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Abstract

We show that a standard linear triangular two equation system can be point iden-
tified, without the use of instruments or any other side information. We find that
the only case where the model is not point identified is when a latent variable that
causes endogeneity is normally distributed. In this non-identified case, we derive the
sharp identified set. We apply our results to Acemoglu and Johnson’s (2007) model of
life expectancy and GDP, obtaining point identification and comparable estimates to
theirs, without using their (or any other) instrument.

1 Introduction

Consider a standard linear triangular structural model

Y = X ′b1 + ε1 (1)

W = γY +X ′b2 + ε2 (2)

for some endogenous variables Y and W , exogenous covariates X, and unobserved errors ε1

and ε2. For example, W could be a worker’s wages or earnings and Y could be her level of
schooling. Or, as in our later empirical application, W could be a country’s GDP growth
and Y a health measure like growth in life expectancy. The primary goal is identification of
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https://sites.google.com/bc.edu/arthur-lewbel/ Susanne Schennach acknowledges support from NSF grant
SES-1950969. Vincent Starck is gratefully acknowledged for valuable comments.
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γ, the direct causal effect of Y on W , though we will also obtain identification of b1, b2, and
the joint distribution of the errors.1

The main obstacle to identification and estimation of γ is that ε1 and ε2 may be correlated,
because both depend on a common unobserved U (ability in the case of schooling and wages,
technology in the case of GDP and health). That is, in its simplest form,

ε1 = U + V and ε2 = βU +R (3)

where U , V , and R are unobserved, mutually independent (conditional on X) random vari-
ables and β is a constant. After projecting off covariates X, the V and R errors represent
idiosyncratic shocks to Y and W , while U is what makes Y an endogenous regressor in the
W equation.

Similar triangular structural models arise whenever we have one variable Y affecting
another variable W , and a common unobservable that affects them both. For example,
consider a two period dynamic model with autocorrelated errors. In this case W equals Y
in a subsequent time period, and U represents the autocorrelation in the errors. Another
example is production, where W could be a firm’s value-added output per unit of capital, Y
is the firm’s labor per unit of capital, and U is unobserved entrepreneurship, which affects
both productivity and the chosen level of inputs.

Such models are traditionally identified in econometrics by finding an instrument, i.e., a
variable that correlates with Y but not ε2, or equivalently, a variable that correlates with
V but not U or R. However, such instruments can be difficult to find. For example, Card
(1995, 2002) and others propose using measures of access to schooling, such as distance to or
cost of colleges in one’s area, as wage equation instruments, while others raise objections to
the validity of these instruments, e.g. Carneiro and Heckman (2002). Other wage equation
instruments may raise fewer questions of validity but can be weak, like Angrist and Krueger’s
(1991, 2001) quarter of birth instruments.

Similarly, Acemoglu and Johnson (2007) propose using changes in predicted mortality,
constructed based on innovations in health care, as an instrument for life expectancy growth
Y in their regression of GDP growth W on Y . However, such health innovations could be
correlated with other technological advances that increase GDP, leading to instrument in-
validity. Comparable questions can be raised regarding the instruments or identifying side
information in other similar studies, such as Aghion, Howitt, and Murtin (2010), who find
a positive γ, in contrast to Acemoglu and Johnson’s (2007) negative γ. Ecevit (2013) sum-
marizes results from eleven similar studies, finding estimates of γ that range from strongly
negative to insignificant to strongly positive. This range of estimates raises serious questions
regarding the validity of instruments or other side information that different authors use to
identify γ.2

Rather than propose any new instrument, we address the more fundamental question of
whether and when this model can be point identified and estimated without side information
such as instruments whose validity can be hard to ascertain (noting that the alternative

1Throughout this paper we focus on the traditional homogeneous effects model where γ is a constant,
rather than a heterogeneous treatment effects model.

2Of course, differences are also due to variation in data sets and in how Y and W are defined and
constructed. As another way to explain these differing results, Cervellati and Sunde (2011) suggest that the
true effect might be non-monotonic.
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of a randomized experiment is not feasible for a macro question like this). If so, then we
can estimate the model without relying on side information, and/or test the validity of side
information like instruments via overidentification tests.

We provide conditions for point identification of the model

Y = U + V (4)

W = γY + βU +R (5)

with U , V , and R being unobserved, mutually independent random variables with unknown
distributions. The same identification theorem can then be applied conditioning on covariates
X, to show point identification of more general models, because the entire distributions of U ,
V , and R could depend nonparametrically on X. A special case of this general identification
result is then identification of equations (1), (2) and (3). In this special case, variables V
and R that depend nonparametrically on X in equations (4) and (5) are instead replaced
with X ′β1 + V and X ′β2 +R, where these new V and R do not depend on X.

Our main result is surprising: under minimal regularity assumptions, the coefficients γ
and β, and the distributions of U , V , and R (and b1 and b2 in that model) are all point
identified without instruments or other side information, unless either U or V is normally
distributed (after appropriately conditioning on or projecting off covariates X).

In addition to proving this general identification result, we also: 1. Provide a few low
order moments yielding simple GMM estimators of the model, 2. Show how infinitely many
additional moments conditions can be systematically constructed to provide identification
under weaker conditions, 3. Provide the sharp identified set for the coefficients γ and β in
the case where either U or V is normal and hence point identification fails, 4. Investigate
the behavior of these GMM estimators in some Monte Carlo exercises, and 5. Provide
an empirical application where we establish that our identification and estimation strategy
is viable even with a very small sample size. Specifically, we estimate the Acemoglu and
Johnson (2007) model without using any instruments, and obtain estimates that are very
similar to what they found with their instrument.

The identification of equations (4) and (5) without instruments has been previously con-
sidered by Rigobon (2003), Klein and Vella (2010), and Lewbel (2012), but these results
neither nest nor are nested by ours because they require that the errors be heteroskedas-
tic, and identification is obtained by imposing varying restrictions on the structure of that
heteroskedasticity.3

A number of special cases of our results do appear in the literature, but all of them assume
γ = 0, and so they omit the most important feature of the model in applications like ours.
Kotlarski (1967) is the special case of our model where it is known that γ = 0 and β = 1,
and in that case Kotlarski’s Lemma shows that point identification of the distribution of
all the latent variables holds even under normality. Similarly, Reiersøl (1950) uses a special
case of our model where it is known that γ = 0 and Y plays the role of a measurement of U
contaminated by an error V and establishes conditions under which β would be identified.
As noted in Lewbel (2020), with γ = 0 and Reiersøl’s identification of β, one could rewrite

3Rigobon(2003) and Klein and Vella (2010) impose different parametric restrictions on the error variances,
while Lewbel (2012) imposes a nonparametric restriction.
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Reiersøl’s model as Y = U + V and W/β = U +R/β, and then apply Kotlarski’s lemma to
the joint distribution of Y and W/β to identify the distributions of U , V , and R.4

Our results, showing necessary and sufficient conditions to identify the more general
model of equations (4) and (5) with unknown nonzero γ, turns out to be a difficult extension.
In particular, the methods of proof used by Reiersøl (1950) and Kotlarski (1967) do not
extend to our problem. Moreover, due to the presence of γ, the condition our model requires
for point identification (non-normality of both U and V ) turns out to be much simpler than
Reiersøl’s (1950) condition, which depends on the concept of factors of a distribution (this
comparison is discussed in detail later).

In section 2, we provide a few simple moments that will often suffice to point identify our
model, and can be used to construct a correspondingly simple GMM estimator. In Section
3, we present our general identification results, including constructing more moments like
those in Section 2, and showing that, with minimal regularity, the model is point identified
as long as both U and V are not normal. In sections 4 and 5 we derive the sharp identified
set when either U or V is normal, and derive some inequalities regarding our model relative
to ordinary least squares. Section 6 provides a Monte Carlo analysis of our simple GMM
estimators. In section 7 we provide an empirical application based on Acemoglu and Johnson
(2007), in which we obtain estimates comparable to theirs, without using their (or any other)
instrument. Section 8 concludes with some suggestions for further work.

2 Simple Identification and Estimation

We begin with a simple special case of our general results, by providing some moments
that can easily be used to identify and estimate (by standard GMM) the models described
in the introduction. These results are not as general as our main identification theorem, but
are likely to suffice for many empirical applications.

We first consider identification and estimation of equations (4) and (5) without covariates
X, and then we extend the results to equations (1) and (2).

Assumption 1 We observe the joint distribution of two real valued, nondegenerate random
variables Y and W .

With data, we could assume independent, identically distributed observations of Y and
W , and then identify their joint distribution to satisfy Assumption 1 using the Glivenko
Cantelli theorem.

4A special case of non-normality is when the components U and V are asymmetric. Lewbel (1997)
and Erickson and Whited (2002) exploit asymmetry to construct simple estimators for the Reiersøl (1950)
model. Other papers propose estimators for models like equations (4) and (5) with γ = 0, by assuming that
coefficients like β are point identified using higher moments, but without explicitly characterizing when that
is possible. Examples include Bonhomme and Robin (2010), Fruehwirth, Navarro, and Takahashi (2016),
and Navarro and Zhou (2017). Generalizations of Kotlarski’s lemma to models with more components (but
again still assuming γ = 0) include Székely and Rao (2000) and Li and Zheng (2020). A nonlinear extension
of Reiersøl (1950) is Schennach and Hu (2013).
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Assumption 2 The unobserved real valued random variables U , V , and R are mean zero
and mutually independent, with unknown distributions.

Assumption 3 R has finite variance, and U and V each have finite fourth moments.

Assumption 4 The unknown constants γ and β are real valued, finite, and β > 0.

We can assume our data Y and W have been demeaned, rationalizing the assumption
that the unobservables have mean zero. To see why we need a sign restriction on β, observe
that we can rearrange equations (4) and (5) to get W = (γ + β)Y − βV +R, which, except
for the sign of β, is observationally equivalent to the original model, switching the roles of V
and U . Usually, the sign of β should be clear from the economics of the application, e.g., in
a returns to schooling model, β > 0 is a natural assumption, since it says that unobserved
ability that increases (decreases) education outcomes will increase (decrease) wages. If we
instead believed β was negative, we could just replace Y with −Y everywhere to make β
positive (redefining γ, U , and V accordingly).

We also rule out β = 0, because if β = 0 then trivially we could not separately identify
V and U . Moreover, having β = 0 would be nonsensical in the types of applications we
consider, since it would mean that Y is exogenous, making identification and estimation of
γ trivial.

Substituting equation (4) into equation (5) gives the reduced form expression for W

W = γV + αU +R with α = γ + β (6)

The following Lemma provides two moments that can often suffice to point identify γ and
α, which then trivially also point identifies β.

Lemma 1 Let Assumptions 1-4 and equations (4) and (5) (and therefore also equation 6)
hold. Then

E [(W − γY ) (W − αY )Y ] = 0 (7)

cov
[
(W − γY ) (W − αY ) , Y 2

]
= 2E

(
WY − γY 2

)
E
(
WY − αY 2

)
(8)

Proofs are all in Appendix A. The proof of Lemma 1 works by substituting W − γY =
βU + R and W − αY = −βV + R into equations (7) and (8), and then uses the mutual
independence of U , V , and R to verify that these equations hold.

Lemma 1 provides two equations in the two unknowns α and γ. If we solve the first
equation for α and substitute that into the second, we obtain a quadratic in γ. The sign
restriction that β > 0 then determines which root is the correct one for γ.

We later provide the formal conditions under which these two equations suffice to point
identify α and γ. The main condition, derived in Theorem 1 below, is equation (21). Equa-
tion (21) shows that the main cases in which equations (7) and (8) by themselves fail to
provide point identification are when U and V have the exact same distribution, or when
both are symmetrically distributed, or if either U or V is normally distributed. We later
show that infinitely many additional equations in α, γ, Y and W can be constructed, based
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on higher moments of Y and W than those used in Lemma 1. These higher moments can
help identify α and γ in applications where Lemma 1 does not suffice.

A simple estimator for α and β can be constructed by rewriting equations (7) and (8) as
moment conditions, and applying standard method of moments or GMM. One can immedi-
ately check that these equations take the form

E
(
YW − µyw

)
= 0, E(Y 2 − µyy) = 0 (9)

E [(W − γY ) (W − (γ + β)Y )Y ] = 0 (10)

E
[
(W − γY ) (W − (γ + β)Y )

(
Y 2 − µyy

)
− 2

(
µyw − γµyy

)
(W − (γ + β)Y )Y

]
= 0 (11)

where µyw = E (YW ) and µyy = E (Y 2). The parameters µyw and µyy are estimated along
with γ and β by putting equations (9), (10), and (11) into any standard GMM estimation
routine. One could replace β with eb in these equations to impose the sign restriction that
β > 0.

Lemma 1 uses up to fourth moments of the data. Based on results derived in the next
section, in Appendix B we provide additional equations (using up to fifth moments) that can
provide overidentification of γ and β, or point identification in some cases where Lemma 1
does not suffice.

Let σ2
U , σ2

V , and σ2
R denote the variances of the error components U , V , and R. It may

be of economic interest to estimate these variances, to identify how much of the variance
of the model errors is due to unobserved ability U versus the idiosyncratic components
V and R. From the model we have E ((W − γY )Y ) = βσ2

U , E (Y 2) = σ2
U + σ2

V , and
E
(
(W − γY )2) = β2σ2

U + σ2
R, which implies

σ2
U = E ((W − γY )Y ) /β, σ2

V = E
(
Y 2
)
− σ2

U , σ2
R = E

(
(W − γY )2)− β2σ2

U (12)

Given estimates of β and γ, we can replace the expectations in equation (12) with sample
averages to estimate these variances.

Alternatively, we can estimate these variances jointly with the model parameters by
observing that

µyy = σ2
U + σ2

V , µyw = βσ2
U + γ

(
σ2
U + σ2

V

)
. (13)

So, in equations (9), (10), and (11) we can replace µyy and µyw with their expressions in
equation (13), and apply GMM using those equations along with the additional equation

E
(
(W − γY )2 − β2σ2

U − σ2
R

)
= 0 (14)

to simultaneously estimate β, γ, σ2
U , σ2

V , and σ2
R. We can further replace σ2

U with σ2
U = eτU

and similarly for σ2
V and σ2

R, to impose the constraint that variances are positive. See
Appendix B for details on these moments.

Higher moments of U , V , and R can be estimated analogously. Alternatively, as discussed
later, once we have have identified and estimated β and γ, we can apply Kotlarski’s Lemma
to recover the entire distributions of U , V , and R.

We can also easily extend this identification and associated estimation to allow for co-
variates. Suppose we have the model

Y = b′1X + U + V (15)
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W = γY + b′2X + βU +R (16)

where X is exogenous and is therefore uncorrelated with U , V , and R. The reduced form
for W is now

W = (γb1 + b2)′X + (γ + β)U + γV + r

So we can estimate the coefficient vectors b1 and b2 along with γ and β by replacing Y and
W in equations (9), (10), and (11) with Y − b′1X and W − (γb1 + b2)′X, respectively and
estimate those moments along with the moments

E
((
W − (γb1 + b2)′X

)
X
)

= 0, E ((Y − b′1X)X) = 0 (17)

The complete set of moments for estimating this model via GMM, which we use in our
empirical application, is provided in Appendix B.

3 General Point Identification

We now provide a more general and systematic analysis of the identification of our model,
using more information than the low order moments of Lemma 1. We provide four main
results. First, we show that it is possible to construct infinitely many moments like those
of Lemma 1, which can be used to construct simple GMM estimators, and we give the
conditions under which these moments point identify the coefficients α and γ (equivalently,
β and γ). Second, we apply Kotlarski’s lemma to point identify the distributions of U , V ,
and R given point identification of α and γ. Third, we demonstrate that, using the entire
joint distribution of Y and W (instead of just some moments) the only case where point
identification is not possible is when U or V (or both) are normal. Finally, in the not point
identified case, we fully characterize the sharp identified set.

We make extensive use of the characteristic function and its logarithm. Knowing the
(log) characteristic function of a vector of random variables is equivalent to knowing the
joint distribution of those variables (Theorem 3.1.1 in Lukacs (1970)).

Definition 1 Given two random variables Y and W , let φY,W (ζ, ξ) ≡ E
[
eiζY+iξW

]
de-

note their joint characteristic function. Similarly for a single random variable, let φY (ζ) ≡
E
[
eiζY

]
. Moreover, let ΦY,W (ζ, ξ) ≡ lnφY,W (ζ, ξ) and ΦY (ζ) ≡ lnφY (ζ) denote log char-

acteristic functions (which are also called cumulant generating functions).

Definition 2 Given two random variables Y and W , define the cumulant of order k, `
(Lukacs (1970), p. 27) as

Φk,`
Y,W ≡

[
∂k+`ΦY,W (ζ, ξ)

ik+`∂ζk∂ξ`

]
ζ=0,ξ=0

.

Similarly for a single random variable, define the cumulant of order k as

Φk
Y ≡

[
∂kΦY (ζ)

ik∂ζk

]
ζ=0

.
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All cumulants can be expressed in terms of standard moments, as obtained by an explicit
differentiation of the log characteristic function and by exploiting the characteristic function

moment theorem (e.g. E
[
Y k
]

=
[
∂kφ(ξ)

ik∂ξk

]
ξ=0

)5. Also note that the joint and marginal

characteristic functions as well as the corresponding cumulants are directly related, e.g.,
φY (ζ) = φY,W (ζ, 0), ΦY (ζ) = ΦY,W (ζ, 0) and Φk

Y = Φk,0
Y,W .

With these tools in hand, we are ready to state a general identification result based on
moment constraints. As in Lemma 1, we start by rewriting the model of equations (4) and
(5) in the reduced form of equations (4) and (6), and focus on the parameters α and γ.

Theorem 1 Let Assumptions 1, 2, and Equations (4) and (6) hold. Assume −∞ < γ <
α <∞ and let

Mp (α, γ) ≡ Φ1+p,2
Y,W − α2Φ3+p

Y − (γ + α)
(
Φ2+p,1
Y,W − αΦ3+p

Y

)
. (18)

Let q, q̃ ∈ N ≡ {0, 1, . . .} with q < q̃. If E
[
|U |q̃

]
, E

[
|V |q̃

]
and E

[
|R|q̃

]
exist and

Φ3+q̃
Y Φ2+q,1

Y,W 6= Φ3+q
Y Φ2+q̃,1

Y,W (or, equivalently, if Φ3+q̃
U Φ3+q

V 6= Φ3+q̃
V Φ3+q

U ), then the moment con-
straints

Mq (α, γ) = 0 (19)

Mq̃ (α, γ) = 0 (20)

point identify the parameters of the model as (α, γ) = (α+, α−), where

α± =
F 3012

2F 3021
±

√(
F 3012

2F 3021

)2

+
F 1221

F 3021

and where F abcd ≡ Φa+q̃,b
Y,W Φc+q,d

Y,W − Φa+q,b
Y,W Φc+q̃,d

Y,W .

The proof, provided in Appendix A, proceeds by a judicious choice of cumulants of (Y,W )
that do not depend on cumulants of R, and by exploiting the fact that cumulants of (Y,W )
of order k, ` that share the same value of k+ ` involve the same cumulants of U and V with
prefactors that only differ in how they depend on α and γ. These observations then lead to
specific functions of cumulants that can be analytically solved for α and γ.

Note that if we had assumed β < 0 instead of β > 0, then the same Theorem would hold
except that now α and γ would be point identified by (α, γ) = (α−, α+). We next formally
show that Theorem 1 contains Lemma 1 as a special case.

Corollary 2 The assumptions of Theorem 1 with q = 0 and q̃ = 1 imply that the assump-
tions of Lemma 1 hold. Equations (19) and (20) in Theorem 1 with q = 0 and q̃ = 1 are
equivalent to equations (7) and (8) in Lemma 1.

5For high-order cumulants, these otherwise tedious algebraic manipulations could be handled with sym-
bolic algebra packages.
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Equations (9), (10), and (11), used for GMM estimation of α and γ, were obtained by
converting equations (7) and (8) into moments suitable for GMM. Equivalently, equations
(9), (10), and (11) could have been directly derived from M0 (α, γ) = 0 and M1 (α, γ) = 0.
This is done explicitly in the proof of Corollary 2.

As noted above, all cumulants can be expressed in terms of standard moments, specifi-
cally, cumulants equal sums of products of moments. To fit within a GMM framework, the
cumulants in the expressions Mp (α, γ) = 0, after being converted to functions of moments,
must be linearized. This is done by introducing nuisance parameters. To illustrate, the
cumulant Φ4

Y appears in the equation M1 (α, γ) = 0. Now Φ4
Y equals E [Y 4] − 3 [E (Y 2)]

2
,

so, e.g., to convert the expression Φ4
Y = c into a form suitable for GMM, we rewrite this

expression as E [Y 4 − 3Y 2µY Y − c] = 0 and E [Y 2 − µY Y ] = 0, using the nuisance parameter
µY Y that was introduced in the previous section.

Theorem 1 shows that one can obtain any number of additional, potentially overiden-
tifying, moments to use for GMM estimation, based on the fact Mp (α, γ) = 0 holds for
any nonnegative integer p (as long as the associated moments of U , V , and R exist). We
illustrate this in Appendix B, where, in addition to the moments based on Lemma 1, we
provide the additional moments suitable for GMM estimation that are obtained from p = 2.
In our later Monte Carlo simulations and empirical application, we provide results using the
exactly identifying set of GMM moments based on p = 0 and 1, and also using the generally
over identifying set of GMM moments based on p = 0, 1 and 2.

Theorem 1 provides explicit conditions under which any pair of cumulant functions
Mq (α, γ) = 0 and Mq̃ (α, γ) = 0 suffice to identify the parameters α and γ. In particu-
lar, point identification based on the moments in Lemma 1, corresponding to M0 (α, γ) = 0
and M1 (α, γ) = 0, requires that Φ4

UΦ3
V 6= Φ4

V Φ3
U , or equivalently(

E
(
U4
)
− 3

[
E
(
U2
)]2)

E
(
V 3
)
6=
(
E
(
V 4
)
− 3

[
E
(
V 2
)]2)

E
(
U3
)

(21)

which is violated, for instance, if either U or V is normal, or if both U and V are symmetric,
or if both U and V have the exact same distribution. If we add the additional moments
corresponding to M2 (α, γ) = 0, then point identification only requires that at least one of
the inequalities Φ4

UΦ3
V 6= Φ4

V Φ3
U , Φ5

UΦ3
V 6= Φ5

V Φ3
U , or Φ5

UΦ4
V 6= Φ5

V Φ4
U , hold. For example, if

the second of these holds then Theorem 1 applies with q = 0 and q̃ = 2. If more than one of
these inequalities holds, then we are generally overidentified.

Once the parameters α and γ have been identified, the full distribution of all unobserv-
ables can be determined under the following Assumption.6

Assumption 5 The characteristic functions of U, V and R are nonvanishing on the real
line.

Corollary 3 If Assumptions 1, 2, 5 and Equations (4) and (6) hold, E [|Y |] < ∞ and if
α, γ are point identified, then the distributions of U , V and R are point identified from the

6This can be relaxed to nonvanishing everywhere, except at isolated points, under slightly stronger mo-
ment existence conditions; see Schennach (2000) and Evdokimov, K. and H. White (2012).
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joint distribution of Y and W through

ΦV (ξ) =

∫ ξ

0

E
[
iY eiζ

W−αY
γ−α

]
E
[
eiζ

W−αY
γ−α

] dζ (22)

ΦU (ζ) = ΦY (ζ)− ΦV (ζ)

ΦR (ξ) = ΦW (ξ)− ΦU (αξ)− ΦV (γξ) .

A more explicit expression for the distributions of these unobserved variables can be
obtained by an inverse Fourier transform. For instance, if V admits a density, it is given by

fV (v) = (2π)−1

∫ ∞
−∞

exp (ΦV (ξ)) e−iξvdξ (23)

and similarly for the other densities. More general distributions (e.g. discrete and/or sin-
gular) can be recovered as well, if equation (23) is interpreted in the appropriate measure
theoretic sense.

Although Theorem 1 is quite general, it does require the condition Φ3+q̃
U Φ3+q

V 6= Φ3+q̃
V Φ3+q

U

to deliver identification, so it is natural to ask whether this is fundamentally necessary. It is
in fact possible to formulate an estimation strategy that relaxes this condition. For instance,
as discussed above, one could stack the moment conditions of the form (19) and (20) obtained
with different values of (q, q̃). The resulting moment conditions would only fail to identify
(α, γ) if the condition Φ3+q̃

U Φ3+q
V 6= Φ3+q̃

V Φ3+q
U fails simultaneously for all the choices of q and

q̃ considered.
An even more general strategy could be to start from the fundamental relationships

between the log characteristic functions of the observables and unobservables (ΦY,W (ζ, ξ) =
ΦU (ζ + αξ) + ΦV (ζ + γξ) + ΦR (ξ)) and cast identification as an optimization problem that
minimizes deviations between the observed and predicted quantities:

(α, γ,ΦU ,ΦV ,ΦR) (24)

= arg min
(α,γ,ΦU ,ΦV ,ΦR)

∫ ∞
−∞

∫ ∞
−∞
|ΦU (ζ + αξ) + ΦV (ζ + γξ) + ΦR (ξ)− ΦY,W (ζ, ξ)|2 dξdζ,

subject to zero mean constraints (Φ′U (0) = 0,Φ′V (0) = 0,Φ′R (0) = 0) and that (ΦU ,ΦV ,ΦR)
be valid log characteristic functions. This approach circumvents requiring existence of the

moments E
[
|U |q̃

]
, E
[
|V |q̃

]
and E

[
|R|q̃

]
. However, the introduction of nuisance functions

(ΦU ,ΦV ,ΦR) would complicate estimation, as these would have to be parameterized by series
or other expansions to construct a corresponding sieve estimator.

The question remains, do there exist situations where neither this nor any other estimator
can consistently estimate the model, due to lack of point identification? The following
theorem fully addresses this question, by showing that there exist cases that are not point
identified. However, all such cases are when U or V (or both) are normal.

This differs from, and is simpler than, Reiersøl’s (1950) well-known result in linear univari-
ate errors-in-variables models, where the nonidentified cases arise when the model contains
normal factors (see below). However, the required methods of proof differ significantly. For
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instance, the presence of two slope parameters α and γ (instead of one), and the presence
of both latent variables U and V in both equations of the model, prevents us from using
Reiersøl’s proof method, which is based on the fact that two functions of different variables
that are equal to each other must be constant. In our case, we have sums of many different
functions of different variables on each side of an equality, and possible cancellation between
terms that complicates the argument significantly. Also, Reiersøl’s approach heavily relies
on the concept of factors of a distribution, while we show that this abstract concept does
not affect the analysis of point identification of our model. We will, however, return to this
concept when we later construct identified sets in the not point identifed case.

Assumption 6 E
[
|U |3

]
, E
[
|V |3

]
, E
[
|R|3

]
are finite.

Theorem 4 Let Assumptions 1, 2, 5, 6 and Equations (4) and (6) hold and assume that
−∞ < γ < α < ∞. If neither U nor V are normally distributed, then α, γ are uniquely
determined by the joint distribution of Y and W by Equation (24).

In the next section, we address what happens when either U or V (or both) are normally
distributed.

4 Set Identification

In the case where Theorem 4 does not apply, so that the parameters are not point
identified, the objective function of Equation (24) is maximized over a set rather than at a
single point. In order to precisely characterize this identified set, we first need to introduce
the notion of factor, which is used by Reiersøl (1950) and by Schennach and Hu (2013).

Definition 3 If a random variable Z can be decomposed as Z = Z1 + Z2 where Z1 and Z2

are independent, then Z1 and Z2 are called factors of Z. (The term factor can also be used
to refer to the distributions of these variables.)

While for given characteristic functions φZ1
(ξ) and φZ2

(ξ), we automatically have that
φZ (ξ) = φZ1

(ξ)φZ2
(ξ) by the convolution theorem, the notion of factor embodies the fact

that, if one is instead given the two characteristic functions φZ (ξ) and φZ1
(ξ), it is not

automatic that there exists a random variable Z2 with characteristic function φZ2
(ξ) =

φZ (ξ) /φZ1
(ξ). The inverse Fourier transform of φZ2

(ξ), may not actually yield a proper
probability measure (it could assign negative weights to some sets, for instance).

Next we consider what it means for a random variable to have a normal factor.

Lemma 2 Let Z be an observed zero mean random vector. Then Z admits a unique decom-
position into two unobserved zero mean independent factors

Z = Zg + Zn, (25)

where Zg is Gaussian with variance Λ̄ and Zn has no Gaussian factors. Furthermore, the
variance of Zg is determined (from the observed distribution of Z) from the unique Λ̄ such
that

Λ̄− Λ is positive semidefinite ⇐⇒ φZ (ξ) exp (ξ′Λξ/2) is a characteristic function.

(Note that either Zg or Zn or both could be zero.)

11



Intuitively, Lemma 2 indicates that the decomposition into a Gaussian and a non-
Gaussian factor can, in principle, be found by attempting to deconvolve Z by a Gaussian of
variance Λ and seeking the “largest” (in a positive definite sense) possible Λ that will still
yield a proper distribution. In Fourier representation, this amounts to dividing φZ (ξ) by
exp (−ξ′Λξ/2) and checking if the result is a valid characteristic function (e.g., by verifying if
the inverse Fourier transform is a nonnegative measure). An alternative check for the valid-
ity of a given function φ (ξ) to be a valid characteristic function can be based on Bochner’s
Theorem (Theorem 4.2.2 in Lukacs (1970): φ is a characteristic function iff

n∑
i=1

n∑
j=1

cic
∗
jφ
(
ξi − ξj

)
≥ 0 for all c1, . . . , cn ∈ C for all ξ1, . . . , ξn ∈ R for all integer n ≥ 1

(Bochner’s Theorem also includes the conditions that φ (ξ) be continuous and φ (0) = 1 but
these are automatically satisfied in our context.)

Using Lemma 2, we can decompose the observed Z = (Y,W ) into Gaussian (g) and
non-Gaussian (n) factors

(Y,W ) = (Yg,Wg) + (Yn,Wn) (26)

This decomposition can be accomplished without the knowledge of α or γ. The non-Gaussian
or Gaussian nature of the two factors is important in our context, because it is associated
with the features that can or cannot be point-identified. This type of decomposition is not
a purely theoretical construct; it can be empirically implemented. Independent Component
Analysis techniques, which are widely used in signal processing, (see Hyvärinen and Oja
(2000) for a review) specifically rely on such decompositions into Gaussian and non-Gaussian
components.

Define

Bs =
E [WsYs]

E [Y 2
s ]

(27)

Ds =
E [W 2

s ]E [Y 2
s ]− (E [WsYs])

2

(E [Y 2
s ])2 ≥ 0 (28)

where the subscript s is either set to “g”, or to “n”, or is removed. We can now state our
set-identification theorem:

Theorem 5 Let Assumptions 1, 2 and Equations (4) and (6) hold and assume that E [Y 2],
E [W 2], E [R2] <∞ and that −∞ < γ < α <∞. Then, the following bounds (illustrated in
Figure 1) are sharp:

1. If both U and V are Gaussian (and E [Y 2] > 0), then

α ≥ Bg (29)

Bg −
Dg

α−Bg

≤ γ ≤ Bg. (30)
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This looser bound is also related to the measurement error bounds in Frisch (1934). If one
is willing to rely on this relaxed bound, then a simple GMM estimator for the resulting
identified set could be obtained based on the moment conditions

E
[
α2σ2

U + γ2
(
Y 2 − σ2

U

)
+ σ2

R −W 2
]

= 0 (35)

E
[
ασ2

U + γ
(
Y 2 − σ2

U

)
− YW

]
= 0 (36)

while optimizing over α, γ, σ2
U , σ

2
R, subject to the constraints γ < α (equivalent to β > 0),

σ2
U ≥ 0 and σ2

R ≥ 0. These moment conditions are obtained from Equations (64) and (63)
in the proof of Theorem 5, without extracting the Gaussian parts. The bounds of Corollary
6 are also obeyed in the case of point identified models, since they are obtained solely from
positive variance considerations that must always be satisfied. This implies that, if one is
unsure whether Y is normal or not, the moment conditions (35) and (36) could be stacked
with the ones of Theorem 1 to yield an estimator that is robust to loss of point identification.7

5 Ordinary Least Squares

It is instructive to analyze in more detail how the parameters of our model relate to the
slope coefficient of a naive OLS regression (in the population limit). The coefficient B given
by Equation (27) is the slope coefficient of the least-square regression of W on Y (in the
population limit). Regardless of whether the model is point identified or not, an implication
of the model (i.e., of equations (4) and (5)) is that B always lies between γ and α. This can
be immediately verified by observing that

B =
E [YW ]

E [Y 2]
=
E [(U + V ) (αU + γV )]

E
[
(U + V )2] =

αE [U2] + γE [V 2]

E [U2] + E [V 2]
= αλ+ γ (1− λ) (37)

where λ = E [U2] / (E [U2] + E [V 2]) and so lies between zero and one. So in particular, if
β > 0 we get γ ≤ B ≤ α.

This type of inequality has been noted before in the context of estimating returns to
education (e.g. by Card (2001), in a more detailed model that allows for some individual
heterogeneity). In particular, in the returns to schooling context, we would expect both β
and γ to be positive (because unobserved ability U should affect schooling Y and wages W in
the same direction, and increased schooling should increase wages). By the above analysis,
this in turn means that we would expect 0 < γ ≤ B.

However, as noted by Card (2001), most returns to schooling empirical applications
yield estimates of γ, using instrumental variables methods, that are greater than B, which
contradicts this inequality and hence also contradicts the model. One possible explanation for
this contradiction is that, in the returns to schooling context, Y may also contain significant
measurement error. Standard attenutation bias under classical measurement error implies
that the ordinary least squares coefficient B is biased towards zero relative to γ, which if
0 < γ would imply B < γ. If the model is correct for returns to education, but in addition Y
is mismeasured, then B could be either larger or smaller than γ, depending on the relative
magnitude of the measurement error.

7In this case the maximizing estimands could be sets rather than points, requiring nonstandard inference.
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6 Monte Carlo

To assess the finite sample performance of our simple GMM estimators, we generate data
from the model of equations (4) and (5) without covariates. All of our designs are chosen to
satisfy equation (21), so the model is point identified just from the moments in Lemma 1.8

The true values of the coefficients are γ = β = 1. It is widely recognized that estimators based
on higher moments can behave poorly with small sample sizes, so to see if our estimators
suffer from these issues, we work with relatively small sample sizes of n = 100 and n = 400.

We generate 5, 000 replications of four different designs. In design 1, U is log normal
while V and R are each standard Gumbel. In design 2, U is log normal while V and R are
uniform. We then reverse these, making U Gumbel and V and R log normal in design 3, and
making U uniform with V and R log normal in design 4. For each design, we report results
using two different estimators. The exactly identified estimator is GMM using moments
corresponding to Lemma 1, given by equations (74), (75), and (76) (without covariates, so

Ỹ = Y and W̃ = W ). The over-identified estimator is GMM using these same equations,
plus equations (78) and (79).

Tables 1 to 4 report results from designs 1 to 4, respectively. Each Table has four panels,
corresponding to the two different GMM estimators, each with the two different sample
sizes. We report estimates of γ, β, the error component variances σ2

U , σ2
V , and σ2

R, and,
when over-identified, µWW . Reported summary statistics of each parameter estimate across
the simulations are the mean (MEAN), the standard deviation (SD), the 25% quantile (LQ),
the median (MED), the 75% quantile (UQ), the root mean squared error (RMSE), the mean
absolute error (MAE), and the median absolute error (MDAE).

Some general tendencies stand out in these simulations. First, consider the trade off
between the exactly identified vs over identified estimators. The latter uses more information,
but that information takes the form of up to fifth order moments, which can be noisy and
more sensitive to outliers. In general we find that the overidentified estimator performs
better than the exactly identified estimator, particularly at the larger sample size.

The primary parameter of interest, γ, tends to be estimated reasonably precisely in all
of the designs, with most RMSEs in the range of .3 to .7. In contrast, β is generally much
less precisely estimated, often having much larger RMSEs (except in design 2). Estimates
of the variances σ2

U , σ2
V , and σ2

R, are mostly similar to each other, usually being less precise
than γ but more than β. The estimate of µWW is noisier, since it only appears in the highest
order moment equations of the over identified model. The designs where U was log normal
(designs 1 and 2) generally had more accurate estimates than the other designs. We conclude
that our estimator performs reasonably well even with rather small sample sizes.

7 GDP and Life Expectancy

There is a long literature studying the causal effect of health on economic growth.
Examples include Acemoglu and Johnson (2007) (which we will hereafter refer to as AJ),

8In particular in all of our designs, U and V have different, non-normal distributions, and at least one is
asymmetically distributed. U , V , and R are also mutually independent and centered at mean zero.

15



Well (2007), Lorentzen, McMillan, and Wacziarg (2008), Aghion, Howitt, and Murtin (2010),
Cervellati and Sunde (2011), Ecevit (2013), Bloom, Canning, and Fink (2014), and Bloom,
Canning, Kotschy, Prettner, and Schünemann (2019).

Based on a neo-classical growth model, AJ estimate a model in the form of equations (1)
and (2), where Y is the change in the log of a country’s life expectancy at birth between
1940 and 1980, W is the change in that country’s log GDP in the same time span, and X is
either just a constant, or a constant and a measure of the country’s quality of institutions,
or a constant and GDP per capita in 1930. The main goal is estimation of γ, the coefficient
of Y in the W equation.

AJ observe that ordinary least squares estimation of the W equation is inconsistent,
because the health measure Y is endogenous, with improvements and investments in a coun-
try’s productive technology over time positively impacting both health outcomes and GDP.
This technology change corresponds to our unobserved factor U (with β > 0) in equations
(15) and (16), while V and R are the idiosyncratic shocks to health and economic outcomes,
respectively.

To deal with the endogeneity caused by U , AJ construct an instrument, called predicted
mortality, that combines each country’s 1940 mortality rates from specific diseases with a
set of global interventions that addressed those diseases. As noted in the introduction, one
may question the validity of such constructed instruments.

In Table 5, we replicate selected results appearing in Table 3 and Table 9 of AJ.9 Column
1 gives AJ’s ordinary least squares (OLS) estimates, while columns 2, 3, and 4 replicate
AJ’s estimates using two stage least squares (2SLS) with the above listed combinations
of covariates X, and using their predicted mortality instrument. AJ’s OLS estimate of γ
(corresponding to B in the previous section) is −0.813, while their 2SLS estimates of γ
are considerably larger in magnitude, ranging from −1.316 to −1.643. As we noted earlier,
having γ < B, as AJ find, is an implication of our model when β > 0. Note that the sample
size is quite small in this application, with only 47 countries. Nevertheless, AJ’s estimates
of γ are statistically significant.

Now suppose we had not observed predicted mortality, or we are uncertain of its validity
as an instrument. We can instead consider applying our GMM estimators. First, consider
the distribution of Y . Heuristically, if Y is close to normal, then it may be that U or V is
normal, which would prevent point identification of our model. Y has a skewness of 0.170 and
a kurtosis of 1.791, which is reasonably far from normal in terms of the low order moments
our GMM estimator is based on. The p-value of a Shapiro-Wilk test of normality of Y is
.02, and even lower if one tests the residuals after regressing Y on either of the covariates in
X. This suggests that the model could be point identified (at least ruling out both U and
V normal), so we attempt to apply our GMM estimators.

In Table 6, we report three sets of estimates. First are the columns labeled 2SLS1, 2SLS2,
and 2SLS3, which in Panel A are AJ’s estimates from Table 5. Next are columns labeled
GMM1, GMM2, and GMM3. These are GMM estimates of equations (15) and (16), which
do not make use of the predicted mortality instrument in any way. Specifically, these are
estimates based on the over-identifying set of moments given by equations (74) to (79) in

9Our data are provided by AJ. Life expectancy is from UN data sources and the League of Nation reports.
Pre-war GDP data are from Maddison (2003), and post-war data are from the UN. See AJ for details.
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Appendix B. The last three columns of Table 6 then give GMM estimates that use both our
over-identifying set of moments and the additional moment given by AJ’s instrument (as
discussed at the end of Appendix B).10

Panel A in Table 6 reports the main parameter of interest γ, and also reports b2, the
other covariate coefficients in equation (16). Our main takeaway from Panel A of Table
6 is that our estimates of γ are quite comparable to AJ’s. In GMM4 and GMM5, the
estimates of γ are −1.676 and −1.309, virtually the same range as AJ’s 2SLS estimates,
and are statisically significant. GMM6 gives an estimate of a higher magnitude −3.096, but
this estimate is statistically insignificant with a very large standard error, suggesting that
our higher moment based estimator is imprecise for this particular combination of covariates
and small sample size. The last three columns of Table 6, which combine both our moments
and the AJ instrument, give estimates very close to those of AJ, with somewhat smaller
standard errors, which is exactly what one would expect to see if both sets of moments are
valid and if AJ’s instrument is strong. In the bottom row of Table 6 we report Hansen’s
J-test; we do not reject validity of the joint set of overidentifying restrictions in any of the
GMM estimates.

Panels B and C of Table 6 provide the other estimated parameters of the model. Panel
C gives the estimated b1 coefficients from equation (15), while Panel B gives the estimates
of β and the estimated variances of our error components. β appears to be difficult to
precisely estimate, with large standard errors11. In the specifications where γ is statistically
significant, the variance of U (the source of endogeneity in the model) is much smaller than
the variances of the idiosyncratic components V and R, but very precisely estimated with
small standard errors.

Later tables have the same format as Table 6, providing additional results. In Table 7,
we re-estimate the model using the exactly identified set of moments from Lemma 1. As
expected with fewer moments, these estimates are less efficient, and turn out to be quite a bit
noisier than those of Table 6. GMM4, without covariates, is still reasonably comparable to
AJ with γ of −1.799, while now both GMM5 and GMM6 are insignificant and more variable.
The estimates combining these moments with AJ’s instrument behave as before.

In Table 8, we reestimate the models using a larger sample of 56 countries. This expanded
sample contains additional countries for which the data for life expectancy and GDP per
capita in 1940 and 1980 were available. AJ excluded these additional countries from their
analysis due to concerns about data quality. The estimates that do not include covariates,
2SLS1, GMM1 and GMM4, remain comparable to each other and to the earlier estimates,
but both the AJ and GMM model estimates that include covariates are more erratic in this
sample, presumably due to these data quality issues. All the estimates of γ in all the models
have a negative sign.

We conclude that, in all specifications where the standard errors were small enough to
yield statistically significant results, our estimates based on higher moments, without side
information, are very close to those obtained by AJ that required an instrument.

10These GMM models are estimated in Stata, using the vce(robust) option to compute standard errors.
11In contrast α is, like γ, much more precisely estimated, but apparently the difference β ≡ α−γ is harder

to pin down.
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8 Conclusions

We have shown that a standard linear triangular structural model is generally point
identified, without an instrument or other side information that is generally used to identify
such models. We illustrate the result with Monte Carlo simulations and in an empirical
application. Our application shows that, without using an instrument, GMM estimation
of moments based on the model yields estimates very close to those that were obtained by
previous authors using an instrument.

What makes point identification possible is the assumed error structure, which takes the
standard form of a scalar common component U in each equation, plus additional scalar
idiosyncratic components V and R. Possible goals for future work could include deriving
alternative estimators for the model (perhaps based directly on characteristic functions rather
than moments), extending the model to more equations, allowing the common component
U to affect outcomes nonlinearly, and extending the model to also allow for measurement
error in Y . Based on Card (2001), this last extension would likely be needed for returns to
education applications.

A Appendix A: Proofs

Proof of Lemma 1. Define Q and P as Q = W −γY = βU+R and P = W −(γ + β)Y =
−βV +R. Then Lemma 1 claims

E (QPY ) = 0 and cov
(
QP, Y 2

)
− 2E (QY )E (PY ) = 0 (38)

First verifying that E (QPY ) = 0, we have

E (QPY ) = E [(βU +R) (−βV +R) (U + V )]

= E
(
R2U +R2V +RU2β −RV 2β − U2V β2 − UV 2β2

)
= 0

This expectation is zero by U , V , and R being mutually independent with mean zero.
For the second equation, we have

cov
(
QP, Y 2

)
= cov

[
(βU +R) (−βV +R) , (U + V )2]

= cov
(
R2 +RUβ −RV β − UV β2, U2 + 2UV + V 2

)
= cov

(
−UV β2, U2 + 2UV + V 2

)
= −β2E

[
UV

(
U2 + 2UV + V 2

)]
= −2β2E

(
U2
)
E
(
V 2
)

and

2E (QY )E (PY ) = 2E [(βU +R) (U + V )]E [(−βV +R) (U + V )]

= 2E
(
βU2

)
E
(
−βV 2

)
= −2β2E

(
U2
)
E
(
V 2
)
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Proof of Theorem 1. To show identification, we first compute the joint characteristic
function of the two observed variables in terms of the unobserved variables:

φY,W (ζ, ξ) = E
[
eiζ(U+V )eiξ(αU+γV+R)

]
= E

[
ei(ζ+αξ)U

]
E
[
ei(ζ+γξ)V

]
E
[
eiξR

]
= φU (ζ + αξ)φV (ζ + γξ)φR (ξ)

where we have used mutual independence of U, V,R to factor the expectations. In terms of
cumulant generating functions, we therefore have:

ΦY,W (ζ, ξ) = ΦU (ζ + αξ) + ΦV (ζ + γξ) + ΦR (ξ) (39)

For ξ = 0, this specializes to:

ΦY (ζ) = ΦU (ζ) + ΦV (ζ) . (40)

Next, for any any p ∈ N and ` ∈ {1, 2}, we immediately get, from (39), the cumulant
relationship

Φ3+p−`,`
Y,W = α`Φ3+p

U + γ`Φ3+p
V .

Replacing Φ3+p
U by its value implied from (40), we have:

Φ3+p−`,`
Y,W = α`Φ3+p

Y +
(
γ` − α`

)
Φ3+p
V . (41)

Now, (41) implies, for ` = 1, 2, the following system of equations:

Φ2+p,1
Y,W − αΦ3+p

Y = (γ − α) Φ3+p
V (42)

Φ1+p,2
Y,W − α2Φ3+p

Y =
(
γ2 − α2

)
Φ3+p
V . (43)

Factoring (γ2 − α2) Φ3+p
V as (γ + α) (γ − α) Φ3+p

V in Equation (53) and replacing (γ − α) Φ3+p
V

by its value from Equation (42) yields:

Φ1+p,2
Y,W − α2Φ3+p

Y = (γ + α)
(
Φ2+p,1
Y,W − αΦ3+p

Y

)
,

which is identical to the condition Mp (α, γ) = 0 for Mp (α, γ) defined in statement of the
Theorem. Now, considering two different values q and q̃ of p, we obtain:

Φ1+q,2
Y,W − α2Φ3+q

Y = (γ + α)
(
Φ2+q,1
Y,W − αΦ3+q

Y

)
(44)

Φ1+q̃,2
Y,W − α2Φ3+q̃

Y = (γ + α)
(

Φ2+q̃,1
Y,W − αΦ3+q̃

Y

)
(45)

Next, multiplying (44) by
(

Φ2+q̃,1
Y,W − αΦ3+q̃

Y

)
yields:(

Φ1+q,2
Y,W − α2Φ3+q

Y

) (
Φ2+q̃,1
Y,W − αΦ3+q̃

Y

)
= (γ + α)

(
Φ2+q̃,1
Y,W − αΦ3+q̃

Y

) (
Φ2+q,1
Y,W − αΦ3+q

Y

)
. (46)

(We can verify that Φ2+q̃,1
Y,W − αΦ3+q̃

Y 6= 0 as follows:

Φ2+q̃,1
Y,W − αΦ3+q̃

Y =
(

Φ2+q̃,1
U,αU + Φ2+q̃,1

V,γV + Φ2+q̃,1
0,R

)
− α

(
Φ3+q̃
U + Φ3+q̃

V

)
=

(
αΦ3+q̃

U + γΦ3+q̃
V

)
− α

(
Φ3+q̃
U + Φ3+q̃

V

)
= (γ − α) Φ3+q̃

V
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where γ 6= α by assumption. If Φ3+q̃
V were zero, we could simply exchange the role of tilded

and non-tilded variables, which would require instead that Φ3+q
V 6= 0. Under the assumption

that Φ3+q
U Φ3+q̃

V 6= Φ3+q
V Φ3+q̃

U , it is not possible that both Φ3+q̃
V = 0 and Φ3+q

V = 0, so one of
these two approaches has to yield a nonzero multiplier.)

In Equation (46), (γ + α)
(
Φ2+q,1
Y,W − αΦ3+q

Y

)
can be replaced by its value from (45) to yield

a single equation in α:(
Φ1+q,2
Y,W − α2Φ3+q

Y

) (
Φ2+q̃,1
Y,W − αΦ3+q̃

Y

)
=
(

Φ1+q̃,2
Y,W − α2Φ3+q̃

Y

) (
Φ2+q,1
Y,W − αΦ3+q

Y

)
Expanding the products, simplifying and collecting by powers of α yields:

−
(

Φ3+q̃
Y Φ2+q,1

Y,W − Φ3+q
Y Φ2+q̃,1

Y,W

)
α2+

(
Φ3+q̃
Y Φ1+q,2

Y,W − Φ3+q
Y Φ1+q̃,2

Y,W

)
α+
(

Φ1+q̃,2
Y,W Φ2+q,1

Y,W − Φ1+q,2
Y,W Φ2+q̃,1

Y,W

)
= 0,

or, in the notation of the theorem (noting that Φ3+q
Y = Φ3+q,0

Y,W ):

−F 3021α2 + F 3012α + F 1221 = 0. (47)

The roots of (47) are thus:

α± =
F 3012

2F 3021
±

√(
F 3012

2F 3021

)2

+
F 1221

F 3021
. (48)

Since the original problem is completely symmetric upon permutation of the role of (α, U)
and (γ, V ), if we had gone through the same steps after eliminated ΦV (ζ) instead of ΦU (ζ),
we would have obtained the same Equation (47) with α replaced by γ. This implies that
the two roots of (47) simply correspond to the values of α and γ. Since we have assumed
γ < α, it follows that we must make the assignment (α, γ) = (α+, α−). The condition
Φ3+q̃
Y Φ2+q,1

Y,W −Φ3+q
Y Φ2+q̃,1

Y,W 6= 0 of the Theorem ensures that F 3021 6= 0, so that Equation (48) is
well-defined. This condition can also be phrased in terms of the log characteristic functions
of U and V :

Φ3+q̃
Y Φ2+q,1

Y,W − Φ3+q
Y Φ2+q̃,1

Y,W

=
(

Φ3+q̃
U + Φ3+q̃

V

) (
Φ2+q,1
U,αU + Φ2+q,1

V,γV + Φ2+q,1
0,R

)
−
(
Φ3+q
U + Φ3+q

V

) (
Φ2+q̃,1
U,αU + Φ2+q̃,1

V,γV + Φ2+q̃,1
0,R

)
=

(
Φ3+q̃
U + Φ3+q̃

V

) (
αΦ3+q

U + γΦ3+q
V

)
−
(
Φ3+q
U + Φ3+q

V

) (
αΦ3+q̃

U + γΦ3+q̃
V

)
= (α− γ)

(
Φ3+q
U Φ3+q̃

V − Φ3+q
V Φ3+q̃

U

)
Since we have assumed that α > γ, the only condition needed is that Φ3+q

U Φ3+q̃
V 6= Φ3+q

V Φ3+q̃
U .

Proof of corollary 2. The equivalence is shown by starting from Equations (19) and (20)
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and using the definitions of cumulants in terms of moments for zero-mean random variables:

Φ1,2
Y,W = E

[
YW 2

]
Φ2,1
Y,W = E

[
Y 2W

]
Φ3
Y = E

[
Y 3
]

Φ2,2
Y,W = E

[
W 2Y 2

]
− E

[
W 2
]
E
[
Y 2
]
− 2E [WY ]E [WY ]

Φ3,1
Y,W = E

[
WY 3

]
− 3E [WY ]E

[
Y 2
]

Φ4
Y = E

[
Y 4
]
− 3E

[
Y 2
]
E
[
Y 2
]
.

Some cumulants involve products of moments (Φ2,2
Y,W ,Φ

3,1
Y,W ,Φ

4
Y ) and to linearize them to

obtain proper GMM-type moment conditions, we need to introduce nuisance parameters.
For the above expression, it is sufficient to define:

µyy = E
[
Y 2
]

(49)

µyw = E [YW ] (50)

so that we can write, for instance, Φ4
Y = E [Y 4]− 3µyyE [Y 2] = E

[
Y 4 − 3µyyY

2
]
. Equations

(49) and (50) yield the moment conditions of Equation (9).
Next, to establish Equation (10), we start from Equation (19):

Φ1,2
Y,W − α

2Φ3
Y − (γ + α)

(
Φ2,1
Y,W − αΦ3

Y

)
= E

[
YW 2

]
− α2E

[
Y 3
]
− (γ + α)

(
E
[
Y 2W

]
− αE

[
Y 3
])

= E
[
YW 2 − α2Y 3 − (γ + α)Y 2W + α (γ + α)Y 3

]
= E

[
YW 2 − (γ + α)Y 2W + αγY 3

]
= E

[(
W 2 − (γ + α)YW + αγY 2

)
Y
]

= E [(W − γY ) (W − αY )Y ] ,

which is Equation (10).
To establish Equation (11), we start from Equation (20):

Φ2,2
Y,W − α

2Φ4
Y − (γ + α)

(
Φ3,1
Y,W − αΦ4

Y

)
= Φ2,2

Y,W − γ
(
Φ3,1
Y,W − αΦ4

Y

)
− αΦ3,1

Y,W

= E
[
W 2Y 2

]
− E

[
W 2
]
E
[
Y 2
]
− 2E [WY ]E [WY ]

−γ
((
E
[
WY 3

]
− 3E [WY ]E

[
Y 2
])
− α

(
E
[
Y 4
]
− 3E

[
Y 2
]
E
[
Y 2
]))

−α
(
E
[
WY 3

]
− 3E [WY ]E

[
Y 2
])

= E
[
W 2Y 2

]
− µyyE

[
W 2
]
− 2µywE [WY ]− γ

(
E
[
WY 3

]
− 3µyyE [WY ]

)
−γα

(
E
[
Y 4
]
− 3E

[
Y 2
]
µyy
)
− α

(
E
[
WY 3

]
− 3E [WY ]µyy

)
= E

[
W 2Y 2 − µyyW 2 − 2µywWY − γWY 3 + 3γµyyWY + αγY 4 − 3αγµyyY

2 − αWY 3 + 3αµyyWY
]

= E[
(
W 2 − αWY − γWY + αγY 2

)
Y 2 −

(
W 2 − αWY − γWY + αγY 2

)
µyy

+
(
2αWY + 2γWY − 2αγY 2

)
µyy − 2µywWY ]

= E
[
(W − γY ) (W − αY )

(
Y 2 − µyy

)
+ 2αWY µyy + 2γWY µyy − 2αγY 2µyy − 2µywWY

]
= E

[
(W − γY ) (W − αY )

(
Y 2 − µyy

)
− 2

(
µyw − γµyy

)
(W − αY )Y

]
,
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which is Equation (11).

Proof of Corollary 3. We first express the model of Equations (4) and (6) as:

Y = U + V (51)

W = αU + γV +R (52)

Equations (51) and (52) can be re-written as:

Y = V + U
W − αY
γ − α

= V +
1

(γ − α)
R

from which one can see that Y and W−αY
γ−α provide two repeated error-contaminated mea-

surements of V which satisfy the assumption of the Kotlarski identity (Equation (22) given
in the statement of Theorem, and the distribution of V is thus known. (The condition
E [|Y |] < ∞ ensures the numerator of (22) is well defined while Assumption 5 ensures that
the denominator is nonvanishing.)

Next, from Equation (40), we have ΦU (ζ) = ΦY (ζ)−ΦV (ζ) and the distribution of U is
identified. Finally, from Equation (39), we have ΦR (ξ) = ΦY,W (0, ξ)−ΦU (αξ)−ΦV (γξ) =
ΦW (ξ) − ΦU (αξ) − ΦV (γξ) and the distribution of R is thus identified. In these steps,
we have used the fact that Assumption 5 implies that the log characteristic functions of
Y,W,U, V,R all exist everywhere on the real line.

Proof of Theorem 4. Lack of point identification means that there exists an observa-
tionally equivalent alternative model with variables Y,W, Ṽ , Ũ , R̃ (note that Y,W are the
same since they are observable) and parameters α̃, γ̃. We first establish that α, γ, α̃, γ̃ must
all be different. We note that, by assumption, we have both γ < α and γ̃ < α̃, so α 6= γ and
α̃ 6= γ̃. We can also show that if α = α̃, then γ = γ̃ and the alternative model would, in fact,
be identical. This follows from the fact that, if we knew α, we could write the model as:

Y = V + U

W − αY = (γ − α)V +R

which is just a standard errors-in-variables model in which the slope (γ − α) and the latent
distributions are identified under non-normality of V (Reiersøl (1950)). We can also permute
the role of (α, U) and (γ, V ) and show that the knowledge of γ implies the knowledge of α
in the same fashion, under non-normality of U . Hence, the mapping between α and γ is
one-to-one. Similarly, α = γ̃ implies γ = α̃, but this would violate the condition γ̃ < α̃.
These considerations let us assume throughout that α, γ, α̃, γ̃ are all different.

We now proceed by showing that if α, γ were not point identified, then V and U would
be normal, leading to a contradiction of the assumptions of the theorem. Starting from (39),
we calculate ∂/∂ζ:

Φ10
Y,W (ζ, ξ) = Φ1

U (ζ + αξ) + Φ1
V (ζ + γξ) . (53)

Note that knowledge of Φ1
V (ζ) is sufficient to recover ΦV (ζ) since it is known that ΦV (0) =

lnE [1] = 0. We have a similar expression for the alternative model:

Φ10
Y,W (ζ, ξ) = Φ1

Ũ
(ζ + α̃ξ) + Φ1

Ṽ
(ζ + γ̃ξ) . (54)
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Equating (53) and (54), we have:

Φ1
U (ζ + αξ) + Φ1

V (ζ + γξ)− Φ1
Ũ

(ζ + α̃ξ)− Φ1
Ṽ

(ζ + γ̃ξ) = 0. (55)

Equation (55) has the general structure:

A1 (a1 · x) + A2 (a2 · x) + A3 (a3 · x) + A4 (a4 · x) = 0

where x = (ζ, ξ) and

A1 (χ) = Φ1
U (χ) , a1 = (1, α)

A2 (χ) = Φ1
V (χ) , a2 = (1, γ)

A3 (χ) = −Φ1
Ũ

(χ) , a3 = (1, α̃)

A4 (χ) = −Φ1
Ṽ

(χ) , a4 = (1, γ̃)

in which the Ak (χ) are twice differentiable by Assumption 6.
Lemma 3 below shows that if no two vectors in {(1, α) , (1, γ) , (1, α̃) , (1, γ̃)} are colinear

(which is the case here since α, γ, α̃, γ̃ are all different) then it must be that the functions
A1 (·) , A2 (·) , A3 (·) , A4 (·) are polynomials. This implies that Φ1

V (·) and Φ1
U (·) must be

polynomials and so must ΦV (·) and ΦU (·). But by Theorem 7.3.5 in Lukacs (1970), the
only possibility is that ΦV (·) and ΦU (·) are quadratic and V and U are thus normal. Since
U and V were assumed not normal, this is not possible.

Lemma 3 For k = 1, . . . 4, let ak ∈ R2\ {(0, 0)} be given and let Ak be unknown twice
differentiable functions from R to R. If no pair of vectors in {ak}4

k=1 are colinear and, for
all x ∈ R2,

A1 (a1 · x) + A2 (a2 · x) + A3 (a3 · x) + A4 (a4 · x) = 0, (56)

then the Ak are polynomials.

Proof of Lemma 3. Computing all distinct second derivatives (denoted by ′′) of Equation
(56) with respect to elements of x yields the following system of equations, in matrix form:

Mb = 0

where

M =

 a2
11 a2

12 a2
13 a2

14

a11a21 a12a22 a13a23 a14a24

a2
21 a2

22 a2
23 a2

24



b =


A′′1 (a1 · x)
A′′2 (a2 · x)
A′′3 (a3 · x)
A′′4 (a4 · x)

 .
Note that rows of M are linearly independent under the assumptions that the ak are pairwise
noncolinear. (Indeed, the proportions a2

1k : a1ka2k are different for two different k and so
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are the proportions a1ka2k : a2
2k and a2

1k : a2
2k. Also, there exists no f, g ∈ R such that

fa2
1k + ga2

2k = a1ka2k for all k since this expression reduces to f a1k
a2k

+ g 1
a1k/a2k

= 1 where the

ratios12 a1k
a2k

differ for two different k.)
Since there are 3 constraints and 4 elements in b, and since M does not depend on x, the

solution vector b is constrained to be of the form

b = B (x) c

where c is a constant vector satisfying Mc = 0 and B (x) is a scalar-valued function defined
on R2. Note that c must have at least 2 non zero elements because if it had only one, then
a column of M would have to be zero. This would imply ak1 = ak2 = 0 for some k but then
ak would be colinear with all other aj, in contradiction to the assumptions.

Let ci and cj (i 6= j) denote two nonzero elements of c. Having A′′i (ai · x) = B (x) ci
forces B (x) to be of the form B̃i (ai · x) while having A′′j (aj · x) = B (x) cj forces B (x) to

be of the form B̃j (aj · x). These constraints are only compatible if B (x) is in fact constant,
as ai and aj are not colinear. But then, all A′′k (ak · x) are constant, which implies that all
Ak (ak · x) are (second order) polynomials.

Note that this result can also be proven using Corollary 5 in Khatri and Rao (1972),
under weaker differentiability conditions, but the proof of that result is distributed over
multiple earlier papers and it is helpful to provide here a simple self-contained proof.

Proof of Lemma 2. We first need to establish that the decomposition (25) is unique. We
will argue by contradiction by assuming that there exists another decomposition Z = Z̃g+Z̃n
with Z̃g being Gaussian with variance Λ̃ and Z̃n having no Gaussian factor. Define

∆± = ±
∑
i

1 (±λi > 0)λiνiν
′
i

where λi and νi denote the i-th eigenvalue and corresponding eigenvector of the matrix(
Λ̄− Λ̃

)
, respectively. Then, observe that:

Zg = N
(
0, Λ̄

)
= N

(
0, Λ̄−∆+

)
+N

(
0,∆+

)
and that

Z̃g = N
(

0, Λ̃
)

= N
(

0, Λ̃−∆−
)

+N
(
0,∆−

)
,

where equalities hold in distributions and the Gaussians are mutually independent.
Next, we can show that Λ̄−∆+ = Λ̃−∆− since

Λ̄−∆+ = Λ̃ +
(

Λ̄− Λ̃
)
−∆+

= Λ̃ +
∑
i

λiνiν
′
i −
∑
i

1 (λi > 0)λiνiν
′
i

= Λ̃ +
∑
i

(1− 1 (λi > 0))λiνiν
′
i

= Λ̃ +
∑
i

1 (λi < 0)λiνiν
′
i = Λ̃−∆−.

12We conventionally assign the value “∞” to a fraction of the form a1k/0. The indeterminate case 0/0
cannot occur because then two (a1k, a2k) would be colinear.
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The random variable Z can then be decomposed into independent factors in two ways:

Z = N
(
0, Λ̄−∆+

)
+N

(
0,∆+

)
+ Zn

Z = N
(

0, Λ̃−∆−
)

+N
(
0,∆−

)
+ Z̃n

Since Λ̄ −∆+ = Λ̃ −∆−, we have that N (0,∆+) + Zn and N (0,∆−) + Z̃n must have the
same distribution. Now, ∆+ and ∆− are degenerate covariance matrices whose null spaces
are orthogonal. This then implies that Zn and N (0,∆+ + ∆−) + Z̃n must have the same
distribution. But then, Zn would have a normal factor, in contradiction to our assumptions.
The only possibility is that ∆+ + ∆− = 0, which implies that the two decomposition are, in
fact, the same.

Having shown uniqueness of the decomposition into Gaussian and non-Gaussian factors,
we then observe that we can write the following decomposition into independent factors:

Z = N (0,Λ) +N
(
0, Λ̄− Λ

)
+ Zn

if and only if Λ̄−Λ is positive definite. Since φZ (ξ) exp (ξ′Λξ/2) is the characteristic function
of N

(
0, Λ̄− Λ

)
+ Zn (i.e. Z deconvolved by N (0,Λ)), the result follows.

Proof of Theorem 5. Thanks to Lemma 2, we have the unique factor decomposition
(Y,W ) = (Yg,Wg) + (Yn,Wn) and the model defined by Equations (51) and (52) can be
uniquely decomposed into a sum of two models of the form:

Ys = Us + Vs (57)

Ws = αUs + γVs +Rs, (58)

one Gaussian (with subscript s set to “g”) and one non-Gaussian (with subscript s set to
“n”).

Consider Case 1: Since U and V are Gaussian, the non-Gaussian model reduces to:

Yn = 0

Wn = Rn

and provides no information regarding α and γ. For the Gaussian model, the covariance
matrix of Yg and Wg exhausts all available information:

E
[
Y 2
g

]
= σ2

Ug + σ2
Vg (59)

E
[
W 2
g

]
= α2σ2

Ug + γ2σ2
Vg + σ2

Rg (60)

E [YgWg] = ασ2
Ug + γσ2

Vg (61)

where the possible value of the parameters α, γ, σ2
Ug
≡ E

[
U2
g

]
, σ2

Vg
≡ E

[
V 2
g

]
and σ2

Rg
≡

E
[
R2
g

]
have to be determined, under the constraints that σ2

Ug
≥ 0, σ2

Vg
≥ 0, σ2

Rg
≥ 0 and

α > γ. From (59) we have
σ2
Vg = E

[
Y 2
g

]
− σ2

Ug (62)
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and (60) and (61) become:

E
[
W 2
g

]
= α2σ2

Ug + γ2
(
E
[
Y 2
g

]
− σ2

Ug

)
+ σ2

Rg (63)

E [YgWg] = ασ2
Ug + γ

(
E
[
Y 2
g

]
− σ2

Ug

)
(64)

From (64) we then have:

σ2
Ug =

E [YgWg]− γE
[
Y 2
g

]
α− γ

≥ 0 (65)

Since α > γ, we have

γ ≤ E [YgWg]

E
[
Y 2
g

] ≡ Bg.

This incorporates the first constraint σ2
Ug
≥ 0 and shows the first inequality (29) defining

the identified set.
From (63), with σ2

Ug
from (65), we have

E
[
W 2
g

]
= α2

E [YgWg]− γE
[
Y 2
g

]
α− γ

+ γ2

(
E
[
Y 2
g

]
−
E [YgWg]− γE

[
Y 2
g

]
α− γ

)
+ σ2

Rg

which can be re-arranged as:

(α− γ)E
[
W 2
g

]
+ αγ (α− γ)E

[
Y 2
g

]
− (α + γ) (α− γ)E [YgWg] = σ2

Rg (α− γ)

where we know that σ2
Rg
≥ 0. Upon division by (α− γ) > 0 we have:

E
[
W 2
g

]
+ αγE

[
Y 2
g

]
− (α + γ)E [YgWg] ≥ 0

and re-arranging:

γ
(
αE
[
Y 2
g

]
− E [YgWg]

)
≥ αE [YgWg]− E

[
W 2
g

]
(66)

Now, we observe that(
αE
[
Y 2
g

]
− E [YgWg]

)
= E [Yg (αYg −Wg)] (67)

= E [(Ug + Vg) (αUg + αVg − αUg − γVg −Rg)]

= E [(Ug + Vg) ((α− γ)Vg −Rg)] = (α− γ)E [(Ug + Vg)Vg]

= (α− γ)E
[
V 2
g

]
> 0.

Therefore (66) can be divided by αE
[
Y 2
g

]
− E [YgWg] while preserving the inequality:

γ ≥
αE [YgWg]− E

[
W 2
g

]
αE
[
Y 2
g

]
− E [YgWg]

=
αE [YgWg] /E

[
Y 2
g

]
− E

[
W 2
g

]
/E
[
Y 2
g

]
α− E [YgWg] /E

[
Y 2
g

]
=

αBg − E
[
W 2
g

]
/E
[
Y 2
g

]
α−Bg

=
(α−Bg)Bg +B2

g − E
[
W 2
g

]
/E
[
Y 2
g

]
α−Bg

= Bg +
B2
g − E

[
W 2
g

]
/E
[
Y 2
g

]
α−Bg
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or

γ ≥ Bg −
Dg

α−Bg

(68)

where Dg ≥ 0 by Cauchy-Schwartz. This incorporates the second constraint σ2
Rg
≥ 0 and

shows that (68) provides the second inequality (30) defining the identified set.
The last constraint σ2

Vg
≥ 0 turns out to then be automatically satisfied. Indeed, com-

bining Equation (62) and (65), we have

σ2
Vg = E

[
Y 2
g

]
− σ2

Ug = E
[
Y 2
g

]
−
E [YgWg]− γE

[
Y 2
g

]
α− γ

=
αE
[
Y 2
g

]
− E [YgWg]

α− γ
> 0

since α > γ by assumption and αE
[
Y 2
g

]
− E [YgWg] > 0 was already shown in (67).

We now turn to Case 2: V is Gaussian but U is not. The non-Gaussian model thus
reduces to:

Yn = Un (69)

Wn = αUn +Rn, (70)

where, under our assumptions, Un is necessarily nondegenerate. Equations (69) and (70)
just define a standard regression model with correctly measured regressors, thus implying
that α is point-identified:

α =
E [YnWn]

E [Y 2
n ]

. (71)

Next, the Gaussian model reduces to:

Yg = Ug + Vg (72)

Wg = αUg + γVg +Rg (73)

where we note that even though U is not Gaussian, it could still have a nondegenerate
Gaussian factor Ug.We also note that Yg = Y − Un and Wg = W − αUn − Rn, so that the
left-hand sides of (72)-(73) do not depend on γ. Therefore, as one considers different possible
value of γ, one does not need to take into account possible changes in the left-hand side. The
left-hand side does depend on α but α has been determined already. Equations (72) and
(73) thus have the form assumed in Case 1, except that α has a known value. This implies
that the identified set for γ is:

Bg −
Dg

α−Bg

≤ γ ≤ Bg

for α given by (71).
Finally, Case 3 is analogous to case 2, with the roles of (α, U) and (γ, V ) permuted.

Proof of corollary 6. The proofs follows the proof of Case 1 of Theorem 5 with the
subscript g removed, so we work with the observed distributions directly rather than their
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Gaussian factor. The proofs only relies on the fact that variances must be positive, so
the inequalities are equally valid for non-Gaussian random variables. However, unlike the
Gaussian case, these bounds are not sharp because covariances matrices are not a sufficient
statistic for the whole distribution in general.

B Appendix B: Moments for GMM Estimation

To facilitate the application of our estimator, here we write out the moments required for
simple estimation of our model with or without covariates, based on Lemma 1 and Theorem
1. Assume X is a J vector of covariates X1,...,XJ . The model with covariates X is

W = γY + b′2X + ε1, Y = b′1X + ε2

where the mean zero errors ε1 and ε2 are

ε1 = βU +R, ε2 = U + V .

Here b1 and b2 are vectors of coefficients b11,...,b1J , and b21,...,b2J .Typically we would have
X1 = 1, so b11 and b21 are the constant terms in the regressions.

Define Ỹ , W̃ , Q, and P by

Ỹ = Y − b′1X, W̃ = W − (γb1 + b2)′X,

Q = W − γY − b′2X, P = W − (γ + β)Y + (βb1 − b2)′X

The parameters we wish to estimate are γ, β, σ2
U , σ2

V , σ2
R, b11,...,b1J , and b21,...,b2J .

Substituting the above expressions for Ỹ , W̃ , Q, and P into the following equations gives
the moments for GMM estimation of these parameters.

E
(
Ỹ W̃ − βσ2

U − γ
(
σ2
U + σ2

V

))
= 0, E

(
Ỹ 2 − σ2

U − σ2
V

)
= 0, (74)

E
(
Q2 − β2σ2

U − σ2
R

)
= 0, E

(
QPỸ

)
= 0, (75)

E
[
QP

(
Ỹ 2 − σ2

U − σ2
V

)
− 2βσ2

UPỸ
]

= 0 (76)

E (QXj) = 0 and E
(
Ỹ Xj

)
= 0 for j = 1, ..., J (77)

In addition to these moments, we also have the inequality constraints that β, σ2
U , σ2

V , σ2
R are

all positive. These inequalities can be imposed by replacing these parameters in the above
expressions with β = eb, σ2

U = eτU , σ2
V = eτV , and σ2

R = eτR , and instead estimating the
parameters b, τU , τV , and τR.

For the model without covariates, one can replace b1 and b2 with zero in the above
expressions, and drop equation (77). Note that in this case Y and W should be demeaned.

Theorem 1 showed that 0 = Φ1+p,2
Y,W − α2Φ3+p

Y − (γ + α)
(
Φ2+p,1
Y,W − αΦ3+p

Y

)
holds for non-

negative integers p, and the moments of Lemma 1 are equivalent to this equation for p = 0
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and p = 1. Straightforward but tedious algebra shows that, with p = 2, we get the additional
moments

E(W̃ 2 − µww) = 0 (78)

0 = E[−3Ỹ W̃ 2µyy − 6µywỸ
2W̃ − µwwỸ 3 + Ỹ 3W̃ 2 − α2

(
Ỹ 5 − 10Ỹ 3µyy

)
(79)

− (γ + α)
(
−6µyyỸ

2W̃ − 4µywỸ
3 + Ỹ 4W̃ − α

(
Ỹ 5 − 10Ỹ 3µyy

))
]

where again we could replace µww = eτW to impose the sign constraint that µww > 0.13

Estimation of standard GMM using, as moments, equations (74), (75), (76), and (77)
yields the exactly identified models named GMM4, GMM5, and GMM6 in our empirical
application. Estimation using equations (74), (75), (76), (77), (78), and (79) gives the
overidentified models labeled GMM1, GMM2, and GMM3 in our application.

If one in addition has an external instrument Z, then instead of Y = b′1X + ε2 we would

have Y = b′1X + δZ + ε2. In this case all of the above equations still hold if we redefine Ỹ

as Ỹ = Y − b′1X − δZ, and we could then add the additional moment

E
(
Ỹ Z
)

= 0 (80)

Estimation using equations (74) to (80) with this redefinition of Ỹ gives the models GMM1+AJ,
GMM2+AJ, and GMM3+AJ in our application, and the same without (78) and (79) gives
GMM4+AJ, GMM5+AJ, and GMM6+AJ.
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Statistics, Series A, 62(2), 193-202.

Well, D. N. (2007), ”Accounting for the Effect Of Health on Economic Growth,” The
Quarterly Journal of Economics, 122(3), 1265–1306.

31



Table 1: Design 1
Over Identified Moments

N = 100
TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 0.96 0.76 0.8 1.15 1.36 0.76 0.44 0.32
β 1 1.18 1.14 0.66 1.01 1.43 1.15 0.57 0.37
σ2
U 1.72 1.16 1.28 0.09 0.8 1.86 1.4 1.16 1.2

σ2
V 1.64 1.8 1.03 0.98 1.81 2.5 1.04 0.85 0.76

σ2
R 1.64 1.72 1.84 1.25 1.69 2.08 1.84 0.57 0.43

µWW 10.17 8.74 3.78 6.41 7.83 9.93 4.04 3.13 2.91
Hansen-Sargan J stat 1.42 2.04 0.22 0.72 1.81
p-val 0.23 0.64 0.4 0.18

N = 400
TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 0.99 0.48 0.88 1.09 1.27 0.48 0.3 0.22
β 1 1.06 0.44 0.84 1 1.18 0.44 0.26 0.17
σ2
U 1.72 1.33 0.98 0.55 1.21 1.96 1.06 0.88 0.8

σ2
V 1.64 1.8 0.72 1.31 1.79 2.31 0.74 0.59 0.52

σ2
R 1.64 1.73 0.46 1.45 1.73 2.2 0.47 0.35 0.28

µWW 10.17 9.32 2.39 7.74 8.83 10.34 2.54 2 1.83
Hansen-Sargan J stat 1.57 1.96 0.31 0.86 2.12
p-val 0.21 0.58 0.35 0.15

Exactly Identified Moments
N = 100

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
γ 1 1.05 0.49 0.89 1.44 1.33 0.5 0.33 0.27
β 1 1.92 7.73 0.78 1.08 1.48 7.79 1.19 0.33
σ2
U 1.72 1.32 2.74 0.08 0.96 1.94 2.77 1.24 1.14

σ2
V 1.64 2.03 1.04 1.3 1.98 2.66 1.11 0.86 0.72

σ2
R 1.64 1.71 0.67 1.31 1.72 2.15 0.68 0.52 0.41

N = 400
TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 1 0.39 0.87 1.07 1.23 0.39 0.26 0.19
β 1 1.21 2.09 0.89 1.03 1.21 2.1 0.36 0.16
σ2
U 1.72 1.53 1.23 0.84 1.45 2.08 1.24 0.81 0.65

σ2
V 1.64 1.83 0.7 1.34 1.81 2.3 0.73 0.58 0.49

σ2
R 1.64 1.71 0.43 1.45 1.7 1.98 0.44 0.33 0.26

Notes: Design 1: ln(U) ∼ N(−0.5, 1), V ∼ Gumbel(0, 1), R ∼ Gumbel(0, 1). All resulting variables are
standardized to have zero means. The four panels are GMM estimates based on over-identifying set of
moments, and exactly identified set of moments with sample sizes n = 100 and n = 400. The reported
summary statistics are the mean (MEAN), the standard deviation (SD), the 25% quantile (LQ), the
median (MED), the 75% quantile (UQ), the root mean squared errors (RMSE), the mean absolute errors
(MAE), and the median absolute errors (MDAE).



Table 2: Design 2
Over Identified Moments

N = 100
TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 0.96 1.40 0.80 1.05 1.36 1.40 0.42 0.29
β 1 1.07 1.50 0.59 0.96 1.33 1.51 0.53 0.37
σ2
U 1.72 1.34 1.24 0.45 1.17 1.90 1.30 1.00 0.87

σ2
V 1.33 1.42 0.80 0.92 1.30 1.82 0.80 0.59 0.44

σ2
R 1.33 2.00 20.66 0.98 1.36 1.69 20.67 1.11 0.35

µWW 9.54 8.65 4.25 6.03 7.52 9.81 4.34 3.19 2.80
Hansen-Sargan J stat 2.19 3.44 0.26 0.91 2.59
p-val 0.14 0.61 0.34 0.11

N = 400
TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 1.04 0.37 0.89 1.02 1.27 0.37 0.27 0.17
β 1 0.96 0.37 0.72 0.98 1.15 0.38 0.28 0.21
σ2
U 1.72 1.33 0.90 0.81 1.33 1.83 0.98 0.76 0.59

σ2
V 1.33 1.51 0.62 1.15 1.35 1.74 0.64 0.43 0.25

σ2
R 1.33 1.36 0.44 1.12 1.34 1.66 0.44 0.34 0.26

µWW 9.54 8.88 2.48 7.29 8.39 9.85 2.57 1.95 1.71
Hansen-Sargan J stat 4.10 7.55 0.57 1.53 3.71
p-val 0.04 0.45 0.22 0.05

Exactly Identified Moments
N = 100

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
γ 1 1.09 0.54 0.87 1.18 1.43 0.55 0.39 0.34
β 1 1.02 1.31 0.53 0.87 1.23 1.31 0.51 0.39
σ2
U 1.72 1.11 1.45 0.00 0.84 1.67 1.57 1.15 1.11

σ2
V 1.33 1.90 1.22 1.09 1.65 2.45 1.35 0.90 0.61

σ2
R 1.33 1.49 0.63 1.13 1.55 1.94 0.64 0.52 0.46

N = 400
TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 1.14 0.49 0.91 1.23 1.50 0.51 0.41 0.40
β 1 0.86 0.49 0.49 0.79 1.09 0.51 0.41 0.38
σ2
U 1.72 1.06 1.17 0.00 1.00 1.72 1.34 1.01 0.90

σ2
V 1.33 1.99 1.03 1.19 1.76 2.72 1.22 0.90 0.65

σ2
R 1.33 1.54 0.60 1.21 1.64 2.01 0.63 0.53 0.52

Notes: Design 2: ln(U) ∼ N(−0.5, 1), V ∼ U(−2, 2), R ∼ U(−2, 2).



Table 3: Design 3
Over Identified Moments

N = 100
TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 0.94 0.66 0.79 1.01 1.27 0.66 0.37 0.24
β 1 1.21 1.46 0.56 0.97 1.53 1.48 0.70 0.47
σ2
U 1.64 1.77 1.23 0.84 1.74 2.50 1.24 0.97 0.84

σ2
V 1.72 1.32 1.30 0.19 1.08 2.09 1.36 1.11 1.09

σ2
R 1.72 1.55 4.92 0.74 1.24 1.87 4.92 0.98 0.72

µWW 10 9.01 2.20 7.53 8.70 10.17 2.41 1.96 1.78
Hansen-Sargan J stat 1.74 2.71 0.23 0.82 2.19
p-val 0.19 0.63 0.37 0.14

N = 400
TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 0.93 0.40 0.86 0.96 1.06 0.41 0.19 0.11
β 1 1.06 1.04 0.72 0.93 1.20 1.04 0.40 0.25
σ2
U 1.64 1.95 0.89 1.40 1.96 2.53 0.94 0.73 0.64

σ2
V 1.72 1.24 1.02 0.44 1.10 1.86 1.13 0.93 0.87

σ2
R 1.72 1.62 1.96 1.07 1.49 1.95 1.97 0.65 0.48

µWW 10 9.39 1.26 8.56 9.28 10.08 1.40 1.12 0.97
Hansen-Sargan J stat 2.30 6.35 0.29 0.96 2.46
p-val 0.13 0.59 0.33 0.12

Exactly Identified Moments
N = 100

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
γ 1 0.99 0.55 0.86 1.04 1.27 0.55 0.32 0.22
β 1 2.23 8.86 0.79 1.17 1.86 8.95 1.51 0.45
σ2
U 1.64 1.58 1.24 0.56 1.46 2.34 1.24 0.99 0.89

σ2
V 1.72 1.77 1.48 0.71 1.65 2.47 1.48 1.06 0.88

σ2
R 1.72 1.40 1.46 0.57 1.14 1.86 1.49 1.02 0.84

N = 400
TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 0.96 0.33 0.89 0.99 1.09 0.33 0.18 0.10
β 1 1.68 6.85 0.83 1.06 1.38 6.88 0.91 0.26
σ2
U 1.64 1.76 0.95 1.14 1.73 2.31 0.95 0.73 0.60

σ2
V 1.72 1.60 1.07 0.86 1.57 2.24 1.08 0.83 0.69

σ2
R 1.72 1.60 1.04 1.01 1.45 2.01 1.04 0.75 0.57

Notes: Design 3: U ∼ Gumbel(0, 1), ln(V ) ∼ N(−0.5, 1), ln(R) ∼ N(−0.5, 1).



Table 4: Design 4
Over Identified Moments

N = 100
TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 0.95 0.56 0.83 1.01 1.18 0.56 0.28 0.18
β 1 1.23 2.99 0.32 0.97 1.54 3.00 0.86 0.62
σ2
U 1.33 1.67 1.41 0.86 1.36 2.15 1.45 0.92 0.59

σ2
V 1.72 1.26 1.25 0.19 1.07 1.88 1.33 1.05 0.95

σ2
R 1.72 1.42 4.82 0.57 1.17 1.77 4.83 1.02 0.76

µWW 8.76 8.06 1.86 6.93 7.79 8.89 1.99 1.53 1.32
Hansen-Sargan J stat 2.45 4.63 0.22 0.85 2.52
p-val 0.12 0.64 0.36 0.11

N = 400
TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 0.99 0.23 0.92 0.99 1.06 0.23 0.12 0.07
β 1 1.09 2.12 0.55 1.00 1.42 2.12 0.55 0.44
σ2
U 1.33 1.63 1.10 0.98 1.32 1.99 1.14 0.73 0.44

σ2
V 1.72 1.43 1.02 0.73 1.43 2.02 1.06 0.82 0.65

σ2
R 1.72 1.39 1.31 0.79 1.33 1.87 1.36 0.74 0.60

µWW 8.76 8.43 1.10 7.74 8.30 8.94 1.15 0.88 0.74
Hansen-Sargan J stat 3.86 11.48 0.26 0.87 2.49
p-val 0.05 0.61 0.35 0.12

Exactly Identified Moments
N = 100

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
γ 1 0.91 0.63 0.86 1.00 1.13 0.64 0.27 0.13
β 1 1.99 4.54 0.67 1.33 2.04 4.65 1.35 0.66
σ2
U 1.33 1.47 1.30 0.67 1.21 1.93 1.30 0.87 0.64

σ2
V 1.72 1.56 1.48 0.48 1.36 2.25 1.49 1.09 0.93

σ2
R 1.72 1.26 3.13 0.00 0.93 1.74 3.16 1.23 1.05

N = 400
TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

γ 1 0.99 0.16 0.93 1.00 1.06 0.16 0.09 0.06
β 1 1.70 2.62 0.48 1.27 1.94 2.71 1.13 0.67
σ2
U 1.33 1.62 1.21 0.80 1.22 2.46 1.25 0.92 0.65

σ2
V 1.72 1.44 1.16 0.15 1.47 2.19 1.19 0.95 0.83

σ2
R 1.72 1.18 1.17 0.00 1.12 2.01 1.29 1.03 0.98

Notes: Design 4: U ∼ U(−2, 2), ln(V ) ∼ N(−0.5, 1), ln(R) ∼ N(−0.5, 1).



Table 5: Replication of Acemoglu and Johnson (2007): Dependent
Variable: Growth in GDP per Capita, 1940-1980

(1) (2) (3) (4)
OLS 2SLS1 2SLS2 2SLS3

Growth in life expectancy -0.813*** -1.316*** -1.643*** -1.589*
(0.258) (0.350) (0.521) (0.876)

Quality of institutions -0.0490
(0.0418)

Log GDP per capita 1930 -0.0730
(0.198)

Constant 1.163*** 1.336*** 1.681*** 1.990
(0.0907) (0.119) (0.367) (1.807)

Observations 47 47 47 47
R-squared 0.135 0.083 0.065 0.029
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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