
Identification of causal models with 
unobservables: a self-report approach

Yingyao Hu

The Institute for Fiscal Studies 

Department of Economics, UCL 

cemmap working paper CWP30/21



Identification of Causal Models with Unobservables:
A Self-Report Approach

Yingyao Hu∗

Johns Hopkins University

June 22, 2021

Abstract

This paper presents a novel self-report approach to identify a general causal model
with an unobserved covariate, which can be unobserved heterogeneity or an unobserved
choice variable. It shows that a carefully designed noninvasive survey procedure can
provide enough information to identify the complete causal model through the joint
distribution of the observables and the unobservable. The global nonparametric point
identification results provide sufficient conditions under which the joint distribution of
four observables, two in a causal model and two from surveys, uniquely determines
the joint distribution of the unobservable in the causal model and the four observables.
The identification of such a joint distribution including the unobserved covariate implies
that the complete causal model is identified.
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1 Introduction

In a complete causal model, we are interested in the impact of an agent’s behavior or char-

acteristics, i.e., explanatory variables, on an outcome Y . The explanatory variables include

a variable X which is observed in a sample and an unobservable U . The complete causal

model can be described by a conditional distribution 1

fY |X,U

or equivalently a function Y = h(X,U, ε), where ε is a white noise. Inherently, the outcome

should be realized after the explanatory variables are realized, i.e., t2 > t1 in Figure 1. In this

paper, I propose a novel self-report approach to identify the complete model by identifying

the joint distribution fY,X,U .

An explanatory variable, X or U , may be an individual characteristic or a choice variable.

The former includes, for example, age, race, ability or risk aversion level, and the latter may

be program participation decision, education level, or effort level. Here we consider four

possible cases without specifying the causality between X and U :

• Case 1: X is a choice variable and U is an unobserved heterogeneity or characteristics.

This is a typical treatment effect model with unobserved heterogeneity. For example,

X can be education or program participation and U can be ability or risk aversion

level.

• Case 2: Both X and U are a choice variable. For example, U can be an effort level or

a subjective belief.

• Case 3: U is a choice variable and X is an observed characteristics. For example, X

can be race, gender, or family background.

• Case 4: Both X and U are an individual characteristics.

A typical example in Case 1 includes X as an indicator of a treatment choice with X =

x1 standing for being treated, x0 otherwise. In the complete model describing the causal

relationship between Y and (X,U), the causal effect is defined as

CE(U) = E(Y |X = x1, U)− E(Y |X = x0, U).

This causal effect CE(U) can be directly estimated when we know the joint distribution of

f(Y,X, U).

When U is unobserved, the causal model becomes incomplete andX becomes endogenous.

The average treatment effect (ATE) defined as EU [CE(U)], where expectation EU is with

1We use fA|B to stand for the conditional distribution function of variable A conditional on variable B.
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Figure 1: A causal model with an unobservable

respect to the marginal distribution of U . Furthermore, the average treatment effect on

the treated (ATET) becomes EU |X=x1 [CE(U)] where expectation EU |X=x1 is with respect to

distribution of U conditional on being treated, i.e., X = x1.

The existing literature on treatment effects is based on the randomization approach,

which is widely adopted in the biostatistic and medical research. It eliminates the correlation

between X and U through a direct randomization, an indirect randomization (instrument

variables), a conditional randomization (unconfounded assignments), a local randomization

(regression discontinuity), or a second-order randomization (difference-in-difference). This

approach focuses on the ATE and the ATET without estimating the complete model. In

addition, the randomization approach only applies to cases 1 and 2, where the endogenous

X is a choice variable. I refer to Imbens and Rubin (2015), Pearl (2009) and Heckman

and Vytlacil (2007a,b) for a review of the huge literature on treatment effects in economics,

biostatistics, and other disciplines.

In this paper, I propose a self-report approach to identification of the complete model by

identifying the joint distribution fY,X,U . Apparently, such an identification leads to identifi-

cation of all the treatment effects above, i.e., ATE and ATET. Instead of taking the popular

approach in biomedical research, we noninvasively measure the unobservable in the model

through surveys and then identify a complete model as in physics and chemistry. Given that

we have developed powerful tools to handle self-reporting errors in survey data, 2 I propose a

self-report procedure through surveys to collect more information on unobservables to iden-

2For reviews of this extensive literature, we refer to Wansbeek and Meijer (2000), Bound et al. (2001),
Fuller (2009), Chen et al. (2011), Carroll et al. (2012), Schennach (2016), Hu (2017), Schennach (2019), and
Hu (2021).
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tify the complete model. This self-report survey procedure will be guided by a model in mind

in the sense that if a model can guide researchers on what U is about, then it is more likely to

design surveys satisfying the conditions we need. In that case, the proposed approach makes

use of some information from a structural model without further specification. Nevertheless,

A key assumption in such a self-report approach is that the self-report procedure in surveys

will not intervene the causal relationship in the complete model.

We design the survey questions under the belief that an individual characteristics, ob-

served or unobserved, will generally affect all the answers to survey questions, and that a

choice variable will only affect answers to survey questions about the choice. Therefore, if

U is an unobserved heterogeneity, we should expect that all the measurements, i.e., survey

answers, are a function of U . If U is an unobserved choice variable, we will need a model to

guide us on what U is about and design a question targeting at it. In Case 1, which is widely

used in the causal inference literature, I propose to measure the unobserved heterogeneity U

before and after the outcome is realized. Because X is a choice variable, one can design the

second measurement such that it does not depend on the choice X but depends on outcome

Y and U . When both X and U are a choice variable as in Case 2, we will need a model

to guide us on how to design a survey question about U . But the self-report procedure and

the identification strategy for Case 1 still applied. In Case 3, where U is a choice variable

and X is an observed characteristics, X will affect all the survey answers. We not only

need a model to design a measurement targeting at U , but also a different identification

strategy, i.e., repeated measurements before the outcome is realized. When both U and X

are individual characteristics as in Case 4, the repeated measurement procedure still applies.

In summary, if the measurements are well designed and don’t change the causal relationship

of interest, we are able to identify the complete model in all the four cases above.

This paper is organized as follows: Second 2 introduces the self-report approach; Section

3 provides the key identification results; Section 4 shows an alternative self-report procedure;

A summary is in Section 5 and proofs are in Appendix.

2 A Self-Report Approach

In the benchmark setting, we consider the case where X is a choice variable as in Cases 1

and 2. Inherently, the explanatory variables X and U should be realized before the outcome

Y does as shown in Figure 1. For example, an economic agent makes a choice X at time

t1 and the outcome Y is realized at time t2 in case 1 with t2 > t1. I propose a self-report

survey procedure as follows:

1. Between t1 and t2, we take a measurement Z of U by asking a question related to X.

2. After t2, we take a measurement W of U by asking a question related to Y ,
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Figure 2: Measurements of an unobservable in a causal model. Measurements are “caused
by” the variables in the model. The measurement procedure should not intervene with the
causality among the variables in the model, i.e., outcome Y and explanatory variables X
and U .

How to specify survey questions will be guided by a model, which should show what the

unobservable U is about. In Case I, where X is a choice variable and U is an unobserved

heterogeneity, the first survey may ask “Why did you choose X?” and the second may have

“What impact do you expect from Y?” In Case 2 and Case 3, where U is, say, a choice of

an effort level, the first survey may ask “How much effort did you make given X?”. In Case

4, where U is an ability level, the first survey may ask about previous test scores.

The surveys should not intervene the causal relationship in the complete model fY |X,U

itself. And given the timing structure of the explanatory variables and the outcome, as shown

in Figure 2, the measurement procedure intends to guarantee that measurement W only

depends on outcome Y , unobserved U and an conditionally independent measurement error

and that measurement Z is a function of choice X, unobserved U , and another measurement

error. The measurement errors need to satisfy assumptions as follows:

Assumption 1 (Conditional independence) The two measurements, Z and W , satisfy:

fW |Y,X,Z,U = fW |Y,U (1)

fY |Z,X,U = fY |X,U (2)

Assumption 1 implies that how an agent answers the first survey will not affect the causality

in the model and that the agent will only consider what is being asked in the second survey,
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i.e., U and Y , instead of X. This assumption is particularly suitable for the widely studied

scenario as in Case 1, where X is a choice variable and U is the unobserved heterogeneity.

Section 4 will provide another self-report procedure more suitable for the case where X is the

individual characteristics. The self-reporting errors don’t need to be classical, i.e, additive

to and independent of the true values, but need to satisfy the conditional independence so

that

fW,Y,Z,X,U = fW |Y,Z,X,UfY |Z,X,UfZ,X,U

= fW |Y,UfY |X,UfZ,X,U .

We then present the sufficient conditions under which the joint distribution of observables

and unobservables, i.e., fW,Y,Z,X,U , is uniquely determined by the distribution of observables

fW,Y,Z,X .

Given that the randomization approach and the self-report approach can both identify

and estimate the ATE and the ATET, the comparison between estimates from two ap-

proaches can provide a test on the key conditional independence in Assumption 1. In that

sense, the randomization approach is still the gold standard. Furthermore, researchers can

adjust the self-report procedure such that the ATE and ATET estimates from the self-report

approach are consistent with those from the randomization approach. With a validated self-

report procedure, the new approach will be able to reveal complete causal models.

3 Nonparametric Identification

For simplicity of the analysis, we focus on the discrete case. The results can be extended to

the case with a continuous U with the same intuition. We assume

Assumption 2 The two measurements, Z and W , and the unobservable U share the same

known support U = {1, 2, ..., K}.

Here we assume K is known. In fact, if the support of measurements Z and W are large

enough, we can identify K from the rank of an observed matrix under conditional indepen-

dence. Since this is not a main focus of this paper, we simply assume K is known. The

observed distribution is associated with the unknown ones as follows:

fW,Y,Z,X =
∑
U

fW |Y,UfY |X,UfZ,X,U (3)
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Inspired by the identification strategy in Carroll et al. (2010) and Hu and Shum (2012), we

define for any fixed (y, x)

MW,y,Z,x = [fW,Y,Z,X(i, y, j, x)]i=1,2,...,K;j=1,2,...,K (4)

MW |y,U =
[
fW |Y,U(i|y, j)

]
i=1,2,...,K;j=1,2,...,K

.

MZ,x,U = [fZ,X,U(i, x, j)]i=1,2,...,K;j=1,2,...,K .

Dy|x,U =

 fY |X,U(y|x, 1) 0 0

0 ... 0

0 0 fY |X,U(y|x,K)

 (5)

Equation (3) then implies

MW,y,Z,x = MW |y,UDy|x,U(MZ,x,U)T (6)

where superscript T stands for matrix transpose. Our identification results rely on a key

invertibility assumption as follows:

Assumption 3 (Matrix invertibility) for any y ∈ Y, there exists a (x, x, y) such that i)

MW,y,Z,x, MW,y,Z,x, MW,y,Z,x, and MW,y,Z,x are invertible and ii) for all u 6= ũ in U

∆y∆x ln fY |X,U (u) 6= ∆y∆x ln fY |X,U (ũ)

where ∆y∆x ln fY |X,U (u) is defined as 3

∆y∆x ln fY |X,U (u) =
[
ln fY |X,U (y|x, u)− ln fY |X,U (y|x, u)

]
−
[
ln fY |X,U (y|x, u)− ln fY |X,U (y|x, u)

]
.

The first part of Assumption 3 is directly testable from the data. The second part of

Assumption 3 imposes restrictions on the model, which rules out the case where ln fY |X,U is

additively separable in X and U . Nevertheless, we will show below that Assumption 3(ii)

is also testable. That means Assumption 3 is testable from the data given the conditional

independence in Assumption 1. Given the matrix invertibility, we may have

A ≡ MW,y,Z,xM
−1
W,y,Z,x

= MW |y,UDy|x,UD
−1
y|x,UM

−1
W |y,U .

3I use the log function only for the purpose of using the double-difference notation.
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Similar matrix manipulations lead to

B ≡ MW,y,Z,xM
−1
W,y,Z,x

= MW |y,UDy|x,UD
−1
y|x,UM

−1
W |y,U .

Finally, we obtain

AB = MW |y,UDy|x,UD
−1
y|x,UDy|x,UD

−1
y|x,UM

−1
W |y,U

≡ MW |y,UDy,y,x,x,UM
−1
W |y,U , (7)

where

Dy,y,x,x,U =

 exp
(
∆y∆x ln fY |X,U (1)

)
0 0

0 ... 0

0 0 exp
(
∆y∆x ln fY |X,U (K)

)
 (8)

Notice that Equation (7) implies an eigenvalue-eigenvector decomposition of a directly es-

timable matrix AB. The second part of Assumption 3 means that all the eigenvalues are

distinctive. Because the eigenvalues and eigenvectors are directly estimable from the ob-

served matrices, Assumption 3 is testable from the data. Given that the eigen-decomposition

has distinctive eigenvalues, the eigenvectors in MW |y,U are identified up to the permutation

of the values of U . To pin down the ordering in one of the decompositions, we impose a

normalization assumption as follows:

Assumption 4 There is a y1 ∈ Y such that i) for any y ∈ Y, there exists a (x, x, y1)

satisfying Assumption 3; and ii) E[W |Y = y1, U = u] is increasing in u.

Other normalization assumptions can be found in Hu (2008). In applications where possible

values of U doesn’t matter, Assumption 4 is not necessary.

Finally, we have identified fW |Y,U(·|y, ·) for all y, and further identify distributions fY |X,U

and fZ,X,U . We summarize the results as follows:

Theorem 1 Under assumptions 1, 2, 3, and 4, the joint distribution of four variables

fW,Y,Z,X uniquely determines the joint distribution of five variables fW,Y,Z,X,U , which satisfies

fW,Y,Z,X,U = fW |Y,UfY |X,UfZ,X,U (9)

Proof: See Appendix.

The constructive proof of Theorem 1 implies that it is a global nonparametric point

identification result. We not only identify the complete causal model itself through fY |X,U

but also the joint distribution of the explanatory variables f(X,U). Therefore, it is possible
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for researchers to integrate out U to estimate ATE and ATET and compare with other

approaches.

4 An Alternative Self-Report Procedure

In the case where X is an observed characteristics as in Cases 3 and 4, X will affect all the

survey answers and the first part of Assumption 1 may not hold. To be specific, the first

part of Assumption 1 contains two restrictions

fW |Y,X,Z,U = fW |Y,X,U = fW |Y,U . (10)

The first step requires that the self-report procedure doesn’t interfere with the causality

in the model. The second step requires that the observed explanatory variable X has no

impact on the measurement W . The second step may be too strong when X is an individual

characteristics. Therefore, we propose another measurement procedure to generate repeated

measurements before the outcome is realized. Instead of take a measure of U after the

outcome is realized, we may take another measurement Z ′ of U before the outcome is realized

as in Figure 3. The new measurement is supposed to satisfy the assumptions as follows:

Assumption 5 (Conditional independence) The two measurements, Z and Z ′, satisfy:

fZ|Z′,X,U = fZ|X,U , (11)

fY |Z,Z′,X,U = fY |X,U . (12)

Again, we assume for simplicity,

Assumption 6 The two measurements, Z ′ and Z, and the unobservable U share the same

known support U = {1, 2, ..., K}.

This assumption implies that the measurements through surveys will not interfere with

the relationship between Y and (X,U), and that the two measurements are independent of

each other conditional on (X,U). Given that we may take the surveys at two different times,

it is reasonable to assume that this conditional independence. Assumption 2 then implies

fY,Z′,Z,X,U = fY |Z′,Z,X,UfZ′|Z,X,UfZ,X,U

= fY |X,UfZ′|X,UfZ,X,U . (13)

Given X = x, three variables Y , Z ′, and Z are independent conditional on U so that we can

use the seminal identification result in Hu (2008) to show that fY,Z′,Z,X,U is identified. We
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Figure 3: Repeated measurements of an unobservable in a causal model.

define for any fixed (y, x)

My,Z′,Z,x = [fY,Z′,Z,X(y, i, j, x)]i=1,2,...,K;j=1,2,...,K (14)

MZ′,Z,x = [fZ′,Z,X(i, j, x)]i=1,2,...,K;j=1,2,...,K (15)

MZ′|,x,U =
[
fZ′|X,U(i|x, j)

]
i=1,2,...,K;j=1,2,...,K

.

Equation (13) is equivalent to

My,Z′,Z,x = MZ′|,x,UDy|x,U(MZ,x,U)T (16)

Similarly,

MZ′,Z,x = MZ′|,x,U(MZ,x,U)T (17)

We assume

Assumption 7 (Invertibility) for any x, MZ′,Z,x is invertible.

To eliminate MZ,x,U , we follow Hu (2008) to show

My,Z′,Z,xM
−1
Z′,Z,x = MZ′|,x,UDy|x,UM

−1
Z′|,x,U (18)

The right hand side is an eigenvalue-eigenvector decomposition of the directly estimable

matrix on the left hand side. In order to achieve distinctive eigenvalues, we assume

Assumption 8 for any x ∈ X , there exist a y ∈ Y, such that fY |X,U(y|x, u) 6= fY |X,U(y|x, u)

for any u 6= u in U .
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Assumption 8 guarantees that all the eigenvectors in columns of MZ′|,x,U are identified.

Therefore, MZ′|,x,U is identified up to the permutation of columns. In order to pin down that

ordering, we may impose a normalization assumption as follows:

Assumption 9 For any x ∈ X , E[Z ′|X = x, U = u] is increasing in u.

We summarize the results as follows:

Theorem 2 Under Assumptions 5, 6, 7, 8 and 9, the joint distribution of four variables

fY,Z′,Z,X uniquely determines the joint distribution of five variables fY,Z′,Z,X,U , which satisfies

fY,Z′,Z,X,U = fY |X,UfZ′|X,UfZ,X,U . (19)

Proof: See Appendix.

This identification result is a direct application of Hu (2008). Theorem 2 again implies

that it is a global nonparametric point identification of the joint distribution of Y , X, and

U . Therefore, the treatment effects can also be identified and estimated accordingly.

5 Summary

This paper presents a novel self-report approach to identify causal models with unobserv-

ables. It shows that using a carefully designed self-report procedure researchers are able to

identify the complete causal model through the joint distribution of the observables and the

unobservables. Given the powerful tools provided in the measurement error literature, it is

ready to use this self-report approach to estimate the complete causal model as in physics

and chemistry. This paper focuses on a global nonparametric point identification result, but

the identification result can be extended in different directions. First, it will be interesting

to know how survey can be carefully designed to provide more useful measurements, just as

researchers search for better instruments to obtain more accurate measurements in physics

and chemistry. Second, one may explore partial identification of the complete model when

some of the conditional independence assumptions are relaxed. Third, the estimation of the

complete model is straightforward when all the assumptions are satisfied. When the mea-

surements don’t contain enough information, for example, the support of measurements is

smaller than that of the unobservable, it would be useful to develop partial estimation and

inferences in that case.
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6 Appendix

Proof of Theorem 1: We start with the joint distribution of four variables fW,Y,Z,X . The

conditional independence in Assumptions 1 and 2 implies that

fW,Y,Z,X =
∑
U

fW,Y,Z,X,U

=
∑
U

fW |Y,Z,X,UfY |Z,X,UfZ,X,U

=
∑
U

fW |Y,UfY |X,UfZ,X,U . (20)

For any (y, x) ∈ Yt ×X , we define matrices as follows,

MW,y,Z,x = [fW,Y,Z,X(i, y, j, x)]i=1,2,...,K;j=1,2,...,K

MW |y,U =
[
fW |Y,U(i|y, j)

]
i=1,2,...,K;j=1,2,...,K

.

MZ,x,U = [fZ,X,U(i, x, j)]i=1,2,...,K;j=1,2,...,K .

Dy|x,U =

 fY |X,U(y|x, 1) 0 0

0 ... 0

0 0 fY |X,U(y|x,K)


Equation (20) is then equivalent to

MW,y,Z,x = MW |y,UDy|x,U(MZ,x,U)T (21)

A useful observation is that y and x only appear together in the diagonal matrix Dy|x,U .

Therefore, we may consider different values of (y, x) as follows: for (y, x), (y, x), (y, x) (y, x),

MW,y,Z,x = MW |y,U Dy|x,U (MZ,x,U)T

MW,y,Z,x = MW |y,U Dy|x,U (MZ,x,U)T

MW,y,Z,x = MW |y,U Dy|x,U (MZ,x,U)T

MW,y,Z,x = MW |y,U Dy|x,U (MZ,x,U)T

Assumption 3 guarantees that for any y ∈ Y , there exist four matrices on the LHS, which

are invertible. And there are four common matrices on the RHS. Therefore, we eliminate

MZ,x,U by considering

A ≡ MW,y,Z,xM
−1
W,y,Z,x

= MW |y,UDy|x,UD
−1
y|x,UM

−1
W |y,U .

11



Similar matrix manipulations eliminates MZ,x,U as follows:

B ≡ MW,y,Z,xM
−1
W,y,Z,x

= MW |y,UDy|x,UD
−1
y|x,UM

−1
W |y,U .

Finally, we eliminate MW |y,U to obtain

AB = MW |y,UDy|x,UD
−1
y|x,UDy|x,UD

−1
y|x,UM

−1
W |y,U

≡ MW |y,UDy,y,x,x,UM
−1
W |y,U , (22)

where

Dy,y,x,x,U =

 exp
(
∆y∆x ln fY |X,U (1)

)
0 0

0 ... 0

0 0 exp
(
∆y∆x ln fY |X,U (K)

)


Notice that Equation (22) implies an eigenvalue-eigenvector decomposition of matrix

AB, which only contains the joint distribution f(W,Y, Z,X). The eigenvalues are diagonal

entries in matrix Dy,y,x,x,U . The eigenvectors are columns in matrix MW |y,U , which is a

conditional distribution of W given y and a possible value of U . Therefore, the eigenvectors

are automatically normalized because all the entries are nonnegative and sum up to 1.

The second part of Assumption 3 guarantees that all the eigenvalues are distinctive, which

implies that all the corresponding eigenvectors are uniquely determined. Given that the

decomposition in Equation (22) has distinctive eigenvalues, the eigenvectors in MW |y,U are

identified up to the permutation of the possible values of U . For any Y = y and X = x, the

unknown distribution fY |X,UfZ,X,U can be identified from

Dy|x,U(MZ,x,U)T = M−1
W |y,UMW,y,Z,x. (23)

Because Assumption 3 holds for any y ∈ Y , we have identified distribution fW,Y,Z,X,U satis-

fying

fW,Y,Z,X,U = fW |Y,UfY |X,UfZ,X,U (24)

up to the permutation of the possible values of U .

If we need to pin down the values of U in fW,Y,Z,X,U , we can use Assumption 4. It

guarantees that there is a common y1 such that for any y ∈ Y the decomposition above

holds with y = y1. Therefore, we have

A ≡ MW,y,Z,xM
−1
W,y1,Z,x

= MW |y,UDy|x,UD
−1
y1|x,UM

−1
W |y1,U .
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and therefore,

MW |y1,U = A−1MW |y,UDy|x,UD
−1
y1|x,U .

Each column in MW |y1,U corresponds to a conditional distribution fW |Y=y1,U=u for some

u ∈ U . Assumption 4 implies that we can sort the columns in MW |y1,U by its corresponding

conditional mean such that E[W |Y = y1, U = u] is increasing in u. Therefore, the ordering

the columns in MW |y,U is also determined. Therefore, the joint distribution of four variables

fW,Y,Z,X uniquely determines the joint distribution of five variables fW,Y,Z,X,U . Q.E.D.

Proof of Theorem 2: We start with Equation (13)

fY,Z′,Z,X,U = fY |Z′,Z,X,UfZ′|Z,X,UfZ,X,U

= fY |X,UfZ′|X,UfZ,X,U . (25)

We define for any fixed (y, x)

My,Z′,Z,x = [fY,Z′,Z,X(y, i, j, x)]i=1,2,...,K;j=1,2,...,K (26)

MZ′,Z,x = [fZ′,Z,X(i, j, x)]i=1,2,...,K;j=1,2,...,K (27)

MZ′|,x,U =
[
fZ′|X,U(i|x, j)

]
i=1,2,...,K;j=1,2,...,K

.

Equation (13) is equivalent to

My,Z′,Z,x = MZ′|,x,UDy|x,U(MZ,x,U)T (28)

Similarly, we can show

MZ′,Z,x = MZ′|,x,U(MZ,x,U)T (29)

Assumption 7 implies that

My,Z′,Z,xM
−1
Z′,Z,x = MZ′|,x,UDy|x,UM

−1
Z′|,x,U (30)

The left hand side is composed of observed matrices. The right hand side forms an eigenvalue-

eigenvector decomposition, where each diagonal element in Dy|x,U is an eigenvalue of the

matrix on the left hand side and each corresponding column in MZ′|,x,U is an eigenvector.

Assumption 8 guarantees that all the eigenvalues are distinctive so that each corresponding

eigenvector in columns of MZ′|,x,U are uniquely identified. Therefore, MZ′|,x,U is identified up

to the permutation of columns. Each eigenvector is a conditional distribution, and therefore,

contains non-negative elements, which add up to one. Assumption 9 pins down the per-

mutation by ordering the conditional expectations corresponding to the eigenvectors. That

identifies MZ′|,x,U and Dy|x,U for all (x, y). MZ,x,U may then be identified from MZ′,Z,x. That

13



means all the distributions in Equation (13) are identified. Q.E.D.
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