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Abstract

We consider penalized extremum estimation of a high-dimensional, possibly non-
linear model that is sparse in the sense that most of its parameters are zero but
some are not. We use the SCAD penalty function, which provides model selection
consistent and oracle efficient estimates under suitable conditions. However, asymp-
totic approximations based on the oracle model can be inaccurate with the sample
sizes found in many applications. This paper gives conditions under which the boot-
strap, based on estimates obtained through SCAD penalization with thresholding,
provides asymptotic refinements of size O

(
n−2

)
for the error in the rejection (cov-

erage) probability of a symmetric hypothesis test (confidence interval) and O
(
n−1

)
for the error in rejection (coverage) probability of a one-sided or equal tailed test
(confidence interval). The results of Monte Carlo experiments show that the boot-
strap can provide large reductions in errors in coverage probabilities. The bootstrap
is consistent, though it does not necessarily provide asymptotic refinements, even if
some parameters are close but not equal to zero. Random-coefficients logit and probit
models and nonlinear moment models are examples of models to which the procedure
applies.

Keywords: extremum estimation, nonlinear models, high-dimensional inference, bootstrap
based confidence intervals, asymptotic refinements
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1 Introduction

This paper is about using the bootstrap to obtain asymptotic refinements for inference

about the sparse but possibly high-dimensional parameter θ0 that is estimated by a thresh-

olded version of the penalized extremum estimator

θ̃n = argmin
θ∈Θn

[Qn (χn, θ) + pλn(θ)] . (1.1)

In this equation, Θn is a parameter set, χn is a random sample of size n from the distribu-

tion of a random vector, Qn is a known function such as minus a log-likelihood function,

pλn is a penalty function, and is λn is a penalization parameter. In contrast to most of

the large literature on high-dimensional estimation, we do not assume that θ is the vec-

tor of parameters of a linear or generalized linear model, the vector of coefficients of a

linear combination of covariates (linear index), or the vector of coefficients of a linear ap-

proximation to a nonlinear function. Instead, Qn (or −Qn) is the objective function of a

general extremum estimator, such as a maximum likelihood estimator; linear or nonlinear

regression estimator; instrumental variables estimator of a linear or nonlinear model; or

generalized method of moments (GMM) estimator. The random coefficients logit and pro-

bit models are examples of widely used models that are neither generalized linear models,

linear index models, or easily approximated by a linear combination of functions of their

covariates. A non-separable, nonlinear demand model with a possibly endogenous price

variable is another example. Maximum likelihood estimation of random coefficients logit

or probit models and GMM estimation of a demand model are among the estimators that

are accommodated by the methods presented in this paper.

If θ0 has a fixed dimension and is point identified, then conditions under which
√
n(θ̃n−

θ0) is asymptotically normally distributed without penalization are well known. See, for

example, Amemiya (1985), among many other references. However, the asymptotic normal
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approximation can be inaccurate with the sample sizes found in many applications. Un-

der conditions that are satisfied in many applications, the bootstrap provides asymptotic

refinements for confidence intervals and hypothesis tests. See, for example, Hall (1992)

and Horowitz (2001), among other references. The resulting reductions in the differences

between true and nominal coverage and rejection probabilities (errors in coverage and re-

jection probabilities or ECPs and ERPs) can be large. This paper gives conditions under

which the same asymptotic refinements can be obtained in penalized estimation of nonlin-

ear models. We assume that θ0 is sparse, meaning that most of its components are zero

but some are non-zero. We carry out inference about a non-zero component or linear com-

bination of non-zero components. We give conditions under which bootstrap asymptotic

refinements have the same order of magnitude that they would have if they were obtained

from estimation of the oracle model (the model in which it is known a priori which compo-

nents are non-zero and which are zero). For example, the error in the coverage (rejection)

probability of a symmetrical confidence interval (hypothesis test) is O (n−2). We also give

conditions under which the bootstrap is consistent, though it does not necessarily provide

asymptotic refinements, even if some non-zero components of θ0 are close but not equal to

zero. Under these conditions, there is not a risk of inconsistency due to violation of the

exact sparsity assumption.

Chatterjee and Lahiri (2010, 2011) give conditions under which the bootstrap based

on LASSO (Tibshirani (1996)) estimators of high-dimensional linear models is consistent.

Chatterjee and Lahiri (2013) give conditions under which the bootstrap provides asymp-

totic refinements for confidence intervals and hypothesis tests based on adaptive LASSO

(ALASSO, Zou (2006)) estimators of high-dimensional linear models. Das et al. (2022)

give conditions under which the bootstrap provides asymptotic refinements for symmetri-
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cal tests and confidence intervals in penalized high dimensional linear models with a variety

of penalty functions. The asymptotic refinements provided in the present paper are of the

same or higher order than those of Chatterjee and Lahiri (2013) and Das et al. (2022) but

are for models that may be nonlinear.

We use the SCAD penalty function (Antoniadis and Fan (2001), Fan and Li (2001)),

which avoids penalization bias of estimates of the non-zero components of θ0. Fan and

Li (2001) and Fan and Peng (2004) give conditions under which a penalized maximum

likelihood estimator with the SCAD penalty function is oracle efficient, meaning that the

centered and scaled estimates of non-zero components of θ0 have the same asymptotic

distribution that they would have if it were known a priori which components are zero. We

consider the more general estimator (1.1).

To the best of our knowledge, this paper is the first to obtain its order of asymptotic

refinements for high dimensional models that may be nonlinear. Not surprisingly, achieving

these refinements requires assumptions that are stronger than those in much of the recent

literature. We assume that the number of parameters is less than n, though it may be

an increasing function of n, and that the number of non-zero components of θ0 is fixed

as n increases. These assumptions are motivated by applications in the social sciences,

where a model may have many parameters, but the total number of parameters is less

than the sample size and few have substantial effects on the dependent variable. In a

random coefficients logit or probit model, for example, the parameters include the means

and variances of the coefficients, but some coefficients may be non-stochastic, in which

case the corresponding variances are zero. As in Chatterjee and Lahiri (2013) and Das

et al. (2022), we require the non-zero parameters to be sufficiently far from zero, though

the distance of these parameters from zero can decrease as the sample size increases. This
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ensures that “large” parameters can be distinguished from “small” ones with sufficiently

high probability. It is not possible to obtain asymptotic refinements of the order obtained

here without making such a distinction, though the bootstrap is consistent even if some non-

zero parameters are “small.” The appendix presents precise statements of our assumptions

and their justifications.

The results in this paper are most closely related to those of Chatterjee and Lahiri

(2013) and Das et al. (2022), who show that suitable versions of the residual and permu-

tation bootstraps provide asymptotic refinements for test statistics based on a large class

of penalized estimators of the coefficients of a linear mean-regression model. See also Das

et al. (2019). These papers obtain their results by carrying out higher-order expansions of

the distributions of the relevant statistics. This paper uses a different approach. We give

conditions under which a combination of penalized estimation with the SCAD penalty func-

tion and hard thresholding causes differences between the penalized, thresholded parameter

estimate and the infeasible oracle estimate to converge to zero very rapidly. Consequently,

the estimate obtained from penalization and thresholding can be treated as if it were the

oracle estimate. It suffices to consider only the properties of the bootstrap applied to the

oracle model, which are well known. It is not necessary to carry out higher-order expansions

of the distribution of the penalized estimator.

The literature on high-dimensional estimation is very large. Here, we mention only

few references that are most relevant to the present paper. Tibshirani (1996) introduces

the LASSO. Knight and Fu (2000); Candes and Tao (2007); Huang et al. (2008); Zhang

and Huang (2008); Belloni and Chernozhukov (2011); and Bühlmann and Van De Geer

(2011) describe properties of the LASSO and related penalized estimators of linear mean-

and quantile-regression models. Zou (2006) introduces the ALASSO and describes its
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properties. Fan and Li (2001) and Fan and Peng (2004) describe properties of SCAD-

penalized least squares and maximum likelihood estimators. Belloni et al. (2014); van

de Geer et al. (2014); Zhang and Zhang (2014); Chernozhukov et al. (2018); Lu et al.

(2017); Wang et al. (2020); and Yu et al. (2020) describe methods for first order asymptotic

inference in high-dimensional models. Bühlmann (2015) and Dezeure et al. (2015) provide

reviews. Bach (2009); Chatterjee and Lahiri (2010, 2011, 2013); Javanmard and Montanari

(2018); Minnier et al. (2011); Camponovo (2015, 2020); Dezeure et al. (2017); Zhang and

Cheng (2017); Wang et al. (2018); Das et al. (2019); Liu et al. (2020); and Das et al.

(2022) describe bootstrap methods for high-dimensional estimators. Chatterjee and Lahiri

(2011) apply hard thresholding to the LASSO estimator of a linear model. They show that

the residual bootstrap consistently estimates the distribution of the t-statistic this model

but do not obtain asymptotic refinements or treat nonlinear models. Meinshausen and Yu

(2009) and Bühlmann and Van De Geer (2011) also discuss thresholding the LASSO.

The remainder of this paper is organized as follows. Section 2 describes our method and

its properties. This section also treats the case in which some parameters are close but not

equal to zero. Section 3 presents the results of a Monte Carlo investigation of the numerical

behavior of the method, and Section 4 presents an empirical example of the application

of the method. Section 5 presents conclusions. Regularity conditions are in the appendix.

The proofs of theorems and certain auxiliary results are in the online supplement.

2 The Method

Section 2.1 defines notation that is used in the remainder of this paper. Section 2.2 presents

the bootstrap method and its properties. Section 2.3 treats the case in which some param-

eters are close but not equal to zero.
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2.1 Notation

Let χn = {Xi : i = 1, . . . , n} be an independent random sample of the random vector X.

To accommodate the possibility that the dimension of the target parameter may increase as

n increases, we use the notation θ0n for the target parameter and Θn for the parameter set.

Define pn = dim (θ0n). Let A0 and A0, respectively denote the sets of indices of the non-zero

and zero components of θ0n. Let θ0n have p0 non-zero components. This number is fixed

as n increases. We assume without further loss of generality that the first p0 components

of θ0n are the non-zero ones. Thus, A0 = {1, . . . , p0}, and A0 = {p0 + 1, . . . , pn}. Let

θ0nA0 be the p0 × 1 vector of non-zero components of θ0n. Then θ′0n =
(
θ′0nA0

, 0′pn−p0

)
,

where 0pn−p0 denotes a (pn − p0) × 1 vector of zeros. Denote a generic element of Θn

by θ′n =
(
θ′nA0

, θ′
nA0

)
. Write Qn (χn, θn) as Qn

(
χn, θnA0 , θnA0

)
when it is necessary to

distinguish between components whose indices are in A0 and components whose indices are

in A0. Let θnj (j = 1, . . . , pn) denote the j
th component of any vector θn ∈ Θn. The penalty

parameter depends on n and therefore, is denoted by λn. The SCAD penalty function is

pλn (θn) = λn

pn∑
j=1

p̃λn (|θnj|) ,

where the function p̃λn is defined by its derivative

p̃′λn
(v) = I (v ≤ λn) +

max {aλn − v, 0}
(a− 1)λn

I (v > λn) ; a > 2, v > 0.

Let θ̃n denote the penalized extremum estimator defined in (1.1) with the SCAD penalty

function. Define the thresholded estimator θ̂n as the pn × 1 vector whose jth component is

θ̂nj = θ̃njI
(
θ̃nj ≥ τn

)
(2.1)

where τn ≪ λn is a thresholding parameter. Define the sets

Â0 =
{
j = 1, . . . , pn :

∣∣∣θ̂nj∣∣∣ > 0
}
,
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Â0 =
{
j = 1, . . . , pn :

∣∣∣θ̂nj∣∣∣ = 0
}
.

Let θ̂nÂ0
and θ̂

nÂ0
, respectively, denote the vectors of non-zero and zero components of θ̂n.

Define

ΘO
n =

{
θn ∈ Θn : θnA0

= 0pn−p0

}
,

and

ΘPO
n =

{
θn ∈ Θn : θ

nÂ0
= 0∣∣∣Â0

∣∣∣
}
,

where
∣∣∣Â0

∣∣∣ is the number of elements in Â0 and 0∣∣∣Â0

∣∣∣ is a
∣∣∣Â0

∣∣∣ × 1 vector of zeros. The

infeasible oracle estimator of θ0n is θ̂On =
(
θ̂OnA0

, 0pn−p0

)
, where

θ̂On = argmin
θn∈ΘO

n

Qn (χn, θn) . (2.2)

This is the estimator obtained by setting θnA0
= 0pn−p0 and choosing θnA0 to minimize the

unpenalized objective function Qn. Define the pseudo-oracle estimator θ̂PO
n by

θ̂PO
n = argmin

θn∈ΘPO
n

Qn (χn, θn) . (2.3)

This is the estimator obtained by setting θ
nÂ0

= 0∣∣∣Â0

∣∣∣ and choosing θnÂ0
to minimize the

unpenalized objective function.

Finally, let T
(
θ̂PO
nÂ0

)
be a statistic based on θ̂PO

nÂ0
for testing a hypothesis about a

smooth scalar function of θ0nA0 . For example, T might be a symmetrical t-statistic for

testing a hypothesis about the jth component of θ0nA0 . Denote the hypothesized value of

this component by θ0nA0,j. Then

T
(
θ̂PO
nÂ0

)
=

∣∣∣θ̂PO
nÂ0,j

− θ0nA0,j

∣∣∣
sPO

, (2.4)

where sPO is a standard error, and θ0nA0,j is the hypothesized value. Let T
(
θ̂OnA0

)
be the

same statistic based on the oracle estimate θ̂OnA0
. Then, the foregoing statistic is

T
(
θ̂OnA0

)
=

∣∣∣θ̂OnA0,j
− θ0nA0,j

∣∣∣
sO

,
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where sO is a standard error. Let ĉPO
α be the α-level critical value of T

(
θ̂PO
nÂ0

)
that is

obtained by the bootstrap procedure described in Section 2.2. Let ĉOα be the α-level critical

value of T
(
θ̂OnA0

)
that would be obtained through the conventional bootstrap if A0 were

known.

2.2 Description and Properties of the Method

The method proposed in this paper consists of the following steps.

1. Obtain the penalized estimator θ̃n from (1.1) with the SCAD penalty function.

2. Obtain the thresholded estimator θ̂n from (2.1).

3. Obtain the pseudo-oracle estimator θ̂PO
nÂ0

from (2.3).

4. Obtain bootstrap samples by sampling the data randomly with replacement (not the

residual bootstrap). Obtain the critical value ĉPO
α by using the conventional bootstrap

methods with θ̂PO
nÂ0

treated as if it were true oracle estimator θ̂OnA0
.

If A0 were known and the values of the parameters were fixed, an α-level critical value

ĉOα could be obtained by applying conventional bootstrap methods such as those described

by Hall (1992) and Horowitz (2001) to the oracle estimator. The null hypothesis being

tested would be rejected at the nominal level α if T
(
θ̂OnA0

)
> ĉOα . The difference between

the nominal and true probabilities of rejecting a correct null hypothesis (the ERP) would

be

ERPO =
∣∣∣P [T (θ̂OnA0

)
> ĉOα

]
− α

∣∣∣ .
ERPO is O (n−2) for a the Studentized symmetrical statistic T

(
θ̂OnA0

)
. It is typically

O (n−c), where c = 1/2, 1, 3/2, 2, depending on the hypothesis and the test statistic, for

non-Studentized statistics or statistics for one-sided or equal-tailed hypothesis tests. We
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assume that the conventional bootstrap provides the same order of refinements if some non-

zero parameters approach zero at the rate specified in Assumption 2 (ii) of the appendix.

This paper concentrates on the Studentized, symmetrical statistic in (2.4), but the results

presented here apply after obvious modifications to the other statistics.

The method of this paper replaces the unknown A0 with Â0 and applies conventional

bootstrap methods to θ̂PO
nÂ0,j

as if Â0 were non-stochastic. This works because P
(
Â0 ̸= A0

)
approaches zero very rapidly. The precise result is given by the following theorem.

Theorem 2.1. Let Assumptions 1-5 in the appendix hold. Then

P
(
Â0 ̸= A0

)
= o

(
n−2
)

(2.5)

as n → ∞. In addition∣∣∣P [T (θ̂PO
nÂ0

)
> ĉPO

α

]
− P

[
T
(
θ̂OnA0

)
> ĉOα

]∣∣∣ = o
(
n−2
)
. (2.6)

It follows from Theorem 2.1 that

ERPPO =
∣∣∣P [T (θ̂PO

nÂ0

)
> ĉPO

α

]
− α

∣∣∣ = O
(
n−2
)
. (2.7)

Therefore, a test based on the feasible statistic T
(
θ̂PO
nÂ0

)
and a feasible bootstrap critical

value ĉPO
α is equivalent up to O (n−2) to a test based on the infeasible statistic T

(
θ̂OnA0

)
and infeasible bootstrap critical value ĉOα . Moreover, θ̂PO

nÂ0
is an oracle efficient estimator of

θ0n. A confidence interval for a smooth scalar function of θ0nA0 is the set of values of the

function that are not rejected by the hypothesis test. Therefore, (2.7) also applies to the

error in the coverage probability (ECP) of a confidence interval.

2.3 Small Parameters

In this section, we assume that some or all components of θ0nA0
are non-zero but small

in the sense that
∥∥θ0nA0

∥∥
1
= o (τn). We use the following additional notation. Let θ0nA0
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denote the p0×1 vector of components of that are “large” in the sense that |θ0nA0,j| ≫ λn for

all j = 1, . . . , p0. Define θ̂PT
nA0

to be the parameter estimate obtained from the unpenalized

pseudo-true model

θ̂PT
nA0

= argmin
θnA0

Qn

(
χn, θnA0 , 0A0

)
. (2.8)

This is the pseudo-true estimate of the large parameters that would be obtained if A0 were

known and all the components of the parameters with indices in A0 were set equal to zero.

The following theorem gives conditions under which the bootstrap consistently estimates

the asymptotic distribution of

T
(
θ̂PT
nA0

)
=

θ̂PT
nA0,j

− θ0nA0,j

sPT
,

where sPT is a standard error. T
(
θ̂PT
nA0

)
is a t-statistic for testing a hypothesis about

θ0nA0,j (the true parameter value, not a pseudo-true value) when A0 is known. Under the

assumptions of the theorem, the bootstrap estimates the distribution of T
(
θ̂PT
nA0

)
consis-

tently when A0 is unknown. Equivalently, the bootstrap provides a confidence interval for

θ0nA0,j with asymptotically correct coverage probability.

Theorem 2.2. Let Assumptions 2(ii), 3(i) and 1S-3S of the appendix hold. Let θ̂PT
nÂ0

be

the estimate of θ0nA0 obtained from the unpenalized pseudo-true model with Â0 in place of

A0:

θ̂PT
nÂ0

= argmin
θ
nÂ0

Qn

(
χn, θnÂ0

, 0
Â0

)
,

where Â0 is defined following (2.1). Denote the bootstrap sample by χ∗
n and the bootstrap

estimate based on the unpenalized pseudo-true model by

θ∗PT
nÂ0

= argmin
θ
nÂ0

Qn

(
χ∗
n, θnÂ0

, 0
Â0

)
.

Define the statistic T based on θ∗PT
nÂ0

by

T
(
θ∗PT
nÂ0

)
=

θ∗PT
nÂ0,j

− θ̂PT
nÂ0,j

s∗PT
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where s∗PT is the bootstrap standard error obtained when Â0 used in place of A0. Then

sup
z∈R

∣∣∣P ∗
[
T
(
θ∗PT
nÂ0

)
≤ z
]
− P

[
T
(
θ̂PT
nA0

)
≤ z
]∣∣∣ p→ 0.

3 Monte Carlo Experiments

This section reports the results of a Monte Carlo investigation of the finite-sample perfor-

mance of the penalization and thresholding method. Section 3.1 describes the computa-

tional algorithm. Section 3.2 describes the investigation.

3.1 Computational Algorithm

The algorithm estimates θ0n iteratively. Let θ̃0n denote the starting value; t = 1, 2, . . .

index iterations; and θ̃tn denote the estimate of θ0n at iteration t. We use the local linear

approximation of the SCAD penalty function of Zou and Li (2008). We obtain θ̃t+1
n from

θ̃tn by using the coordinate descent method of Friedman et al. (2007) and Friedman et al.

(2010) to solve

θ̃t+1
n = argmin

θn∈Θn

Qn (θn) +

pn∑
j=1

p̃′λn

(∣∣∣θ̃tnj∣∣∣) |θnj| .
To speed the computation, we iterate only over non-zero components at a given t and

implement updates to the set of non-zero components as in Zhao et al. (2018).

3.2 Monte Carlo Results

We estimate the parameter θ0n of the binary logit model

P (Y = 1|X) =
exp (θ′0nX)

1 + exp (θ′0nX)
(3.1)
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where Y ∈ {0, 1}; X ∼ N (0pn ,Σn); Σn,jℓ = 0.3|j−ℓ| for j, ℓ = 1, . . . , pn; pn = n/10, pn = n/2

or pn = 3n/4; p0 = 15; dim (θ0n) = pn × 1; and

θ0n = (4,−1.5,−3, 1.9, 2.6, 4,−1.5,−3, 1.9, 2.6, 4,−1.5,−3, 1.9, 2.6, 0, . . . , 0).

−Qn (χn, θn) is the log-likelihood function for estimating θn. The penalty parameter was

selected to minimize the BIC criterion

min
λ

Qn

(
χn, θ̃n(λ)

)
+ Cn |Sn(λ)| log n, (3.2)

where Sn(λ) is the set of indices of non-zero components of the penalized MLE θ̃n(λ) with

penalty parameter λ but without thresholding, |Sn(λ)| is the cardinality of Sn(λ), and

Cn = 1 or log log pn. The concavity parameter in the SCAD penalty function was a = 3.7

(Fan and Li 2001), and the thresholding parameter was τn = n−1/8aλn. There were 500

Monte Carlo replications and 2000 bootstrap replications per experiment.

Tables 8-13 show empirical coverage probabilities of nominal one-sided and symmetrical

0.90 intervals for θ0n,1 and θ0n,2 obtained the following six ways. Section B.4 of the online

supplement presents additional results.

1. Unpenalized MLE of the full model with first-order asymptotic critical values.

2. Unpenalized MLE of the full model with bootstrap critical values.

3. Unpenalized MLE of the infeasible oracle model with first-order asymptotic critical

values.

4. Unpenalized MLE of the infeasible oracle model with bootstrap critical values.

5. Penalized and thresholded MLE with first-order asymptotic critical values.

6. Penalized and thresholded MLE with bootstrap critical values.
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The tables show that the empirical coverage probabilities obtained with the full model are

far from the nominal coverage probabilities with either first-order asymptotic or bootstrap-

based critical values. The empirical coverage probabilities are especially far from the nomi-

nal probabilities when pn = n/2 and pn = 3n/4. This is because the estimated Hessian and

outer product matrices with these values of pn are nearly singular. Consequently, random

sampling errors in the inverse of the estimated Hessian (or outer product), which is used

for Studentization, are very large. The empirical coverage probabilities obtained with the

oracle model and bootstrap-based critical values are close to the nominal probabilities, but

the oracle model is unknown and infeasible in applications. The empirical coverage prob-

abilities obtained with the penalized, thresholded estimator and bootstrap-based critical

values are close to the nominal probabilities and are not sensitive to the choice of Cn when

n ≥ 1000.

4 Empirical Example

Gentzkow et al. (2019) investigated the relation between party affiliation and two-word

phrases (bigrams) spoken by members of Congress. We use a subset of their data to

estimate a binary logit model of the probability of a member’s party affiliation (Democrat

or Republican) conditional on phrases that the member has used. Our data consist of

observations on 4319 members of Congress from 2001-2016. The covariates are the number

of times a member used each of 2441 phrases as well as 60 variables describing characteristics

of the member (e.g. state represented, gender). Thus, the logit model has 2501 covariates

in total. Most of the phrases are used roughly equally often by Democrats and Republicans.

These phrases are unlikely to be useful for predicting party affiliation, thereby justifying

an assumption of sparsity or approximate sparsity.
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The model is as in (3.1), where Y = 1 if a member is a Republican, Y = 0 if the

member is a Democrat, and X is the 2501×1 vector of covariates. The SCAD penalty and

thresholding parameters were selected as described in Section 3.1. Penalized estimation

with Cn = 1 in (3.2) resulted in selection of 106 phrases out of the initial 2441. Penalized

estimation with Cn = log log pn resulted in selection of 59 phrases, 56 of which are among

the 106 selected with Cn = 1.

Table 7 shows point estimates of the coefficients of several example phrases and nominal

90% first-order asymptotic and bootstrap-based confidence intervals for the coefficients.

The point estimates and confidence intervals are not highly sensitive to the choice of Cn.

5 Conclusions

Empirical research in economics, among other fields, often involves estimation of the param-

eters of a nonlinear model in which the number of parameters may be a large fraction of the

sample size but most parameters are zero or close to zero. In such settings, the accuracy of

inference about large parameters can be improved greatly through the use of penalized es-

timation methods that reduce the number of parameters that must be estimated. However,

inference is usually based on asymptotic approximations that can be highly inaccurate in

finite samples. Under suitable conditions, the bootstrap provides asymptotic refinements

that increase the accuracy of inference, but the usual conditions, such as those of Hall

(1992), are not satisfied in penalized estimation. This paper has described a method for

obtaining bootstrap asymptotic refinements in penalized estimation of nonlinear models.

The refinements are of the same order as those that would be achieved with the oracle

model if it were known. The results of Monte Carlo experiments show that with samples of

the sizes encountered in much applied research, the method can achieve large reductions in
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the errors of the coverage probabilities of confidence intervals. The bootstrap is consistent

even if the sparsity assumption needed to obtain the asymptotic refinements reported here

is not satisfied. An empirical example has illustrated the method’s practical usefulness.
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A Regularity conditions

A.1 Assumptions for Theorem 2.1

Assumption 1.

(i) χn = {Xi : i = 1, . . . , n} is an independent random sample from the distribution of

the random vector X.

(ii) For each n, Θn is a compact subset of Rpn .

(iii) There exists C < ∞ such that ∥θn∥1 ≤ C for all θn ∈ Θn and all n.

Assumption 2.

(i) pn = O
(
nb
)
for some 0 ≤ b < 1.

(ii) |θ0nA0,j| ≫ λn for each j = 1, . . . , p0.

(iii) λn = λ0n
−1/4+2ζ , where 0 < ζ < 1/8 and λ0 > 0 is a constant.

For the next set of assumptions, define the following quantities.

a. δn = n−d and mn = exp (nδn), where 1− 4ζ < d < 1− b.

b. τn = τ0n
−1/4+ζ , where τ0 is a constant and 0 < τ0 < aλ0.

c. The set Vnv = {θn : ∥θn − θ0n∥1 ≤ v}, where v > 0 is a constant.

d. Sn∞ (θn) = Qn∞ (θn) + pλn (θn), where Qn∞ is the non-stochastic function defined in

Assumption 3 (i) below and pλn is the SCAD penalty function.

Assumption 3.

29



(i) There are non-stochastic functions Qn∞ (θn) and positive, finite constants A, ε0, c, ℓ

and n0 such that

P

[
sup

θn∈Θn

|Qn (χn, θn)−Qn∞ (θn)| > ε

]
≤ Amn exp

(
−cnε2

)
for any ℓτ 2n ≤ ε ≤ ε0 and n ≥ n0.

(ii) For each n such that pn > p0, Qn∞ has a (not necessarily unique) global minimum in

Θn at a point
(
θ′0nA0

, 0′pn−p0

)′ ∈ int (Θn).

(iii) Qn∞ is weakly convex and twice continuously differentiable in a neighborhood of(
θ′0nA0

, 0′pn−p0

)′
.

(iv) There is a constant ρ > 0 such that for any v > 0 and any n,

inf
∥θnA0

−θ0nA0∥2
≥v

[Qn∞ (θn)−Qn∞ (θ0n)] ≥ ρv2.

For the next assumption, define

Hn,11 (θn) =
∂2

∂θnA0∂θ
′
nA0

Qn∞ (θn) ,

Hn,12 (θn) =
∂2

∂θnA0∂θ
′
nA0

Qn∞ (θn) ,

Hn,21 (θn) = Hn,12 (θn)
′ ,

Hn,22 (θn) =
∂2

∂θnA0
∂θ′

nA0

Qn∞ (θn) .

Note that Hn,12 is a p0 × (pn − p0) matrix. Let µn (θn) denote the smallest eigenvalue of

Hn,11 (θn).

Assumption 4. There is a v > 0 such that for all θn ∈ Vnv,

(i) µn ≥ µ0 for all n and some µ0 > 0.
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(ii) The components of Hn,21 (θn)H
−1
n,11 (θn) are bounded for all n.

Assumption 5. The bootstrap provides asymptotic refinements through O (n−2) for the

quantity P
[
T
(
θ̂OnA0

)
> ĉOα

]
. That is,

∣∣∣P [T (θ̂OnA0

)
> ĉOα

]
− α

∣∣∣ = O (n−2).

Assumption 1 specifies the sampling process and parameter set. Assumption 2(i) re-

stricts the rate at which pn can grow as n increases and rules out pn > n. Chatterjee and

Lahiri (2013) obtain bootstrap asymptotic refinements through Op

(
n−1/2

)
with pn > n for

a linear model. Fan and Lv (2011) give conditions under which P
(
θ̂nA0

= 0
)
= O (n−1)

for a generalized linear model with pn > n. This paper gives conditions under which

P
(
Â0 = A0

)
= o (n−2) and the bootstrap achieves refinements through O (n−2) for a large

class of nonlinear models that contains but is not restricted to linear and generalized lin-

ear models. Assumption 2(ii) allows the components of θ0nA0 to be small, but they must

be larger than random sampling error. Keeping non-zero coefficients sufficiently far from

zero is necessary to obtain model selection consistency and asymptotic refinements. See,

for example, Pötscher and Leeb (2009); Bühlmann and Van De Geer (2011); Chatterjee

and Lahiri (2011, 2013); Fan and Lv (2011); Das et al. (2019); and Das et al. (2022).

Assumption 2(iii) specifies the rate of convergence to zero of the penalization parameter.

Assumption 3(i) is a high-level restriction on the objective function Qn. In typical applica-

tions, Qn∞ = E [Qn (χn, θn)]. Proposition 1 in Section B.3 of the online supplement gives

conditions under which Assumption 3(i) is satisfied. Section B.3 also presents examples of

models and objective functions that satisfy these conditions, including log-likelihood func-

tions and objective functions of GMM estimation. Assumption 3(ii)-(iv) and 4(i)-(ii) place

restrictions on the shapes of the functions and ensure that the non-zero parameter vector

is identified. Assumption 5 applies to the oracle model. Hall (1992) gives conditions under

which Assumption 5 holds when the non-zero parameters have fixed values. We assume
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that Assumption 5 holds when the non-zero parameters satisfy Assumption 2(ii).

A.2 Assumptions for Theorem 2.2 but not Theorem 2.1

Assumption 1S.
∥∥θ0nA0

∥∥
1
= o (τn) as n → ∞.

Assumption 2S.

1. µn (θn) is bounded away from 0 for all sufficiently large n uniformly over θn in a

neighborhood of θ0n.

2. The components of Hn,12 (θn) are bounded for all n uniformly over θn in a neighbor-

hood of θ0n.

Assumption 3S.

(i) The bootstrap consistently estimates the asymptotic distribution of T
(
θ̂PT
nA0

)
=(

θ̂PT
nA0,j

− θ0nA0,j

)
/sPT . That is,

sup
z∈R

∣∣∣P ∗ [T (θ∗PT
nA0

)
≤ z
]
− P

[
T
(
θ̂PT
nA0

)
≤ z
]∣∣∣ p→ 0.

(ii) P
(√

n
(
θ̂PT
nA0

− θ0nA0

)
≤ z
)
is a continuous function of z.

(iii)
√
n · sPT converges in probability to a non-stochastic, finite and positive constant.

Section B presents the proof of Theorem 2.1. Section C presents the proof of Theo-

rem 2.2. Section D presents auxiliary results. Section E presents additional Monte Carlo

results.

B Proof Of Theorem 2.1

Assumptions 1-5 from the paper hold throughout this section. Define

Sn (χn, θn) = Qn (χn, θn) + pλn (θn)
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and

Sn∞ (χn, θn) = Qn∞ (χn, θn) + pλn (θn) ,

where pλn is the SCAD penalty function.

Lemma 1. Let {θn} be any sequence with θn ∈ Θn for each n. For sufficiently large n,

Sn∞ (θn) ≥ Sn∞ (θ0n) with equality holding only if θn = θ0n.

Proof. Define δnA0,j = θnA0,j − θ0nA0,j. Then,

Sn∞ (θn)− Sn∞ (θ0n) = Qn∞ (θn)−Qn∞ (θ0n)

+ λn

p0∑
j=1

[p̃λn (|θ0nA0,j + δnA0,j|)− p̃λ (|θ0nA0,j|)]

+ λn

pn∑
j=p0+1

[
p̃λn

(∣∣θnA0,j

∣∣)]
≥ Qn∞ (θn)−Qn∞ (θ0n)

− 1

2
p0(1 + a)λ2

n

+ λn

pn∑
j=p0+1

[
p̃λn

(∣∣θnA0,j

∣∣)] .
If |θnA0,j − θ0nA0,j| ≫ λn for some j = 1, . . . , p0, then [Qn∞ (θn)−Qn∞ (θ0n)] ≫ ρλ2

n for all

sufficiently large n by Assumption 3(iv). Therefore,

Sn∞ (θn)− Sn∞ (θ0n) ≫ λ2
n + λn

pn∑
j=p0+1

p̃λn

(∣∣θnA0,j

∣∣) ,
and Sn∞ (θn)−Sn∞ (θ0n) > 0 for all sufficiently large n. If |θnA0,j − θ0nA0,j| ≤ cλn for some

c > 0 then by Assumption 2(ii)

p̃λn (|θnA0,j|)− p̃λn (|θ0nA0,j|) = 0

for all j = 1, . . . , p0 and sufficiently large n. Therefore,

Sn∞ (θn)− Sn∞ (θ0n) = Qn∞ (θn)−Qn∞ (θ0n) + λn

pn∑
j=p0+1

[
p̃λn

(∣∣θnA0,j

∣∣)]
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≥ λn

pn∑
j=p0+1

[
p̃λn

(∣∣θnA0,j

∣∣)] .
The lemma follows from the observation that p̃λn

(∣∣θnA0,j

∣∣) > 0 if θnA0,j
̸= θ0nA0,j

.

Define

Nn = {θ ∈ Θn : ∥θ − θ0n∥1 < τn}

and

εn = inf
θ∈Θn\Nn

Sn∞ (θ)− Sn∞ (θ0n) .

It follows from Lemma 3 below that εn > 0 for all sufficiently large n. Let Bn be the

event

sup
θ∈Θn

|Sn (χn, θ)− Sn∞ (θ)| < εn/2.

Lemma 2. Â0 = A0 for all sufficiently large n if Bn occurs.

Proof. It follows from the definition of Bn that

Bn =⇒ Sn∞

(
θ̃n

)
− εn

2
< Sn

(
χn, θ̃n

)
(B.1)

and

Bn =⇒ Sn (χn, θ0n)−
εn
2

< Sn∞ (θ0n) . (B.2)

By the definition of θ̃n, Sn

(
χn, θ̃n

)
≤ Sn (χn, θ0n). Therefore,

Bn =⇒ Sn∞

(
θ̃n

)
− εn

2
< Sn (χn, θ0n) . (B.3)

Combining (B.2) and (B.3) yields

Bn =⇒ Sn∞

(
θ̃n

)
− εn < Sn∞ (θ0n)

and

Bn =⇒ Sn∞

(
θ̃n

)
− Sn∞ (θ0n) < εn.
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Therefore,

Bn =⇒
∥∥∥θ̃n − θ0n

∥∥∥
1
< τn,

Bn =⇒
∥∥∥θ̃nA0

∥∥∥
1
< τn,

and

Bn =⇒
∣∣∣θ̂nj∣∣∣ > 2τn

for each j = 1, . . . , p0 and sufficiently large n. Moreover,

Bn =⇒
∣∣∣θ̃nj∣∣∣ ≤ τn and

∣∣∣θ̂nj∣∣∣ = 0 for all j = p0 + 1, . . . , pn.

It follows from the definition of τn that Bn =⇒ Â0 = A0.

Lemma 3. There is a finite constant Cε such that for all sufficiently large n,

εn ≥ Cετ
2
n.

Proof. The proof follows from showing that ∥θA0 − θ0nA0∥1 = τn and θA0
= 0 satisfy the

Karush-Kuhn-Tucker (KKT) conditions for

εn = inf
θ∈Θn\Nn

Sn∞(θ)− Sn∞ (θ0n)

if n is sufficiently large.

We have

Sn∞ (θ)− Sn∞ (θ0n) = Qn∞ (θ)−Qn∞ (θ0n) + λn

p0∑
j=1

[p̃λn (|θj|)− p̃λn (|θ0n,j|)]

+ λn

pn∑
j=p0+1

p̃λn (|θj|) .
(B.4)

Define

h (θn) = ∥θnA0 − θ0nA0∥1
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=

p0∑
j=1

[(θn,j − θ0n,j) I (θn,j − θ0n,j ≥ 0)− (θn,j − θ0n,j) I (θn,j − θ0n,j < 0)] .

Then

∂h

∂θnj
(θnj) = sj,

where

sj =



1 θn,j − θ0n,j ≥ 0 and j ∈ A0

−1 θn,j − θ0n,j < 0 and j ∈ A0

0 j ∈ A0

Set s = (s1, . . . , spn). If ∥θnA0 − θ0nA0∥ = τn and j ∈ A0, then p̃λn (θnj) − p̃λn (θ0nj). If, in

addition, θnA0
= 0, the KKT conditions for (B.4) are

∂Qn∞

∂θnj
(θn) + vsj = 0 (B.5)

if j = 1, . . . , p0, where v is a Lagrangian multiplier, and∣∣∣∣∂Qn∞

∂θnj
(θn)

∣∣∣∣ ≤ λn (B.6)

if j = p0 + 1, . . . , pn. By a Taylor series expansion,

∂Qn∞

∂θn
(θn) =

[
∂2Qn∞

∂θn∂θ′n

(
θ̌n
)]

(θn − θ0n)

where θ̌n is the Taylor series intermediate point and may be different in different occur-

rences. Therefore, (B.5) and (B.6) can be written as

Hn11

(
θ̌n
)
(θnA0 − θ0nA0) + vsA0 = 0, (B.7)∣∣∣[Hn21

(
θ̌n
)
(θnA0 − θ0nA0)

]
j

∣∣∣ ≤ λn for every j = p0 + 1, . . . , pn, (B.8)

where s′A0
= (s1, . . . , sp0). By (B.7) and Assumption 4(i),

(θnA0 − θ0nA0) = −vH−1
n11

(
θ̌n
)
sA0
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so ∥θnA0 − θ0nA0∥1 = τn implies that

|v|
p0∑
j=1

∣∣∣(H−1
n11

(
θ̌n
)
sA0

)
j

∣∣∣ = τn.

Define

CnA0 =

p0∑
j=1

∣∣∣(H−1
n11

(
θ̌n
)
sA0

)
j

∣∣∣ .
Then |v| = τn/CnA0 and

∣∣∣(θnA0 − θ0nA0)j

∣∣∣ = τn
CnA0

∣∣∣(H−1
n11

(
θ̌n
)
sA0

)
j

∣∣∣
for each j = 1, . . . , p0. Inequality (B.8) is

C−1
nA0

∣∣Hn21

(
θ̌n
)
H−1

n11

(
θ̌n
)
sA0

∣∣ ≤ λn

τn
.

By Assumption 4(ii), this holds for all sufficiently large n because τn ≪ λn and CnA0 is

bounded away from 0 for all n. It follows that the KKT conditions are satisfied.

Now

Qn∞ (θnA0 , 0pn−p0)−Qn∞ (θ0n) =
1

2
(θnA0 − θ0nA0)

′ Hn11

(
θ̌n
)
(θnA0 − A0nA0)

=
1

2

(
τn

CnA0

)2

s′A0
H−1

n11

(
θ̌n
)
sA0 ≥

1

2µ0

(
τn

CnA0

)2

.

Therefore,

εn ≥ 1

2µ0

(
τn

CnA0

)2

.

Set Cε = minn

[
1/
(
2µ0C

2
nA0

)]
.

Proof of Theorem 2.1. The proof consists of proving equations (2.5) and (B).

Equation (2.5): Note that

Sn

(
χn, θ̂n

)
− Sn∞

(
χn, θ̂n

)
= Qn

(
χn, θ̂n

)
−Qn∞

(
χn, θ̂n

)
.

Equation (2.5) now follows from Assumption 3(i), Lemma 2 and Lemma 3.
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Equation (B): By the definition of ĉPO
α ,

P
[
T
(
θ̂PO
nÂ0

)
> ĉPO

α

∣∣∣Â0 = A0

]
= P

[
T
(
θ̂OnA0

)
> ĉOα

]
.

By (2.5),

P
[
T
(
θ̂PO
nÂ0

)
> ĉPO

α

]
= P

[
T
(
θ̂PO
nÂ0

)
> ĉPO

α

∣∣∣Â0 = A0

]
P
(
Â0 = A0

)
+ P

[
T
(
θ̂PO
nÂ0

)
> ĉPO

α

∣∣∣Â0 ̸= A0

]
P
(
Â0 ̸= A0

)
= P

[
T
(
θ̂PO
nÂ0

)
> ĉPO

α

∣∣∣Â0 = A0

]

+


P
[
T
(
θ̂PO
nÂ0

)
> ĉPO

α

∣∣∣Â0 ̸= A0

]
−P

[
T
(
θ̂PO
nÂ0

)
> ĉPO

α

∣∣∣Â0 = A0

]
× P

(
Â0 ̸= A0

)

= P
[
T
(
θ̂PO
nÂ0

)
> ĉPO

α

∣∣∣Â0 = A0

]
+ o

(
n−2
)

= P
[
T
(
θ̂OnA0

)
> ĉOα

]
+ o

(
n−2
)
.

Therefore, ∣∣∣P [T (θ̂PO
nÂ0

)
> ĉPO

α

]
− P

[
T
(
θ̂OnA0

)
> ĉOα

]∣∣∣ = o
(
n−2
)
.

C Proof of Theorem 2.2

Lemma 4. Let Assumptions 2(ii), 3(i) and 1S-3S hold. Then

(i) Sn∞ is minimized at
(
θ̌0nA0 , 0A0

)
for some θ̌0nA0.

(ii)
∥∥θ̌0nA0 − θ0nA0

∥∥
1
= o (λn).

(iii) θ̂n − θ̌0n
p→ 0 as n → ∞ and limn→∞ P

(
Â0 = A0

)
= 1.
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Proof. Part (i): The proof consists of showing that for all sufficiently large n, the KKT

conditions for minimizing Sn∞ are satisfied by θn =
(
θ̌0nA0 , 0A0

)
. By a Taylor series expan-

sion,

Qn∞ (θn) = Qn∞ (θ0n) +
1

2
(θn − θ0n)

′ Hn

(
θn
)
(θn − θ0n) ,

where Hn := ∂2Qn

∂θn∂θ′n
and θn is the Taylor series intermediate point. Define Hn = Hn

(
θn
)
.

Then

(θn − θ0n)
′Hn (θn − θ0n)

=
[
(θnA0 − θ0nA0)

′ ,
(
θnA0

− θ0nA0

)′] Hn11 Hn12

Hn21 Hn22


 θnA0 − θ0nA0

θnA0
− θ0nA0


and

∂

∂θnA0

Qn∞ (θn) = Hn11 (θnA0 − θ0nA0) +Hn12

(
θnA0

− θ0nA0

)
,

∂

∂θnA0

Qn∞ (θn) = Hn21 (θnA0 − θ0nA0) +Hn22

(
θnA0

− θ0nA0

)
.

The KKT conditions with |θnA0,j| ≫ λn for all j = 1, . . . , p0 and θnA0
= 0 are

∂

∂θnA0

Qn∞ (θn) = Hn11 (θnA0 − θ0nA0)−Hn12θ0nA0
= 0 (C.1)

−λn ≤ ∂

∂θnA0

Qn∞ (θn) = Hn21 (θnA0 − θ0nA0)−Hn22θ0nA0
≤ λn (C.2)

component-wise. If θnA0
= 0, (C.1) gives

θnA0 − θ0nA0 = H
−1

n11Hn12θ0nA0
.

Therefore, by Assumption 2S,

|θnA0,j − θ0nA0,j| ≤ Mo (τn) = o (λn) (C.3)

for some M < ∞ and all j ∈ A0. Condition (C.2) is

∣∣Hn21 (θnA0 − θ0nA0)−Hn22θ0nA0

∣∣ ≤ λn, (C.4)
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component-wise. This inequality is satisfied for all sufficiently large n because both terms

on its left hand side are o (τn). The result follows from (C.3) and (C.4).

Part (ii): This follows from part (i) and (C.3).

Part (iii): The conclusion and proof of Lemma 2 remain unchanged after replacing θ0n

with θ̌0n =
(
θ̌0nA0 , 0pn−p0

)
. Therefore, it follows from Assumption 3(i) that θ̂n − θ̌0n

p→ 0

and P
(
Â0 = A0

)
→ 1 as n → ∞.

Part (i) of Lemma 4 shows that the penalization and thresholding procedure drives

the small non-zero parameters to zero and replaces the true values of the large parameters

with the pseudo-true values θ̌0nA0 . Part (ii) shows that the true and pseudo-true parameter

values differ by o (λn). Part (iii) of Lemma 4 shows that the penalization and thresholding

procedure estimates the parameters of the pseudo-true model consistently and discriminates

correctly between large and small parameters as n → ∞.

Proof of Theorem 2.2. By Assumption 3S and part (iii) of Lemma 4, it suffices to prove

that

sup
z

∣∣∣∣∣P ∗

(
θ∗PT
nA0,j

− θ̂PT
nA0,j

s∗PT
A0

≤ z

)
− P

(
θ̂PT
nA0,j

− θ0nA0,j

sPT
≤ z

)∣∣∣∣∣ p→ 0

as n → ∞, where s∗PT
A0

is the bootstrap standard error obtained when Â0 is replaced with

A0. Now

P

(
θ̂PT
nA0,j

− θ0nA0,j

sPT
≤ z

)
= P

(
θ̂PT
nA0,j

− θ̌0nA0,j

sPT
+

θ̌0nA0,j − θ0nA0,j

sPT
≤ z

)

= P

(
θ̂PT
nA0,j

− θ̌0nA0,j

sPT
≤ z

)
+ o(1)

uniformly over −∞ < z < ∞. Therefore,

sup
z

∣∣∣∣∣P ∗

(
θ∗PT
nA0,j

− θ̂PT
nA0,j

s∗PT
A0

≤ z

)
− P

(
θ̂PT
nA0,j

− θ0nA0,j

sPT
≤ z

)∣∣∣∣∣
= sup

z

∣∣∣∣∣P ∗

(
θ∗PT
nA0,j

− θ̂PT
nA0,j

s∗PT
A0

≤ z

)
− P

(
θ̂PT
nA0,j

− θ̌0nA0,j

sPT
≤ z

)∣∣∣∣∣+ o(1)
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and the result follows from Assumption 3S.

D Sufficient Conditions for Assumption 3(i)

Proposition 1. For each θ ∈ [0, 1]pn let g(X, θ) be a measurable (real-valued) function of

the possibly possibly vector-valued random element X. Assume:

(i) {Xi : i = 1, . . . , n} is an independent random sample from the distribution of X.

(ii) θ ∈ Θn = [0, 1]pn, ∥θ∥1 ≤ C for some C < ∞, every n and pn = nb for some b < 1.

(iii) E[g(X, θ)] = 0 and E [g(X, θ)2] ≤ σ2
g for some constant σ2

g < ∞, all θ ∈ Θn and all

n.

(iv) There is a constant Kg < ∞ not depending on n such that for each ℓ = 3, 4, . . .,

E
[
|g(X, θ)|ℓ

]
≤ ℓ!σ2

gK
ℓ−2
g for all θ ∈ Θn and all n.

(v) For each n, there is a function Mn(X) such that

|g (X, θ1)− g (X, θ2)| ≤ Mn(X) ∥θ1 − θ2∥1

for all θ1, θ2 ∈ Θn. Moreover, there are finite constants M∗ and KM not depending

on n such that |E [Mn(X)]| ≤ M∗ and E
[
|Mn(X)− E [Mn(X)]|ℓ

]
≤ ℓ!σ2

Mn
Kℓ−2

M for

every ℓ = 3, 4, . . . and each n, where σ2
Mn

= Var [Mn(X)] and for some finite and

positive m0,M0, and m0 ≤ σ2
Mn

≤ M0.

Then, there are finite constants c > 0, ε0 > 0, n0 > 0 and ℓ > 0 such that

P

[
sup
θ∈Θn

∣∣∣∣∣ 1n
n∑

i=1

g (Xi, θ)

∣∣∣∣∣ > ε

]
≤ 3mn exp

(
−cnε2

)
for all n > n0 if ℓτ 2n ≤ ε < ε0.
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Proof. Define mn as in Section A.1 of the appendix. Divide Θn into mn hypercubic cells

whose edges have lengths dn = m
− 1

pn
n . Denote the cells by Θnj for j ∈ {1, . . . ,mn}. Let

θ
(j)
n be a point in the interior of Θnj. Let ε > 0 be given. Define

Pn = P

[
sup
θ∈Θn

∣∣∣∣∣ 1n
n∑

i=1

g (Xi, θ)

∣∣∣∣∣ > ε

]
.

Then

Pn = P

[
max

1≤j≤mn

{
sup
θ∈Θnj

∣∣∣∣∣ 1n
n∑

i=1

g (Xi, θ)

∣∣∣∣∣
}

> ε

]

= P

[
max

1≤j≤mn

{
sup
θ∈Θnj

∣∣∣∣∣ 1n
n∑

i=1

g
(
Xi, θ

(j)
n

)
+

1

n

n∑
i=1

[
g (Xi, θ)− g

(
Xi, θ

(j)
n

)]∣∣∣∣∣
}

> ε

]

≤ P

[
max

1≤j≤mn

{∣∣∣∣∣ 1n
n∑

i=1

g
(
Xi, θ

(j)
n

)∣∣∣∣∣+ sup
θ∈Θnj

∣∣∣∣∣ 1n
n∑

i=1

[
g (Xi, θ)− g

(
Xi, θ

(j)
n

)]∣∣∣∣∣
}

> ε

]

≤ P

[
max

1≤j≤mn

∣∣∣∣∣ 1n
n∑

i=1

g
(
Xi, θ

(j)
n

)∣∣∣∣∣ > ε

2

]

+ P

[
max

1≤j≤mn

sup
θ∈Θnj

∣∣∣∣∣ 1n
n∑

i=1

[
g (Xi, θ)− g

(
Xi, θ

(j)
n

)]∣∣∣∣∣ > ε

2

]

≡ Pn1 + Pn2.

Consider Pn1. By Bernstein’s inequality

Pn1 = P

[
max

1≤j≤mn

∣∣∣∣∣ 1n
n∑

i=1

g
(
Xi, θ

(j)
n

)∣∣∣∣∣ > ε

2

]
≤ 2mn exp

(
− nε2

32σ2
g

)

if ε <
4σ2

g

Kg
.

Now consider Pn2. By assumption (v)

Pn2 = P

[
max

1≤j≤mn

sup
θ∈Θnj

∣∣∣∣∣ 1n
n∑

i=1

[
g (Xi, θ)− g

(
Xi, θ

(j)
n

)]∣∣∣∣∣ > ε

2

]

≤ P

[
max

1≤j≤mn

sup
θ∈Θnj

1

n

n∑
i=1

∣∣g (Xi, θ)− g
(
Xi, θ

(j)
n

)∣∣ > ε

2

]

≤ P

[
max

1≤j≤mn

sup
θ∈Θnj

1

n

n∑
i=1

Mn (Xi)
∥∥θ − θ(j)n

∥∥
1
>

ε

2

]
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≤ mnP

[
dnpn

1

n

n∑
i=1

Mn (Xi) >
ε

2

]

= mnP

[
1

n

n∑
i=1

Mn (Xi) >
ε

2dnpn

]
.

Therefore,

Pn2 ≤ mnP

[
1

n

n∑
i=1

[Mn (Xi)− E [Mn(X)]] >
ε

2dnpn
− E [Mn(X)]

]

≤ mnP

[
1

n

n∑
i=1

[Mn (Xi)− E [Mn(X)]] >
ε

2dnpn
−M∗

]
.

By Bernstein’s inequality,

Pn2 ≤ mn exp

{
− n [(ε/ (2dnpn))−M∗]2

4M0 + 2KM [(ε/ (2dnpn))−M∗]

}

≤ mn exp

{
− n [(ε/ (2dnpn))]

2

4M0 + 2KM [(ε/ (2dnpn))]

}
.

if ε > 4dnpnM
∗. Now let ε > 4dnpn max {M∗,M0/KM}. Then

Pn2 ≤ 2mn exp

[
− nε2

32KMdnpn

]
.

Let n0 be the smallest value of n such that

[4dnpn max {M∗,M0/KM}]
1
2 < ℓτ 2n < σ2

g/ (KMdnpn)

for some ℓ > 0. Then if n > n0 and ℓτ 2n ≤ ε < σ2
g/ (KMdnpn),

Pn2 ≤ 2mn

(
− nε2

32σ2
g

)
.

Set

ε0 = min

{
4σ2

g

Kg

,
σ2
g

KMdn0pn0

}
and c = 1

32σ2
g
.
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D.1 Examples of Models that Satisfy Assumption 3(i)

Example 1. Penalized least squares estimation of a linear model. The model is

Yi =

pn∑
j=1

θ0n,jXij + Ui = X ′
iθ0n + Ui; i = 1, . . . , n (D.1)

where the Xij’s are random variables, ∥Xi∥1 ≤ M for some M < ∞, all i = 1, . . . , n and all

j = 1, . . . , pn; the Ui’s are independent and identically distributed sub-Gaussian random

variables; E [Ui|Xi] = 0 and E [U2
i ] = σ2 for all i = 1, . . . , n. Assume that ∥θ∥1 ≤ M for

all θ ∈ Θn and all n. Also assume that pn = O
(
nb
)
for some 0 ≤ b < 1. Let

Qn (χn, θ) =
1

n

n∑
i=1

(Yi −X ′
iθ)

2
=

1

n

n∑
i=1

[Ui −X ′
i (θ − θ0n)]

2
,

and

Qn∞ (θ) = E [Qn (χn, θ)] = σ2 + (θ − θ0n)
′ΣXX (θ − θ0n) ,

where ΣXX = E [XX ′]. In the notation of Proposition 1, the function g here is

g (X,U, θ) =
(
U2 − σ2

)
− 2UX ′ (θ − θ0n) + (θ − θ0n)

′ (XX ′ − ΣXX) (θ − θ0n) .

We show that model (D.1) satisfies the conditions of Proposition 1. Conditions (i), (ii), and

(iii) are satisfied by the definition of the model and by the arguments below for condition

(iv) with ℓ = 2. Condition (iv): Let X(j) denote the jth component of X. Then,

g (X,U, θ) ≤
∣∣U2 − σ2

∣∣+ 2|U | |X ′ (θ − θ0n)|

+
∣∣(θ − θ0n)

′ (XX ′ − ΣXX) (θ − θ0n)
∣∣ ,

∣∣(θ − θ0n)
′X
∣∣ ≤ ∣∣∣∣∣

pn∑
j=1

(θn,j − θ0n,j)X(j)

∣∣∣∣∣
≤

pn∑
j=1

|θn,j − θ0n,j| |X(j)|

≤ M ∥θ − θ0n∥1
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≤ 2M2,

(θ − θ0n)
′ XX ′ (θ − θ0n) ≤4M4,

(θ − θ0n)
′ ΣXX (θ − θ0n) ≤4M4,

so that

|g (X,U, θ)| ≤
∣∣U2 − σ2

∣∣+ 4|U |M2 + 8M4.

Therefore,

E
[
|g (X,U, θ)|ℓ

]
≤E

[∣∣∣∣U2 − σ2
∣∣+ 4|U |M2 + 8M4

∣∣ℓ]
≤ 2ℓE

[∣∣U2 − σ2
∣∣ℓ]+ 2ℓE

[(
4M2|U |+ 8M4

)ℓ]
≤ 2ℓE

[∣∣U2 − σ2
∣∣ℓ]+ 24ℓM2ℓE

[
|U |ℓ

]
+ 22ℓ

(
8M4

)ℓ
.

The first and second terms on the right-hand side of the inequality satisfy condition (iv)

because U is sub-Gaussian and U2−σ2 is sub-exponential. The third term satisfies condition

(iv) because it is a constant.

Condition (v): g (X,U, θ) is continuously differentiable with respect to θ. Therefore,

|g (X,U, θ2)− g (X,U, θ1)| ≤
∣∣∣∣ ∂∂θg (X,U, θ̃

)
(θ2 − θ1)

∣∣∣∣ .
where θ̃ is the Taylor series intermediate point.

∂

∂θ
g
(
X,U, θ̃

)
= − 2

[
X ′U −

(
θ̃ − θ0n

)′
(XX ′ − ΣXX)

]
∣∣∣∣ ∂∂θg (X,U, θ̃

)
(θ2 − θ1)

∣∣∣∣ ≤ 2M2|U |+ 8M4.

Condition (v) is satisfied because U is sub-Gaussian.

Example 2. A binary logit model with normally distributed random coefficients. Let

{Yi, Xi : i = 1, . . . , n} be independently and identically distributed realizations of the binary
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random variable Y supported in {0, 1} and the dX × 1 random vector X. Let Xij denote

the jth component of Xi for each (i, j), and assume that ∥X∥1 ≤ M for some M < ∞.

Define θ = vec(β, C) where C is a dX × dX Cholesky factorization matrix. The model is

P (Yi = 1|Xi, θ) =

∫ {
exp

[
(β + Cε)′Xi

]
1 + exp

[
(β + Cε)′ Xi

]} f(ε)dε, (D.2)

where f is the N (0, IdX ) probability density function. In the notation of Proposition 1,

g(x, θ) = P (Y = 1|X = x, θ). Assume that g(x, θ) is bounded away from 0 and 1 for all

x ∈ support(X) and all θ ∈ Θn. The log-likelihood function for estimating θ is

Qn (χn, θ) =
1

n

n∑
i=1

{Yi log g (Xi, θ) + (1− Yi) log [1− g (Xi, θ)]} .

Let

Qn∞(θ) = E [P (Y = 1|X) · log g(X, θ) + P (Y = 0|X) log [1− g(X, θ)]]

= E [g (X, θ0n) · log g(X, θ) + [1− g (X, θ0n)] log [1− g(X, θ)]]

where θ0n ∈ Θn. We show that model (D.2) satisfies the conditions of Proposition 1.

Conditions (i) and (iii) are satisfied by the definition of the model. Conditions (iii)

and (iv) are satisfied because |Yi log g (Xi, θ) + (1− Yi) log [1− g (Xi, θ)]| is bounded for all

i = 1, . . . , n.

Condition (v): This condition is satisfied if |g (X, θ2)− g (X, θ1)| ≤ Mg ∥θ2 − θ1∥1,

where Mg < ∞ is a constant. To establish this inequality, define

π(x, ε, θ) =
exp

[
(β + Cε)′ x

]
1 + exp

[
(β + Cε)′ x

] .
Then

∂

∂βj

π = Xjπ(1− π)

and

∂

∂Cjk

π = εjXkπ(1− π).
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A Taylor series expansion gives

|g (X, θ2)− g (X, θ1)| ≤
∫

|π (X, ε, θ2)− π (X, ε, θ1)| f(ε) dε

≤
∫ dim(θ)∑

j=1

∣∣∣∣ ∂

∂θj
π
(
X, ε, θ̃

)∣∣∣∣ |θ1j − θ2j| f(ε) dε

=

dim(θ)∑
j=1

|θ1j − θ2j|
∫ ∣∣∣∣ ∂

∂θj
π
(
X, ε, θ̃

)∣∣∣∣ f(ε) dε,
where θ̃ is the Taylor series intermediate point. Let µ = (2/π)

1
2 denote the first absolute

moment of the N (0, 1) distribution. Because π(1− π) ≤ 0.25 and |Xij| ≤ M ,

|g (X, θ2)− g (X, θ1)| ≤ 0.25M

∫ ( dX∑
j=1

|β2j − β1j|+
dX∑

j,k=1

|εj| |C2jk − C1jk|

)
f(ε)dε

≤ 0.25M ∥β2 − β1∥1 + 0.25Mµ

dX∑
j,k=1

|C2jk − C1jk|

≤ 0.25M ∥β2 − β1∥1 + 0.25M

dX∑
j,k=1

|C2jk − C1jk| .

Therefore,

|g (X, θ2)− g (X, θ1)| ≤ 0.25M ∥θ2 − θ1∥1 .

Set Mg = 0.25M .

Example 3. A Generalized Method of Moments Estimator with a Fixed Weight Matrix.

Let

Qn (χn, θ) =

[
1

n

n∑
i=1

g (Xi, θ)

]′
Ω

[
1

n

n∑
i=1

g (Xi, θ)

]
and

Qn∞(θ) = E[g(X, θ)]′ΩE[g(X, θ)],

where g is a q×1 vector-valued function and Ω is a q×q positive definite symmetrical matrix

of finite constants. Assume each component of g satisfies the conditions of Proposition 1.

Then Assumption 3(i) is satisfied.
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Example 4. A Generalized Method of Moments Estimator with the Continuous Updating

Estimate of the Asymptotically Optimal Weight Matrix.

Use the notation of Example 3 and assume that Ω0(θ) = Var[g(X, θ)] is positive definite

with bounded eigenvalues for all θ ∈ Θn and n. Also assume that the components of Ω0(θ)

satisfy |Ω0,ij(θ)| ≤ M for some M < ∞ and all θ ∈ Θn, i, j and n. Then

Qn (χn, θ) =

[
1

n

n∑
i=1

g (Xi, θ)

]′
Ω−1

n (θ)

[
1

n

n∑
i=1

g (Xi, θ)

]

where

Ωn(θ) =
1

n

n∑
i=1

g (Xi, θ) g (Xi, θ)
′ − gn(θ)gn(θ)

gn(θ) =
1

n

n∑
i=1

g (Xi, θ)

and

Qn∞(θ) = E[g(X, θ)]′Ω−1
0 (θ)E[g(X, θ)].

Let each component of g satisfy the conditions of Proposition 1. Then Assumption 3(i)

holds.

E Logit Confidence Intervals

This section presents confidence intervals for the logit model of Section 3 averaged over

Monte Carlo replications. Confidence intervals for the full model are not shown because,

as Tables 1-6 show, the differences between their true and nominal coverage probabilities

are very large in most cases.
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