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ABSTRACT. We develop uniformly valid confidence regions for regression coefficients in a high-
dimensional sparse median regression model with homoscedastic errors. Our methods are based
on a moment equation that is immunized against non-regular estimation of the nuisance part
of the median regression function by using Neyman’s orthogonalization. We establish that the
resulting instrumental median regression estimator of a target regression coefficient is asymptot-
ically normally distributed uniformly with respect to the underlying sparse model and is semi-
parametrically efficient. We also generalize our method to a general non-smooth Z-estimation
framework with the number of target parameters p1 being possibly much larger than the sample
size n. We extend Huber’s results on asymptotic normality to this setting, demonstrating uniform
asymptotic normality of the proposed estimators over p1-dimensional rectangles, constructing
simultaneous confidence bands on all of the p1 target parameters, and establishing asymptotic
validity of the bands uniformly over underlying approximately sparse models.

Keywords: Instrument; Post-selection inference; Sparsity; Neyman’s Orthogonal Score test;
Uniformly valid inference; Z-estimation.

Publication: Biometrika, 2014 doi:10.1093/biomet/asu056

1. INTRODUCTION

We consider independent and identically distributed data vectors (yi, x
T
i , di)

T that obey the
regression model

(1) yi = diα0 + xT
i β0 + εi (i = 1, . . . , n),

where di is the main regressor and coefficient α0 is the main parameter of interest. The vector
xi denotes other high-dimensional regressors or controls. The regression error εi is independent
of di and xi and has median zero, that is, pr(εi ≤ 0) = 1/2. The distribution function of
εi is denoted by Fε and admits a density function fε such that fε(0) > 0. The assumption
motivates the use of the least absolute deviation or median regression, suitably adjusted for use
in high-dimensional settings. The framework (1) is of interest in program evaluation, where
di represents the treatment or policy variable known a priori and whose impact we would like
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2 UNIFORM POST SELECTION INFERENCE FOR Z-PROBLEMS

to infer [27, 21, 15]. We shall also discuss a generalization to the case where there are many
parameters of interest, including the case where the identity of a regressor of interest is unknown
a priori.

The dimension p of controls xi may be much larger than n, which creates a challenge for
inference on α0. Although the unknown nuisance parameter β0 lies in this large space, the key
assumption that will make estimation possible is its sparsity, namely T = supp(β0) has s < n
elements, where the notation supp(δ) = {j ∈ {1, . . . , p} : δj 6= 0} denotes the support of a
vector δ ∈ Rp. Here s can depend on n, as we shall use array asymptotics. Sparsity motivates
the use of regularization or model selection methods.

A non-robust approach to inference in this setting would be first to perform model selection
via the `1-penalized median regression estimator

(2) (α̂, β̂) ∈ arg min
α,β

En(|yi − diα− xT
i β|) +

λ

n
‖Ψ(α, βT)T‖1,

where λ is a penalty parameter and Ψ2 = diag{En(d2
i ), En(x2

i1), . . . , En(x2
ip)} is a diagonal

matrix with normalization weights, where the notation En(·) denotes the average n−1
∑n

i=1
over the index i = 1, . . . , n. Then one would use the post-model selection estimator

(3) (α̃, β̃) ∈ arg min
α,β

{
En(|yi − diα− xT

i β|) : βj = 0, j /∈ supp(β̂)
}
,

to perform inference for α0.
This approach is justified if (2) achieves perfect model selection with probability approaching

unity, so that the estimator (3) has the oracle property. However conditions for perfect selection
are very restrictive in this model, and, in particular, require strong separation of non-zero coef-
ficients away from zero. If these conditions do not hold, the estimator α̃ does not converge to
α0 at the n−1/2 rate, uniformly with respect to the underlying model, and so the usual inference
breaks down [19]. We shall demonstrate the breakdown of such naive inference in Monte Carlo
experiments where non-zero coefficients in β0 are not significantly separated from zero.

The breakdown of standard inference does not mean that the aforementioned procedures are
not suitable for prediction. Indeed, the estimators (2) and (3) attain essentially optimal rates
{(s log p)/n}1/2 of convergence for estimating the entire median regression function [3, 33].
This property means that while these procedures will not deliver perfect model recovery, they
will only make moderate selection mistakes, that is, they omit controls only if coefficients are
local to zero.

In order to provide uniformly valid inference, we propose a method whose performance does
not require perfect model selection, allowing potential moderate model selection mistakes. The
latter feature is critical in achieving uniformity over a large class of data generating processes,
similarly to the results for instrumental regression and mean regression studied in [34] and
[2, 4, 5]. This allows us to overcome the impact of moderate model selection mistakes on
inference, avoiding in part the criticisms in [19], who prove that the oracle property achieved by
the naive estimators implies the failure of uniform validity of inference and their semiparametric
inefficiency [20].

In order to achieve robustness with respect to moderate selection mistakes, we shall construct
an orthogonal moment equation that identifies the target parameter. The following auxiliary
equation,

(4) di = xT
i θ0 + vi, E(vi | xi) = 0 (i = 1, . . . , n),
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which describes the dependence of the regressor of interest di on the other controls xi, plays a
key role. We shall assume the sparsity of θ0, that is, Td = supp(θ0) has at most s < n elements,
and estimate the relation (4) via lasso or post-lasso least squares methods described below.

We shall use vi as an instrument in the following moment equation for α0:

(5) E{ϕ(yi − diα0 − xT
i β0)vi} = 0 (i = 1, . . . , n),

where ϕ(t) = 1/2− 1{t ≤ 0}. We shall use the empirical analog of (5) to form an instrumental
median regression estimator of α0, using a plug-in estimator for xT

i β0. The moment equation
(5) has the orthogonality property

(6)
∂

∂β
E{ϕ(yi − diα0 − xT

i β)vi}
∣∣∣∣
β=β0

= 0 (i = 1, . . . , n),

so the estimator of α0 will be unaffected by estimation of xT
i β0 even if β0 is estimated at a

slower rate than n−1/2, that is, the rate of o(n−1/4) would suffice. This slow rate of estimation
of the nuisance function permits the use of non-regular estimators of β0, such as post-selection
or regularized estimators that are not n−1/2 consistent uniformly over the underlying model.
The orthogonalization ideas can be traced back to [22] and also play an important role in doubly
robust estimation [26].

Our estimation procedure has three steps: (i) estimation of the confounding function xT
i β0 in

(1); (ii) estimation of the instruments vi in (4); and (iii) estimation of the target parameter α0 via
empirical analog of (5). Each step is computationally tractable, involving solutions of convex
problems and a one-dimensional search.

Step (i) estimates for the nuisance function xT
i β0 via either the `1-penalized median regression

estimator (2) or the associated post-model selection estimator (3).
Step (ii) provides estimates v̂i of vi in (4) as v̂i = di − xT

i θ̂ or v̂i = di − xT
i θ̃ (i = 1, . . . , n).

The first is based on the heteroscedastic lasso estimator θ̂, a version of the lasso of [30], designed
to address non-Gaussian and heteroscedastic errors [2],

(7) θ̂ ∈ arg min
θ
En{(di − xT

i θ)
2}+

λ

n
‖Γ̂θ‖1,

where λ and Γ̂ are the penalty level and data-driven penalty loadings defined in the Supplemen-
tary Material. The second is based on the associated post-model selection estimator and θ̃, called
the post-lasso estimator:

(8) θ̃ ∈ arg min
θ

[
En{(di − xT

i θ)
2} : θj = 0, j /∈ supp(θ̂)

]
.

Step (iii) constructs an estimator α̌ of the coefficient α0 via an instrumental median regression
[11], using (v̂i)

n
i=1 as instruments, defined by

(9) α̌ ∈ arg min
α∈Â

Ln(α), Ln(α) =
4|En{ϕ(yi − xT

i β̂ − diα)v̂i}|2

En(v̂2
i )

,

where Â is a possibly stochastic parameter space for α0. We suggest Â = [α̂− 10/b, α̂+ 10/b]

with b = {En(d2
i )}1/2 log n, though we allow for other choices.

Our main result establishes that under homoscedasticity, provided that (s3 log3 p)/n→ 0 and
other regularity conditions hold, despite possible model selection mistakes in Steps (i) and (ii),
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the estimator α̌ obeys

(10) σ−1
n n1/2(α̌− α0)→ N(0, 1)

in distribution, where σ2
n = 1/{4f2

ε E(v2
i )} with fε = fε(0) is the semi-parametric efficiency

bound for regular estimators of α0. In the low-dimensional case, if p3 = o(n), the asymptotic
behavior of our estimator coincides with that of the standard median regression without selec-
tion or penalization, as derived in [13], which is also semi-parametrically efficient in this case.
However, the behaviors of our estimator and the standard median regression differ dramatically,
otherwise, with the standard estimator even failing to be consistent when p > n. Of course, this
improvement in the performance comes at the cost of assuming sparsity.

An alternative, more robust expression for σ2
n is given by

(11) σ2
n = J−1ΩJ−1, Ω = E(v2

i )/4, J = E(fεdivi).

We estimate Ω by the plug-in method and J by Powell’s ([25]) method. Furthermore, we show
that the Neyman-type projected score statistic nLn(α) can be used for testing the null hypothesis
α = α0, and converges in distribution to a χ2

1 variable under the null hypothesis, that is,

(12) nLn(α0)→ χ2
1

in distribution. This allows us to construct a confidence region with asymptotic coverage 1 − ξ
based on inverting the score statistic nLn(α):

(13) Âξ = {α ∈ Â : nLn(α) ≤ q1−ξ}, pr(α0 ∈ Âξ)→ 1− ξ,

where q1−ξ is the (1− ξ)-quantile of the χ2
1-distribution.

The robustness with respect to moderate model selection mistakes, which is due to (6), allows
(10) and (12) to hold uniformly over a large class of data generating processes. Throughout
the paper, we use array asymptotics, asymptotics where the model changes with n, to better
capture finite-sample phenomena such as small coefficients that are local to zero. This ensures
the robustness of conclusions with respect to perturbations of the data-generating process along
various model sequences. This robustness, in turn, translates into uniform validity of confidence
regions over many data-generating processes.

The second set of main results addresses a more general setting by allowing p1-dimensional
target parameters defined via Huber’s Z-problems to be of interest, with dimension p1 potentially
much larger than the sample size n, and also allowing for approximately sparse models instead
of exactly sparse models. This framework covers a wide variety of semi-parametric models,
including those with smooth and non-smooth score functions. We provide sufficient conditions
to derive a uniform Bahadur representation, and establish uniform asymptotic normality, using
central limit theorems and bootstrap results of [9], for the entire p1-dimensional vector. The
latter result holds uniformly over high-dimensional rectangles of dimension p1 � n and over
an underlying approximately sparse model, thereby extending previous results from the setting
with p1 � n [14, 23, 24, 13] to that with p1 � n.

In what follows, the `2 and `1 norms are denoted by ‖ · ‖ and ‖ · ‖1, respectively, and the
`0-norm, ‖ · ‖0, denotes the number of non-zero components of a vector. We use the notation
a∨b = max(a, b) and a∧b = min(a, b). Denote by Φ(·) the distribution function of the standard
normal distribution. We assume that the quantities such as p, s, and hence yi, xi, β0, θ0, T and Td
are all dependent on the sample size n, and allow for the case where p = pn →∞ and s = sn →
∞ as n → ∞. We shall omit the dependence of these quantities on n when it does not cause
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confusion. For a class of measurable functions F on a measurable space, let cn(ε,F , ‖ · ‖Q,2)
denote its ε-covering number with respect to the L2(Q) seminorm ‖ · ‖Q,2, where Q is a finitely
discrete measure on the space, and let ent(ε,F) = log supQ cn(ε‖F‖Q,2,F , ‖·‖Q,2) denote the
uniform entropy number where F = supf∈F |f |.

2. THE METHODS, CONDITIONS, AND RESULTS

2.1. The methods. Each of the steps outlined in Section 1 could be implemented by several
estimators. Two possible implementations are the following.

Algorithm 1. The algorithm is based on post-model selection estimators.
Step (i). Run post-`1-penalized median regression (3) of yi on di and xi; keep fitted value xT

i β̃.
Step (ii). Run the post-lasso estimator (8) of di on xi; keep the residual v̂i = di − xT

i θ̃.
Step (iii). Run instrumental median regression (9) of yi − xT

i β̃ on di using v̂i as the instrument.
Report α̌ and perform inference based upon (10) or (13).

Algorithm 2. The algorithm is based on regularized estimators.
Step (i). Run `1-penalized median regression (3) of yi on di and xi; keep fitted value xT

i β̃.
Step (ii). Run the lasso estimator (7) of di on xi; keep the residual v̂i = di − xT

i θ̃.
Step (iii). Run instrumental median regression (9) of yi − xT

i β̃ on di using v̂i as the instrument.
Report α̌ and perform inference based upon (10) or (13).

In order to perform `1-penalized median regression and lasso, one has to choose the penalty
levels suitably. We record our penalty choices in the Supplementary Material. Algorithm 1 relies
on the post-selection estimators that refit the non-zero coefficients without the penalty term to
reduce the bias, while Algorithm 2 relies on the penalized estimators. In Step (ii), instead of the
lasso or the post-lasso estimators, Dantzig selector [8] and Gauss-Dantzig estimators could be
used. Step (iii) of both algorithms relies on instrumental median regression (9).

Comment 2.1. Alternatively, in this step, we can use a one-step estimator α̌ defined by

(14) α̌ = α̂+ [En{fε(0)v̂2
i }]−1En{ϕ(yi − diα̂− xT

i β̂)v̂i},

where α̂ is the `1-penalized median regression estimator (2). Another possibility is to use the
post-double selection median regression estimation, which is simply the median regression of
yi on di and the union of controls selected in both Steps (i) and (ii), as α̌. The Supplemental
Material shows that these alternative estimators also solve (9) approximately.

2.2. Regularity conditions. We state regularity conditions sufficient for validity of the main
estimation and inference results. The behavior of sparse eigenvalues of the population Gram
matrix E(x̃ix̃

T
i ) with x̃i = (di, x

T
i )T plays an important role in the analysis of `1-penalized

median regression and lasso. Define the minimal and maximal m-sparse eigenvalues of the
population Gram matrix as

(15) φ̄min(m) = min
1≤‖δ‖0≤m

δTE(x̃ix̃
T
i )δ

‖δ‖2
, φ̄max(m) = max

1≤‖δ‖0≤m

δTE(x̃ix̃
T
i )δ

‖δ‖2
,

wherem = 1, . . . , p. Assuming that φ̄min(m) > 0 requires that all population Gram submatrices
formed by any m components of x̃i are positive definite.
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The main condition, Condition 1, imposes sparsity of the vectors β0 and θ0 as well as other
more technical assumptions. Below let c1 and C1 be given positive constants, and let `n ↑
∞, δn ↓ 0, and ∆n ↓ 0 be given sequences of positive constants.

Condition 1. Suppose that (i) {(yi, di, xT
i )T}ni=1 is a sequence of independent and identically

distributed random vectors generated according to models (1) and (4), where εi has distribu-
tion distribution function Fε such that Fε(0) = 1/2 and is independent of the random vector
(di, x

T
i )T; (ii) E(v2

i | x) ≥ c1 and E(|vi|3 | xi) ≤ C1 almost surely; moreover, E(d4
i ) +

E(v4
i ) + maxj=1,...,pE(x2

ijd
2
i ) + E(|xijvi|3) ≤ C1; (iii) there exists s = sn ≥ 1 such that

‖β0‖0 ≤ s and ‖θ0‖0 ≤ s; (iv) the error distribution Fε is absolutely continuous with continu-
ously differentiable density fε(·) such that fε(0) ≥ c1 and fε(t)∨ |f ′ε(t)| ≤ C1 for all t ∈ R; (v)
there exist constants Kn and Mn such that Kn ≥ maxj=1,...,p |xij | and Mn ≥ 1∨|xT

i θ0| almost
surely, and they obey the growth condition {K4

n + (K2
n ∨M4

n)s2 +M2
ns

3} log3(p ∨ n) ≤ nδn;
(vi) c1 ≤ φ̄min(`ns) ≤ φ̄max(`ns) ≤ C1.

Condition 1 (i) imposes the setting discussed in the previous section with the zero conditional
median of the error distribution. Condition 1 (ii) imposes moment conditions on the structural
errors and regressors to ensure good model selection performance of lasso applied to equation
(4). Condition 1 (iii) imposes sparsity of the high-dimensional vectors β0 and θ0. Condition
1 (iv) is a set of standard assumptions in median regression [16] and in instrumental quantile
regression. Condition 1 (v) restricts the sparsity index, namely s3 log3(p∨n) = o(n) is required;
this is analogous to the restriction p3(log p)2 = o(n) made in [13] in the low-dimensional
setting. The uniformly bounded regressors condition can be relaxed with minor modifications
provided the bound holds with probability approaching unity. Most importantly, no assumptions
on the separation from zero of the non-zero coefficients of θ0 and β0 are made. Condition 1 (vi)
is quite plausible for many designs of interest. Conditions 1 (iv) and (v) imply the equivalence
between the norms induced by the empirical and population Gram matrices over s-sparse vectors
by [29].

2.3. Results. The following result is derived as an application of a more general Theorem 2
given in Section 3; the proof is given in the Supplementary Material.

Theorem 1. Let α̌ and Ln(α0) be the estimator and statistic obtained by applying either Algo-
rithm 1 or 2. Suppose that Condition 1 is satisfied for all n ≥ 1. Moreover, suppose that with
probability at least 1−∆n, ‖β̂‖0 ≤ C1s. Then, as n → ∞, σ−1

n n1/2(α̌ − α0) → N(0, 1) and
nLn(α0)→ χ2

1 in distribution, where σ2
n = 1/{4f2

ε E(v2
i )}.

Theorem 1 shows that Algorithms 1 and 2 produce estimators α̌ that perform equally well,
to the first order, with asymptotic variance equal to the semi-parametric efficiency bound; see
the Supplemental Material for further discussion. Both algorithms rely on sparsity of β̂ and θ̂.
Sparsity of the latter follows immediately under sharp penalty choices for optimal rates. The
sparsity for the former potentially requires a higher penalty level, as shown in [3]; alternatively,
sparsity for the estimator in Step 1 can also be achieved by truncating the smallest components
of β̂. The Supplemental Material shows that suitable truncation leads to the required sparsity
while preserving the rate of convergence.

An important consequence of these results is the following corollary. Here Pn denotes a
collection of distributions for {(yi, di, xT

i )T}ni=1 and for Pn ∈ Pn the notation prPn
means that

under prPn
, {(yi, di, xT

i )T}ni=1 is distributed according to the law determined by Pn.
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Corollary 1. Let α̌ be the estimator of α0 constructed according to either Algorithm 1 or 2,
and for every n ≥ 1, let Pn be the collection of all distributions of {(yi, di, xT

i )T}ni=1 for which
Condition 1 holds and ‖β̂‖0 ≤ C1s with probability at least 1 − ∆n. Then for Âξ defined in
(13),

sup
Pn∈Pn

∣∣∣prPn

{
α0 ∈ [α̌± σnn−1/2Φ−1(1− ξ/2)]

}
− (1− ξ)

∣∣∣→ 0,

sup
Pn∈Pn

∣∣∣prPn
(α0 ∈ Âξ)− (1− ξ)

∣∣∣→ 0, n→∞.

Corollary 1 establishes the second main result of the paper. It highlights the uniform validity
of the results, which hold despite the possible imperfect model selection in Steps (i) and (ii).
Condition 1 explicitly characterizes regions of data-generating processes for which the unifor-
mity result holds. Simulations presented below provide additional evidence that these regions
are substantial. Here we rely on exactly sparse models, but these results extend to approximately
sparse model in what follows.

Both of the proposed algorithms exploit the homoscedasticity of the model (1) with respect
to the error term εi. The generalization to the heteroscedastic case can be achieved but we need
to consider the density-weighted version of the auxiliary equation (4) in order to achieve the
semiparametric efficiency bound. The analysis of the impact of estimation of weights is delicate
and is developed in our working paper “Robust Inference in High-Dimensional Approximate
Sparse Quantile Regression Models” (arXiv:1312.7186).

2.4. Generalization to many target coefficients. We consider the generalization to the previ-
ous model:

y =

p1∑
j=1

djαj + g(u) + ε, ε ∼ Fε, Fε(0) = 1/2,

where d, u are regressors, and ε is the noise with distribution function Fε that is independent of
regressors and has median zero, that is, Fε(0) = 1/2. The coefficients α1, . . . , αp1 are now the
high-dimensional parameter of interest.

We can rewrite this model as p1 models of the previous form:

y = αjdj + gj(zj) + ε, dj = mj(zj) + vj , E(vj | zj) = 0 (j = 1, . . . , p1),

where αj is the target coefficient,

gj(zj) =

p1∑
k 6=j

dkαk + g(u), mj(zj) = E(dj | zj),

and where zj = (d1, . . . , dj−1, dj+1, . . . , dp1 , u
T)T. We would like to estimate and perform

inference on each of the p1 coefficients α1, . . . , αp1 simultaneously.
Moreover, we would like to allow regression functions hj = (gj ,mj)

T to be of infinite di-
mension, that is, they could be written only as infinite linear combinations of some dictionary
with respect to zj . However, we assume that there are sparse estimators ĥj = (ĝj , m̂j)

T that
can estimate hj = (gj ,mj)

T at sufficiently fast o(n−1/4) rates in the mean square error sense,
as stated precisely in Section 3. Examples of functions hj that permit such estimation by sparse
methods include the standard Sobolev spaces as well as more general rearranged Sobolev spaces
[7, 6]. Here sparsity of estimators ĝj and m̂j means that they are formed by OP (s)-sparse linear
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combinations chosen from p technical regressors generated from zj , with coefficients estimated
from the data. This framework is general; in particular it contains as a special case the tradi-
tional linear sieve/series framework for estimation of hj , which uses a small number s = o(n)
of predetermined series functions as a dictionary.

Given suitable estimators for hj = (gj ,mj)
T, we can then identify and estimate each of the

target parameters (αj)
p1
j=1 via the empirical version of the moment equations

E[ψj{w,αj , hj(zj)}] = 0 (j = 1, . . . , p1),

where ψj(w,α, t) = ϕ(y − djα− t1)(dj − t2) and w = (y, d1, . . . , dp1 , u
T)T. These equations

have the orthogonality property:

[∂E{ψj(w,αj , t) | zj}/∂t]
∣∣
t=hj(zj)

= 0 (j = 1, . . . , p1).

The resulting estimation problem is subsumed as a special case in the next section.

3. INFERENCE ON MANY TARGET PARAMETERS IN Z-PROBLEMS

In this section we generalize the previous example to a more general setting, where p1 tar-
get parameters defined via Huber’s Z-problems are of interest, with dimension p1 potentially
much larger than the sample size. This framework covers median regression, its generalization
discussed above, and many other semi-parametric models.

The interest lies in p1 = p1n real-valued target parameters α1, . . . , αp1 . We assume that each
αj ∈ Aj , where each Aj is a non-stochastic bounded closed interval. The true parameter αj is
identified as a unique solution of the moment condition:

(16) E[ψj{w,αj , hj(zj)}] = 0.

Here w is a random vector taking values in W , a Borel subset of a Euclidean space, which
contains vectors zj (j = 1, . . . , p1) as subvectors, and each zj takes values in Zj ; here zj and
zj′ with j 6= j′ may overlap. The vector-valued function z 7→ hj(z) = {hjm(z)}Mm=1 is a
measurable map from Zj to RM , where M is fixed, and the function (w,α, t) 7→ ψj(w,α, t) is
a measurable map from an open neighborhood of W × Aj × RM to R. The former map is a
possibly infinite-dimensional nuisance parameter.

Suppose that the nuisance function hj = (hjm)Mm=1 admits a sparse estimator ĥj = (ĥjm)Mm=1

of the form

ĥjm(·) =

p∑
k=1

fjmk(·)θ̂jmk, ‖(θ̂jmk)pk=1‖0 ≤ s (m = 1, . . . ,M),

where p = pn may be much larger than n while s = sn, the sparsity level of ĥj , is small
compared to n, and fjmk : Zj → R are given approximating functions.

The estimator α̂j of αj is then constructed as a Z-estimator, which solves the sample analogue
of the equation (16):

(17) |En[ψj{w, α̂j , ĥj(zj)}]| ≤ inf
α∈Âj

|En[ψ{w,α, ĥj(zj)}]|+ εn,

where εn = o(n−1/2b−1
n ) is the numerical tolerance parameter and bn = {log(ep1)}1/2; Âj is

a possibly stochastic interval contained in Aj with high probability. Typically, Âj = Aj or can
be constructed by using a preliminary estimator of αj .
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In order to achieve robust inference results, we shall need to rely on the condition of orthogo-
nality, or immunity, of the scores with respect to small perturbations in the value of the nuisance
parameters, which we can express in the following condition:

(18) ∂tE{ψj(w,αj , t) | zj}|t=hj(zj) = 0,

where we use the symbol ∂t to abbreviate ∂/∂t. It is important to construct the scores ψj to
have property (18) or its generalization given in Remark 3.1 below. Generally, we can con-
struct the scores ψj that obey such properties by projecting some initial non-orthogonal scores
onto the orthogonal complement of the tangent space for the nuisance parameter [?, ]]vdV-
W,vdV,kosorok:book. Sometimes the resulting construction generates additional nuisance pa-
rameters, for example, the auxiliary regression function in the case of the median regression
problem in Section 2.

In Conditions 2 and 3 below, ς, n0, c1, and C1 are given positive constants; M is a fixed
positive integer; δn ↓ 0 and ρn ↓ 0 are given sequences of constants. Let an = max(p1, p, n, e)

and bn = {log(ep1)}1/2.

Condition 2. For every n ≥ 1, we observe independent and identically distributed copies
(wi)

n
i=1 of the random vector w, whose law is determined by the probability measure P ∈ Pn.

Uniformly in n ≥ n0, P ∈ Pn, and j = 1, . . . , p1, the following conditions are satisfied: (i)
the true parameter αj obeys (16); Âj is a possibly stochastic interval such that with probabil-
ity 1 − δn, [αj ± c1n

−1/2 log2 an] ⊂ Âj ⊂ Aj; (ii) for P -almost every zj , the map (α, t) 7→
E{ψj(w,α, t) | zj} is twice continuously differentiable, and for every ν ∈ {α, t1, . . . , tM},
E(supαj∈Aj

|∂νE[ψj{w,α, hj(zj)} | zj ]|2) ≤ C1; moreover, there exist constants L1n ≥
1, L2n ≥ 1, and a cube Tj(zj) = ×Mm=1Tjm(zj) in RM with center hj(zj) such that for every
ν, ν ′ ∈ {α, t1, . . . , tM}, sup(α,t)∈Aj×Tj(zj) |∂ν∂ν′E{ψj(w,α, t) | zj}| ≤ L1n, and for every
α, α′ ∈ Aj , t, t′ ∈ Tj(zj), E[{ψj(w,α, t)− ψj(w,α′, t′)}2 | zj ] ≤ L2n(|α− α′|ς + ‖t− t′‖ς);
(iii) the orthogonality condition (18) or its generalization stated in (20) below holds; (iv) the
following global and local identifiability conditions hold: 2|E[ψj{w,α, hj(zj)}]| ≥ |Γj(α −
αj)| ∧ c1 for all α ∈ Aj , where Γj = ∂αE[ψj{w,αj , hj(zj)}], and |Γj | ≥ c1; and (v) the
second moments of scores are bounded away from zero: E[ψ2

j {w,αj , hj(zj)}] ≥ c1.

Condition 2 states rather mild assumptions for Z-estimation problems, in particular, allowing
for non-smooth scores ψj such as those arising in median regression. They are analogous to
assumptions imposed in the setting with p = o(n), for example, in [13]. The following condition
uses a notion of pointwise measurable classes of functions [32].

Condition 3. Uniformly in n ≥ n0, P ∈ Pn, and j = 1, . . . , p1, the following conditions are
satisfied: (i) the nuisance function hj = (hjm)Mm=1 has an estimator ĥj = (ĥjm)Mm=1 with good
sparsity and rate properties, namely, with probability 1− δn, ĥj ∈ Hj , whereHj = ×Mm=1Hjm
and each Hjm is the class of functions h̃jm : Zj → R of the form h̃jm(·) =

∑p
k=1 fjmk(·)θmk

such that ‖(θmk)pk=1‖0 ≤ s, h̃jm(z) ∈ Tjm(z) for all z ∈ Zj , and E[{h̃jm(zj)− hjm(zj)}2] ≤
C1s(log an)/n, where s = sn ≥ 1 is the sparsity level, obeying (iv) ahead; (ii) the class of
functions Fj = {w 7→ ψj{w,α, h̃(zj)} : α ∈ Aj , h̃ ∈ Hj ∪ {hj}} is pointwise measurable and
obeys the entropy condition ent(ε,Fj) ≤ C1Ms log(an/ε) for all 0 < ε ≤ 1; (iii) the class Fj
has measurable envelope Fj ≥ supf∈Fj

|f |, such that F = maxj=1,...,p1 Fj obeysE{F q(w)} ≤
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C1 for some q ≥ 4; and (iv) the dimensions p1, p, and s obey the growth conditions:

n−1/2{(s log an)1/2 +n−1/2+1/qs log an} ≤ ρn, ρς/2n (L2ns log an)1/2 +n1/2L1nρ
2
n ≤ δnb−1

n .

Condition 3 (i) requires reasonable behavior of sparse estimators ĥj . In the previous section,
this type of behavior occurred in the cases where hj consisted of a part of a median regres-
sion function and a conditional expectation function in an auxiliary equation. There are many
conditions in the literature that imply these conditions from primitive assumptions. For the
case with q = ∞, Condition 3 (vi) implies the following restrictions on the sparsity indices:
(s2 log3 an)/n→ 0 for the case where ς = 2, which typically happens when ψj is smooth, and
(s3 log5 an)/n→ 0 for the case where ς = 1, which typically happens when ψj is non-smooth.
Condition 3 (iii) bounds the moments of the envelopes, and it can be relaxed to a bound that
grows with n, with an appropriate strengthening of the growth conditions stated in (iv).

Condition 3 (ii) implicitly requires ψj not to increase entropy too much; it holds, for example,
when ψj is a monotone transformation, as in the case of median regression, or a Lipschitz
transformation; see [32]. The entropy bound is formulated in terms of the upper bound s on the
sparsity of the estimators and p the dimension of the overall approximating model appearing via
an. In principle our main result below applies to non-sparse estimators as well, as long as the
entropy bound specified in Condition 3 (ii) holds, with index (s, p) interpreted as measures of
effective complexity of the relevant function classes.

Recall that Γj = ∂αE[ψj{w,αj , hj(zj)}]; see Condition 2 (iii). Define

σ2
j = E[Γ−2

j ψ2
j {w,αj , hj(zj)}], φj(w) = −σ−1

j Γ−1
j ψj{w,αj , hj(zj)} (j = 1, . . . , p1).

The following is the main theorem of this section; its proof is found in Appendix A.

Theorem 2. Under Conditions 2 and 3, uniformly in P ∈ Pn, with probability 1− o(1),

max
j=1,...,p1

∣∣∣∣∣n1/2σ−1
j (α̂j − αj)− n−1/2

n∑
i=1

φj(wi)

∣∣∣∣∣ = o(b−1
n ), n→∞.

An immediate implication is a corollary on the asymptotic normality uniform in P ∈ Pn and
j = 1, . . . , p1, which follows from Lyapunov’s central limit theorem for triangular arrays.

Corollary 2. Under the conditions of Theorem 2,

max
j=1,...,p1

sup
P∈Pn

sup
t∈R

∣∣∣prP

{
n1/2σ−1

j (α̂j − αj) ≤ t
}
− Φ(t)

∣∣∣ = o(1), n→∞.

This implies, provided maxj=1,...,p1 |σ̂j − σj | = oP (1) uniformly in P ∈ Pn, that

max
j=1,...,p1

sup
P∈Pn

∣∣∣prP

{
αj ∈ [α̂j ± σ̂jn−1/2Φ−1(1− ξ/2)]

}
− (1− ξ)

∣∣∣ = o(1), n→∞.

This result leads to marginal confidence intervals for αj , and shows that they are valid uni-
formly in P ∈ Pn and j = 1, . . . , p1.

Another useful implication is the high-dimensional central limit theorem uniformly over
rectangles in Rp1 , provided that (log p1)7 = o(n), which follows from Corollary 2.1 in [9].
Let N = (Nj)pj=1 be a normal random vector in Rp1 with mean zero and covariance matrix
[E{φj(w)φj′(w)}]p1j,j′=1. LetR be a collection of rectangles R in Rp1 of the form

R =

{
z ∈ Rp1 : max

j∈A
zj ≤ t,max

j∈B
(−zj) ≤ t

}
(t ∈ R, A,B ⊂ {1, . . . , p1}).
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For example, when A = B = {1, . . . , p1}, R = {z ∈ Rp1 : maxj=1,...,p1 |zj | ≤ t}.

Corollary 3. Under the conditions of Theorem 2, provided that (log p1)7 = o(n),

sup
P∈Pn

sup
R∈R

∣∣∣prP

[
n1/2{σ−1

j (α̂j − αj)}p1j=1 ∈ R
]
− prP (N ∈ R)

∣∣∣ = o(1), n→∞.

This implies, in particular, that for c1−ξ = (1− ξ)-quantile of maxj=1,...,p1 |Nj |,

sup
P∈Pn

∣∣∣prP

(
αj ∈ [α̂j ± c1−ξσjn

−1/2], j = 1, . . . , p1

)
− (1− ξ)

∣∣∣ = o(1), n→∞.

This result leads to simultaneous confidence bands for (αj)
p1
j=1 that are valid uniformly in

P ∈ Pn. Moreover, Corollary 3 is immediately useful for testing multiple hypotheses about
(αj)

p1
j=1 via the step-down methods of [28] which control the family-wise error rate; see [9] for

further discussion of multiple testing with p1 � n.
In practice the distribution of N is unknown, since its covariance matrix is unknown, but it

can be approximated by the Gaussian multiplier bootstrap, which generates a vector

(19) N ∗ = (N ∗j )p1j=1 =

{
1

n1/2

n∑
i=1

ξiφ̂j(wi)

}p1
j=1

,

where (ξi)
n
i=1 are independent standard normal random variables, independent of the data (wi)

n
i=1,

and φ̂j are any estimators of φj , such that

max
j,j′∈{1,...,p1}

|En{φ̂j(w)φ̂j′(w)} − En{φj(w)φj′(w)}| = oP (b−4
n )

uniformly in P ∈ Pn. Let σ̂2
j = En{φ̂2

j (w)}. Theorem 3.2 in [9] then implies the following
result.

Corollary 4. Under the conditions of Theorem 2, provided that (log p1)7 = o(n), with proba-
bility 1− o(1) uniformly in P ∈ Pn,

sup
P∈Pn

sup
R∈R
|prP {N ∗ ∈ R | (wi)ni=1} − prP (N ∈ R)| = o(1).

This implies, in particular, that for ĉ1−ξ = (1− ξ)-conditional quantile of maxj=1,...,p1 |N ∗j |,

sup
P∈Pn

∣∣∣prP

(
αj ∈ [α̂j ± ĉ1−ξσ̂jn

−1/2], j = 1, . . . , p1

)
− (1− ξ)

∣∣∣ = o(1).

Comment 3.1. The proof of Theorem 2 shows that the orthogonality condition (18) can be
replaced by a more general orthogonality condition:

(20) E[η(zj)
T{h̃j(zj)− hj(zj)}] = 0, (h̃j ∈ Hj , j = 1, . . . , p1),

where η(zj) = ∂tE{ψj(w,αj , t) | zj}|t=hj(zj), or even more general condition of approximate
orthogonality: E[η(zj)

T{h̃j(zj) − hj(zj)}] = o(n−1/2b−1
n ) uniformly in h̃j ∈ Hj and j =

1, . . . , p1. The generalization (20) has a number of benefits, which could be well illustrated
by the median regression model of Section 1, where the conditional moment restriction E(vi |
xi) = 0 could be now replaced by the unconditional one E(vixi) = 0, which allows for more
general forms of data-generating processes.
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4. MONTE CARLO EXPERIMENTS

We consider the regression model

(21) yi = diα0 + xT
i (cyθ0) + εi, di = xT

i (cdθ0) + vi,

where α0 = 1/2, θ0j = 1/j2 (j = 1, . . . , 10), and θ0j = 0 otherwise, xi = (1, zT
i )T consists

of an intercept and covariates zi ∼ N(0,Σ), and the errors εi and vi are independently and
identically distributed asN(0, 1). The dimension p of the controls xi is 300, and the sample size
n is 250. The covariance matrix Σ has entries Σij = ρ|i−j| with ρ = 0·5. The coefficients cy
and cd determine theR2 in the equations yi−diα0 = xT

i (cyθ0)+εi and di = xT
i (cdθ0)+vi. We

vary theR2 in the two equations, denoted byR2
y andR2

d respectively, in the set {0, 0·1, . . . , 0·9},
which results in 100 different designs induced by the different pairs of (R2

y, R
2
d); we performed

500 Monte Carlo repetitions for each.
The first equation in (32) is a sparse model. However, unless cy is very large, the decay of the

components of θ0 rules out the typical assumption that the coefficients of important regressors
are well separated from zero. Thus we anticipate that the standard post-selection inference
procedure, discussed around (3), would work poorly in the simulations. In contrast, from the
prior theoretical arguments, we anticipate that our instrumental median estimator would work
well.

The simulation study focuses on Algorithm 1, since Algorithm 2 performs similarly. Standard
errors are computed using (11). As the main benchmark we consider the standard post-model
selection estimator α̃ based on the post `1-penalized median regression method (3).

In Figure 1, we display the empirical false rejection probability of tests of a true hypothesis
α = α0, with nominal size 5%. The false rejection probability of the standard post-model se-
lection inference procedure based upon α̃ deviates sharply from the nominal size. This confirms
the anticipated failure, or lack of uniform validity, of inference based upon the standard post-
model selection procedure in designs where coefficients are not well separated from zero so that
perfect model selection does not happen. In sharp contrast, both of our proposed procedures,
based on estimator α̌ and the result (10) and on the statistic Ln and the result (13), closely track
the nominal size. This is achieved uniformly over all the designs considered in the study, and
confirms the theoretical results of Corollary 1.

In Figure 2, we compare the performance of the standard post-selection estimator α̃ and our
proposed post-selection estimator α̌. We use three different measures of performance of the two
approaches: mean bias, standard deviation, and root mean square error. The significant bias for
the standard post-selection procedure occurs when the main regressor di is correlated with other
controls xi. The proposed post-selection estimator α̌ performs well in all three measures. The
root mean square errors of α̌ are typically much smaller than those of α̃, fully consistent with
our theoretical results and the semiparametric efficiency of α̌.

SUPPLEMENTARY MATERIAL

In the supplementary material we provide omitted proofs, technical lemmas, discuss exten-
sions to the heteroscedastic case, and alternative implementations.

APPENDIX A. PROOF OF THEOREM 2

A.1. A maximal inequality. We first state a maximal inequality used in the proof of Theorem
2.



UNIFORM POST SELECTION INFERENCE FOR Z-PROBLEMS 13

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

0%

10%

30%

50%

R2
y

R2
d

(a)

R
ej
ec
tio

n
pr
ob

ab
ili
ty

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

0

10%

30%

50%

(d)
R
ej
ec
tio

n
pr
ob

ab
ili
ty

R2
y

R2
d

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

0%

10%

30%

50%

R2
y

R2
d

(b)

R
ej
ec
tio

n
pr
ob

ab
ili
ty

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8

0

10%

30%

50%

R2
y

R2
d

(c)

R
ej
ec
tio

n
pr
ob

ab
ili
ty

FIGURE 1. The empirical false rejection probabilities of the nominal 5% level
tests based on: (a) the standard post-model selection procedure based on α̃, (b)
the proposed post-model selection procedure based on α̌, (c) the score statistic
Ln, and (d) an ideal procedure with the false rejection rate equal to the nominal
size.

Lemma 1. Let w,w1, . . . , wn be independent and identically distributed random variables tak-
ing values in a measurable space, and let F be a pointwise measurable class of functions on that
space. Suppose that there is a measurable envelope F ≥ supf∈F |f | such that E{F q(w)} <∞
for some q ≥ 2. Consider the empirical process indexed by F: Gn(f) = n−1/2

∑n
i=1[f(wi)−

E{f(w)}], f ∈ F . Let σ > 0 be any positive constant such that supf∈F E{f2(w)} ≤
σ2 ≤ E{F 2(w)}. Moreover, suppose that there exist constants A ≥ e and s ≥ 1 such that
ent(ε,F) ≤ s log(A/ε) for all 0 < ε ≤ 1. Then

E

{
sup
f∈F
|Gn(f)|

}
≤ K

[{
sσ2 log(A[E{F 2(w)}]1/2/σ)

}1/2

+ n−1/2+1/qs[E{F q(w)}]1/q log(A[E{F 2(w)}]1/2/σ)

]
,
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FIGURE 2. Mean bias (top row), standard deviation (middle row), root mean
square (bottom row) of the standard post-model selection estimator α̃ (panels
(a)-(c)), and of the proposed post-model selection estimator α̌ (panels (d)-(f)).

where K is a universal constant. Moreover, for every t ≥ 1, with probability not less than
1− t−q/2,

sup
f∈F
|Gn(f)| ≤ 2E

{
sup
f∈F
|Gn(f)|

}
+Kq

(
σt1/2 + n−1/2+1/q[E{F q(w)}]1/qt

)
,

where Kq is a constant that depends only on q.

Proof. The first and second inequalities follow from Corollary 5.1 and Theorem 5.1 in [10]
applied with α = 1, using that [E{maxi=1,...,n F

2(wi)}]1/2 ≤ [E{maxi=1,...,n F
q(wi)}]1/q ≤

n1/q[E{F q(w)}]1/q. �

A.2. Proof of Theorem 2. It suffices to prove the theorem under any sequence P = Pn ∈ Pn.
We shall suppress the dependence of P on n in the proof. In this proof, let C denote a generic
positive constant that may differ in each appearance, but that does not depend on the sequence
P ∈ Pn, n, or j = 1, . . . , p1. Recall that the sequence ρn ↓ 0 satisfies the growth conditions in
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Condition 3 (iv). We divide the proof into three steps. Below we use the following notation: for
any given function g :W → R, Gn(g) = n−1/2

∑n
i=1[g(wi)− E{g(w)}].

Step 1. Let α̃j be any estimator such that with probability 1− o(1), maxj=1,...,p1 |α̃j −αj | ≤
Cρn. We wish to show that, with probability 1− o(1),

En[ψj{w, α̃j , ĥj(zj)}] = En[ψj{w,αj , hj(zj)}] + Γj(α̃j − αj) + o(n−1/2b−1
n ),

uniformly in j = 1, . . . , p1. Expand

En[ψj{w, α̃j , ĥj(zj)}] = En[ψj{w,αj , hj(zj)}] + E[ψj{w,α, h̃(zj)}]|α=α̃j ,h̃=ĥj

+ n−1/2Gn[ψj{w, α̃j , ĥj(zj)} − ψj{w,αj , hj(zj)}] = Ij + IIj + IIIj ,

where we have used E[ψj{w,αj , hj(zj)}] = 0. We first bound IIIj . Observe that, with proba-
bility 1− o(1), maxj=1,...,p1 |IIIj | ≤ n−1/2 supf∈F |Gn(f)|, where F is the class of functions
defined by

F = {w 7→ ψj{w,α, h̃(zj)}−ψj{w,αj , hj(zj)} : j = 1, . . . , p1, h̃ ∈ Hj , α ∈ Aj , |α−αj | ≤ Cρn},
which has 2F as an envelope. We apply Lemma 1 to this class of functions. By Condition 3 (ii)
and a simple covering number calculation, we have ent(ε,F) ≤ Cs log(an/ε). By Condition 2
(ii), supf∈F E{f2(w)} is bounded by

sup
j=1,...,p1,(α,h̃)∈Aj×Hj

|α−αj |≤Cρn

E

{
E

([
ψj{w,α, h̃(zj)} − ψj{w,αj , hj(zj)}

]2
| zj
)}
≤ CL2nρ

ς
n,

where we have used the fact that E[{h̃m(zj) − hjm(zj)}2] ≤ Cρ2
n for all m = 1, . . . ,M

whenever h̃ = (h̃m)Mm=1 ∈ Hj . Hence applying Lemma 1 with t = log n, we conclude that,
with probability 1− o(1),

n1/2 max
j=1,...,p1

|IIIj | ≤ sup
f∈F
|Gn(f)| ≤ C{ρς/2n (L2ns log an)1/2+n−1/2+1/qs log an} = o(b−1

n ),

where the last equality follows from Condition 3 (iv).
Next, we expand IIj . Pick any α ∈ Aj with |α− αj | ≤ Cρn, h̃ = (h̃m)Mm=1 ∈ Hj . Then by

Taylor’s theorem, for any j = 1, . . . , p1 and zj ∈ Zj , there exists a vector (ᾱ(zj), t̄(zj)
T)T on

the line segment joining (α, h̃(zj)
T)T and (αj , hj(zj)

T)T such that E[ψj{w,α, h̃(zj)}] can be
written as

E[ψj{w,αj , hj(zj)}] + E(∂αE[ψj{w,αj , hj(zj)} | zj ])(α− αj)

+
∑M

m=1E{E (∂tmE[ψj{w,αj , hj(zj)} | zj ]) {h̃m(zj)− hjm(zj)}}
+ 2−1E(∂2

αE[ψj{w, ᾱ(zj), t̄(zj)} | zj ])(α− αj)2

+ 2−1∑M
m,m′=1E(∂tm∂tm′E[ψj{w, ᾱ(zj), t̄(zj)} | zj ]{h̃m(zj)− hjm(zj)}{h̃m′(zj)− hjm′(zj)})

+
∑M

m=1E(∂α∂tmE[ψj{w, ᾱ(zj), t̄(zj)} | zj ](α− αj){h̃m(zj)− hjm(zj)}).
(22)

The third term is zero because of the orthogonality condition (18). Condition 2 (ii) guar-
antees that the expectation and derivative can be interchanged for the second term, that is,
E (∂αE[ψj{w,αj , hj(zj)} | zj ]) = ∂αE[ψj{w,αj , hj(zj)}] = Γj . Moreover, by the same
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condition, each of the last three terms is bounded by CL1nρ
2
n = o(n−1/2b−1

n ), uniformly in
j = 1, . . . , p1. Therefore, with probability 1 − o(1), IIj = Γj(α̃j − αj) + o(n−1/2b−1

n ), uni-
formly in j = 1, . . . , p1. Combining the previous bound on IIIj with these bounds leads to the
desired assertion.

Step 2. We wish to show that with probability 1 − o(1), inf
α∈Âj

|En[ψj{w,α, ĥj(zj)}]| =

o(n−1/2b−1
n ), uniformly in j = 1, . . . , p1. Define α∗j = αj − Γ−1

j En[ψj{w,αj , hj(zj)}] (j =

1, . . . , p1). Then we have maxj=1,...,p1 |α∗j − αj | ≤ C maxj=1,...,p1 |En[ψj{w,αj , hj(zj)}]|.
Consider the class of functions F ′ = {w 7→ ψj{w,αj , hj(zj)} : j = 1, . . . , p1}, which has F
as an envelope. Since this class is finite with cardinality p1, we have ent(ε,F ′) ≤ log(p1/ε).
Hence applying Lemma 1 to F ′ with σ = [E{F 2(w)}]1/2 ≤ C and t = log n, we conclude that
with probability 1− o(1),

max
j=1,...,p1

|En[ψj{w,αj , hj(zj)}]| ≤ Cn−1/2{(log an)1/2+n−1/2+1/q log an} ≤ Cn−1/2 log an.

Since Âj ⊃ [αj±c1n
−1/2 log2 an] with probability 1−o(1), α∗j ∈ Âj with probability 1−o(1).

Therefore, using Step 1 with α̃j = α∗j , we have, with probability 1− o(1),

inf
α∈Âj

|En[ψj{w,α, ĥj(zj)}]| ≤ |En[ψj{w,α∗j , ĥj(zj)}]| = o(n−1/2b−1
n ),

uniformly in j = 1, . . . , p1, where we have used the fact that En[ψj{w,αj , hj(zj)}] + Γj(α
∗
j −

αj) = 0.
Step 3. We wish to show that with probability 1−o(1), maxj=1,...,p1 |α̂j−αj | ≤ Cρn. By Step

2 and the definition of α̂j , with probability 1−o(1), we have maxj=1,...,p1 |En[ψj{w, α̂j , ĥj(zj)}]| =
o(n−1/2b−1

n ). Consider the class of functionsF ′′ = {w 7→ ψj{w,α, h̃(zj)} : j = 1, . . . , p1, α ∈
Aj , h̃ ∈ Hj ∪ {hj}}. Then with probability 1− o(1),

|En[ψj{w, α̂j , ĥj(zj)}]| ≥
∣∣∣E[ψj{w,α, h̃(zj)}]|α=α̂j ,h̃=ĥj

∣∣∣− n−1/2 sup
f∈F
|Gn(f)|,

uniformly in j = 1, . . . , p1. Observe that F ′′ has F as an envelope and, by Condition 3 (ii) and
a simple covering number calculation, ent(ε,F ′′) ≤ Cs log(an/ε). Then applying Lemma 1
with σ = [E{F 2(w)}]1/2 ≤ C and t = log n, we have, with probability 1− o(1),

n−1/2 sup
f∈F ′′

|Gn(f)| ≤ Cn−1/2{(s log an)1/2 + n−1/2+1/qs log an} = O(ρn).

Moreover, application of the expansion (22) with αj = α together with the Cauchy–Schwarz
inequality implies that |E[ψj{w,α, h̃(zj)}] − E[ψj{w,α, hj(zj)}]| is bounded by C(ρn +
L1nρ

2
n) = O(ρn), so that with probability 1− o(1),∣∣∣E[ψj{w,α, h̃(zj)}]|α=α̂j ,h̃=ĥj

∣∣∣ ≥ ∣∣E[ψj{w,α, hj(zj)}]|α=α̂j

∣∣−O(ρn),

uniformly in j = 1, . . . , p1, where we have used Condition 2 (ii) together with the fact that
E[{h̃m(zj) − hjm(zj)}2] ≤ Cρ2

n for all m = 1, . . . ,M whenever h̃ = (h̃m)Mm=1 ∈ Hj . By
Condition 2 (iv), the first term on the right side is bounded from below by (1/2){|Γj(α̂j −
αj)| ∧ c1}, which, combined with the fact that |Γj | ≥ c1, implies that with probability 1− o(1),
|α̂j − αj | ≤ o(n−1/2b−1

n ) +O(ρn) = O(ρn), uniformly in j = 1, . . . , p1.
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Step 4. By Steps 1 and 3, with probability 1− o(1),

En[ψj{w, α̂j , ĥj(zj)}] = En[ψj{w,αj , hj(zj)}] + Γj(α̂j − αj) + o(n−1/2b−1
n ),

uniformly in j = 1, . . . , p1. Moreover, by Step 2, with probability 1 − o(1), the left side is
o(n−1/2b−1

n ) uniformly in j = 1, . . . , p1. Solving this equation with respect to (α̂j − αj) leads
to the conclusion of the theorem. �
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Suplementary Material
Uniform Post Selection Inference for Least Absolute Deviation

Regression and Other Z-estimation Problems

This supplementary material contains omitted proofs, technical lemmas, discus-
sion of the extension to the heteroscedastic case, and alternative implementa-
tions of the estimator.

APPENDIX B. ADDITIONAL NOTATION IN THE SUPPLEMENTARY MATERIAL

In addition to the notation used in the main text, we will use the following notation. Denote
by ‖ · ‖∞ the maximal absolute element of a vector. Given a vector δ ∈ Rp and a set of
indices T ⊂ {1, . . . , p}, we denote by δT ∈ Rp the vector such that (δT )j = δj if j ∈ T and
(δT )j = 0 if j /∈ T . For a sequence (zi)

n
i=1 of constants, we write ‖zi‖2,n = {En(z2

i )}1/2 =

(n−1
∑n

i=1 z
2
i )1/2. For example, for a vector δ ∈ Rp and p-dimensional regressors (xi)

n
i=1,

‖xTi δ‖2,n = [En{(xT
i δ)

2}]1/2 denotes the empirical prediction norm of δ. Denote by ‖ · ‖P,2 the
population L2-seminorm. We also use the notation a . b to denote a ≤ cb for some constant
c > 0 that does not depend on n; and a .P b to denote a = OP (b).

APPENDIX C. GENERALIZATION AND ADDITIONAL RESULTS FOR THE LEAST ABSOLUTE
DEVIATION MODEL

C.1. Generalization of Section 2 to heteroscedastic case. We emphasize that both proposed
algorithms exploit the homoscedasticity of the model (1) with respect to the error term εi.
The generalization to the heteroscedastic case can be achieved as follows. Recall the model
yi = diα0 + xT

i β0 + εi where εi is now not necessarily independent of di and xi but obeys
the conditional median restriction pr(εi ≤ 0 | di, xi) = 1/2. To achieve the semiparametric
efficiency bound in this general case, we need to consider the weighted version of the auxiliary
equation (4). Specifically, we rely on the weighted decomposition:

(23) fidi = fix
T
i θ
∗
0 + v∗i , E(fiv

∗
i | xi) = 0 (i = 1, . . . , n),

where the weights are the conditional densities of the error terms εi evaluated at their conditional
medians of zero:

(24) fi = fεi(0 | di, xi) (i = 1, . . . , n),

which in general vary under heteroscedasticity. With that in mind it is straightforward to adapt
the proposed algorithms when the weights (fi)

n
i=1 are known. For example Algorithm 1 becomes

as follows.

Algorithm 1′. The algorithm is based on post-model selection estimators.
Step (i). Run post-`1-penalized median regression of yi on di and xi; keep fitted value xT

i β̃.
Step (ii). Run the post-lasso estimator of fidi on fixi; keep the residual v̂∗i = fi(di − xT

i θ̃).
Step (iii). Run instrumental median regression of yi − xT

i β̃ on di using v̂∗i as the instrument.
Report α̌ and/or perform inference.
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Analogously, we obtain Algorithm 2′, as a generalization of Algorithm 2 in the main text,
based on regularized estimators, by removing the word “post” in Algorithm 1′.

Under similar regularity conditions, uniformly over a large collection P∗n of distributions of
{(yi, di, xT

i )T}ni=1, the estimator α̌ above obeys

{4E(v∗2i )}1/2n1/2(α̌− α0)→ N(0, 1)

in distribution. Moreover, the criterion function at the true value α0 in Step (iii) also has a pivotal
behavior, namely

nLn(α0)→ χ2
1

in distribution, which can also be used to construct a confidence region Âξ based on the Ln-
statistic as in (13) with coverage 1− ξ uniformly in a suitable collection of distributions.

In practice the density function values (fi)
n
i=1 are unknown and need to be replaced by esti-

mates (f̂i)
n
i=1. The analysis of the impact of such estimation is very delicate and is developed

in the companion work “Robust inference in high-dimensional approximately sparse quantile
regression models” (arXiv:1312.7186), which considers the more general problem of uniformly
valid inference for quantile regression models in approximately sparse models.

C.2. Minimax Efficiency. The asymptotic variance, (1/4){E(v∗2i )}−1, of the estimator α̌ is
the semiparametric efficiency bound for estimation of α0. To see this, given a law Pn with
‖β0‖0 ∨‖θ∗0‖0 ≤ s/2, we first consider a submodel Psub

n ⊂ P∗n such that Pn ∈ Psub
n , indexed by

the parameter t = (t1, t2) ∈ R2 for the parametric components α0, β0 and described as:

yi = di(α0 + t1) + xT
i (β0 + t2θ

∗
0) + εi,

fidi = fix
T
i θ
∗
0 + v∗i , E(fiv

∗
i | xi) = 0,

where the conditional density of εi varies. Here we use P∗n to denote the overall model collecting
all distributions for which a variant of conditions of Theorem 1 permitting heteroscedasticity is
satisfied. In this submodel, setting t = 0 leads to the given parametric components α0, β0 at Pn.
Then by using a similar argument to [18], Section 5, the efficient score for α0 in this submodel
is

Si = 4ϕ(yi − diα0 − xT
i β0)fi{di − xT

i θ
∗
0} = 4ϕ(εi)v

∗
i ,

so that {E(S2
i )}−1 = (1/4){E(v∗2i )}−1 is the efficiency bound at Pn for estimation of α0

relative to the submodel, and hence relative to the entire model P∗n, as the bound is attainable
by our estimator α̌ uniformly in Pn in P∗n. This efficiency bound continues to apply in the
homoscedastic model with fi = fε for all i.

C.3. Alternative implementation via double selection. An alternative proposal for the method
is reminiscent of the double selection method proposed in [5] for partial linear models. This ver-
sion replaces Step (iii) with a median regression of y on d and all covariates selected in Steps (i)
and (ii), that is, the union of the selected sets. The method is described as follows:

Algorithm 3. The algorithm is based on double selection.
Step (i). Run `1-penalized median regression of yi on di and xi:

(α̂, β̂) ∈ arg min
α,β

En(|yi − diα− xT
i β|) +

λ1

n
‖Ψ(α, βT)T‖1.
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Step (ii). Run lasso of di on xi:

θ̂ ∈ arg min
θ
En{(di − xT

i θ)
2}+

λ2

n
‖Γ̂θ‖1.

Step (iii). Run median regression of yi on di and the covariates selected in Steps (i) and (ii):

(α̌, β̌) ∈ arg min
α,β

{
En(|yi − diα− xT

i β|) : supp(β) ⊂ supp(β̂) ∪ supp(θ̂)
}
.

Report α̌ and/or perform inference.

The double selection algorithm has three main steps: (i) select covariates based on the stan-
dard `1-penalized median regression, (ii) select covariates based on heteroscedastic lasso of the
treatment equation, and (ii) run a median regression with the treatment and all selected covari-
ates.

This approach can also be analyzed through Theorem 2 since it creates instruments implicitly.
To see that let T̂ ∗ denote the variables selected in Steps (i) and (ii): T̂ ∗ = supp(β̂) ∪ supp(θ̂).
By the first order conditions for (α̌, β̌) we have∥∥∥En {ϕ(yi − diα̌− xT

i β̌)(di, x
T

iT̂ ∗
)T
}∥∥∥ = O{( max

i=1,...,n
|di|+Kn|T̂ ∗|1/2)(1 + |T̂ ∗|)/n},

which creates an orthogonal relation to any linear combination of (di, x
T

iT̂ ∗
)T. In particular, by

taking the linear combination (di, x
T

iT̂ ∗
)(1,−θ̃T

T̂ ∗
)T = di − xT

iT̂ ∗
θ̃
T̂ ∗ = di − xT

i θ̃ = v̂i, which is
the instrument in Step (ii) of Algorithm 1, we have

En{ϕ(yi − diα̌− xT
i β̌)ẑi} = O{‖(1,−θ̃T)T‖( max

i=1,...,n
|di|+Kn|T̂ ∗|1/2)(1 + |T̂ ∗|)/n}.

As soon as the right side is oP (n−1/2), the double selection estimator α̌ approximately mini-
mizes

L̃n(α) =
|En{ϕ(yi − diα− xT

i β̌)v̂i}|2

En[{ϕ(yi − diα̌− xT
i β̌)}2v̂2

i ]
,

where v̂i is the instrument created by Step (ii) of Algorithm 1. Thus the double selection esti-
mator can be seen as an iterated version of the method based on instruments where the Step (i)
estimate β̃ is updated with β̌.

APPENDIX D. AUXILIARY RESULTS FOR `1-PENALIZED MEDIAN REGRESSION AND
HETEROSCEDASTIC LASSO

D.1. Notation. In this section we state relevant theoretical results on the performance of the es-
timators: `1-penalized median regression, post-`1-penalized median regression, heteroscedastic
lasso, and heteroscedastic post-lasso estimators. There results were developed in [3] and [2]. We
keep the notation of Sections 1 and 2 in the main text, and let x̃i = (di, x

T
i )T. Throughout the

section, let c0 > 1 be a fixed constant chosen by users. In practice, we suggest to take c0 = 1·1
but the analysis is not restricted to this choice. Moreover, let c′0 = (c0 + 1)/(c0 − 1). Recall the
definition of the minimal and maximal m-sparse eigenvalues of a matrix A as

φmin(m,A) = min
1≤‖δ‖0≤m

δTAδ

‖δ‖2
, φmax(m,A) = max

1≤‖δ‖0≤m

δTAδ

‖δ‖2
,
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wherem = 1, . . . , p. Also recall φ̄min(m) = φmin{m,E(x̃ix̃
T
i )}, φ̄max(m) = φmax{m,E(x̃ix̃

T
i )},

and define φmin(m) = φmin{m,En(x̃ix̃
T
i )}, φxmin(m) = φmin{m,En(xix

T
i )}, and φxmax(m) =

φmax{m,En(xix
T
i )}. Observe that φmax(m) ≤ 2En(d2) + 2φxmax(m).

D.2. `1-penalized median regression. Suppose that {(yi, x̃T
i )T}ni=1 are independent and iden-

tically distributed random vectors satisfying the conditional median restriction

pr(yi ≤ x̃T
i η0 | x̃i) = 1/2 (i = 1, . . . , n).

We consider the estimation of η0 via the `1-penalized median regression estimate

η̂ ∈ arg min
η
En(|yi − x̃T

i η|) +
λ

n
‖Ψη‖1,

where Ψ2 = diag{En(x̃2
i1), . . . , En(x̃2

ip)} is a diagonal matrix of penalty loadings. As estab-
lished in [3] and [33], under the event that

(25)
λ

n
≥ 2c0‖Ψ−1En[{1/2− 1(yi ≤ x̃T

i η0)}x̃i]‖∞,

the estimator above achieves good theoretical guarantees under mild design conditions. Al-
though η0 is unknown, we can set λ so that the event in (25) holds with high probability. In
particular, the pivotal rule discussed in [3] proposes to set λ = c0nΛ(1 − γ | x̃) with γ → 0
where

(26) Λ(1− γ | x̃) = Q(1− γ, 2‖Ψ−1En[{1/2− 1(Ui ≤ 1/2)}x̃i]‖∞),

where Q(1 − γ, Z) denotes the (1 − γ)-quantile of a random variable Z. Here U1, . . . , Un are
independent uniform random variables on (0, 1) independent of x̃1, . . . , x̃n. This quantity can
be easily approximated via simulations. The values of γ and c0 are chosen by users, but we
suggest to take γ = γn = 0·1/ log n and c0 = 1·1. Below we summarize required technical
conditions.

Condition 4. Assume that ‖η0‖0 = s ≥ 1, E(x̃2
ij) = 1, |En(x̃2

ij) − 1| ≤ 1/2 for j = 1, . . . , p

with probability 1 − o(1), the conditional density of yi given x̃i, denoted by fi(·), and its de-
rivative are bounded by f̄ and f̄ ′, respectively, and fi(x̃T

i η0) ≥ f > 0 is bounded away from
zero.

Condition 4 is implied by Condition 1 after a normalizing the variables so thatE(x̃2
ij) = 1 for

j = 1, . . . , p. The assumption on the conditional density is standard in the quantile regression
literature even with fixed p or p increasing slower than n, see respectively [16] and [13].

We present bounds on the population prediction norm of the `1-penalized median regression
estimator. The bounds depend on the restricted eigenvalue proposed in [7], defined by

κ̄c0 = inf
δ∈∆c0

‖x̃Tδ‖P,2/‖δT̃ ‖,

where T̃ = supp(η0), ∆c0 = {δ ∈ Rp+1 : ‖δ
T̃ c‖1 ≤ 3c′0‖δT̃ ‖1} and T̃ c = {1, . . . , p + 1}\T̃ .

The following lemma follows directly from the proof of Theorem 2 in [3] applied to a single
quantile index.
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Lemma 2. Under Condition 4 and using λ = c0nΛ(1 − γ | x̃) . [n log{(p ∨ n)/γ}]1/2, we
have with probability at least 1− γ − o(1),

‖x̃T
i (η̂ − η0)‖P,2 .

1

κ̄c0

[
s log{(p ∨ n)/γ}

n

]1/2

,

provided that
n1/2κ̄c0

[s log{(p ∨ n)/γ}]1/2
f̄ f̄ ′

f
inf

δ∈∆c0

‖xTδ‖3P,2
E(|x̃T

i δ|3)
→∞.

Lemma 2 establishes the rate of convergence in the population prediction norm for the `1-
penalized median regression estimator in a parametric setting. The extra growth condition re-
quired for identification is mild. For instance for many designs of interest we have

inf
δ∈∆c0

‖xTδ‖3P,2/E(|x̃T
i δ|3)

bounded away from zero as shown in [3]. For designs with bounded regressors we have

inf
δ∈∆c0

‖xTδ‖3P,2
E(|x̃T

i δ|3)
≥ inf

δ∈∆c0

‖xTδ‖P,2
‖δ‖1K̃n

≥ κ̄c0

s1/2(1 + 3c′0)K̃n

,

where K̃n is a constant such that K̃n ≥ ‖x̃i‖∞ almost surely. This leads to the extra growth
condition that K̃2

ns
2 log(p ∨ n) = o(κ̄2

c0n).
In order to alleviate the bias introduced by the `1-penalty, we can consider the associated

post-model selection estimate associated with a selected support T̂

(27) η̃ ∈ arg min
η

{
En(|yi − x̃T

i η|) : supp(η) ⊂ T̂
}
.

The following result characterizes the performance of the estimator in (27); see Theorem 5 in
[3] for the proof.

Lemma 3. Suppose that supp(η̂) ⊂ T̂ and let ŝ = |T̂ |. Then under the same conditions of
Lemma 2,

‖x̃T
i (η̃ − η0)‖P,2 .P

{
(ŝ+ s)φmax(ŝ+ s) log(n ∨ p)

nφ̄min(ŝ+ s)

}1/2

+
1

κ̄c0

[
s log{(p ∨ n)/γ}

n

]1/2

,

provided that

n1/2 {φ̄min(ŝ+ s)/φmax(ŝ+ s)}1/2 ∧ κ̄c0
[s log{(p ∨ n)/γ}]1/2

f̄ f̄ ′

f
inf

‖δ‖0≤ŝ+s

‖x̃T
i δ‖3P,2

E(|x̃T
i δ|3)

→P ∞.

Lemma 3 provides the rate of convergence in the prediction norm for the post model selection
estimator despite possible imperfect model selection. The rates rely on the overall quality of
the selected model, which is at least as good as the model selected by `1-penalized median
regression, and the overall number of components ŝ. Once again the extra growth condition
required for identification is mild.

Comment D.1. In Step (i) of Algorithm 2 we use `1-penalized median regression with x̃i =

(di, x
T
i )T, δ̂ = η̂− η0 = (α̂−α0, β̂

T−βT
0 )T, and we are interested in rates for ‖xT

i (β̂−β0)‖P,2
instead of ‖x̃T

i δ̂‖P,2. However, it follows that

‖xT
i (β̂ − β0)‖P,2 ≤ ‖x̃T

i δ̂‖P,2 + |α̂− α0| ‖di‖P,2.
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Since s ≥ 1, without loss of generality we can assume the component associated with the
treatment di belongs to T̃ , at the cost of increasing the cardinality of T̃ by one which will not
affect the rate of convergence. Therefore we have that

|α̂− α0| ≤ ‖δ̂T̃ ‖ ≤ ‖x̃
T
i δ̂‖P,2/κ̄c0 ,

provided that δ̂ ∈ ∆c0 , which occurs with probability at least 1 − γ. In most applications of
interest ‖di‖P,2 and 1/κ̄c0 are bounded from above. Similarly, in Step (i) of Algorithm 1 we
have that the post-`1-penalized median regression estimator satisfies

‖xT
i (β̃ − β0)‖P,2 ≤ ‖x̃T

i δ̃‖P,2
[
1 + ‖di‖P,2/{φ̄min(ŝ+ s)}1/2

]
.

D.3. Heteroscedastic lasso. In this section we consider the equation (4) of the form

di = xT
i θ0 + vi, E(vi | xi) = 0 (i = 1, . . . , n),

where we observe {(di, xT
i )T}ni=1 that are independent and identically distributed random vec-

tors. The unknown support of θ0 is denoted by Td and it satisfies |Td| ≤ s. To estimate θ0, we
compute

(28) θ̂ ∈ arg min
θ
En{(di − xT

i θ)
2}+

λ

n
‖Γ̂θ‖1,

where λ and Γ̂ are the associated penalty level and loadings which are potentially data-driven.
We rely on the results of [2] on the performance of lasso and post-lasso estimators that allow for
heteroscedasticity and non-Gaussianity. According to [2], we use an initial and a refined option
for the penalty level and the loadings, respectively

(29)
γ̂j = [En{x2

ij(di − d̄)2}]1/2, λ = 2cn1/2Φ−1{1− γ/(2p)},
γ̂j = {En(x2

ij v̂
2
i )}1/2, λ = 2cn1/2Φ−1{1− γ/(2p)},

for j = 1, . . . , p, where c > 1 is a fixed constant, γ ∈ (1/n, 1/ log n), d̄ = En(di) and v̂i is an
estimate of vi based on lasso with the initial option or iterations.

We make the following high-level conditions. Below c1, C1 are given positive constants, and
`n ↑ ∞ is a given sequence of constants.

Condition 5. Suppose that (i) there exists s = sn ≥ 1 such that ‖θ0‖0 ≤ s. (ii) E(d2) ≤
C1,minj=1,...,pE(x2

ij) ≥ c1, E(v2 | x) ≥ c1 almost surely, and maxj=1,...,pE(|xijdi|2) ≤
C1. (iii) maxj=1,...,p{E(|xijvi|3)}1/3 log1/2(n ∨ p) = o(n1/6). (iv) With probability 1 −
o(1), maxj=1,...,p |En(x2

ijv
2
i ) − E(x2

ijv
2
i )| ∨ maxj=1,...,p |En(x2

ijd
2
i ) − E(x2

ijd
2
i )| = o(1) and

maxi=1,...,n ‖xi‖2∞s log(n ∨ p) = o(n). (v) With probability 1 − o(1), c1 ≤ φxmin(`ns) ≤
φxmax(`ns) ≤ C1.

Condition 5 (i) implies Condition AS in [2], while Conditions 5 (ii)-(iv) imply Condition RF
in [2]. Lemma 3 in [2] provides primitive sufficient conditions under which condition (iv) is
satisfied. The condition on the sparse eigenvalues ensures that κC̄ in Theorem 1 of [2], applied
to this setting, is bounded away from zero with probability 1− o(1); see Lemma 4.1 in [7].

Next we summarize results on the performance of the estimators generated by lasso.
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Lemma 4. Suppose that Condition 5 is satisfied. Setting λ = 2cn1/2Φ−1{1 − γ/(2p)} for
c > 1, and using the penalty loadings as in (29), we have with probability 1− o(1),

‖xT
i (θ̂ − θ0)‖2,n .

λs1/2

n
.

Associated with lasso we can define the post-lasso estimator as

θ̃ ∈ arg min
θ

{
En{(di − xT

i θ)
2} : supp(θ) ⊂ supp(θ̂)

}
.

That is, the post-lasso estimator is simply the least squares estimator applied to the regressors
selected by lasso in (28). Sparsity properties of the lasso estimator θ̂ under estimated weights
follows similarly to the standard lasso analysis derived in [2]. By combining such sparsity prop-
erties and the rates in the prediction norm, we can establish rates for the post-model selection
estimator under estimated weights. The following result summarizes the properties of the post-
lasso estimator.

Lemma 5. Suppose that Condition 5 is satisfied. Consider the lasso estimator with penalty level
and loadings specified as in Lemma 4. Then the data-dependent model T̂d selected by the lasso
estimator θ̂ satisfies with probability 1− o(1):

‖θ̃‖0 = |T̂d| . s.

Moreover, the post-lasso estimator obeys

‖xT
i (θ̃ − θ0)‖2,n .P

{
s log(p ∨ n)

n

}1/2

.

APPENDIX E. PROOFS FOR SECTION 2

E.1. Proof of Theorem 1. The proof of Theorem 1 consists of verifying Conditions 2 and 3 and
application of Theorem 2. We will use the properties of the post-`1-penalized median regression
and the post-lasso estimator together with required regularity conditions stated in Section D of
this Supplementary Material. Moreover, we will use Lemmas 6 and 8 stated in Section G of this
Supplementary Material. In this proof we focus on Algorithm 1. The proof for Algorithm 2 is
essentially the same as that for Algorithm 1 and deferred to the next subsection.

In application of Theorem 2, take p1 = 1, z = x,w = (y, d, xT)T,M = 2, ψ(w,α, t) =
{1/2 − 1(y ≤ αd + t1)}(d − t2), h(z) = (xTβ0, x

Tθ0)T = {g(x),m(x)}T = h(x), A =
[α0 − c2, α0 + c2] where c2 will be specified later, and T = R2, we omit the subindex “j.” In
what follows, we will separately verify Conditions 2 and 3.

Verification of Condition 2: Part (i). The first condition follows from the zero median con-
dition, that is, Fε(0) = 1/2. We will show in verification of Condition 3 that with probability
1 − o(1), |α̂ − α0| = o(1/ log n), so that for some sufficiently small c > 0, [α0 ± c/ log n] ⊂
Â ⊂ A, with probability 1− o(1).

Part (ii). The map

(α, t) 7→ E{ψ(w,α, t) | x} = E([1/2− Fε{(α− α0)d+ t1 − g(x)}](d− t2) | x)

is twice continuously differentiable since f ′ε is continuous. For every ν ∈ {α, t1, t2}, ∂νE{ψ(w,α, t) |
x} is−E[fε{(α−α0)d+t1−g(x)}d(d−t2) | x] or−E[fε{(α−α0)d+t1−g(x)}(d−t2) | x]
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or E[Fε{(α− α0)d+ t1 − g(x)} | x]. Hence for every α ∈ A,

|∂νE[ψ{w,α, h(x)} | x]| ≤ C1E(|dv| | x) ∨ C1E(|v| | x) ∨ 1.

The expectation of the square of the right side is bounded by a constant depending only on
c3, C1, as E(d4) + E(v4) ≤ C1. Moreover, let T (x) = {t ∈ R2 : |t2 −m(x)| ≤ c3} with any
fixed constant c3 > 0. Then for every ν, ν ′ ∈ {α, t, t′}, whenever α ∈ A, t ∈ T (x),

|∂ν∂ν′E{ψ(w,α, t) | x}|
≤ C1

[
1 ∨ E{|d2(d− t2)| | x} ∨ E{|d(d− t2)| | x} ∨ E(|d| | x) ∨ E(|d− t2| | x)

]
.

Since d = m(x) + v, |m(x)| = |xTθ0| ≤ Mn, |t2 − m(x)| ≤ c3 for t ∈ T (x), and E(|v|3 |
x) ≤ C1, we have

E{|d2(d− t2)| | x} ≤ E[{m(x) + v}2(c3 + |v|) | x] ≤ 2E[{m2(x) + v2}(c3 + |v|) | x]

≤ 2E{(M2
n + v2)(c3 + |v|) | x} .M2

n.

Similar computations lead to |∂ν∂ν′E{ψ(w,α, t) | x}| ≤ CM2
n = L1n for some constant C

depending only on c3, C1. We wish to verify the last condition in (ii). For every α, α′ ∈ A, t, t′ ∈
T (x),

E[{ψ(w,α, t)− ψ(w,α′, t′)}2 | x] ≤ C1E{|d(d− t2)| | x}|α− α′|
+ C1E{|(d− t2)| | x}|t1 − t′1|+ (t2 − t′2)2 ≤ C ′Mn(|α− α′|+ |t1 − t′1|) + (t2 − t′2)2,

whereC ′ is a constant depending only on c3, C1. Here as |t2−t′2| ≤ |t2−m(x)|+|m(x)−t2| ≤
2c3, the right side is bounded by 21/2(C ′Mn + 2c3)(|α − α′| + ‖t − t′‖). Hence we can take
L2n = 21/2(C ′Mn + 2c3) and ς = 1.

Part (iii). Recall that d = xTθ0 + v,E(v | x) = 0. Then we have

∂t1E{ψ(w,α0, t) | x}|t=h(x) = E{fε(0)v | x} = 0,

∂t2E{ψ(w,α0, t) | x}|t=h(x) = −E{Fε(0)− 1/2 | x} = 0.

Part (iv). Pick any α ∈ A. There exists α′ between α0 and α such that

E[ψ{w,α, h(x)}] = ∂αE[ψ{w,α0, h(x)}](α− α0) +
1

2
∂2
αE[ψ{w,α′, h(x)}](α− α0)2

Let Γ = ∂αE[ψ{w,α0, h(x)}] = fε(0)E(v2) ≥ c2
1. Then since |∂2

αE[ψ{w,α′, h(x)}]| ≤
C1E(|d2v|) ≤ C2 where C2 can be taken depending only on C1, we have

E[ψ{w,α, h(x)}] ≥ 1

2
Γ|α− α0|,

whenever |α−α0| ≤ c2
1/C2. Take c2 = c2

1/C2 in the definition ofA. Then the above inequality
holds for all α ∈ A.

Part (v). Observe that E[ψ2{w,α0, h(x)}] = (1/4)E(v2) ≥ c1/4.

Verification of Condition 3: Note here that an = p ∨ n and bn = 1. We first show that the
estimators ĥ(x) = (xTβ̃, xTθ̃)T are sparse and have good rate properties.

The estimator β̃ is based on post-`1-penalized median regression with penalty parameters as
suggested in Section D.2 of this Supplementary Material. By assumption in Theorem 1, with
probability 1 − ∆n we have ŝ = ‖β̃‖0 ≤ C1s. Next we verify that Condition 4 in Section
D.2 of this Supplementary Material is implied by Condition 1 and invoke Lemmas 2 and 3.
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The assumptions on the error density fε(·) in Condition 4 (i) are assumed in Condition 1 (iv).
Because of Conditions 1 (v) and (vi), κ̄c0 is bounded away from zero for n sufficiently large,
see Lemma 4.1 in [7], and c1 ≤ φ̄min(1) ≤ E(x̃2

j ) ≤ φ̄max(1) ≤ C1 for every j = 1, . . . , p.
Moreover, under Condition 1, by Lemma 8, we have maxj=1,...,p+1 |En(x̃2

j )/E(x̃2
j )− 1| ≤ 1/2

and φmax(`′ns) ≤ 2En(d2) + 2φxmax(`′ns) ≤ 5C1 with probability 1− o(1) for some `′n → ∞.
The required side condition of Lemma 2 is satisfied by relations (30) and (31) ahead. By Lemma
3 in Section D.2 of this Supplementary Material, we have ‖xT

i (β̃ − β0)‖P,2 .P {s log(n ∨
p)/n}1/2 since the required side condition holds. Indeed, for x̃i = (di, x

T
i )T and δ = (δd, δ

T
x )T,

because ‖β̃‖0 ≤ C1s with probability 1 −∆n, c1 ≤ φ̄min(C1s + s) ≤ φ̄max(C1s + s) ≤ C1,
and E(|di|3) = O(1), we have

inf
‖δ‖0≤s+C1s

‖x̃Ti δ‖3P,2

E(|x̃Ti δ|3)
≥ inf
‖δ‖0≤s+C1s

{φ̄min(s+C1s)}3/2‖δ‖3
4E(|xTi δx|3)+4|δd|3E(|di|3)

≥ inf
‖δ‖0≤s+C1s

{φ̄min(s+C1s)}3/2‖δ‖3
4Kn‖δx‖1φ̄max(s+C1s)‖δx‖2+4‖δ‖3E(|di|3)

≥ {φ̄min(s+C1s)}3/2
4Kn{s+C1s}1/2φ̄max(s+C1s)+4E(|di|3)

& 1
Kns1/2

.

Therefore, since K2
ns

2 log2(p ∨ n) = o(n), we have

n1/2 {φ̄min(s+C1s)/φmax(s+C1s)}1/2∧κ̄c0
{s log(p∨n)}1/2 inf

‖δ‖0≤s+C1s

‖x̃Ti δ‖3P,2

E(|x̃Ti δ|3)
& n1/2

Kns log(p∨n) →∞.

The argument above also shows that |α̂−α0| = o(1/ log n) with probability 1−o(1) as claimed
in Verification of Condition 2 (i). Indeed by Lemma 2 and Remark D.1 we have |α̂ − α0| .
{s log(p ∨ n)/n}1/2 = o(1/ log n) with probability 1− o(1) as s2 log3(p ∨ n) = o(n).

The θ̃ is a post-lasso estimator with penalty parameters as suggested in Section D.3 of this
Supplementary Material. We verify that Condition 5 in Section D.3 of this Supplementary Ma-
terial is implied by Condition 1 and invoke Lemma 5. Indeed, Condition 5 (ii) is implied by
Conditions 1 (ii) and (iv), where Condition 1(iv) is used to ensure minj=1,...,pE(x2

j ) ≥ c1. Next
since maxj=1,...,pE(|xjv|3) ≤ C1, Condition 5 (iii) is satisfied if log1/2(p ∨ n) = o(n1/6),
which is implied by Condition 1 (v). Condition 5 (iv) follows from Lemma 6 applied twice
with ζi = vi and ζi = di as K4

n log p = o(n) and K2
ns log(p ∨ n) = o(n). Condition 5 (v)

follows from Lemma 8. By Lemma 5 in Section D.3 of this Supplementary Material, we have
‖xT

i (θ̃ − θ0)‖2,n .P {s log(n ∨ p)/n}1/2 and ‖θ̃‖0 . s with probability 1 − o(1). Thus, by
Lemma 8, we have ‖xT

i (θ̃ − θ0)‖P,2 .P {s log(n ∨ p)/n}1/2. Moreover, sup‖x‖∞≤Kn
|xT
i (θ̃ −

θ0)| ≤ Kn‖θ̃ − θ0‖1 ≤ Kns
1/2‖θ̃ − θ0‖ .P Kns{log(n ∨ p)/n}1/2 = o(1).

Combining these results, we have ĥ ∈ H = H1 ×H2 with probability 1− o(1), where

H1 = {h̃1 : h̃1(x) = xTβ, ‖β‖0 ≤ C3s, E[{h̃1(x)− g(x)}2] ≤ `′ns(log an)/n},

H2 = {h̃2 : h̃2(x) = xTθ, ‖θ‖0 ≤ C3s, sup‖x‖∞≤Kn
|h̃2(x)−m(x)| ≤ c3,

E[{h̃2(x)−m(x)}2] ≤ `′ns(log an)/n},

with C3 a sufficiently large constant and `′n ↑ ∞ sufficiently slowly.
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To verify Condition 3 (ii), observe that F = ϕ(G) · G′, where ϕ(u) = 1/2 − 1(u ≤ 0), and
G and G′ are the classes of functions defined by

G = {(y, d, xT)T 7→ y − αd− h̃1(x) : α ∈ A, h̃1 ∈ H1},

G′ = {(y, d, xT)T 7→ d− h̃2(x) : h̃2 ∈ H2}.

The classes G,G′, and ϕ(G), as ϕ is monotone and by Lemma 2.6.18 in [32], consist of unions
of p choose C3s VC-subgraph classes with VC indices at most C3s + 3. The class ϕ(G) is
uniformly bounded by 1; recalling d = m(x) + v, for h̃2 ∈ H2, |d − h̃2(x)| ≤ c3 + |v|.
Hence by Theorem 2.6.7 in [32], we have ent{ε, ϕ(G)} ∨ ent(ε,G′) ≤ C ′′s log(an/ε) for all
0 < ε ≤ 1 for some constant C ′′ that depends only on C3; see the proof of Lemma 11 in [3] for
related arguments. It is now straightforward to verify that the class F = ϕ(G) · G′ satisfies the
stated entropy condition; see the proof of Theorem 3 in [1], relation (A.7).

To verify Condition 3 (iii), observe that whenever h̃2 ∈ H2,

|ϕ{y − αd− h̃1(x)}{d− h̃2(x)}| ≤ c3 + |v|,

which has four bounded moments, so that Condition 3 (iii) is satisfied with q = 4.
To verify Condition 3 (iv), take s = `′ns with `′n ↑ ∞ sufficiently slowly and

ρn = n−1/2{(`′ns log an)1/2 + n−1/4`′ns log an} . n−1/2(`′ns log an)1/2.

As ς = 1, L1n .M2
n andL2n .Mn, Condition 3 (iv) is satisfied provided thatM2

ns
3
n log3 an =

o(n) and M4
ns

2
n log2 an = o(n), which are implied by Condition 1 (v) with `′n ↑ ∞ sufficiently

slowly.
Therefore, for σ2

n = E[Γ−2ψ{w,α0, h(x)}] = E(v2
i )/{4f2

ε (0)}, by Theorem 2 we obtain
the first result: σ−1

n n1/2(α̌− α0)→ N (0, 1).
Next we prove the second result regarding nLn(α0). First consider the denominator of

Ln(α0). We have

|En(v̂2
i )− En(v2

i )| = |En{(v̂i − vi)(v̂i + vi)}| ≤ ‖v̂i − vi‖2,n‖v̂i + vi‖2,n
≤ ‖xT

i (θ̃ − θ0)‖2,n{2‖vi‖2,n + ‖xT
i (θ̃ − θ0)‖2,n} = oP (1),

where we have used ‖vi‖2,n .P {E(v2
i )}1/2 = O(1) and ‖xT

i (θ̃ − θ0)‖2,n = oP (1).
Second consider the numerator of Ln(α0). Since E[ψ{w,α0, h(x)}] = 0 we have

En[ψ{w,α0, ĥ(x)}] = En[ψ{w,α0, h(x)}] + oP (n−1/2),

using the expansion in the displayed equation of Step 1 in the proof of Theorem 2 evaluated at α0

instead of α̃j . Therefore, using the identity that nA2
n = nB2

n+n(An−Bn)2 +2nBn(An−Bn)
with

An = En[ψ{w,α0, ĥ(x)}], Bn = En[ψ{w,α0, h(x)}], |Bn| .P {E(v2
i )}1/2n−1/2,

we have

nLn(α0) =
4n|En[ψ{w,α0, ĥ(x)}]|2

En(v̂2
i )

=
4n|En[ψ{w,α0, h(x)}]|2

En[ψ2{w,α0, h(x)}]
+ oP (1)
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since E(v2
i ) is bounded away from zero. By Theorem 7.1 in [12], and the moment conditions

E(d4) ≤ C1 and E(v2) ≥ c1, the following holds for the self-normalized sum

I =
2n1/2En[ψ{w,α0, h(x)}]
(En[ψ2{w,α0, h(x)}])1/2

→ N (0, 1)

in distribution and the desired result follows since nLn(α0) = I2 + oP (1).

Comment E.1. An inspection of the proof leads to the following stochastic expansion:

En[ψ{w, α̂, ĥ(x)}] = −{fεE(v2
i )}(α̂− α0) + En[ψ{w,α0, h(x)}]

+ oP (n−1/2 + n−1/4|α̂− α0|) +OP (|α̂− α0|2),

where α̂ is any consistent estimator of α0. Hence provided that |α̂ − α0| = oP (n−1/4), the
remainder term in the above expansion is oP (n−1/2), and the one-step estimator α̌ defined by

α̌ = α̂+ {En(fεv̂
2
i )}−1En[ψ{w, α̂, ĥ(x)}]

has the following stochastic expansion:

α̌ = α̂+ {fεE(v2
i ) + oP (n−1/4)}−1[−{fεE(v2

i )}(α̂− α0) + En[ψ{w,α0, h(x)}] + oP (n−1/2)]

= α0 + {fεE(v2
i )}−1En[ψ{w,α0, h(x)}] + oP (n−1/2),

so that σ−1
n n1/2(α̌− α0)→ N (0, 1) in distribution.

E.2. Proof of Theorem 1: Algorithm 2.

Proof of Theorem 1: Algorithm 2. The proof is essentially the same as the proof for Algorithm
1 and just verifying the rates for the penalized estimators.

The estimator β̂ is based on `1-penalized median regression. Condition 4 is implied by Con-
dition 1, see the proof for Algorithm 1. By Lemma 2 and Remark D.1 we have with probability
1− o(1)

‖xT
i (β̂ − β0)‖P,2 . {s log(n ∨ p)/n}1/2, |α̂− α0| . {s log(p ∨ n)/n}1/2 = o(1/ log n),

because s3 log3(n ∨ p) = o(n) and the required side condition holds. Indeed, without loss of
generality assume that T̃ contains d so that for x̃i = (di, x

T
i )T, δ = (δd, δ

T
x )T, because κ̄c0 is

bounded away from zero, and the fact that E(|di|3) = O(1), we have

(30)

infδ∈∆c0

‖x̃Ti δ‖3P,2

E(|x̃Ti δ|3)
≥ infδ∈∆c0

‖x̃Ti δ‖2P,2‖δT ‖κ̄c0
4E(|x′iδx|3)+4E(|diδd|3)

≥ infδ∈∆c0

‖x̃Ti δ‖2P,2‖δT ‖κ̄c0
4Kn‖δx‖1E(|xTi δx|2)+4|δd|3E(|di|3)

≥ infδ∈∆c0

‖x̃Ti δ‖2P,2‖δT ‖κ̄c0
{4Kn‖δx‖1+4|δd|E(|di|3)/E(|di|2)}{E(|xTi δx|2)+E(|δddi|2)}

≥ infδ∈∆c0

‖x̃Ti δ‖2P,2‖δT ‖κ̄c0
8(1+3c′0)‖δT ‖1{Kn+O(1)}{2E(|x̃Ti δx|2)+3E(|δddi|2)}

≥ infδ∈∆c0

‖x̃Ti δ‖2P,2‖δT ‖κ̄c0
8(1+3c′0)‖δT ‖1{Kn+O(1)}E(|x̃Ti δx|2)(2+3/κ̄2c0 )

≥ κ̄c0/s
1/2

8{Kn+O(1)}(1+3c′0){2+3E(d2)/κ̄2c0}
& 1

s1/2Kn
.
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Therefore, since K2
ns

2 log2(p ∨ n) = o(n), we have

(31)
n1/2κ̄c0

{s log(p ∨ n)}1/2
inf

δ∈∆c0

‖x̃T
i δ‖3P,2

E(|x̃T
i δ|3)

&
n1/2

Kns log1/2(p ∨ n)
→∞.

The estimator θ̂ is based on lasso. Condition 5 is implied by Condition 1 and Lemma 6 applied
twice with ζi = vi and ζi = di as K4

n log p = o(n). By Lemma 4 we have ‖xT
i (θ̂ − θ0)‖2,n .P

{s log(n ∨ p)/n}1/2. Moreover, by Lemma 5 we have ‖θ̂‖0 . s with probability 1− o(1). The
required rate in the ‖ · ‖P,2 norm follows from Lemma 8.

�

APPENDIX F. ADDITIONAL MONTE-CARLO EXPERIMENTS

In this section we provide additional experiments to further examine the finite sample perfor-
mance of the proposed estimators. The experiments investigate the performance of the method
on approximately spare models and complement the experiments on exactly sparse models pre-
sented in the main text. Specifically, we considered the following regression model:

(32) y = dα0 + xT(cyθ0) + ε, d = xT(cdθ0) + v,

where α0 = 1/2, and now we have θ0j = 1/j2, j = 1, . . . , p. The other features of the
design are the same as the design presented in the main text. Namely, the vector x = (1, zT)T

consists of an intercept and covariates z ∼ N(0,Σ), and the errors ε and v are independently and
identically distributed as N (0, 1). The dimension p of the covariates x is 300, and the sample
size n is 250. The regressors are correlated with Σij = ρ|i−j| and ρ = 0·5. We vary the R2 in
the two equations, denoted by R2

y and R2
d respectively, in the set {0, 0·1, . . . , 0·9}, which results

in 100 different designs induced by the different pairs of (R2
y, R

2
d). We performed 500 Monte

Carlo repetitions for each.
In this design, the vector θ0 has all p components different from zero. Because the coefficients

decay it is conceivable that it can be well approximated by considering only a few components,
typically the ones associated with the largest coefficients in absolute values. The coefficients
omitted from that construction define the approximation error. However, the number of coeffi-
cients needed to achieve a good approximation will also depend on the scalings cy and cd since
they multiply all coefficients. Therefore, if cy or cd is large the approximation might require
a larger number of coefficients which can violate our sparsity requirements. This is the main
distinction from the an exact sparse designs considered in the main text.

The simulation study focuses on Algorithm 1 since the algorithm based on double selection
worked similarly. Standard errors are computed using the formula (11). As the main bench-
mark we consider the standard post-model selection estimator α̃ based on the post-`1-penalized
median regression method, as defined in (3).

Figure 3 displays the empirical rejection probability of tests of a true hypothesis α = α0,
with nominal size of tests equal to 5%. The rejection frequency of the standard post-model
selection inference procedure based upon α̃ is very fragile, see left plot. Given the approximately
sparse model considered here, there is no true model to be perfectly recovered and the rejection
frequency deviates substantially from the ideal rejection frequency of 5%. The right plot shows
the corresponding empirical rejection probability for the proposed procedures based on estimator
α̌ and the result (10). The performance is close to the ideal level of 5% over 99 out of the 100
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FIGURE 3. The empirical rejection probabilities of the nominal 5% level tests
of a true hypothesis based on: (a) the standard post-model selection procedure
based on α̃, and (b) the proposed post-model selection procedure based on α̌.
Ideally we should observe a flat surface at the 5% rejection rate (of a true null).

designs considered in the study which illustrate the uniformity property. The design for which
the procedure does not perform well corresponds to R2

d = 0·9 and R2
y = 0·9.

Figure 4 compares the performance of the standard post-selection estimator α̃, as defined in
(3), and our proposed post-selection estimator α̌ obtained via Algorithm 1. We display results
in the same three metrics used in the main text: mean bias, standard deviation, and root mean
square error of the two approaches. In those metrics, except for one design, the performance
for approximately sparse models is very similar to the performance of exactly sparse models.
The proposed post-selection estimator α̌ performs well in all three metrics while the standard
post-model selection estimators α̃ exhibits a large bias in many of the dgps considered. For the
design with R2

d = 0·9 and R2
y = 0·9, both procedures breakdown.

Except for the design with largest values of R2’s, R2
d = 0·9 and R2

y = 0·9, the results are
very similar to the results presented in the main text for an exactly sparse model where the
proposed procedure performs very well. The design with the largest values of R2’s correspond
to large values of cy and cd. In that case too many coefficients are needed to achieve a good
approximation for the unknown functions xT(cyθ0) and xT(cdθ0) which translates into a (too)
large value of s in the approximate sparse model. Such performance is fully consistent with
the theoretical result derived in Theorem 2 which covers approximately sparse models but do
impose sparsity requirements.

APPENDIX G. AUXILIARY TECHNICAL RESULTS

In this section we collect some auxiliary technical results.

Lemma 6. Let (ζ1, x
T
1 )T, . . . , (ζn, x

T
n)T be independent random vectors where ζ1, . . . , ζn are

scalar while x1, . . . , xn are vectors in Rp. Suppose that E(ζ4
i ) < ∞ for i = 1, . . . , n, and

there exists a constant Kn such that maxi=1,...,n ‖xi‖∞ ≤ Kn almost surely. Then for every
τ ∈ (0, 1/8), with probability at least 1− 8τ ,

max
j=1,...,p

|n−1∑n
i=1{ζ

2
i x

2
ij − E(ζ2

i x
2
ij)}| ≤ 4K2

n{(2/n) log(2p/τ)}1/2{
∑n

i=1E(ζ4
i )/(nτ)}1/2.
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FIGURE 4. Mean bias (top row), standard deviation (middle row), root mean
square error (bottom row) of the standard post-model selection estimator α̃
(panels (a)-(c)), and of the proposed post-model selection estimator α̌ (panels
(d)-(f)).

Proof of Lemma 6. The proof depends on the following maximal inequality derived in [5].
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Lemma 7. Let z1, . . . , zn be independent random vectors in Rp. Then for every τ ∈ (0, 1/4)
and δ ∈ (0, 1/4), with probability at least 1− 4τ − 4δ,

max
j=1,...,p

|n−1/2∑n
i=1{zij−E(zij)}| ≤

[
4{2 log(2p/δ)}1/2 Q{1− τ, max

j=1,...,p
(n−1∑n

i=1z
2
ij)

1/2}
]

∨ 2 max
j=1,...,p

Q[1/2, |n−1/2∑n
i=1{zij − E(zij)}|],

where for a random variable Z we denote Q(u, Z) = u-quantile of Z .

Going back to the proof of Lemma 6, let zij = ζ2
i x

2
ij . By Markov’s inequality, we have

Q[1/2, |n−1/2∑n
i=1{zij − E(zij)}|] ≤ {2n−1∑n

i=1E(z2
ij)}1/2 ≤ K2

n{(2/n)
∑n

i=1E(ζ4
i )}1/2,

and

Q{1− τ, max
j=1,...,p

(n−1∑n
i=1z

2
ij)

1/2} ≤ Q{1− τ,K2
n(n−1∑n

i=1ζ
4
i )1/2}

≤ K2
n{
∑n

i=1E(ζ4
i )/(nτ)}1/2.

Hence the conclusion of Lemma 6 follows from application of Lemma 7 with τ = δ. �

Lemma 8. Under Condition 1, there exists `′n →∞ such that with probability 1− o(1),

sup
‖δ‖0≤`′ns
δ 6=0

∣∣∣∣‖xT
i δ‖2,n

‖xT
i δ‖P,2

− 1

∣∣∣∣ = o(1).

Proof of Lemma 8. The lemma follows from application of Theorem 4.3 in [29].
�

Lemma 9. Consider vectors β̂ and β0 in Rp where ‖β0‖0 ≤ s, and denote by β̂(m) the vector β̂
truncated to have only its m ≥ s largest components in absolute value. Then

‖β̂(m) − β0‖1 ≤ 2‖β̂ − β0‖1
‖xT

i {β̂(2m) − β0}‖2,n ≤ ‖xT
i (β̂ − β0)‖2,n + {φxmax(m)/m}1/2‖β̂ − β0‖1.

Proof of Lemma 9. The first inequality follows from the triangle inequality

‖β̂(m) − β0‖1 ≤ ‖β̂ − β̂(m)‖1 + ‖β̂ − β0‖1

and the observation that ‖β̂ − β̂(m)‖1 = min‖β‖0≤m ‖β̂ − β‖1 ≤ ‖β̂ − β0‖1 since m ≥ s =
‖β0‖0.

By the triangle inequality we have

‖xT
i {β̂(2m) − β0}‖2,n ≤ ‖xT

i (β̂ − β0)‖2,n + ‖xT
i {β̂(2m) − β̂}‖2,n.

For an integer k ≥ 2, ‖β̂(km) − β̂(km−m)‖0 ≤ m and β̂ − β̂(2m) =
∑

k≥3{β̂(km) − β̂(km−m)}.
Moreover, given the monotonicity of the components,

‖β̂(km+m) − β̂(km)‖ ≤ ‖β̂(km) − β̂(km−m)‖1/m1/2.
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Then

‖xT
i {β̂ − β̂(2m)}‖2,n = ‖xT

i

∑
k≥3{β̂

(km) − β̂(km−m)}‖2,n ≤
∑

k≥3‖x
T
i {β̂(km) − β̂(km−m)}‖2,n

≤ {φxmax(m)}1/2
∑

k≥3‖β̂
(km) − β̂(km−m)‖ ≤ {φxmax(m)}1/2

∑
k≥2‖β̂

(km) − β̂(km−m)‖1/m1/2

= {φxmax(m)}1/2‖β̂ − β̂(m)‖1/m1/2 ≤ {φxmax(m)}1/2‖β̂ − β0‖1/m1/2,

where the last inequality follows from the arguments used to show the first result. �
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