let Xi =

(xi,1, . . . , xi,T)
′ denote a vector of time-series processes for individual i. We will consider

matching the mean of Xi to the prediction of the model. That is, mi = Xi.
First, we consider a stationary time series with |ρ| < 1. In this case, the covariance

matrix of mi is dense because the auto-correlation is ρt−s for periods t and s. However,
the oracle weighting matrix WO = [Var(mi)]

−1 is sparse with a band-diagonal structure

WO = σ−2
u



1 −ρ 0 · · · 0
−ρ (1 + ρ2) −ρ · · · 0
0 −ρ (1 + ρ2) · · · 0
...

...
. . . · · ·

...
0 0 0 . . . 1


. (2.6)

Second, we consider the unit root case where ρ = 1. We assume that the process has
an initial condition with finite variance σ2

0 = Var(xi,0). The oracle weighting matrix for
the random-walk process also has a band-diagonal structure

WO = σ−2
u



σ2
0+2σ2

u
σ2

0+σ2
u
−1 0 · · · 0 0

−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
. . . · · ·

...
...

0 0 0 · · · 2 −1
0 0 0 · · · −1 1


. (2.7)

□

Example 2. Matching Covariance Structure Across Time. Following Abowd and Card
(1989), a large literature on earnings dynamics fits the sample autocovariance of wage
data by imposing structural assumptions on the time series process. We assume that the
data xi,t is determined by a combination of a time fixed effect µt and a weighted average of
past shocks: xi,t = µt + ∑t

s=1 a′t,sui,s, where at,s ∈ RM is a vector of loadings and ui,s ∈ RM

9



is a vector of mean zero independent shocks.7

Let Xi = (xi,1, . . . , xi,T)
′ ∈ RT and Ui = (u′i,1, . . . , u′i,T)

′ ∈ RMT respectively denote
vectors of individual time series and sequence of shocks. Similarly, let µ denote the vec-
tor of time fixed effects. The time series process can be represented in a matrix form as
Xi = µ + AUi, where A is a T ×MT coefficient matrix with block entries a′ts. The auto-
covariance structure of Xi is determined by that of AUi.8 Let vec(·) and vech(·) denote
the vectorization and half-vectorization of a symmetric matrix, with the selector matrix Γ
converting the vectorization to its half-vectorization and the selector matrix Γ∗ converting
the half-vectorization to the vectorization. To match the autocovariance structure of Xi,
we have

mi = vech(AUiU′i A′) = Γ(A⊗ A) vec(UiU′i ) = Γ(A⊗ A)Γ∗ vech(UiU′i ). (2.8)

Therefore, the oracle weighting matrix WO = Var(mi)
−1 takes the form

WO = [Γ(A⊗ A)Γ∗ Var(vech(UiU′i ))Γ
′
∗(A′ ⊗ A′)Γ]−1, (2.9)

where A is lower triangular because the time series only depends on past shocks. Given
that ui,t are independent across t, the matrix Var(vech(UiU′i )) has a sparse structure, and
it is diagonal in the M = 1 case.

Although it is difficult to study the sparsity pattern of WO in (2.9) analytically for
an arbitrary matrix A, it is easy to compute this formula for specific dynamic processes
to confirm that only a small fraction of its off-diagonal elements are non-zero. Here we
consider a single shock and both an AR(1) process and an AR(2) process for the shock
component with ρ = 0.9 and T = 1, . . . , 20. The number of moments is p = T(T + 1)/2.
Figure 2 illustrates the sparse patterns of the oracle weighting matrices. Panel (a) and (b)
plot the non-zero elements of the oracle weighting matrix for AR(1) and AR(2) processes,
respectively, for the case T = 20. Panel (c) shows that the number of non-zero elements in
the oracle weighting matrix increases linearly with the number of moments, confirming
the desired sparse pattern. □

Example 3. Conditional Correlation Among Cross-Sectional Moments. In addition to
matching moments over time, researchers often include multiple moments from a single
time period. Write mi = (yi, x′i)

′, where yi is a scalar and xi = (xi,1, . . . , xi,p−1)
′ is a p− 1

7For example, suppose M = 1 for a single shock and xi,t − µt follows a stationary AR(1) process with
dependence parameter ρ. Write xi,1 = ui,1, where ui,1 is drawn from the stationary distribution of this AR(1)
process. For t ≥ 2, we have xi,t = µt + at,t−1ui,t−1 + at,tui,t, where at,t−1 = ρ and at,t = 1.

8In practice, the sample covariance matrix is computed with the mean µ replaced by the cross-sectional
mean of Xi. This difference is negligible asymptotically, see Appendix B.1.
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Figure 2: Illustration of the sparsity pattern in the oracle weighting matrix. Panel (a) and Panel
(b) respectively show the non-zero elements of the oracle weighting matrix when T = 20 with an
AR(1) and AR(2) process. Panel (c) shows the number of moments p and the number of non-zero
off-diagonal elements in the oracle weighting matrix as the panel length T is varied.

vector. Let β ∈ Rp−1 denote the population coefficients of a regression of yi on xi. An
element of β, denoted by βr, is zero if and only if yi and xi,r have zero partial correlation,
i.e., they are uncorrelated conditional on all of the other variables in xi. This zero element
in β translates to a zero element in WO following the block matrix inverse formula. We
have p such regressions by rotating different elements in mi to take the role of yi. As such,
WO is sparse if there are many pairwise zero partial correlation among these moments.

Graphical models view each element of mi as a vertex and encode the partial corre-
lation between them as edges. This graphical relationship among mi is entirely captured
by the oracle weighting matrix. Sparse graphical models could be generated by the time
structure in Example 1 and Example 2 as well as conditional independence among other
types of spatial or network relationships. □

Weighting Matrix Estimation – Graphical Lasso (GLasso). For applications where the
oracle weighting matrix satisfies the sparsity condition demonstrated above, we provide
a regularized weighting matrix estimator based on the penalized quasi-likelihood ap-
proach, see e.g., Yuan and Lin (2007) and Banerjee, El Ghaoui, and d’Aspremont (2008).
We follow the literature and call it the GLasso estimator based on the efficient compu-
tation algorithm proposed by Friedman, Hastie, and Tibshirani (2008) and its graphical
interpretation. More specificially, we adopt the correlation-based version suggested by
Rothman, Bickel, Levina, and Zhu (2008), which only estimates and shrinks the off-
diagonal correlation coefficients toward zero. Although many alternative regularized
inverse covariance matrix estimators are available under the sparsity condition, this esti-
mator has worked particularly well for us as a weighting matrix. Moreover, it automat-
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ically transitions between the inverse sample covariance (which is the so-called optimal
weighting matrix in a fixed p framework), and the diagonal weighting matrix (which is
frequently adopted by empirical researchers). The transition between these extremes is
entirely data driven.

The correlation-based GLasso weighting matrix estimator is defined as follows. Let
R̂ = D̂−1Σ̂D̂−1 denote the sample correlation matrix, where D̂ is the diagonal matrix of
sample standard deviations and Σ̂ is the sample covariance matrix. We first compute a
GLasso estimator of the inverse correlation matrix

Q̂G = arg max
Q∈W

log(det(Q))− tr(QR̂)− λ ∑
j ̸=j′
|Qjj′ |, (2.10)

whereW is the space of p× p positive-definite matrices and λ is a tuning parameter and
Qjj′ denotes the element of Q in row j column j′. The correlation-based GLasso weighting
matrix is

ŴG = D̂−1Q̂GD̂−1. (2.11)

Here we use the subscript G to clarify that ŴG is estimated by the GLasso method, a
specific choice for the general weighting matrix Ŵ.

The criterion function in (2.10) is equal to the log-likelihood of Q for a normal dis-
tribution plus a penalty for the correlation coefficient in the off-diagonal elements. As
the tuning parameter λ moves from 0 to ∞, the solution transitions from the maximum
likelihood estimator R̂−1 to a diagonal matrix. In practice, we choose λ through cross vali-
dation with the negative log-likelihood function as the loss function. The cross-validation
procedure and computation details are described in Appendix B.2. To obtain the GLasso
estimation in (2.10), we implement the R package glassoFast based on the algorithm
in Sustik and Calderhead (2012). We configure this algorithm to only penalize the off-
diagonal elements.

Rothman, Bickel, Levina, and Zhu (2008) show that the GLasso weighting matrix
above is a consistent estimator of the oracle weighting matrix under the key condition
that the number of non-zero off-diagonal elements, denoted by s, is much smaller than
the sample size n. This condition holds in the examples studied above, where s increases
proportionally with p, both are at a slower rate than n. Lemma 2.1 below restates this
result. Let ε i = mi −E[mi]. Let c0, c1, c2, c, C, δ denote some constants.

For a vector a, let ||a|| denote its Euclidean norm and ar denote its row r. For a
matrix A, let λmax(A) and λmin(A) denote the largest and smallest eigenvalues, ||A|| =√

λmax(A′A) denote the spectral norm, and Arℓ denote its element in row r column ℓ.
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Lemma 2.1. ||ŴG −WO|| = Op(
√
(s + 1)n−1 log p) given the following conditions: (i) the

tuning parameter satisfies λ = c0(n−1 log p)1/2; (ii) c ≤ λmin(Σ) ≤ λmax(Σ) ≤ C; (iii)
P[n−1|∑n

i=1(ε i,rε i,ℓ − Σrℓ)| ≥ ν] ≤ c1 exp(−c2nν2) for |ν| < δ.

Rothman, Bickel, Levina, and Zhu (2008) assume mi are normally distributed, which
satisfies the exponential-type tail condition (iii) used in the proof. Ravikumar, Wain-
wright, Raskutti, and Yu (2011) establish consistency of ŴG under more general tail con-
ditions, including polynomial-type tail conditions.

When the GLasso estimator is used to compute the fold k weighting matrix for cross-
fitting estimation, we denote it by ŴG,−k, as it is computed with data from I−k. The
resulting cross-fitting estimator is denoted by θ̂∗G, following the definition in (2.2) and
(2.3) with Ŵ−k replaced by ŴG,−k. With a finite number of cross-fitting folds K, ŴG,−k is a
consistent estimator of WO by Lemma 2.1. As a consequence, the cross-fitting estimator θ̂∗G
has the same asymptotic distribution as the oracle estimator based on WO. We establish
this result in Corollary 3.1 below. Algorithm 1 summarizes the steps to compute this
cross-fitting estimator θ̂∗G and the cross-fitting estimator of its asymptotic variance denoted
by Ω̂∗G. For numerical results in Section 4 and Section 5, we use K = 2.9

Algorithm 1: Cross-Fitting Estimator and Variance with GLasso Weighting
Data: mi ∈ Rp, i.i.d. for i = 1, . . . , n;
Model: f (θ0) = E[mi];
Result: estimator θ̂∗G defined in (2.3) and its variance Ω̂∗G defined in (2.4);
for k = 1, · · · , K do

ŴG,−k ← compute with data i ∈ I−k, follow the GLasso estimator defined in
(2.10) and (2.11). ; /* use cross validation to choose λ */

θ̂
(k)
G ← follow (2.2) with mk = n−1

k ∑i∈Ik
mi and Ŵ−k = ŴG,−k,

Ω̂(k)
G ← follow (2.4) with θ̂(k) = θ̂

(k)
G and Ŵ−k = ŴG,−k

end

θ̂∗G ← K−1 ∑K
k=1 θ̂

(k)
G , Ω̂∗G ← K−1 ∑K

k=1 Ω̂(k)
G .

In addition to the GLasso estimator, many other types of regularized inverse covari-
ance matrix estimators are available. These include Bickel and Levina (2008), Cai, Liu, and
Luo (2011), and Fan, Liao, and Mincheva (2011), to name just a few. These alternative esti-
mators also serve as proper weighting matrices for the minimum distance problem if the
required sparsity condition for each method is satisfied by the empirical model. There-
fore, the ideal choice could be model specific for an economic application. For example,
Bickel and Levina (2008) consider a banding structure where the off-diagonal coefficients

9Sampling errors in the weighting matrix and in the moments are about the same asymptotic order when
s is proportional to p, see Lemma 2.1 and Lemma A.1(a).
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decay to 0 at certain rate as the moments become more distant from each other. Fan,
Liao, and Mincheva (2011) consider a factor model structure in the data, which applies
to many economic applications. Furthermore, the sparsity condition could be defined
as near zero rather than exact zero, see Cai, Liu, and Luo (2011). The asymptotic the-
ory on the minimum distance estimator in Section 3 does not distinguish between two
regularized weighting matrix estimators with the same asymptotic limit, similar to that
in a standard setup. Overall, data-dependent regularization of the weighting matrix is a
versatile and effective approach to reduce the weighting matrix estimation errors and, in
turn, improve the performance of minimum distance estimators.

3 Asymptotic Analysis with Many Moments

In this section, we derive the asymptotic distribution of the minimum distance estimator
under n → ∞, p → ∞, and p/n → 0. The dimension of the structural parameter θ,
denoted by dθ , is fixed and finite. We present the asymptotic distribution of a general
cross-fitting minimum distance estimator θ̂∗, defined in (2.3), with a convergent weighting
matrix. A special case is the recommend estimator θ̂∗G based on the GLasso weighting
matrix. We also show consistency of the cross-fitting variance estimator defined in (2.4).
We first present the asymptotic results in the canonical case, followed by an extension to
cover a broader class of empirical applications. Let C and c denote some generic finite
positive constants that bound some quantities from above and below. They do not have
to take the same values when they appear in different places.

We first provide a generic high-level assumption on the weighting matrix Ŵ. As-
sumption W holds for the cross-fitting estimator as long as it holds for the full sample
estimator. The asymptotic theory below does not distinguish between two cross-fitting
estimators with different weighting matrices that have the same asymptotic limit W.

Assumption W. (i) For some non-random matrix W, ||Ŵ−W|| →p 0. (ii) c ≤ λmin(W)) ≤
λmax(W) ≤ C.

To study the asymptotic distribution of the minimum distance estimator, we impose
the following regularity conditions. We assume f (θ) is twice continuously differentiable.
The first order derivative is denoted by fθ(θ) ∈ Rp×dθ and we define F = fθ(θ0). The
second order derivative with respect to θr and θℓ is denoted by fθθ,rℓ(θ) ∈ Rp×1. We
assume the parameter space Θ is compact and θ0 is in the interior of the parameter space.

Assumption ID. There exists a unique true value θ0 ∈ Θ such that f (θ0) = E[mi].
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Assumption R. (i) || fθ(θ)|| ≤ C for any θ ∈ Θ. (ii) || fθθ,rl(θ)|| ≤ C for any ||θ − θ0|| ≤ δ

for some δ > 0. (iii) λmin(F′F) ≥ c. (iv) c ≤ λmin(Σ) ≤ λmax(Σ) ≤ C.

Assumptions ID and R ensure strong identification of θ0. Assumption R also assumes
that the total identification information has an upper bound as the number of moments
increases. Thus, some moments do not provide much information about θ0. The proce-
dure does not require us to know which moments are more informative.

Note that Ω = (F′WF)−1F′WΣWF(F′WF)−1 is the asymptotic covariance of the full-
sample estimator in a standard fixed p asymptotic framework. Now we show that the
cross-fitting estimator has the same asymptotic normal distribution in the many-moment
framework p → ∞ and p/n → 0 under the stated assumptions. In particular, Assump-
tion W only requires convergence in probability of the weighting matrix, putting no con-
ditions on its rate of convergence. As discussed in Section 2.1 the full sample estimator
without cross-fitting, in contrast, could be asymptotically biased without stronger as-
sumptions on the weighting matrix.

Theorem 3.1. Suppose Assumptions ID, R, and W hold. Then,

(Ω)−1/2√n
(

θ̂∗ − θ0

)
→d N (0, Idθ

).

Assumption W holds for the GLasso weighted estimator with W = WO by Lemma
2.1, under the sparsity condition sn−1 log(p)→ 0, i.e., the number of non-zero elements s
estimated by the GLasso estimator is smaller than the sample size n. For the cross-fitting
GLasso weighted estimator θ̂∗G, the asymptotic variance is ΩO = (F′WOF)−1, the same as
that obtained with the oracle weighting matrix.

Corollary 3.1. Suppose Conditions (i)–(iii) of Lemma 2.1 and Assumptions ID and R hold. Then,

(ΩO)−1/2√n
(

θ̂∗G − θ0

)
→d N (0, Idθ

).

Next, we show the cross-fitting variance estimator Ω̂∗ in (2.4) is a consistent estimator
of the asymptotic variance Ω. For this purpose, we need some additional regularity
conditions.

Assumption V. (i) E[m4
i,r] ≤ C for r = 1, . . . , p. (ii) λmax(Σ̂k) = Op(1).

Assumption V(i) requires the fourth moments of all entries of mi to be uniformly
bounded. Assumption V(ii) is weaker than consistency of Σ̂k. It holds even when p/n→
c ∈ [0, 1] in the case where mi ∼ N (0, Ip), following Johnstone (2001).
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Theorem 3.2. Suppose Assumptions ID, R, W hold. Then,

(a). ||Ω̂∗ −Ω|| →p 0 and (b). (Ω̂∗)−1/2√n
(

θ̂∗ − θ0

)
→d N (0, Idθ

). (3.1)

Theorem 3.2 automatically applies to Ω̂∗G in Algorithm 1 for the cross-fitting GLasso-
weighted estimator under conditions in Lemma 2.1, because Ω̂∗G is a special case of Ω̂∗.
Note that it is different from the covariance estimator based on the simplified formula
ΩO = (F′WOF)−1, because the GLasso weighting matrix is different from the inverse
sample covariance matrix.

Finally, we consider a simple extension of the regularity condition presented in As-
sumption R to cover the case where the identification information of θ0 increases with
the number of moments. This extension covers the simulation example from Altonji and
Segal (1996), which is also studied in Section 4 below. In this example, f (θ) = 1Tθ

for a scalar θ, where 1T is a T dimensional vector of 1′s. As such, || fθ(θ)|| =
√

p and
|| fθθ,rℓ(θ)|| = 0. We generalize Assumption R to Assumption R+ as follows. The constant
an in Assumption R+ is

√
p in this example.

Assumption R+. For some sequence of constants an that satisfies an → ∞ and an =

O(p1/2), define f+θ (θ) = a−1
n fθ(θ), F+ = f+θ (θ0), and fθθ,rl(θ)

+ = a−1
n fθθ,rl(θ). Assumption

R holds with fθ(θ), F, and fθθ,rl(θ) replaced by f+θ (θ), and F+, fθθ,rl(θ)
+, respectively.

Theorem 3.3. Suppose Assumption R is replaced with Assumption R+ in Theorem 3.1, Corollary
3.1, and Theorem 3.2. Then, Theorem 3.1, Corollary 3.1, and Theorem 3.2(b) continue to hold. The
rate of convergence of θ̂∗ and θ̂∗G is

√
nan.

Theorem 3.3 shows that the normalized statistic is self-corrected when the estimator θ̂∗

has a different rate of convergence that depends on an. The generalization in Assumption
R+ considers the case where || fθ,r(θ)|| diverges at the same rate an for different parameters
θr for r = 1, . . . , dθ . With mixed rates, we can generalize an to a dθ × dθ diagonal matrix An

such that f+θ (θ) = fθ(θ)A−1
n . Furthermore, we could allow condition (iii) in Assumption

R to accommodate λmin(F′F) converging to 0 slowly such that a consistent estimator with
a slower rate of convergence is obtained. Overall, this minimum distance estimation and
inference framework is flexible enough to accommodate many identification scenarios
relevant in empirical work.

4 Simulation 1: Altonji and Segal (1996)

Altonji and Segal (1996) evaluate the finite sample performance of minimum distance
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estimation in a balanced panel setting. We replicate and extend their simulation design,
and use it to evaluate the performance of alternative weighting schemes in both the low-
dimensional setting (p is fixed as n increases) and the high-dimensional setting (p and
n increase simultaneously). In their experimental design, the objective is to estimate the
population variance of a scalar random variable x based on observations collected from a
panel of individuals, denoted as i = 1, . . . , n, over T time periods.

Let xi,t ∼ F be i.i.d. across i and t, where F is a probability distribution normalized
to have mean zero and variance one. For each period, the sample variance σ̂2

t can be
computed using the standard unbiased estimator. That is σ̂2

t = 1
n−1 ∑n

i=1(xi,t− xt)2, for t ∈
{1, . . . , T}, where xt = n−1 ∑n

i=1 xi,t is the within-period sample average. By construction,
σ̂2

t are i.i.d. across time. Altonji and Segal (1996) are interested in estimating the intra-
period variance, a scalar θ = Var(xi,t), and it is straightforward to see that θ = E[σ̂2

t ]. The
authors proceed by stacking the estimates of the second moments into a T dimensional
vector, m. The estimation problem proceeds as in (2.1), with f (θ) = θ1T. Note that
since the observations from all time periods are generated independently from the same
distribution and each period has an equal number of observations, the model exhibits
homoskedasticity. This model is a special case of Example 2. It matches the variance only
and omits the covariance across time. In this case, the researcher has the knowledge that
the covariance across time contains no information about the parameter of interest.

4.1 Simulation Results

We replicate the analysis of Altonji and Segal (1996) by considering nine different distri-
butions for xi,t,10 which we recall are all scaled to have a zero mean and unit variance.
Here, two alternative sample sizes, 100 and 1000, are considered, and in each case, we
perform 1,000 Monte Carlo replications.

We consider four candidates. The first three, equally-weighted (EW), diagonally-
weighted (DW), and optimally-weighted (OW) minimum distance estimators, are com-
monly used in practice. They are all computed with the full sample. Their confidence
intervals are based on full sample standard errors. The fourth candidate is the cross-
fitting GLasso-weighted (GW) minimum distance estimator proposed in this paper. Its
confidence interval is based on the cross-fitting standard error proposed in this paper.

In Table 1 we summarize the performance of our estimators across distributions and
under different scenarios. Note that the EW estimator is optimal as it imposes the (correct)

10We consider the same set of distributions as in the original Altonji and Segal (1996) study: student-t(5),
student-t(10), student-t(15), normal, uniform, log normal, exponential, half-normal, and bimodal (obtained
as an equally-weighted mixture of two unit variance normally distributed random variables, with means -2
and 2).
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restriction that the estimated sample variances from different time periods provide equal
and independent information. That is, the identity matrix is the oracle weighting matrix.
This contrasts with all the other estimators considered, which assign different weights to
the sample variances from the different time periods. We are therefore interested in how
the alternative estimators perform relative to the EW estimator.

Table 1: Alton and Segal (1996) Design: Comparison of Weighting Schemes, T = 10

Bias RMSE Coverage Prob.

Distribution n EW DW OW GW EW DW OW GW EW DW OW GW

t(5) 100 0.001 -0.123 -0.124 0.009 0.086 0.142 0.145 0.122 0.873 0.309 0.292 0.843

t(10) 100 -0.001 -0.063 -0.064 0.011 0.056 0.086 0.087 0.074 0.885 0.579 0.556 0.870

t(15) 100 -0.000 -0.052 -0.053 0.010 0.052 0.076 0.078 0.066 0.883 0.646 0.615 0.861

Normal 100 -0.000 -0.036 -0.037 0.009 0.045 0.060 0.062 0.055 0.895 0.733 0.707 0.878

Uniform 100 -0.000 -0.006 -0.006 0.010 0.030 0.031 0.032 0.032 0.895 0.876 0.848 0.875

Log normal 100 0.015 -0.473 -0.480 0.103 0.357 0.488 0.494 0.886 0.786 0.009 0.007 0.739

Exp 100 0.000 -0.160 -0.162 0.046 0.095 0.186 0.189 0.175 0.882 0.276 0.265 0.864

Half-normal 100 -0.001 -0.063 -0.064 0.022 0.055 0.086 0.088 0.078 0.884 0.575 0.541 0.897

Bimodal 100 -0.001 -0.011 -0.011 0.010 0.028 0.030 0.031 0.031 0.905 0.845 0.832 0.890

t(5) 1000 0.001 -0.025 -0.025 0.002 0.028 0.035 0.035 0.033 0.909 0.658 0.657 0.896

t(10) 1000 0.001 -0.007 -0.007 0.002 0.018 0.019 0.019 0.019 0.886 0.854 0.854 0.881

t(15) 1000 0.000 -0.005 -0.005 0.002 0.016 0.017 0.017 0.017 0.889 0.862 0.859 0.894

Normal 1000 0.000 -0.003 -0.003 0.001 0.013 0.014 0.014 0.014 0.906 0.896 0.899 0.899

Uniform 1000 -0.001 -0.001 -0.001 0.000 0.009 0.009 0.009 0.009 0.914 0.904 0.903 0.920

Log normal 1000 0.005 -0.157 -0.157 0.015 0.122 0.171 0.171 0.178 0.848 0.147 0.143 0.807

Exp 1000 -0.000 -0.024 -0.024 0.002 0.028 0.038 0.038 0.033 0.892 0.720 0.718 0.881

Half-normal 1000 0.001 -0.006 -0.006 0.003 0.017 0.018 0.018 0.018 0.884 0.849 0.848 0.883

Bimodal 1000 -0.000 -0.001 -0.001 0.001 0.009 0.009 0.009 0.009 0.900 0.892 0.891 0.888

Notes: Average bias, root-mean square error (RMSE), and coverage probabilities of the 90% confidence in-
tervals, under alternative weighting schemes (equally-weighted, EW, diagonally-weighted, DW, optimally-
weighted, OW, and cross-fitting GLasso-weighted, GW). EW is the oracle benchmark.

Firstly, both the DW and OW estimators have comparatively similar performance to
each other, but with both exhibiting non-negligible negative bias. The bias is largest in
the case of the student-t(5) distribution (which is thick-tailed and symmetric) and for log
normal and exponential distributions (longer-tailed and skewed). In addition to the bias,
the root-mean squared errors are larger relative to EW and the coverage probabilities
of the 90% confidence intervals are typically far below 0.9, such that inference about
the parameter estimates is much less accurate in these cases. In contrast, our proposed
GW estimator performs much better than both DW and OW. Importantly, the bias is
much smaller and the coverage probabilities of the 90% confidence intervals are close
to 0.9. As the sample size increases to n = 1, 000, inference is generally improved for
both DW and OW (although the coverage probability for some distributions is still well-
below 0.9), but with the bias (while much reduced) often non-negligible. Compared to
the EW estimator (the oracle benchmark), the GW estimator has similar root mean square
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errors with thin-tailed distributions. In cases where the DW or OW estimators perform
poorly, the GW estimator also tends to have noticeably larger root mean square errors
than the EW estimator. Across all distributions examined, the GW estimator generally
shows comparable bias and coverage probabilities to the EW estimator and outperforms
the DW and OW estimators significantly.

In Appendix C we extend the canonical experimental design by allowing the time
dimension (and therefore the number of moments) to increase together with the cross-
sectional dimension by setting T = 0.2n. In this setting, we again achieve broadly com-
parable performance between EW and GW estimators. However, we do note that the
coverage probabilities for both DW and OW estimators are often very poor such that
inference based on these estimators is particularly problematic in these settings. It is
important to emphasize that the strong performance of GW relative to DW and OW is
primarily achieved through the cross-fitting estimation procedure and cross-fitting vari-
ance estimation formula in this simulation design.

4.2 Cross-Fitting Standard Error

As part or our procedure, in (2.4) we propose a cross-fitting standard error. It has been
applied in calculating the 90% coverage probabilities for GW estimator in Table 1. In
their analysis, Altonji and Segal (1996) also consider a cross-fitting version of OW, which
they refer to as independently-weighted optimal minimum distance (IWOMD). Relative
to our simulation results, they report much lower (and often unfavorable) 90% coverage
probabilities. In obtaining their coverage probabilities, Altonji and Segal (1996) use the
full sample standard error based on the usual (asymptotically equivalent) full sample
formula. We illustrate the importance of applying the cross-fitting standard error in
Table 2.

For the OW estimator, we report the 90% coverage probability for three cases: (i)
cross-fitting is not applied; (ii) cross-fitting is applied to obtain the estimator but not to
calculate the standard error, as in Altonji and Segal (1996) for their IWOMD estimator;
(iii) cross-fitting is applied to both the estimator and the standard error. Similarly, we also
report these three cases for the GW estimator.

We first consider the three cases of the OW estimator when n = 100. The table shows
that without cross-fitting, i.e., case (i), the coverage probabilities of the OW estimator
are typically very poor (exactly as shown in Table 1 above). In case (ii), cross-fitting
reduces the bias in the estimator (not shown), but the usual full sample standard error still
yields coverage probabilities well-below 0.9. This replicates the results for the IWOMD
estimator in Altonji and Segal (1996). In case (iii), the coverage probabilities become
comparable to that of the EW estimator, approaching 0.9, for the majority of distributions.
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The importance of applying cross-fitting in standard error calculation is also apparent
when n = 1000.

Finally, the same three cases for the GW estimator demonstrate identical patterns. This
further confirms that it is important to apply cross-fitting when using a GLasso weighting
matrix and the cross-fitting standard error is important for reliable inference.

Table 2: Altonji and Segal (1996) Design: Importance of Cross-Fitting Standard Error

OW GW

Distribution n No CF CF-Full CF-CF No CF CF-Full CF-CF

t(5) 100 0.292 0.568 0.839 0.306 0.597 0.843

t(10) 100 0.556 0.675 0.881 0.579 0.722 0.870

t(15) 100 0.615 0.709 0.869 0.644 0.748 0.861

Normal 100 0.707 0.760 0.881 0.729 0.793 0.878

Uniform 100 0.848 0.820 0.887 0.876 0.858 0.875

Log normal 100 0.007 0.193 0.736 0.009 0.234 0.739

Exp 100 0.265 0.470 0.868 0.275 0.487 0.864

Half-normal 100 0.541 0.648 0.880 0.574 0.689 0.897

Bimodal 100 0.832 0.805 0.883 0.845 0.860 0.890

t(5) 1000 0.657 0.787 0.898 0.658 0.786 0.896

t(10) 1000 0.854 0.852 0.875 0.854 0.851 0.881

t(15) 1000 0.859 0.878 0.893 0.861 0.883 0.894

Normal 1000 0.899 0.897 0.906 0.895 0.892 0.899

Uniform 1000 0.903 0.915 0.921 0.904 0.919 0.920

Log normal 1000 0.143 0.468 0.811 0.146 0.478 0.807

Exp 1000 0.718 0.813 0.882 0.719 0.828 0.881

Half-normal 1000 0.848 0.863 0.884 0.847 0.868 0.883

Bimodal 1000 0.891 0.882 0.888 0.892 0.883 0.888

Notes: Coverage probabilities of the 90% confidence intervals, for optimally-weighted (OW) and GLasso-
weighted (GW) estimators, when cross-fitting (CF) is applied or not. CF-Full indicates that the cross-fitting
estimator is coupled with the full sample standard error, while CF-CF indicates the use of (2.3) for the esti-
mator and (2.4) for the cross-fitting standard error. T = 10 for all cases.

5 Simulation 2: Baker and Solon (2003)

5.1 Model Description

To assess the performance of different weighting schemes in a richer empirical environ-
ment, we consider the study of Baker and Solon (2003), which examined the earnings
dynamics of male workers in Canada between 1976 and 1992 using a panel data set of
yearly tax records.11 The richness of their data allowed a flexible earnings process to
be specified, whose estimated parameter values rejected a number of common restric-
tions that have been commonly imposed on the covariance structure (such as the absence

11See Ostrovsky (2010) for an extension of the Baker and Solon (2003) analysis using data from 1985 to
2005.

20



of life-cycle variation in the variance of transitory income shocks). Here we propose a
simulation study where the “true” parameters are the estimated parameters from their
paper.12 This is a good test of the performance of our estimators under a realistic model
of earnings dynamics that exhibits a sparsity structure, which we now describe.

In their panel dataset, Baker and Solon (2003) identify B = 19 different two-year birth
cohorts b, and we preserve this cohort grouping and the entrance year to the sample in
our analysis (starting 1924–25 through to 1960–61). The log-earnings of individual i, in
birth cohort b, at year t is specified as Yibt = mbt + yibt, where mbt is the mean log-earnings
of birth cohort b in year t. They are interested in the evolution of the individual-specific
deviation from this mean, yibt, which is parameterized as

yibt = pt × (αib + βibzbt + uibt) + ε ibt, (5.1)

where zbt = t− b− 26 measures the potential labor market experience of cohort b at time
t, pt is a year-specific factor loading, αib is the time-invariant permanent component of
earnings, and βib is the individual-specific growth rate in earnings. In the population,
these heterogeneity parameters (αib, βib) are normally distributed with mean zero and
associated covariance parameters (σ2

α , σαβ, σ2
β). In addition, uibt is a random walk compo-

nent driving permanent shocks to wages and ε ibt is an AR(1) process capturing transitory
shocks

uibt = uib,t−1 + ribt,

ε ibt = ρε ib,t−1 + λtνibt, (5.2)

where λt is a year-specific fixed effect affecting the cross-sectional variance of transitory
shocks in year t, and ρ is an auto-correlation parameter. The shocks ribt and νibt are
independent, normally distributed random variables with respective variances σ2

r and
Var(νibt). To capture potential variation in the variance of the transitory shocks over the
life cycle, Baker and Solon (2003) allow Var(νibt) to depend on zbt and specify a quadratic
function

Var(νibt) = γ0 + γ1zbt + γ2z2
bt + γ3z3

bt + γ4z4
bt. (5.3)

The auto-regressive processes uibt and ε ibt require an initial condition. For the random
walk component uibt = 0 at age 26 (which is the age when individuals can first enter the
sample), whereas vibt = v∗ibt

i.i.d.∼ N (0, σ2
b ) in the first year that cohort b is observed in the

sample. Note that the variance σ2
b is cohort-specific. This captures the fact that they start

12All our analysis use the same unrounded estimates that Baker and Solon (2003) obtained in their analysis.
We thank Michael Baker for sharing these with us. Rounded parameter estimates are presented in Table 4

(“Estimates of Earnings Dynamics Models”) from their paper.
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at different ages when the sample begins.13

Recalling that there are 19 birth-cohort groups, with data from between 1976 and 1992,
there are a total of 60 parameters to be estimated with the associated parameter vector

θ = (σ2
α , σ2

β, σαβ, ρ, γ0, γ1, γ2, γ3, γ4, p77, . . . , p92, σ2
24−25, . . . , σ2

60−61, λ78, . . . , λ92). (5.4)

5.2 Simulation and Estimation Design

We generate a synthetic dataset using the base model parameter estimates of Baker and
Solon (2003). The observations are drawn from independent samples that are observed
over different time periods, with cohort b comprising a sample of nb individuals. We
construct 19 different sample covariance matrices V̂ar(yib1, . . . , yibTb), where Tb is the total
number of time periods observed for each cohort. For each b, we extract the upper-
triangular elements of V̂ar(yib1, . . . , yibTb) and obtain the sample moment mb. For each
cohort, the number of moments is Tb × (Tb + 1)/2. Across all 19 birth cohorts there are a
total of 2,077 different moments. For each cohort b, this is exactly the same as the covari-
ance structure model investigated in Example 2 with xi,t = yibt and Xi = (yib1, . . . , yibTb)

′.
Given the model, the expectation of the moments for each cohort have a closed-form
expression as a function of θ, which we denote by fb(θ). We estimate the model using
a minimum distance estimator with a cohort-specific weighting matrix Ŵb. To simplify
comparisons, we assume that all cohorts have the same number of individuals denoted
by nb. The total number of individuals in the sample is n = Bnb. Since the cohorts are
independent with equal sizes, the minimum distance estimator minimizes the sum of
criterion functions for each cohort as

θ̂ = arg min
θ

B

∑
b=1

(mb − fb(θ))
′Ŵb(mb − fb(θ)). (5.5)

As part of our experimental design, we perform 1,000 Monte Carlo replications and con-
sider alternative birth cohort sizes (400, 800, 1200, and 2000). In Appendix C we show
that the oracle weighting matrix is sparse.

5.3 Simulation Results

As in our analysis of the Altonji and Segal (1996) model in Section 4, we are interested
in the performance of alternative weighting schemes. The Baker and Solon (2003) model

13For individuals who do not enter the sample at age 26, uibt for their first appearance is drawn from a
normal distribution with mean zero and variance (t− b− 26)σ2

r , the distribution of a random walk that has
been accumulating since age 26.
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comprises 60 parameters, and we provide parameter-level performance statistics for a co-
hort sample size of 400 in Appendix C. While there are some exceptions, starting with a
cohort sample size of 400 the results across the alternative weighting schemes can essen-
tially be summarized as follows: the absolute bias of the parameters is typically highest
under DW, followed by EW and OW, and is much lower under GW; the coverage proba-
bilities of the 90% confidence intervals are well-below 0.9 under OW, improve a lot under
DW and EW, and are always close to 0.9 under GW; the root-mean squared error is
typically highest under DW, followed by EW, OW, and is lowest under GW. Thus, GW
typically dominates across the range of estimator performance statistics that we consider
here.

The same qualitative patterns exist with larger cohort sample sizes. We visually sum-
marize our results in the violin plot in Figure 3. This shows the distribution of the three
performance statistics over the set of model parameters for each of the considered co-
hort sample sizes. For example, the figure in the first row and first column shows that,
for nb = 400, the bias can be as large as 0.3 for the EW estimator and 0.5 for the DW
estimator for some of the 60 parameters. In contrast, the GW estimator exhibits a bias
of less than 0.025 for all 60 parameters. While the difference across estimators with al-
ternative weighting regimes becomes smaller as the sample size increases, it is still the
case that our proposed GW estimator based on cross-fitting and GLasso weighting always
performs most favorably. In Appendix C we show the importance of both cross-fitting
and GLasso weighting in obtaining these results.

5.4 Variance Decomposition Analysis

We are interested in the extent to which the different estimates obtained under the al-
ternative weighting schemes is consequential for economic outcomes. To this end, we
replicate the decomposition exercise presented in Baker and Solon (2003), which uses the
model structure to decompose the variance of log earnings into that due to the persistent
and transitory components. As in Baker and Solon’s (2003) analysis, we conduct this
exercise with age fixed (at age 40) to abstract from any life-cycle considerations, with the
variation over time induced by the changing factor loadings, as well as the initial variance
for the transitory component up to age 40.

The results from this exercise when the cohort sample size is 400 are presented in
Figure 4. The different panels correspond to the variance decomposition obtained when
using the estimates from alternative weighting schemes. In each panel, the blue line
shows the total variance of log earnings, while the red and blue lines respectively show
the amount attributed to the persistent and transitory components. The shaded regions
present the respective 90% pointwise confidence bands, defined as the area between the
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Figure 3: Violin plots for Baker and Solon (2003) parameters, showing absolute bias, 90% confi-
dence interval coverage probabilities, and log root-mean square error (RMSE), which is relative to
the RMSE under optimal weighting. Figure derived from 1,000 replications. Weighting denoted
EW (equally-weighted), DW (diagonally-weighted), OW (optimally-weighted), and GW (cross-
fitting GLasso-weighted).

5% and 95% quantiles of the estimates obtained with different simulated samples. The
broken black lines indicating the true data-generating decomposition.14 The figure shows
that there is considerable bias under OW, with the amount of variation in log earnings
systematically understated, with the true decomposition lines almost always outside of
the respective confidence bands. In contrast, while DW much more closely matches the
total amount of variation in log earnings, it attributes too little to the persistent component
and too much to the transitory component. Note also that all the confidence bands are
much wider relative to OW, especially for the early years of the analysis. Under EW the
confidence bands are a similar size to those obtained under DW, while the bias (which is
still present) is smaller in magnitude. Finally, we can see that GW performs exceptionally

14By construction, the broken black lines are identical to those presented in Figure 3 from Baker and Solon
(2003), which the interested reader should consult for a discussion of these inequality trends.
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well: the predicted variance amounts (overall and by persistent/transitory status) almost
perfectly coincides with that implied by the true data-generating process. Furthermore,
the confidence bands are considerably narrower than were obtained under both EW and
DW.15

6 Conclusion

In the conclusion of Altonji and Segal (1996), they highlight several desirable features of
a future weighting matrix: (i) it is a robust weighting matrix estimator that is superior
to the conventional optimal weighting matrix or the independently weighting optimal
weighting matrix; (ii) it may incorporate prior information about which sets of moments
are likely to be highly correlated to reduce the dimension of the weighting matrix estima-
tion; (iii) it may transition between the equal weighting matrix and the optimal weighting
matrix; (iv) it applies to nonlinear models. The proposed weighting method is a modern
answer to all of these requests.16 The regularized weighting matrix adapts to the data
to determine which elements of the weighting matrix are estimated. The cross-fitting
method also substantially reduces estimation bias. The asymptotic framework allows the
number of moments to increase along with the sample size, ensuring the small-sample
issue considered by Altonji and Segal (1996) stays relevant in a big data environment. Us-
ing simulation designs based on earnings dynamics models, we show that the proposed
weighting scheme that combines cross-fitting and regularized weighting matrix estima-
tion compares extremely favorably to popular alternative weighting schemes widely used
in the empirical literature.

15The same qualitative results are present under larger cohort sample sizes. As the sample size increases,
the pointwise confidence bands are narrower in all cases, and the bias in the non-GW estimators is also
reduced. While the difference across estimators is reduced, it is still the case that GW always performs the
best. Full results are available upon request.

16On feature (iii), our estimator transitions between diagonal weighting, rather than equal weighting, to
the optimal weighting.
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Figure 4: A decomposition of the variance of log earnings for males, 40 years old. The decompo-
sition is constructed using 1,000 replications of the Baker and Solon (2003) model with a cohort
sample size nb = 400, under alternative weighting schemes (equally-weighted, EW, diagonally-
weighted, DW, optimally-weighted, OW, and cross-fitting GLasso-weighted, GW). Shaded regions
indicated the 90% pointwise confidence bands, defined as the area between the 5% and 95% quan-
tiles of the estimates obtained with different simulated samples; broken black lines indicate the
true data-generating decomposition.
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Appendices

A Proofs

In this section, we provide proofs for the theoretical results in Section 3. We first present
some auxiliary lemmas used in the proofs of the main results. Proofs of these auxiliary
lemmas are collected at the end of this section.

Define gk(θ) = mk − f (θ) and g(θ) = f (θ0)− f (θ). Write the sample and population
criterion function as Qnk(θ) = gk(θ)

′Ŵ−kgk(θ)/2 and Q(θ) = g(θ)′Wg(θ)/2.

Lemma A.1. We have the following results.
(a). Under Assumption R, supθ∈Θ ∥gk(θ)− g(θ)∥2 = Op(p/n).
(b). Under Assumption R, supθ∈Θ ∥g (θ)∥ ≤ C, supθ∈Θ ∥gk(θ)∥ = Op(1).
(c). Under Assumption W, ||Ŵ−k −W|| = op(1) and ||Ŵ−k|| = Op(1).
(d). Under Assumption ID, R, W, ||F̂k − F|| = op(1) and ||F̂k|| = Op(1).

Lemma A.2. Suppose Assumption ID, R, W hold. Then, θ̂(k) is consistent.

Lemma A.3. Suppose Assumptions R and W hold and θ̃(k) →p θ0. We have

∂2

∂θ∂θ′
Qnk(θ̃

(k)) = (F′WF) + op(1).

Proof of Theorem 3.1. First, we show that θ̂(k) follows the first-order approximation

√
nk(θ̂

(k) − θ0) = −
(

F′WF
)−1√nkF′Wgk(θ0) + op(1). (A.1)

By the mean-value expansion,

√
nk

(
θ̂(k) − θ0

)
= −

[
∂2

∂θ∂θ′
Qnk(θ̃

(k))

]−1
∂

∂θ
Qnk(θ0), (A.2)

for some θ̃(k) between θ̂(k) and θ0 and thus θ̃(k) →p θ0 by Lemma A.2. The second-order
derivative in (A.2) converges in probability to (F′WF)−1 by Lemma A.3.
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The first-order derivative satisfies

− ∂

∂θ
Qnk(θ0) =

√
nkF′Ŵ−kgk(θ0) = Ak + Bk, where

Ak =
√

nkF′Wgk(θ0)→d N (0, V),

Bk =
√

nkF′(Ŵ−k −W)gk(θ0) = op(1). (A.3)

The first term Ak →d N (0, V) follows from a multivariate central limit theorem for i.i.d.
random variables and ||V|| ≤ ||F||2||W||2||Σ|| ≤ C by Assumption W(ii), R(i), R(iv).

Below we show Bk = op(1) under the condition ||Ŵ−k −W|| →p 0 in Assumption
W(i). Consider the conditional expectation given data in I−k,

E
[
∥Bk∥2 |I−k

]
= nkE[gk(θ0)

′(Ŵ−k −W)FF′(Ŵ−k −W)gk(θ0)|I−k]

= tr
[
nkE

[
gk(θ0)gk(θ0)

′|I−k
]
(Ŵ−k −W)FF′(Ŵ−k −W)

]
≤ dθ

∥∥∥Σ(Ŵ−k −W)FF′(Ŵ−k −W)
∥∥∥

≤ C
∥∥∥Ŵ−k −W

∥∥∥2
, (A.4)

where we use nkE [gk(θ0)gk(θ0)′|I−k] = Σ under the independence between folds and
Assumption R(i), R(iv). By Markov’s inequality, for any given δ > 0,

Pr (|Bk| > δ|I−k) ≤
1
δ2 E

[
∥Bk∥2 |I−k

]
. (A.5)

Let E = {||Ŵ−k−W|| ≤ ε} for any give ε > 0. Then by (A.4), (A.5), and the law of iterated
expectations, we have

Pr (|Bk| > δ|E) ≤ Cε2

δ2 . (A.6)

This shows Bk = op(1) because Pr(E)→ 1. This completes the proof for (A.1).
The cross-fitting estimator satisfies

√
n(θ̂∗ − θ0) =

1√
K

K

∑
k=1

√
nk(θ̂

(k) − θ0)

=
1√
K

K

∑
k=1

(
F′WF

)−1√nkF′Wgk(θ0) + op(1)

=
(

F′WF
)−1 1√

n

n

∑
i=1

F′W (mi −E[mi]) + op(1), (A.7)

where the first equality follows from the definition of θ̂∗ = K−1 ∑K
k=1 θ̂(k) and n = nkK, the

second equality uses (A.1), and the last equality holds because sample splitting implies
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∑K
k=1 nkgk(θ0) = ∑n

i=1 (mi −E[mi]) . Note that ξi = F′W (mi −E[mi]) is a dθ dimension
random variable with mean zero and variance V = F′WΣWF. The desired result follows
from the multivariate central limit theorem for i.i.d. random variables and Slutsky’s
theorem.

□

Proof of Corollary 3.1 This Corollary follows from Theorem 3.1 with Ŵ and W replaced
by ŴG and WO, respectively. Assumption W follows from (i) ||ŴG −WO|| →p 0 by
Lemma 2.1 and (ii) Assumption R(iv). □

Proof of Theorem 3.2. To show part (a), we first show ||F̂′kŴ−kΣ̂kŴ−k F̂k − F′WΣWF|| =
op(1). To this end, write∥∥∥F̂′kŴ−kΣ̂kŴ−k F̂k − F′WΣWF

∥∥∥ ≤ H1 + H2, where

H1 =
∥∥∥F′W(Σ̂k − Σ)WF

∥∥∥ ,

H2 =
∥∥∥F′

(
Ŵ−k −W

)
Σ̂kWF

∥∥∥+ ∥∥∥F′Ŵ−kΣ̂k

(
Ŵ−k −W

)
F
∥∥∥+∥∥∥∥(F̂k − F

)′
Ŵ−kΣ̂kŴ−kF

∥∥∥∥+ ∥∥∥F̂′kŴ−kΣ̂kŴ−k

(
F̂k − F

)∥∥∥ . (A.8)

We write H1 and the multiple terms in H2 separately to establish the result without
requiring ||Σ̂k − Σk|| →p 0. Below we show both H1 and H2 are op(1).

We start with the proof of H1 = op(1). Note that although Σ̂k is a p× p dimensional
sample covariance matrix, F′WΣ̂kWF is only dθ × dθ dimensional. With ε i = mi −E(mi)

and ϑi = ε iε
′
i −E[ε iε

′
i], we have Σ̂k − Σ = 1

nk
∑i∈Ik

ϑi − ε(k)ε(k)
′
. Write

F′W
(

Σ̂k − Σ
)

WF = R1 − R2, where

R1 =
1
nk

∑
i∈Ik

F′WϑiWF, R2 = F′Wε(k)ε(k)
′
WF. (A.9)

To show R1 = op(1), we have

dθ

∑
r=1

dθ

∑
ℓ=1

E[(R1,rℓ)
2] =

1
nk

dθ

∑
r=1

dθ

∑
ℓ=1

E
[(
[F′WϑiWF]rℓ

)2
]
=

1
nk

E[tr(F′WϑiWFF′WϑiWF)]

≤ 1
nk
||WFF′W|| E[tr(F′WϑiϑiWF)]

≤ 1
nk

dθ ∥F∥4 ∥W∥4 ∥∥E[ϑ2
i ]
∥∥ ≤ C

p
n

, (A.10)

where the first equality holds because R1,rℓ is a sample average of the i.i.d. zero-mean
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random variable [F′WϑiWF]rℓ, and the second equality follows from exchanging the order
of E[·] and summation, the first inequality holds because A− ||A|| Ip is negative semi-
definite for a symmetric p × p dimensional matrix, the second inequality follows from
exchanging the order of E[·] and tr(·), tr(A) ≤ rank(A)λmax (A), and ||AB|| ≤ ||A|| ·
||B||. The last inequality follows from Assumptions R(i), R(iv), W(ii), and

∥∥E[ϑ2
i ]
∥∥ ≤

Cp because it is a p × p dimensional matrix with all elements uniformly bounded by
Assumption V(i) and Hölder’s inequality. Finally, ||R1|| = op(1) follows from Markov’s
inequality and p = o(n).

The remaining term R2 satisfies ||R2|| ≤ ||F||2||W||2||ε(k)(θ0)||2 = op(1) by Assump-
tion R(i), W(ii), and Lemma A.1(a). Combining it with R1 = op(1), we obtain H1 = op(1)
by the triangle inequality.

To show H2 = op(1) is straightforward given Assumption R(i), V(ii), W(ii) and Lemma
A.1(c) and (d). Using similar arguments, we have ∥F̂′kŴ−k F̂k − F′WF∥ ≤ ∥F̂k∥2 ∥Ŵ−k −
W∥+ ∥W∥ × ∥F̂k − F∥(∥F̂k∥+ ∥F∥) = op(1) by Assumption R(i), W(ii) and Lemma A.1(c)
and (d).

Because F′WF is a non-singular dθ × dθ dimensional matrix by Assumption R(iii) and
W(ii), we have ||Ω̂(k) −Ω|| = op(1) by the continuous mapping theorem. This immedi-
ately gives the desired result.

Part(b) follows from Theorem 3.1, part(a), and the continuous mapping theorem given
that c ≤ λmin(Ω) ≤ λmax(Ω) ≤ C, which further follows from Assumption R(i), R(iii),
R(iv) and W(ii). □

Proof of Theorem 3.3. We make the following adjustments to the previous results and
proofs, in addition to replacing Assumption R with Assumption R+.

(i). Lemma A.1. Part (b), C and Op(1) are replaced by an and Op(an), respectively.
Part (d) hold with F̂k and F replaced by F̂+

k and F+, respectively.
(ii). Lemma A.2. In the proof of consistency, we consider supθ∈Θ |Q

+
nk(θ)−Q(θ)| →p 0,

where Q+
nk(θ) is defined similarly to Qnk(θ) by replacing gk(θ) with a−1

n gk(θ). The sample
criterion function requires a different normalization. In this proof, we need a−1

n (gk(θ)−
g(θ)) = op(1). By Lemma A.2(a), this condition holds for p1/2n−1/2 = o(an).

(iii). Theorem 3.1. The first-order expansion in (A.1) is replaced by

√
nkan(θ̂

(k) − θ0) = −
(

F+′WF+
)−1√nkF+′Wgk(θ0) + op(1). (A.11)

To prove (A.11), (A.2) is replaced by

√
nkan

(
θ̂(k) − θ0

)
= −

[
a−2

n
∂2

∂θ∂θ′
Qnk(θ̃

(k))

]−1

a−1
n

∂

∂θ
Qnk(θ0), (A.12)

32



where the modified second-order derivative continues to satisfy Lemma A.3 and the mod-
ified first-order derivative continues to satisfy (A.3), with F replaced by F+. Following
these adjustments, (A.7) becomes

√
nan(θ̂

∗ − θ0) =
(

F+′WF+
)−1 1√

n

n

∑
i=1

F+′W (mi −E[mi]) + op(1). (A.13)

Let Ω+ = a2
nΩ = (F+′WF+)−1F+′WΣWF+(F+′WF+)−1. It is the counterpart of Ω with F

replaced by F+. We have

(Ω)−1/2√n(θ̂∗ − θ0) = (Ω+)−1/2√nan(θ̂
∗ − θ0)→d N (0, Idθ

) (A.14)

where the equality follows from the definition of Ω+ and the convergence follows from
(A.13). The claim on Corollary 3.1 follows immediately from that on Theorem 3.1.

(iv) Theorem 3.2. Let Ω̂+ = a2
nΩ̂∗. Then, Ω̂+ takes the same form as Ω̂∗ except that F̂k

is replaced by a−1
n F̂k . We have

(Ω̂∗)−1/2√n(θ̂∗ − θ0) = (Ω̂+)−1/2√nan(θ̂
∗ − θ0) →d N (0, Idθ

), (A.15)

where the equality holds by the definition of Ω̂+ and the convergence follows from that
of Theorem 3.2 with Ω̂∗ replaced by Ω̂+ and F replaced by F+. □

Proof of Lemma A.1. By definition, ε i = mi −E[mi] and ε(k) = n−1
k ∑i∈Ik

ε i.

E
[
∥gk(θ)− g(θ)∥2

]
= E

[∥∥∥ε(k)
∥∥∥2
]
=

1
nk

p

∑
r=1

E
[
ε2

i,r
]
≤ C

p
n

, (A.16)

where the inequality holds because E[ε2
i,r] = Σrr ≤ λmax(Σ) ≤ C by Assumption R(iv).

We obtain part (a) by Markov’s inequality.
To prove part (b), note that

sup
θ∈Θ
∥g (θ)∥ ≤ sup

θ∈Θ

∥∥∥ fθ(θ̃)
∥∥∥ sup

θ∈Θ
∥θ − θ0∥ ≤ C (A.17)

for some θ̃ ∈ Θ, where the last inequality follows from Assumption R(i) and the compact-
ness of Θ. Combining it with part (a) and p = o(n), we obtain. supθ∈Θ ∥gk(θ)∥ = Op(1).

To prove part (c), note that ||Ŵ−k−W|| = op(1) follows from Assumption W(i) directly
because K is finite. By triangle inequality, |Ŵ−k|| ≤ ||W|| + ||Ŵ−k −W|| = Op(1) by
Assumption W(ii).
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To prove part (d), we have∥∥∥F̂k − F
∥∥∥ =

∥∥∥ fθ(θ̂k)− fθ(θ0)
∥∥∥ ≤ C

∥∥∥θ̂k − θ0

∥∥∥ = op(1) (A.18)

by Assumption R(ii) and the consistency of θ̂k established in Lemma A.2. Then, ||F̂k|| ≤
||F||+ op(1) = Op(1) by Assumption R(i). □

Proof of Lemma A.2. We first show supθ∈Θ |Qnk(θ)−Q(θ)| →p 0. Note that

2 sup
θ∈Θ
|Qnk(θ)−Q(θ)| =

∣∣∣g′kŴ−kgk(θ)− g(θ)′Wg(θ)
∣∣∣

≤
∣∣∣(gk(θ) + g(θ))′Ŵ−k (gk(θ)− g(θ))

∣∣∣+ ∣∣∣gk(θ)
′
(

Ŵ−k −W
)

g(θ)
∣∣∣ , (A.19)

which converges to 0 in probability by Lemma A.1(a) – (c). Because Θ is compact and f (θ)
is continuous, Assumption ID implies inf||θ−θ0||≥ε Q(θ) > 0 for any ε > 0. The desired
result follows from standard arguments for the consistency of extremum estimators, see
Newey and McFadden (1994). □

Proof of Lemma A.3 Row r and column ℓ of the left hand side is[
∂2

∂θ∂θ′
Qnk(θ̃

(k))

]
rℓ
=

(
∂

∂θr
f (θ̃(k))

)′
Ŵ−k

(
∂

∂θℓ
f (θ̃(k))

)
− ∂2

∂θr∂θℓ
f (θ̃(k))′Ŵ−kgk(θ̃

(k)).

(A.20)

The second term on the right hand side of (A.20) is negligible because∥∥∥∥ ∂2

∂θk∂θℓ
f (θ̃)′Ŵ−kg(θ̃(k))

∥∥∥∥ ≤ C
∥∥∥Ŵ−k

∥∥∥ ∥∥∥g(θ̃(k))
∥∥∥ = op(1) (A.21)

by Assumption R(ii), and Lemma A.1(a) – (c). The first term on the right hand side of
(A.20) satisfies ∥∥∥∥ ∂

∂θr
f (θ̃(k))− ∂

∂θr
f (θ0)

∥∥∥∥ ≤ C
∥∥∥θ̃(k) − θ0

∥∥∥ = op(1) (A.22)

by Assumption R(ii). This gives the desired results following Assumption W(ii) and
Lemma A.1(c).

□
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B Additional Implementation Details

B.1 Verification for the Covariance Structure Model

The covariance structure model in the earnings dynamics literature, investigated in Ex-
ample 2 and the Baker and Solon (2003) model, fits in the general framework of this
paper. Consider Xi ∈ RT, which is i.i.d. across i, and define X = n−1 ∑n

i=1 Xi. In the co-
variance structure model, the observed sample moment is m̃ = (n− 1)−1 ∑n

i=1 m̃i, where
m̃i = vech((Xi − X)(Xi − X′)) and with vech(·) denoting the usual half-vectorization op-
erator for symmetric matrices. This problem fits in our framework by considering the
sample moments m = n−1 ∑n

i=1 mi, where mi = vech(Xi −E[Xi])(Xi −E[Xi]]
′). Compar-

ing m̃ and m, the differences between X and E[Xi] in their centering term and the differ-
ence between n − 1 and n in their normalization are negligible asymptotically to study
the asymptotic distribution of the resulting minimum distance estimator. Therefore, al-
though the minimum distance estimator is constructed with the observed moments m̃,
we can derive the asymptotic distribution of the minimum distance estimator with m.

B.2 Tuning Parameter for GLasso

In practice, we select the tuning parameter λ for the GLasso estimator by cross-validation.
For the cross-fitting estimator, ŴG,−k is computed with data i ∈ I−k. In this case, we
further divide data in I−k to L folds to choose λ for the computation of ŴG,−k. We use
L = 10 for the tuning parameter choice in all cases.

The cross validation procedure is conducted as follows. Randomly partition the sam-
ple used to estimate the weighting matrix into L folds of equal size. We compute a
sample covariance matrix for the training and test folds, Σ̂−ℓ and Σ̂ℓ, respectively. De-
fine L(Σ̂, W) = log(det W) − tr(WΣ̂) as the log-likelihood function as in (2.10), so that
−L(Σ̂, W) is the loss function. For a given λ, obtain the GLasso estimator Ŵ−ℓ(λ) follow-
ing (2.10) and (2.11), for Σ̂ = Σ̂−ℓ for each ℓ = 1, · · · , L.

We compute an optimal tuning parameter by maximizing the averaged log-likelihood
(minimizing the averaged loss function) of the test samples:

λ∗ = arg max
λ∈[0,λmax]

1
L

L

∑
ℓ=1
L(Σ̂ℓ, Ŵ−ℓ(λ)). (B.1)

In practice, we solve this maximization problem by defining a grid of λ values, where the
highest value of λ is maxj,k∈{1,...,p} |Σ̂jk|, which produces the diagonal matrix.
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C Additional Simulation Results

C.1 High-Dimensional Extension of Altonji and Segal (1996)

In Table C.1 we present the full results from the Altonji and Segal (1996) simulations
in a high-dimensional setting where the panel time dimension increases simultaneously
with the cross-sectional dimension, T = 0.2n. As in the main text, for each of the nine
distributions considered, we present the average bias, the root-mean square error, and
the coverage probabilities of the 90% confidence intervals, as the sample size is varied
(n = 100 and n = 1000). Separate results are presented under the alternative weighting
regimes that we considered (equally-weighted, diagonally-weighted, optimally-weighted,
and cross-fitting GLasso-weighted).

Table C.1: Altonji and Segal (1996) Design: Comparison of Weighting Schemes, T = 0.2n

Bias RMSE Coverage Prob.

Distribution n EW DW OW GW EW DW OW GW EW DW OW GW

t(5) 100 0.001 -0.123 -0.124 0.009 0.086 0.142 0.145 0.122 0.873 0.309 0.292 0.843

t(10) 100 -0.001 -0.063 -0.064 0.011 0.056 0.086 0.087 0.074 0.885 0.579 0.556 0.870

t(15) 100 -0.000 -0.052 -0.053 0.010 0.052 0.076 0.078 0.066 0.883 0.646 0.615 0.861

Normal 100 -0.000 -0.036 -0.037 0.009 0.045 0.060 0.062 0.055 0.895 0.733 0.707 0.878

Uniform 100 -0.000 -0.006 -0.006 0.010 0.030 0.031 0.032 0.032 0.895 0.876 0.848 0.875

Log normal 100 0.015 -0.473 -0.480 0.103 0.357 0.488 0.494 0.886 0.786 0.009 0.007 0.739

Exp 100 0.000 -0.160 -0.162 0.046 0.095 0.186 0.189 0.175 0.882 0.276 0.265 0.864

Half-normal 100 -0.001 -0.063 -0.064 0.022 0.055 0.086 0.088 0.078 0.884 0.575 0.541 0.897

Bimodal 100 -0.001 -0.011 -0.011 0.010 0.028 0.030 0.031 0.031 0.905 0.845 0.832 0.890

t(5) 1000 0.001 -0.025 -0.025 0.002 0.028 0.035 0.035 0.033 0.909 0.658 0.657 0.896

t(10) 1000 0.001 -0.007 -0.007 0.002 0.018 0.019 0.019 0.019 0.886 0.854 0.854 0.881

t(15) 1000 0.000 -0.005 -0.005 0.002 0.016 0.017 0.017 0.017 0.889 0.862 0.859 0.894

Normal 1000 0.000 -0.003 -0.003 0.001 0.013 0.014 0.014 0.014 0.906 0.896 0.899 0.899

Uniform 1000 -0.001 -0.001 -0.001 0.000 0.009 0.009 0.009 0.009 0.914 0.904 0.903 0.920

Log normal 1000 0.005 -0.157 -0.157 0.015 0.122 0.171 0.171 0.178 0.848 0.147 0.143 0.807

Exp 1000 -0.000 -0.024 -0.024 0.002 0.028 0.038 0.038 0.033 0.892 0.720 0.718 0.881

Half-normal 1000 0.001 -0.006 -0.006 0.003 0.017 0.018 0.018 0.018 0.884 0.849 0.848 0.883

Bimodal 1000 -0.000 -0.001 -0.001 0.001 0.009 0.009 0.009 0.009 0.900 0.892 0.891 0.888

Notes: Average bias, the root-mean square error (RMSE), and coverage probabilities of the 90% confidence
intervals, under alternative weighting schemes (equally-weighted, EW, diagonally-weighted, DW, optimally-
weighted, OW, and cross fitting GLasso-weighted, GW). EW is the oracle benchmark.

C.2 Parameter-Level Results for Baker and Solon (2003)

In Table C.2 we present the full parameter-level results from the Baker and Solon (2003)
simulation design, for a cohort sample sizes of 400. For each of the 60 model parameters,
we present the same statistics as reported in our results from the Altonji and Segal (1996)
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simulation study. Full results for other cohort sizes (800, 1200, and 2000) are available
upon request.

C.3 Sparsity Structure in Baker and Solon (2003)

The oracle weighting matrix in the Baker and Solon (2003) model has a block structure,
with the blocks corresponding to the independent birth cohorts. In Figure 5 we illustrate
the sparsity structure generated by the model by plotting a normalized version of the
oracle weighting matrix for three cohorts (1924–25, 1928–29, and 1934–35) evaluated at
the true parameter vector θ0. Given the model is estimated using data on a fixed number
of calendar years, there are fewer moments for both the earlier and later birth cohorts in
our sample. This is seen in panel (a) and (b) in Figure 5, where the respective plots exhibit
a lower resolution. In any case, the sparse structure is very evident, and this is true for
all birth cohorts.
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Figure 5: Illustration of the sparsity pattern in the oracle weighting matrix in the Baker and Solon
(2003) model for alternative birth cohorts. The heatmap indicates the absolute values of the oracle
weighting matrix, which are normalized relative to the diagonal entries, evaluated at the data
generating parameter values.

C.4 The Role of Cross Fitting and GLasso

We propose a cross fitting minimum distance estimator based on regularized estimation
of the weighting matrix, which we construct based on the GLasso estimator. In this section
we provide simulation evidence that both of these features are important in the context
of our Baker and Solon (2003) simulation study.

Results are summarized in Figure 6, which presents the same style violin plots that
we used in the main text. Consider first when a birth cohort sample size of nb = 400 is
considered. When cross-fitting is not applied, both OW and GW perform similarly with
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respect to bias, however GW is slightly better in terms of coverage (but both are well-
below 0.9), and much better in terms of RMSE. In both cases, applying cross fitting has
an important impact on the performance of our estimators. The coverage probabilities
of the 90% confidence intervals for all parameters becomes close to 0.9, and while the
bias is reduced for both OW and GW, the reduction is much larger in the latter case.
Finally, while RMSE worsens under OW, it is broadly unchanged under GW. Thus, the
cross-fitting GW performs much better than OW with cross fitting. The same qualitative
findings are true under larger birth cohort sizes, although the difference between the
performance of OW and GW (both with and without cross fitting) decreases as the sample
size increases.
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Figure 6: Violin plots for Baker and Solon (2003) parameters, showing bias, coverage probabilities
of the 90% confidence intervals, and log root-mean square error (RMSE), which is relative to the
RMSE under optimal weighting. Figure derived from 1,000 replications. Weighting denoted OW
(optimally-weighted), and GW (GLasso-weighted), and by whether cross-fitting is applied (CF) or
not (no CF).
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Table C.2: Baker and Solon (2003) Simulation Results: nb = 400

Bias RMSE Coverage Prob.

Param. Value EW DW OW GW EW DW OW GW EW DW OW GW

σ2
α 0.134 -0.007 -0.014 -0.010 -2.2E-4 0.013 0.029 0.012 0.008 0.840 0.720 0.377 0.888

σ2
β 9.0E-5 -7.4E-6 -1.2E-5 -2.7E-6 6.4E-7 4.0E-5 4.7E-5 2.9E-5 3.0E-5 0.907 0.869 0.714 0.893

σαβ -0.003 4.9E-4 9.1E-4 2.6E-4 3.8E-5 8.3E-4 0.002 4.7E-4 3.9E-4 0.803 0.673 0.564 0.892

σ2
r 0.007 -6.8E-4 -0.001 -6.4E-4 -9.7E-5 0.001 0.003 9.0E-4 6.7E-4 0.789 0.631 0.497 0.888

ρ 0.540 0.029 0.051 6.6E-4 0.002 0.039 0.072 0.008 0.008 0.559 0.345 0.726 0.884

γ0 0.090 -8.5E-4 -0.003 -0.005 1.8E-4 0.014 0.015 0.007 0.004 0.873 0.846 0.403 0.898

γ1 -0.005 1.6E-4 4.4E-4 4.1E-5 -5.6E-6 0.004 0.004 1.0E-3 0.001 0.897 0.870 0.738 0.901

γ2 6.2E-5 -6.6E-6 -1.6E-5 1.8E-5 -6.0E-7 3.9E-4 4.5E-4 1.1E-4 1.1E-4 0.906 0.888 0.717 0.909

γ3 2.2E-6 6.5E-8 1.9E-7 -8.5E-7 3.4E-8 1.7E-5 1.9E-5 4.8E-6 4.7E-6 0.906 0.883 0.722 0.905

γ4 2.1E-9 1.0E-9 0.000 9.0E-9 0.000 2.4E-7 2.8E-7 7.0E-8 7.0E-8 0.908 0.899 0.723 0.908

p77 1.035 0.001 0.002 0.003 0.001 0.012 0.015 0.015 0.013 0.894 0.879 0.673 0.893

p78 1.028 0.001 0.004 0.002 9.1E-4 0.017 0.026 0.019 0.017 0.917 0.898 0.710 0.907

p79 1.005 0.003 0.008 0.002 0.001 0.019 0.044 0.020 0.019 0.897 0.868 0.698 0.888

p80 1.030 0.004 0.010 0.002 0.001 0.021 0.057 0.022 0.021 0.883 0.861 0.698 0.896

p81 1.050 0.005 0.013 0.002 0.002 0.023 0.070 0.023 0.022 0.884 0.850 0.696 0.898

p82 1.143 0.005 0.015 7.4E-4 6.9E-4 0.026 0.075 0.027 0.026 0.881 0.843 0.696 0.892

p83 1.124 0.004 0.015 8.7E-4 9.0E-4 0.027 0.089 0.028 0.026 0.887 0.842 0.709 0.910

p84 1.125 0.004 0.016 7.0E-4 0.001 0.027 0.102 0.028 0.026 0.889 0.847 0.705 0.895

p85 1.122 0.004 0.016 3.7E-4 0.001 0.029 0.118 0.028 0.027 0.890 0.858 0.726 0.896

p86 1.111 0.002 0.015 -2.6E-5 0.001 0.028 0.135 0.028 0.027 0.883 0.863 0.730 0.891

p87 1.098 0.002 0.014 4.9E-6 0.001 0.028 0.154 0.028 0.027 0.913 0.884 0.725 0.896

p88 1.105 0.002 0.014 2.1E-5 0.001 0.028 0.172 0.029 0.028 0.912 0.888 0.717 0.890

p89 1.126 0.002 0.013 1.7E-4 0.002 0.029 0.188 0.030 0.029 0.911 0.895 0.724 0.904

p90 1.127 8.7E-4 0.012 -2.3E-4 0.002 0.030 0.206 0.031 0.030 0.913 0.899 0.715 0.882

p91 1.234 0.002 0.013 -6.3E-4 0.003 0.034 0.215 0.035 0.034 0.907 0.887 0.724 0.888

p92 1.253 8.2E-4 0.011 -0.002 0.002 0.035 0.235 0.036 0.036 0.901 0.895 0.720 0.893

σ2
24−25 0.133 0.002 0.007 -9.4E-4 3.0E-4 0.040 0.047 0.014 0.015 0.893 0.890 0.859 0.899

σ2
26−27 0.084 0.003 0.011 -9.8E-4 3.5E-4 0.034 0.043 0.010 0.011 0.903 0.880 0.838 0.893

σ2
28−29 0.116 0.002 0.008 -0.005 -4.1E-4 0.035 0.042 0.014 0.014 0.891 0.879 0.764 0.885

σ2
30−31 0.071 0.001 0.009 -0.003 4.6E-4 0.031 0.038 0.010 0.010 0.909 0.878 0.698 0.878

σ2
32−33 0.071 0.004 0.012 -0.004 3.6E-4 0.031 0.037 0.010 0.010 0.907 0.890 0.670 0.899

σ2
34−35 0.127 0.001 0.006 -0.008 0.001 0.033 0.042 0.017 0.014 0.909 0.893 0.595 0.899

σ2
36−37 0.085 0.002 0.009 -0.006 9.6E-4 0.031 0.039 0.013 0.011 0.898 0.874 0.584 0.878

σ2
38−39 0.044 0.005 0.014 -0.003 5.7E-4 0.028 0.036 0.009 0.007 0.901 0.853 0.629 0.895

σ2
40−41 0.066 0.005 0.013 -0.005 3.0E-4 0.026 0.035 0.011 0.010 0.919 0.890 0.647 0.881

σ2
42−43 0.074 0.006 0.014 -0.005 6.0E-4 0.029 0.038 0.012 0.010 0.893 0.858 0.615 0.891

σ2
44−45 0.054 0.006 0.015 -0.004 5.2E-4 0.026 0.037 0.010 0.009 0.912 0.875 0.589 0.887

σ2
46−47 0.071 0.007 0.016 -0.005 5.2E-4 0.027 0.037 0.012 0.011 0.906 0.858 0.597 0.894

σ2
48−49 0.090 0.006 0.014 -0.008 -1.3E-4 0.028 0.037 0.015 0.012 0.902 0.867 0.577 0.900

σ2
50−51 0.167 0.005 0.011 -0.014 -2.2E-4 0.032 0.040 0.024 0.019 0.895 0.875 0.532 0.886

σ2
52−53 0.157 0.006 0.012 -0.010 6.4E-4 0.031 0.041 0.021 0.018 0.898 0.874 0.665 0.895

σ2
54−55 0.251 0.001 0.004 -0.014 8.3E-4 0.039 0.051 0.030 0.027 0.895 0.884 0.662 0.877

σ2
56−57 0.295 0.004 0.007 -0.012 2.2E-4 0.044 0.061 0.033 0.032 0.904 0.887 0.744 0.871

σ2
58−59 0.377 -7.5E-4 -0.004 -0.012 9.1E-5 0.050 0.071 0.037 0.036 0.896 0.887 0.792 0.895

σ2
60−61 0.388 -0.004 -0.007 -0.009 -0.002 0.051 0.082 0.036 0.037 0.893 0.882 0.832 0.876

λ78 1.132 -0.004 -0.009 0.001 -5.0E-5 0.044 0.056 0.026 0.023 0.923 0.888 0.680 0.909

λ79 0.950 -0.009 -0.013 4.6E-4 -1.8E-4 0.046 0.065 0.023 0.020 0.892 0.838 0.685 0.889

λ80 1.060 -0.003 -0.004 0.001 1.2E-4 0.060 0.073 0.025 0.022 0.888 0.881 0.665 0.894

λ81 1.066 -0.008 -0.012 0.002 9.0E-4 0.060 0.073 0.024 0.022 0.910 0.864 0.695 0.914

λ82 1.397 -0.006 -0.019 0.003 1.1E-4 0.080 0.086 0.032 0.028 0.899 0.851 0.660 0.893

λ83 1.527 -0.017 -0.043 7.6E-4 -5.7E-4 0.087 0.105 0.035 0.031 0.893 0.813 0.670 0.893

λ84 1.379 -0.019 -0.044 0.002 4.3E-4 0.086 0.108 0.030 0.027 0.867 0.799 0.687 0.917

λ85 1.343 -0.019 -0.040 0.002 1.9E-4 0.084 0.109 0.031 0.027 0.863 0.795 0.672 0.897

λ86 1.339 -0.011 -0.027 0.001 1.3E-4 0.084 0.109 0.030 0.027 0.895 0.840 0.676 0.890

λ87 1.304 -0.016 -0.027 0.002 -4.0E-5 0.078 0.112 0.029 0.026 0.891 0.843 0.695 0.900

λ88 1.285 -0.010 -0.016 0.002 1.6E-4 0.078 0.114 0.029 0.027 0.898 0.856 0.693 0.896

λ89 1.260 -0.007 -0.007 0.001 -3.9E-4 0.080 0.118 0.029 0.027 0.906 0.877 0.661 0.895

λ90 1.405 -0.006 -0.005 0.001 -7.7E-4 0.080 0.123 0.033 0.030 0.908 0.891 0.680 0.902

λ91 1.513 -0.004 -6.7E-4 0.004 1.3E-4 0.088 0.128 0.036 0.033 0.897 0.870 0.689 0.895

λ92 1.715 4.1E-4 0.003 0.002 5.2E-4 0.093 0.144 0.040 0.036 0.904 0.882 0.690 0.904

Notes: Results derived from conducting 1,000 replications of the Baker and Solon (2003) model with a cohort sample size nb = 400. For
each parameter it reports the values of the average bias, the root-mean square error (RMSE), and coverage probabilities of the 90% con-
fidence intervals, under alternative weighting regimes (equally-weighted, EW, diagonally-weighted, DW, optimally-weighted, OW, and
cross-fitting GLasso-weighted, GW).
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