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Abstract: This paper first reviews some of the approaches that have been taken to

estimate the common parameters of binary outcome models with fixed effects. We limit

attention to situations in which the researcher has access to a data set with a large number

of units (individuals or firms, for example) observed over a few time periods. We then apply

some of the existing approaches to study fixed effects panel data versions of entry games,

like the ones studied in Bresnahan and Reiss (1991) and Tamer (2003).

1 General Setup

It is natural to model decisions made by individuals in terms of the information available

to them when the choice is made. This motivates a general panel data setup in which the

distribution of a dependent variable (or vector) in time period t, yit, can be modelled as a

function of its own past values, yt−1i = {yis}s<t, a vector of explanatory variables up to time

t, xti = {xis}s≤t, and an unobserved individual-specific characteristic, αi. Consequently,

yit ∼ f
(
·|xti, yt−1i , αi; θ

)
, (1)

∗We thank Sharada Dharmasankar, Jaap Abbring and two anonymous referees for helpful comments. This
research was supported by the Gregory C. Chow Econometric Research Program at Princeton University,
by the National Science Foundation (Grant Numbers SES-1530741 and SES-1824131), and ESRC Centre for
Microdata Methods and Practice grant RES-589-28-0001

1



where f is the distribution of yit conditional on xti, y
t−1
i , and αi, and θ is the vector of

parameters. Throughout this paper, we treat αi as a “fixed effect” in the sense that its

distribution is allowed to depend on the explanatory variables in an arbitrary way.

In specification (1), the explanatory variable is allowed to be predetermined so that future

realizations of x may depend on the realization of y in the current period. This is attractive

from an economic point of view when y is the outcome of a choice as indicated above. An

individual makes a decision, yit, based on her information at that point. The information

set contains the covariates that she has observed until now, xti, her past choices, yt−1i , and

her time-invariant characteristics, αi (which are unobserved to the econometrician).

While it is possible to allow for predetermined explanatory variables in models where

the fixed effect, αi, enters linearly or multiplicatively on the outcome variable, yit, we are

not aware of any results that allow for this in panel data discrete response models where

the distribution of αi is left unrestricted. We therefore maintain throughout the stronger

modelling setup where explanatory variables are strictly exogenous and dependence on the

whole sequence of covariates is considered:

yit ∼ f
(
·|xTi , yt−1i , αi; θ

)
. (2)

The additional restrictions embedded in (2) rule out that individuals choose x in time period

t in response to the outcomes of y in periods prior to t. As mentioned above, this will

sometimes make it unattractive in economic applications. However, (2) makes it possible

to make probability statements on the whole sequence (over time) of yit conditional on the

whole sequence of the explanatory variables.

It is important to recognize that knowing θ in (1) or (2) is typically not sufficient for

calculating counterfactual distributions or marginal effects. Those will depend on the dis-

tribution of αi as well as on θ and they are typically not point-identified even if θ is. For a

discussion of this see, for example, Chernozhukov, Fernández-Val, Hahn, and Newey (2013).

On the other hand, it seems that point- or set-identifying and estimating θ is a natural first

step if one is interested in bounding, say, average marginal effects.

In Section 2 of this paper, we first review some approaches for estimating univariate binary
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outcome versions of (1). The traditional approach is to find a sufficient statistic for the fixed

effects and then proceed by conditional maximum likelihood (conditioning on the sufficient

statistic). This approach dates back to Rasch (1960, 1961), and a recent example includes

Aguirregabiria, Gu, and Luo (2020). When it is not possible to find a sufficient statistic for

the fixed effects, it is sometimes possible to construct moment equality conditions which must

be satisfied at the true parameter value. See Johnson (2004) and Honoré and Weidner (2020)

for an early and recent example, respectively. Significant progress has also been made by

employing moment inequality conditions. See for example Manski (1987) and, more recently

Pakes and Porter (2016) or Pakes, Porter, Shepard, and Calder-Wang (in progress). Section

3 discusses bivariate binary outcome models. We first describe some recent advances for

reduced form models, and we then analyse a simple panel data version of an entry game.

Section 4 concludes.

2 The Incidental Parameters Problem

It is well understood that estimating the individual-specific effects, {αi}, along with the

common parameter, θ, typically (though not always) leads to inconsistent estimation of θ in

a panel where the number of time periods is fixed and to asymptotic bias in “large” panels,

where both the number of time periods and the number of micro-units increase. This is

known as the incidental parameters problem. See Neyman and Scott (1948).

There are many papers that attempt to eliminate the asymptotic bias in “large” pan-

els. These include Hahn and Newey (2004), Arellano and Bonhomme (2009), Dhaene and

Jochmans (2015), and Fernández-Val and Weidner (2016). These papers consider procedures

that are justified asymptotically as the number of time periods grows with the number of

number of individuals. See, for example, Fernández-Val and Weidner (2018) for a review

of this literature. A different set of papers tries to construct methods that work when the

panel contains observations for a large number of micro-units observed in a few time peri-

ods. This is the situation that we consider in this paper. Specifically, in this section, we

briefly review three alternative approaches for dealing with individual-specific parameters

in standard binary response models that have been explored in the literature: conditional
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likelihood, construction of moment conditions, and moment inequalities. This list is by no

means exhaustive. For example, a number of papers have explored the usefulness of restrict-

ing the relationship between individual-specific effects and one of the explanatory variables.

This includes papers like Chen, Khan, and Tang (2016). A different set of papers places

restrictions on the distribution of the fixed effects. For example, Bonhomme and Manresa

(2015) assume that its marginal distribution is discrete with a finite number of points of

support.

2.1 Conditional Likelihood

The traditional approach for obtaining consistent estimators of the common parameters in

a parametric model with incidental parameters is to condition on a set of sufficient statistics

for the individual-specific parameters. This was proposed by Rasch (1960, 1961) and studied

in detail by Andersen (1970). Suppose that the distribution of yTi conditional of xTi and the

individual-specific effects has been specified as a function of the common parameter, θ. The

idea behind conditional likelihood is that if there exists a (possibly vector-valued) function

of the data for individual i, Si, such that (a) the distribution of yi conditional on (Si, xi, αi)

does not depend on αi (i.e., Si is a sufficient statistic for αi), and (b) the distribution of yi

conditional on (Si, xi, αi) depends on θ, then one can estimate θ by maximum likelihood

using the conditional distribution of the data given (Si, xi). Andersen (1970) shows that the

conditional maximum likelihood estimator is consistent and asymptotically normal under

mild regularity conditions.

The main limitation of the conditional likelihood approach is that in binary response

settings, it is typically not possible to find a statistic, Si, with the properties described

above. The main exceptions include a number of logit models, some of which are discussed

below.
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2.1.1 Simple Examples: Logit Models

Rasch (1960, 1961) considered a static panel data version of the standard logit model,

P
(
yit = 1|xTi , yt−1i , αi

)
=

exp (x′itβ + αi)

1 + exp (x′itβ + αi)
= Λ (x′itβ + αi) , (3)

where Λ (·) is the logistic cumulative distribution function.

In this case, the distribution of (yi1, . . . , yiT ) conditional on (xi1, . . . , xiT ) and on Si =
T∑
t=1

yit does not depend on αi. If T ≥ 2 it nonetheless does depend on β:

P

(
{yit}Tt=1 = {cit}Tt=1

∣∣∣ {xit}Tt=1 , αi,
T∑
t=1

yit =
T∑
t=1

cit

)
=

exp
(∑T

t=1 citx
′
itβ
)

∑
dt∈Bi exp

(∑T
t=1 dtx

′
itβ
) ,

where cit ∈ {0, 1} and

Bi =

{
(d1, ..., dT ) : dt ∈ {0, 1} ,

T∑
t=1

dt =
T∑
t=1

cit

}
.

As a result, the conditional likelihood can be used to identify and estimate β in the static

panel data logit model. Unfortunately, this does not generalize to other simple models

such as the probit model. Indeed, Chamberlain (2010) showed that in a model of the form

P
(
yit = 1|xTi , yt−1i , αi

)
= F (x′itβ + αi), regular root-n estimation of β without additional

assumptions is only possible if F is the logistic cumulative distribution function.

The conditional likelihood approach can also be used to estimate some simple panel

data autoregressive logit models. See, for example, Chamberlain (1985) and Magnac (2000).

Consider the simple model

P
(
yit = 1|yt−1i , αi

)
=

exp (yit−1γ + αi)

1 + exp (yit−1γ + αi)
, for t = 2, ..., T. (4)

Since (4) models an outcome in terms of its past value, we only insist that it applies starting

in the second time period. The first observation, yi1, is usually referred to as the initial

condition.
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Conditional on Si =

(
yi1,

T∑
t=1

yit, yiT

)
, the distribution of (yi1, . . . , yiT ) does not depend

on αi. However, for T ≥ 4, it does depend on γ when yi1 6= yi4. The corresponding

conditional likelihood can therefore be used to identify and estimate γ.

This approach has been extended to an AR(2) model:

P
(
yit = 1|yt−1i , αi, γi1

)
=

exp (γi1yit−1 + γ2yit−2 + αi)

1 + exp (γi1yit−1 + γ2yit−2 + αi)
. (5)

In this model there are two fixed effects, γi1 and αi, and when the coefficient on yit−2 is

0, the model corresponds to a Markov switching model with individual-specific transition

probabilities. Here, the initial conditions are yi1 and yi2.

The sufficient statistic for (γi1, αi) in (5) with T ≥ 6 is (yi1, yi2, si1, si11, yiT−1, yiT ), where

si1 =
T∑
t=1

yit and si11 =
T∑
t=2

yityit−1, and the corresponding conditional likelihood can be used

to estimate γ2.
1 Magnac (2000) showed that this generalizes to AR(p) panel data logit

models. In a model like (5), with p lags rather than 2, it is possible to find a vector of

sufficient statistics, Si, such that the distribution of (yi1, . . . , yiT ) conditional on Si does

not depend on
(
αi, γi1, ..., γip−1

)
, but for T sufficiently large, it does depend on γp. The

corresponding conditional likelihood can therefore be used to identify and estimate γp with

no assumptions made on
(
αi, γi1, ..., γip−1

)
.

While the model in (5) illustrates the usefulness of the conditional likelihood approach, it

also illustrates its limitation. Suppose that one is willing to assume that γi1 is homogeneous

(so γi1 = γ1 for all i) so

P
(
yit = 1|yt−1i , αi, γi1

)
=

exp (γ1yit−1 + γ2yit−2 + αi)

1 + exp (γ1yit−1 + γ2yit−2 + αi)
. (6)

In this case, the numerical calculations in Honoré and Kyriazidou (2019b) suggest that

(γ1, γ2) is identified for T ≥ 5. Specifically, Honoré and Kyriazidou (2019b) assume values

of γ1 and γ2 and a distribution for αi conditional on the initial conditions, yi1 and yi2.

This implies a distribution, P̃ , for (yi3, yi4, yi5) conditional on yi1 and yi2. For a fine grid of

1The conditional likelihood approach can also be used to estimate models where the coefficient γ2 differs
depending on the value of yit−1. This is, for example, relevant if one does not want to tie the parameters that
govern the transition out of employment to the parameters that govern the transition out of non-employment.
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potential values of γ1 and γ2, they then ask whether one can find a heterogeneity distribution

(conditional on the initial conditions) that produces the probabilities, P̃ , using the values

on the grid. They find numerically that this is only possible when γ1 and γ2 take the true

values. This suggests that γ1 and γ2 are both point identified. However, they also note that

it seems that conditioning on any statistic that eliminates αi in a conditional likelihood will

also eliminate γ1. This suggests that even in a simple model like (6) where conditioning that

eliminates αi is possible, there is additional information not captured by the conditional

likelihood approach. We turn to this in the next subsection.

2.2 Moments

The observation that (γ1, γ2) appears to be identified in (6) is the inspiration for a recent

paper by Honoré and Weidner (2020). The approach in that paper is to try to construct

moment conditions that depend on (γ1, γ2), but do not depend on the individual specific

effects, αi. To do this, Honoré and Weidner (2020) follow the general approach in Bonhomme

(2012). Bonhomme (2012) points out that models for discrete data generally cannot be dealt

with using his approach. It is therefore “trial and error” to see whether it can be applied to

models like (6).

To find a moment condition for (γ1, γ2) in (6) with T = 5, one needs to find functions,

m, of the data and the parameters such that

E(γ1,γ2) [m (yi1, yi2, yi3, yi4, yi5, γ1, γ2)| yi1, yi2, αi] = 0 (7)

for all values of αi, and hence

E(γ1,γ2) [m (yi1, yi2, yi3, yi4, yi5, γ1, γ2)| yi1, yi2] = 0

no matter what the true values of (γ1, γ2) are in the data generating process. The subscript

(γ1, γ2) on the expectation is a reminder that the expectation is a function of γ1 and γ2.
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Since (yi3, yi4, yi5) can take eight values, (7) can be written as a sum over eight terms,

∑
(d3,d4,d5)∈{0,1}3

P(γ1,γ2)

(
yi3 = d3, yi4 = d4, yi4 = d5

∣∣ yi1 = d1, yi2 = d2, αi
)

×m (d1, d2, d3, d4, d5, γ1, γ2) = 0. (8)

Honoré and Weidner (2020) approaches this and related problems by first fixing d1,d2,γ1,

and γ2 at a particular value and αi at q values for some q. At that point the probabilities

are numbers, and the question becomes whether one can solve the q equations for the eight2

unknown (the m’s) without making them all zero. If this is not possible, then there is no

hope of finding an appropriate moment function, m.

After experimenting with various values for γ1, γ2, and the q values of αi, Honoré and

Weidner (2020) conclude numerically that for each combination of the initial conditions,

one can find a non-trivial moment condition. They obtain these analytically by solving (8)

for a set of specific values of αi and then verifying that the obtained solution satisfies (8)

generically. The moment conditions are

m(0,0)(0, 0, d3, d4, d5, γ) =



1 if (d3, d4, d5) = (0, 1, 0),

e−γ1 if (d3, d4, d5) = (0, 1, 1),

−1 if (d3, d4) = (1, 0),

0 otherwise,

m(0,1)(0, 1, d3, d4, d5, γ) =



−1 if (d3, d4) = (0, 1),

eγ2−γ1 if (d3, d4, d5) = (1, 0, 0),

eγ2 if (d3, d4, d5) = (1, 0, 1),

0 otherwise,

2Actually, there are seven unknowns, since any multiple of a solution will also be a solution.
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m(1,0)(1, 0, d3, d4, d5, y, γ) =



eγ2 if (d3, d4, d5) = (0, 1, 0),

eγ2−γ1 if (d3, d4, d5) = (0, 1, 1),

−1 if (d3, d4) = (1, 0),

0 otherwise,

and

m(1,1)(1, 1, d3, d4, d5, γ) =



−1 if (d3, d4) = (0, 1),

e−γ1 if (d3, d4, d5) = (1, 0, 0),

1 if (d3, d4, d5) = (1, 0, 1),

0 otherwise.

where the subscripts on m denote the initial values of y1 and y2.

The functions m(0,0) and m(1,1) are both strictly monotone in γ1 if (d3, d4, d5) = (0, 1, 1)

or = (1, 0, 0), respectively, and constant otherwise. It is therefore clear that as long as either

P (yi1 = 0, yi2 = 0) > 0 or P (yi1 = 1, yi2 = 1) > 0, γ1 is identified from the moment condi-

tions implied by either E
[
m(0,0)

∣∣ yi1 = 0, yi2 = 0
]

or E
[
m(1,1)

∣∣ yi1 = 1, yi2 = 1
]
.3 Once γ1 has

been identified, γ2 will be identified from E
[
m(0,1)

∣∣ yi1 = 0, yi2 = 1
]

or E
[
m(1,0)

∣∣ yi1 = 1, yi2 = 0
]

provided that either P (yi1 = 1, yi2 = 0) > 0 or P (yi1 = 0, yi2 = 1) > 0.4 In other words, if

every combination of the initial conditions (yi1, yi2) has positive probability, (γ1, γ2) is overi-

dentified in the sense that there are four moment conditions (one corresponding to each of

the initial conditions) and two parameters to be estimated. This partly solves the puzzle in

Honoré and Kyriazidou (2019b) discussed above.

The strategy of looking for moment conditions developed in Bonhomme (2012) and ex-

plained above can be used for a number of other models. Honoré and Weidner (2020) present

explicit expressions for such moment functions for AR(p) (for p = 1, 2, and 3) panel data

3Formally, this assumes that P (yi3 = 0, yi4 = 1, yi5 = 1|yi1 = 1, yi2 = 1) > 0 and/or
P (yi3 = 1, yi4 = 0, yi5 = 0|yi1 = 1, yi2 = 0) > 0. This will be true as long as αi take finite values
with positive probability.

4This follows because m(0,1) and m(1,0) are both monotone in γ2.
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logit models with strictly exogenous explanatory variables of the type

P
(
yit = 1|yt−1i , xTi , αi, γi1

)
=

exp

(
p∑
j=1

γjyit−j + x′itβ + αi

)

1 + exp

(
p∑
j=1

γjyit−j + x′itβ + αi

) . (9)

In this case, the moment functions will be functions of xTi , so the approach will yield con-

ditional moment conditions, which can be turned into unconditional moment conditions for

the purpose of estimation.While the conditional moment restrictions in Honoré and Weidner

(2020) will not always point-identify the common parameters, β and the γj’s, the paper

presents conditions under which the conditional moments can be turned into a finite number

of unconditional moments which do identify the common parameters. Generalized method

of moments estimation will deliver a root-n consistent and asymptotically normal estimator

in that case.5

When T = 4 and p = 1, the moment functions in Honoré and Weidner (2020) yield

moment conditions which are transformations of moment conditions that had previously

been discovered by Kitazawa (2013, 2016). To apply the moment conditions, one needs a

total of T ≥ 2 + 2p periods of observations. Of these, the first p correspond to the initial

conditions, and one therefore only needs to observe the explanatory variables in the last

2 + p periods. Based on numerical calculations for various combinations of T and p, Honoré

and Weidner (2020) conjecture that for each of the 2p combinations of the initial conditions,

there are 2T−p − (T + 1− 2p) 2p linearly independent conditional moment conditions. For

example, for an AR(2) panel data logit model with 10 time periods (two of which would

provide the initial conditions), there are 228 conditional moment conditions. Intuitively,

this implies that the model contains a lot of information about the parameters. However,

the large number of moments also implies that one should be careful about blindly applying

generalized method of moments estimation.

5Honoré and Kyriazidou (2000) provide conditions under which a conditional likelihood approach can
be used to estimate models like (9). In order to achieve root-n consistency, that approach requires that
there is positive probability that the explanatory variables are the same in two time periods. The sufficient
conditions in Honoré and Weidner (2020) are weaker than that.
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2.3 Inequalities

As mentioned above, Chamberlain (2010) shows that in a binary response model of the form

P
(
yit = 1|xTi , yt−1i , αi

)
= F (x′itβ + αi), where F is a known cumulative distribution function,

regular root-n estimation of β is only possible if F is the logistic cumulative distribution

function. This suggests that it is also not possible to construct root-n consistent estimators

for dynamic models like (9) if one deviates from the logit model. Of course, this does not

imply that it is not possible to construct useful consistent estimators or informative bounds

for the common parameters in non-logit models. In this subsection, we discuss some of the

progress that the literature has made in this direction.

Consider the panel data discrete choice model

yit = 1 {x′itβ + αi + εit ≥ 0} t = 1, 2; i = 1, ..., n (10)

where, conditional on (xit, xis, αi), εit and εis are identically distributed with unknown dis-

tribution function F(xit,xis,αi). This is a strict exogeneity assumption on the explanatory

variables and a stationarity assumption of the errors. When F is the logistic distribution,

this is the logit model studied by Rasch (1960, 1961). See Equation (3). Manski (1987)

observed that if F(xit,xis,αi) has support equal to the real line, then this implies that

P (yit = 1|xit, xis) > P (yis = 1|xit, xis)⇐⇒ x′itβ > x′isβ. (11)

The key property is that the left hand side does not depend on αi and can be identified from

the data, while the right hand side is a constraint on β.

Equation (11) allowed Manski (1987) to define a conditional maximum score estimator,

β̂ = arg max
b

n∑
i=1

sgn (yi2 − yi1) sgn ((xi2 − xi1)′b) .

With random sampling and assumptions on the support of the explanatory variables, this

estimator is consistent, but its rate of convergence is n−1/3.6

6Imposing additional smoothness assumptions, Horowitz (1992) shows that one can im-
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Honoré and Kyriazidou (2000) use Manski’s insight to construct an estimator for a version

of (10) that also has a lagged y as an explanatory variable. They assume that the errors

are independent and identically distributed - and not just stationary as in Manski (1987)

- and that the researcher has access to a sample with at least four time periods for each

individual.7 In order to get point identification, Honoré and Kyriazidou (2000) had to make

the strong assumption that the vector xi4 − xi3 has support in a neighborhood of 0.

Other papers have been able to obtain bounds without the assumption that xi4−xi3 has

support in a neighborhood of 0. For example, Aristodemou (2020) also considers a version

of (10) that has a lagged y as well as strictly exogenous regressors as explanatory variables.

Consider an individual for whom yit is observed in three time periods. Aristodemou (2020)

observes that if the errors in periods two and three are independent of the explanatory

variables conditional on the initial yi1, then

P (yi2 = 1, yi3 = 0|xi2, xi3, yi1 = 0) (12)

= P (x′i2β + αi + εi2 ≥ 0, x′i3β + γ + αi + εi3 < 0|xi2, xi3, yi1 = 0)

≤ P
(

(xi2 − xi3)′ β + (yi1 − 1) γ > − (εi2 − εi3)
∣∣xi2, xi3, yi1 = 0

)
= F εi3−εi2|yi1

(
(xi2 − xi3)′ β − γ

)
and

1− P (yi2 = 0, yi3 = 1|xi2, xi3, yi1 = 0) (13)

= 1− P (x′i2β + αi + εi2 < 0, x′i3β + αi + εi3 ≥ 0|xi2, xi3, yi1 = 0)

≥ 1− P
(

(xi2 − xi3)′ β < − (εi2 − εi3)
∣∣xi2, xi3, yi1 = 0

)
= F εi3−εi2|yi1

(
(xi2 − xi3)′ β

)
.

For simplicity, suppose that xit is one-dimensional and that β is normalized to 1 without

prove the rate of convergence by defining a smoothed maximum score estimator as β̂ =

arg maxb

∑n
i=1 sgn (yi2 − yi1)H

(
(xi2−xi1)

′b
hn

)
, where H is a cumulative distribution function which plays

the same role as a kernel in nonparametric estimation.
7The first observation provides the initial condition. The model is not required to hold in this period.
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loss of generality. Then each value, w, in the support of xi2 − xi3, (12) provides a lower

bound on F εi2−εi1|yi0 (w − γ) while (13) gives an upper bound on F εi2−εi1|yi0 (w). This gives

a bound on γ.

More recently, Khan, Ponomareva, and Tamer (2020) characterize the identified region

for (γ, β) under the weaker assumptions that the errors are stationary conditional on the

sequence of explanatory variables and on the individual specific effect. Like Aristodemou

(2020), this paper does not maintain the strong assumption on the explanatory variables

needed by Honoré and Kyriazidou (2000). Interestingly, Khan, Ponomareva, and Tamer

(2020) show that it is sometimes possible to point-identify (γ, β) with as few as three time

periods (including the initial condition).

3 Bivariate Models

As mentioned in Section 1, it is desirable to allow for predetermined – as opposed to strictly

exogenous – explanatory variables in economic panel data settings. While doing this is

an unsolved problem in general, it is possible to get results like those discussed above for

a variety of models where a dependent variable and an explanatory variable are modelled

jointly. We first illustrate this in a reduced form setting where two binary variables are

modelled jointly. We next turn to a setting where they are the outcome of a simple game.

3.1 Reduced Form Bivariate Models

Following Schmidt and Strauss (1975), who propose a cross-sectional bivariate binary re-

sponse model, Honoré and Kyriazidou (2019a) considered the bivariate panel data model for

two outcomes (y1,it, y2,it)

P
(
y1,it = 1| y2,it, yt−11,i , y

t−1
2,i , x

T
1,i, x

T
2,i, α1,i, α2,i

)
= Λ

(
α1,i + x′1,itβ1 + ρy2,it

)
, (14)

P
(
y2,it = 1| y1,it, yt−11,i , y

t−1
2,i , x

T
1,i, x

T
2,i, α1,i, α2,i

)
= Λ

(
α2,i + x′2,itβ2 + ρy1,it

)
.

Honoré and Kyriazidou (2019a) show that in this case β1, β2, and ρ are identified with T = 2.

13



Honoré and Kyriazidou (2019a) also consider a vector autoregressive version of the si-

multaneous logit model in (14):

P
(
y1,it = 1| y2,it, yt−11,i , y

t−1
2,i , α1,i, α2,i

)
= Λ (α1,i + y1,it−1γ11 + y2,it−1γ12 + ρy2,it) , (15)

P
(
y2,it = 1| y1,it, yt−11,i , y

t−1
2,i , α1,i, α2,i

)
= Λ (α2,i + y1,it−1γ21 + y2,it−1γ22 + ρy1,it) .

When ρ = 0, this corresponds to the probabilities in the model proposed by Narendranthan,

Nickell, and Metcalf (1985):

y1,it = 1 {y1,it−1γ11 + y2,it−1γ12 + α1,i + ε1,it ≥ 0}

y2,it = 1 {y1,it−1γ21 + y2,it−1γ22 + α2,i + ε2,it ≥ 0} ,

where ε1,it and ε2,it are logistic random variables that are independent of each other and

independent over time. Narendranthan, Nickell, and Metcalf (1985) show that all parameters

in this model are identified with a total of T = 4 periods. Honoré and Kyriazidou (2019a)

generalize this result by showing that (γ11, γ12, γ21, γ22) is identified in the model given in

(15) with at least four time periods.8 However, the conditioning argument that leads to the

identification eliminates the parameter ρ along with the heterogeneity terms α1,i and α2,i. On

the positive side, this implies that one can allow the parameter ρ in (15) to be individual-

specific. On the other hand, ρ may be the parameter of interest in many applications.

This makes it problematic that the conditioning argument eliminates it along with α1,i and

α2,i. The calculations in Honoré and Kyriazidou (2019b) suggest that ρ might be identified,

despite the fact that it drops out when one pursues a conditional likelihood approach to

eliminate α1,i and α2,i. It would be interesting to know whether the results in Honoré and

Weidner (2020) can be used to derive moment conditions that can be used to identify ρ the

same way one can identify γ1 in (6).

8Honoré and Kyriazidou (2019a) also discuss how one can generalize the identification results in Naren-
dranthan, Nickell, and Metcalf (1985) and Honoré and Kyriazidou (2019b) to achieve identification if one also
allows for strictly exogenous explanatory variables. The identification argument mimics that in Honoré and
Kyriazidou (2000) and using the empirical counterpart for estimation will lead to estimators that converge
at a rate slower than the usual

√
n if the strictly exogenous variables are continuously distributed.
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3.2 Panel Data Games

The model in equations (14) and (15) is a natural generalization of classic linear simultaneous

equations model to a logit framework. On the other hand, it is not straightforward to give a

behavioral interpretation to the model. This is in contrast to single equation logit or probit

models which can be interpreted in terms of threshold-crossing or utility maximization. We

therefore turn to an alternative panel data version of the bivariate binary response models

that are more inspired by economics.

Consider a game with two players i = 1, 2, each of whom takes a binary action, y ∈ {0, 1},

at instance t according to the best-response function:

y1t = 1 {x′1tβ − γy2t + α1 + ε1t > 0} (16)

y2t = 1 {x′2tβ − γy1t + α2 + ε2t > 0} ,

where ε1t and ε2t are error terms. Except for the α terms, this is the canonical model

considered in Tamer (2003). If players are firms contemplating their presence in a particular

market, it is natural to assume that γ > 0. One can envision observing their entry decisions

across different periods for the same market or over distinct geographic markets. Our aim is

to study identification and estimation of β and γ in panel data versions of this model with

the α’s being firm-market specific effects.9

The econometric model above can also be seen as a dyadic network formation model

defining directed connections between (i, j) pairs of individuals, households, firms, or coun-

tries. Here t indexes node pairs and yit indicates whether person i sends a link to person j.

The individual effect αi would in turn encode the ‘gregariousness’ of individual i. Charbon-

neau (2017), for example, considers such a model for directed networks with γ = 0 and an

additional individual effect for the ‘target’ node j, which can be interpreted as this node’s

‘attractiveness’. See also Graham (2017). A specification with γ < 0 would in turn allow

for i to have a tendency to reciprocate the link decision of its counterpart j (see footnote

9If the same two firms interact repeatedly in the same market or across several different geographic
markets, it is plausible that their actions are related through time in a dynamic game or across space in a
larger game. We view the considerations here as starting points for the analysis of more complex dynamic
or spatial games with individual effects, which remain an interesting avenue for research.
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5 in de Paula (2020)). For expositional ease, we nevertheless assume that γ ≥ 0 for the

remainder of this section and refer to players as firms and the game as a market.

It is well understood that the model in (16) is incomplete in the sense that there is no

unique mapping from (x1t, x2t, α1, α2, ε1t, ε2t) to (y1t, y2t). For example, when γ > 0, certain

realizations for (x1t, x2t, α1, α2, ε1t, ε2t) are consistent with (y1t, y2t) = (1, 0) or (y1t, y2t) =

(0, 1) as depicted in Figure 1, and this leads to difficulties in the conventional panel data

manipulations discussed so far. It is easiest to explain our ideas in a setting where the

errors are stationary, independent of (x1t, x2t, α1, α2) , and independent over time, but the

derivations below suggest that these assumptions can be relaxed considerably. Clearly, it

would be interesting to allow for dynamics (i.e., lagged dependent variables) in the model.

To illustrate the main idea, we will nonetheless abstract from dynamics, but combining

the insights from the literature discussed previously (as well as the possibility of forward

looking behavior discussed later) would be an important angle on which to expand the ideas

delineated below.

3.3 Identification of β

In this subsection, we discuss the potential for identifying the β in (16) when the distribution

of (ε1, ε2) left unspecified.

Letting N t be the number of entrants in a market in period t, conventional calculations

(see de Paula (2013)) deliver:

P
(
N t = 2

∣∣ {x1s, x2s}2s=1 , α1, α2

)
= F (x′1tβ − γ + α1, x

′
2tβ − γ + α2) ,

where F is the cumulative distribution function of (−ε1,−ε2). Note that the probability

above is monotone in (x′1tβ, x
′
2tβ).

Suppose there are two time periods or instances, and that x is market-specific, so x1t =

x2t = xt. Then

P
(
N t = 2

∣∣ {xs}2s=1 , α1, α2

)
= F (x′tβ − γ + α1, x

′
tβ − γ + α2) ,
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Figure 1: Nash Equilibria in −ε1 ×−ε2 space
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which is increasing in x′tβ. Consequently,

P
(
N1 = 2

∣∣ {xs}2s=1 , α1, α2

)
T P

(
N2 = 2

∣∣ {xs}2s=1 , α1, α2

)
(17)

if (and only if) x′1β T x′2β.

Now condition on the event that N t equals 2 in exactly one of the two periods. A maximum

score argument like that in Manski (1987) (see above) applied to the event N1 = 2 with

x′1 − x′2 as the explanatory variables can then be used to identify and estimate β (up to

scale).10

More specifically, conditional on {xs}2s=1 , α1, α2 and 1(N2 = 2) 6= 1(N1 = 2), the variable

1(N2 = 2)− 1(N1 = 2) is a Bernoulli random variable with the median given by

sgn

(
P (N2 = 2, N1 6= 2| {xs}2s=1 , α1, α2)− P (N2 6= 2, N1 = 2| {xs}2s=1 , α1, α2)

P (1(N2 = 2) 6= 1(N1 = 2)| {xs}2s=1 , α1, α2)

)
= sgn

(
P (N2 = 2, N1 6= 2| {xs}2s=1 , α1, α2)− P (N2 6= 2, N1 = 2| {xs}2s=1 , α1, α2)

)
= sgn

(
P (N2 = 2| {xs}2s=1 , α1, α2)− P (N1 = 2| {xs}2s=1 , α1, α2)

)
= sgn ((x2 − x1)′β) .

The last equality follows since P
(
N1 = 2| {xs}2s=1 , α1, α2

)
T P

(
N2 = 2| {xs}2s=1 , α1, α2

)
if

(and only if) x′1β T x′2β. Then, under the assumptions delineated in Manski (1987), one

obtains that β = argmaxbE[sgn((x2 − x1)′b)(1(N2 = 2)− 1(N1 = 2))] as established in that

paper and discussed previously. Note also that this will work even if γ is market- and/or

player-specific. On the other hand, it is crucial for the argument that β is the same for the

two players. Using a similar argument, we can also recover β by conditioning on the event

N1 = 0 or N2 = 0, but not both.

When the xs are not market-specific, we can use the same argument by conditioning on

x21 = x22 = x2 (i.e., player 2 has the same x in two periods; needless to say, this assumes

10Since F is not specified, there is no scope for identifying the scale of (β, γ).

18



that x21 − x22 has support in a neighborhood around 0). In that case,

P
(
N t = 2

∣∣ {x1s, x2s}2s=1 , α1j, α2

)
= F (x′1tβ − γ + α1, x

′
2β − γ + α2) ,

so that

P
(
N1 = 2

∣∣ {x1s, x2s}2s=1 , α1, α2

)
T P

(
N2 = 2

∣∣ {x1s, x2s}2s=1 , α1, α2

)
if (and only if) x′11β T x′12β. As a result, we can identify and estimate β by conditioning on

markets where N1 = 2 or N2 = 2, but not both.

3.4 Bounds on γ

Even if the distribution of (ε1t, ε2t) in Tamer (2003) is known, the model’s incomplete-

ness does not allow us to represent the probability distribution of (y1t, y2t) conditional on

(x1t, x2t, α1, α2) as a function of (β, γ) (see Figure 1). On the other hand, the model does

provide bounds on the probabilities for each outcome as a function of (β, γ) (conditional

on (x1t, x2t, α1, α2)) and, analogously, bounds on the probabilities for each outcome as a

function of (β, γ) conditional on (x1t, x2t). See, for example, Tamer (2003).

For a given period t we can establish that

P
(

(y1t, y2t) = (1, 1)| {x1s, x2s}2s=1 , α1, α2

)
= F (x′1tβ − γ + α1, x

′
2tβ − γ + α2) ,

P
(

(y1t, y2t) = (0, 0)| {x1s, x2s}2s=1 , α1, α2

)
= 1− F (x′1tβ + α1)− F (x′2tβ + α2)

+F (x′1tβ + α1, x
′
2tβ + α2) ,

whereas

P
(

(y1t, y2t) = (0, 1)| {x1s, x2s}2s=1 , α1, α2

)
(18)

≤ 1− P
(

(y1t, y2t) = (1, 1)| {x1s, x2s}2s=1 , α1, α2

)
−P

(
(y1t, y2t) = (0, 0)| {x1s, x2s}2s=1 , α1, α2

)
and
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P
(

(y1t, y2t) = (0, 1)| {x1s, x2s}2s=1 , α1, α2

)
(19)

≥ 1− P
(

(y1t, y2t) = (1, 1)| {x1s, x2s}2s=1 , α1, α2

)
−P

(
(y1t, y2t) = (0, 0)| {x1s, x2s}2s=1 , α1, α2

)
−P

(
(ε1, ε2) ∈ ×i=1,2[x

′
itβ − γ + αi, x

′
itβ + αi]| {x1s, x2s}2s=1 , α1, α2

)
,

and similarly for (y1t, y2t) = (1, 0). Since (ε1t, ε2t) is independent across time, one can thus

obtain probability bounds on ((y11, y21), (y12, y22)) (conditional on {x1s, x2s}2s=1 , α1, α2) by

taking products of the above bounds. Finally, to obtain probability bounds conditional on

{x1s, x2s}2s=1 one can integrate the above equalities and inequalities against the distribution

H(α1, α2| {x1s, x2s}2s=1) for α1 and α2. An identified set for the unknown parameters11 is

then the set of parameters that is consistent with the above bounds (for some admissible

distribution H(α1, α2| {x1s, x2s}2s=1)). For example,

P
(

(y11, y21) = (1, 1) and (y12, y22) = (1, 1)| {x1s, x2s}2s=1

)
= (20)∫

F (x′11β − γ + α1, x
′
21β − γ + α2)

F (x′12β − γ + α1, x
′
22β − γ + α2) dH(α1, α2| {x1s, x2s}2s=1)

Since the support of ((y11, y21), (y12, y22)) has sixteen points, there are thus two probability

equalities (for the events ((y11, y21), (y12, y22)) = ((1, 1), (1, 1)) and ((y11, y21), (y12, y22)) =

((0, 0), (0, 0))) and twenty-eight inequalities, two for each of the remaining fourteen events

(given covariates). To operationalize this, we would need to compute those restrictions

across all possible distributions, H, for the individual specific (“fixed”) effects. If the data

generating process satisfies the assumptions that one needs to apply maximum score above,

then one only needs to bound γ using the inequalities in (18) and (19). If not, then one

could combine the restrictions implied by the inequalities in (18) and (19) with, for example,

(17), to obtain bounds for β and γ. The same approach can be used if the γ’s are different

11If the data generating process satisfies the assumptions that one needs to apply maximum score above,
then one needs only search over γ. If not, it is necessary to search over both γ and β.
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for units one and two.

The approach for bounding the model parameters above can be combined with para-

metric assumptions on the distribution H. Since the model is not dynamic, this will not

lead to potential internal inconsistencies. Alternatively, one can proceed more nonpara-

metrically. For example, Honoré and Tamer (2006) approximate the distribution of the

individual-specific effects by a discrete distribution with many points of support. To de-

termine whether a particular parameter value belongs to the identified set, they use linear

programming to check whether there exists a distribution of the individual-specific effects

such that the probability distribution calculated from the econometric model matches the

probability distribution in the data. This approach seems reasonable when the individual

specific effect is one-dimensional and one does not need to condition on additional covariates.

On the other hand, when that is not the case, the necessary number of support points is

likely to be unreasonably large. Theorem 2.1 in Winkler (1988), on the other hand, implies

that to match m probabilities (adding to 1), there is no loss of generality in considering

discrete distributions with m+ 1 points of support. This or similar results have been used in

statistics and econometrics (see, e.g., Lindsay (1995), Chernozhukov, Fernández-Val, Hahn,

and Newey (2013), d’Haultfoeuille and Rathelot (2017)). Winkler’s result suggests a hy-

brid algorithm where one searches over the location of the points of support using nonlinear

methods and then solves for the implied probabilities using linear programming. The result,

that there is no loss of generality in considering a discrete distribution for the unobservable,

is similar to a result in Honoré and Lleras-Muney (2006), except that in that instance, the

structure of the problem determined their location. Here, searching over those locations will

be part of the computational challenge.

3.5 Generalizations

The argument above combines the setup in (16) with simple static panel data insights. In

most economic applications, it will be important to also allow for dynamics. One may con-

sider “non-structural (myopic) dynamics” as in, for example, Honoré and Kyriazidou (2000)

as well as “structural dynamics” as in Aguirregabiria, Gu, and Luo (2020), where utility
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maximizing agents realize that their choice today has an effect on their utility tomorrow. In

addition, one may explore the econometric consequences of restricting how the equilibrium

selection mechanism evolves over time.

4 Conclusions

Much of the literature on nonlinear panel data models has been inspired by standard cross

sectional models. Historically, these models have been made dynamic by including lagged

dependent variables as explanatory variables. While this is natural in some settings, it is

important to recognize that it has implications if one wants to interpret the estimated model

in terms of some implicit underlying economic model. For example, if one wants to motivate

a logit model with lagged dependent variables in terms of a random utility model in which

the utility of an option in one period depends on the choice in the previous period, then

one typically implicitly rules out that the agents are forward looking. In a recent paper,

Aguirregabiria, Gu, and Luo (2019) demonstrates that in a particular example, it is possible

to adapt some of the conditioning arguments for logit models to more natural economic

models. Investigating whether this is true for panel data discrete choice models with fixed

effects more generally is an interesting topic for future research.
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