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Abstract

The ill-posedness of the inverse problem of recovering a regression function in

a nonparametric instrumental variable model leads to estimators that may suffer

from a very slow, logarithmic rate of convergence. In this paper, we show that

restricting the problem to models with monotone regression functions and mono-

tone instruments significantly weakens the ill-posedness of the problem. In stark

contrast to the existing literature, the presence of a monotone instrument implies

boundedness of our measure of ill-posedness when restricted to the space of mono-

tone functions. Based on this result we derive a novel non-asymptotic error bound

for the constrained estimator that imposes monotonicity of the regression function.

For a given sample size, the bound is independent of the degree of ill-posedness

as long as the regression function is not too steep. As an implication, the bound

allows us to show that the constrained estimator converges at a fast, polynomial

rate, independently of the degree of ill-posedness, in a large, but slowly shrinking

neighborhood of constant functions. Our simulation study demonstrates signifi-

cant finite-sample performance gains from imposing monotonicity even when the

regression function is rather far from being a constant. We apply the constrained

estimator to the problem of estimating gasoline demand functions from U.S. data.
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1 Introduction

Despite the pervasive use of linear instrumental variable methods in empirical research,

their nonparametric counterparts are far from enjoying similar popularity. Perhaps two

of the main reasons for this originate from the observation that point-identification of the

regression function in the nonparametric instrumental variable (NPIV) model requires

completeness assumptions, which have been argued to be strong (Santos (2012)) and non-

testable (Canay, Santos, and Shaikh (2013)), and from the fact that the NPIV model is

ill-posed, which may cause regression function estimators in this model to suffer from a

very slow, logarithmic rate of convergence (e.g. Blundell, Chen, and Kristensen (2007)).

In this paper, we explore the possibility of imposing shape restrictions to improve

statistical properties of the NPIV estimators and to achieve (partial) identification of the

NPIV model in the absence of completeness assumptions. We study the NPIV model

Y = g(X) + ε, E[ε|W ] = 0, (1)

where Y is a dependent variable, X an endogenous regressor, and W an instrumental

variable (IV). We are interested in identification and estimation of the nonparametric re-

gression function g based on a random sample of size n from the distribution of (Y,X,W ).

We impose two monotonicity conditions: (i) monotonicity of the regression function g (we

assume that g is increasing1) and (ii) monotonicity of the reduced form relationship be-

tween the endogenous regressor X and the instrument W in the sense that the conditional

distribution of X given W corresponding to higher values of W first-order stochastically

dominates the same conditional distribution corresponding to lower values of W (the

monotone IV assumption).

We show that these two monotonicity conditions together significantly change the

structure of the NPIV model, and weaken its ill-posedness. In particular, we demonstrate

that under the second condition, a slightly modified version of the sieve measure of ill-

posedness defined in Blundell, Chen, and Kristensen (2007) is bounded uniformly over

the dimension of the sieve space, when restricted to the set of monotone functions; see

Section 2 for details. As a result, under our two monotonicity conditions, the constrained

NPIV estimator that imposes monotonicity of the regression function g possesses a fast

rate of convergence in a large but slowly shrinking neighborhood of constant functions.

More specifically, we derive a new non-asymptotic error bound for the constrained

estimator. The bound exhibits two regimes. The first regime applies when the function

g is not too steep, and the bound in this regime is independent of the sieve measure of

1All results in the paper hold also when g is decreasing. In fact, as we show in Section 4 the sign of

the slope of g is identified under our monotonicity conditions.
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ill-posedness, which slows down the convergence rate of the unconstrained estimator. In

fact, under some further conditions, the bound in the first regime takes the following form:

with high probability,

‖ĝc − g‖2,t ≤ C
((K log n

n

)1/2

+K−s
)

where ĝc is the constrained estimator, ‖ · ‖2,t an appropriate L2-norm, K the number of

series terms in the estimator ĝc, s the number of derivatives of the function g, and C some

constant; see Section 3 for details. Thus, the constrained estimator ĝc has fast rate of

convergence in the first regime, and the bound in this regime is of the same order, up to a

log-factor, as that for series estimators of conditional mean functions. The second regime

applies when the function g is sufficiently steep. In this regime, the bound is similar to that

for the unconstrained NPIV estimators. The steepness level separating the two regimes

depends on the sample size n and decreases as the sample size n grows large. Therefore,

for a given increasing function g, if the sample size n is not too large, the bound is in its

first regime, where the constrained estimator ĝc does not suffer from ill-posedness of the

model. As the sample size n grows large, however, the bound eventually switches to the

second regime, where ill-posedness of the model undermines the statistical properties of

the constrained estimator ĝc similarly to the case of the unconstrained estimator.

Intuitively, existence of the second regime of the bound is well expected. Indeed,

if the function g is strictly increasing, it lies in the interior of the constraint that g is

increasing. Hence, the constraint does not bind asymptotically so that, in sufficiently

large samples, the constrained estimator coincides with the unconstrained one and the

two estimators share the same convergence rate. In finite samples, however, the constraint

binds with non-negligible probability even if g is strictly increasing. The first regime of our

non-asymptotic bound captures this finite-sample phenomenon, and improvements from

imposing the monotonicity constraint on g in this regime can be understood as a boundary

effect. Importantly, and perhaps unexpectedly, we show that under the monotone IV

assumption, this boundary effect is so strong that ill-posedness of the problem completely

disappears in the first regime.2 In addition, we demonstrate via our analytical results

as well as simulations that this boundary effect can be strong even far away from the

boundary and/or in large samples.

Our simulation experiments confirm these theoretical findings and demonstrate dra-

matic finite-sample performance improvements of the constrained relative to the un-

constrained NPIV estimator when the monotone IV assumption is satisfied. Imposing

the monotonicity constraint on g removes the estimator’s non-monotone oscillations due

2Even though we have established the result that ill-posedness disappears in the first regime under the

monotone IV assumption, currently we do not know whether this assumption is necessary for the result.

3



to sampling noise, which in ill-posed inverse problems can be particularly pronounced.

Therefore, imposing the monotonicity constraint significantly reduces variance while only

slightly increasing bias.

In addition, we show that in the absence of completeness assumptions, that is, when

the NPIV model is not point-identified, our monotonicity conditions have non-trivial

identification power, and can provide partial identification of the model.

We regard both monotonicity conditions as natural in many economic applications.

In fact, both of these conditions often directly follow from economic theory. Consider the

following generic example. Suppose an agent chooses input X (e.g. schooling) to produce

an outcome Y (e.g. life-time earnings) such that Y = g(X) + ε, where ε summarizes

determinants of outcome other than X. The cost of choosing a level X = x is C(x,W, η),

where W is a cost-shifter (e.g. distance to college) and η represents (possibly vector-

valued) unobserved heterogeneity in costs (e.g. family background, a family’s taste for

education, variation in local infrastructure). The agent’s optimization problem can then

be written as

X = arg max
x
{g(x) + ε− c(x,W, η)}

so that, from the first-order condition of this optimization problem,

∂X

∂W
=

∂2c
∂X∂W

∂2g
∂X2 − ∂2c

∂X2

≥ 0 (2)

if marginal cost are decreasing in W (i.e. ∂2c/∂X∂W ≤ 0), marginal cost are increasing

in X (i.e. ∂2c/∂X2 > 0), and the production function is concave (i.e. ∂2g/∂X2 ≤ 0).

As long as W is independent of the pair (ε, η), condition (2) implies our monotone IV

assumption and g increasing corresponds to the assumption of a monotone regression

function. Dependence between η and ε generates endogeneity of X, and independence of

W from (ε, η) implies that W can be used as an instrument for X.

Another example is the estimation of Engel curves. In this case, the outcome variable

Y is the budget share of a good, the endogenous variable X is total expenditure, and

the instrument W is gross income. Our monotonicity conditions are plausible in this

example because for normal goods such as food-in, the budget share is decreasing in

total expenditure, and total expenditure increases with gross income. Finally, consider

the estimation of (Marshallian) demand curves. The outcome variable Y is quantity of

a consumed good, the endogenous variable X is the price of the good, and W could be

some variable that shifts production cost of the good. For a normal good, the Slutsky

inequality predicts Y to be decreasing in price X as long as income effects are not too

large. Furthermore, price is increasing in production cost and, thus, increasing in the

instrument W , and so our monotonicity conditions are plausible in this example as well.
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Both of our monotonicity assumptions are testable. For example, a test of the mono-

tone IV condition can be found in Lee, Linton, and Whang (2009). In this paper, we

extend their results by deriving an adaptive test of the monotone IV condition, with the

value of the involved smoothness parameter chosen in a data-driven fashion. This adap-

tation procedure allows us to construct a test with desirable power properties when the

degree of smoothness of the conditional distribution of X given W is unknown. Regarding

our first monotonicity condition, to the best of our knowledge, there are no procedures in

the literature that consistently test monotonicity of the function g in the NPIV model (1).

We consider such procedures in a separate project and, in this paper, propose a simple

test of monotonicity of g given that the monotone IV condition holds.

Matzkin (1994) advocates the use of shape restrictions in econometrics and argues that

economic theory often provides restrictions on functions of interest, such as monotonicity,

concavity, and/or Slutsky symmetry. In the context of the NPIV model (1), Freyberger

and Horowitz (2013) show that, in the absence of point-identification, shape restrictions

may yield informative bounds on functionals of g and develop inference procedures when

the regressor X and the instrument W are discrete. Blundell, Horowitz, and Parey (2013)

demonstrate via simulations that imposing Slutsky inequalities in a quantile NPIV model

for gasoline demand improves finite-sample properties of the NPIV estimator. Grasmair,

Scherzer, and Vanhems (2013) study the problem of demand estimation imposing vari-

ous constraints implied by economic theory, such as Slutsky inequalities, and derive the

convergence rate of a constrained NPIV estimator under an abstract projected source

condition. Our results are different from theirs because we focus on non-asymptotic error

bounds, with special emphasis on properties of our estimator in the neighborhood of the

boundary, we derive our results under easily interpretable, low level conditions, and we

find that our estimator does not suffer from ill-posedness of the problem in a large but

slowly shrinking neighborhood of constant functions.

Other related literature. The NPIV model has received substantial attention in the

recent econometrics literature. Newey and Powell (2003), Hall and Horowitz (2005), Blun-

dell, Chen, and Kristensen (2007), and Darolles, Fan, Florens, and Renault (2011) study

identification of the NPIV model (1) and propose estimators of the regression function

g. See Horowitz (2011, 2014) for recent surveys and further references. In the mildly

ill-posed case, Hall and Horowitz (2005) derive the minimax risk lower bound in L2-norm

and show that their estimator achieves this lower bound. Under different conditions,

Chen and Reiß (2011) derive a similar bound for the mildly and the severely ill-posed

case and show that the estimator by Blundell, Chen, and Kristensen (2007) achieves this

bound. Chen and Christensen (2013) establish minimax risk bounds in the sup-norm,
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again both for the mildly and the severely ill-posed case. The optimal convergence rates

in the severely ill-posed case were shown to be logarithmic, which means that the slow

convergence rate of existing estimators is not a deficiency of those estimators but rather

an intrinsic feature of the statistical inverse problem.

There is also large statistics literature on nonparametric estimation of monotone func-

tions when the regressor is exogenous, i.e. W = X, so that g is a conditional mean func-

tion. This literature can be traced back at least to Brunk (1955). Surveys of this literature

and further references can be found in Yatchew (1998), Delecroix and Thomas-Agnan

(2000), and Gijbels (2004). For the case in which the regression function is both smooth

and monotone, many different ways of imposing monotonicity on the estimator have

been studied; see, for example, Mukerjee (1988), Cheng and Lin (1981), Wright (1981),

Friedman and Tibshirani (1984), Ramsay (1988), Mammen (1991), Ramsay (1998), Mam-

men and Thomas-Agnan (1999), Hall and Huang (2001), Mammen, Marron, Turlach, and

Wand (2001), and Dette, Neumeyer, and Pilz (2006). Importantly, under the mild assump-

tion that the estimators consistently estimate the derivative of the regression function,

the standard unconstrained nonparametric regression estimators are known to be mono-

tone with probability approaching one when the regression function is strictly increasing.

Therefore, such estimators have the same rate of convergence as the corresponding con-

strained estimators that impose monotonicity (Mammen (1991)). As a consequence, gains

from imposing a monotonicity constraint can only be expected when the regression func-

tion is close to the boundary of the constraint and/or in finite samples. Zhang (2002)

and Chatterjee, Guntuboyina, and Sen (2013) formalize this intuition by deriving risk

bounds of the isotonic (monotone) regression estimators and showing that these bounds

imply fast convergence rates when the regression function has flat parts. Our results are

different from theirs because we focus on the endogenous case with W 6= X and study

the impact of monotonicity constraints on the ill-posedness property of the NPIV model

which is absent in the standard regression problem.

Notation. For a differentiable function f : R→ R, we use Df(x) to denote its deriva-

tive. When a function f has several arguments, we use D with an index to denote the

derivative of f with respect to corresponding argument; for example, Dwf(w, u) denotes

the partial derivative of f with respect to w. For random variables A and B, we denote by

fA,B(a, b), fA|B(a, b), and fA(a) the joint, conditional and marginal densities of (A,B), A

given B, and A, respectively. Similarly, we let FA,B(a, b), FA|B(a, b), and FA(a) refer to the

corresponding cumulative distribution functions. For an operator T : L2[0, 1] → L2[0, 1],

we let ‖T‖2 denote the operator norm defined as

‖T‖2 = sup
h∈L2[0,1]: ‖h‖2=1

‖Th‖2.
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Finally, by increasing and decreasing we mean that a function is non-decreasing and

non-increasing, respectively.

Outline. The remainder of the paper is organized as follows. In the next section, we

analyze ill-posedness of the model (1) under our monotonicity conditions and derive a

useful bound on a restricted measure of ill-posedness for the model (1). Section 3 discusses

the implications of our monotonicity assumptions for estimation of the regression function

g. In particular, we show that the rate of convergence of our estimator is always not worse

than that of unconstrained estimators but may be much faster in a large, but slowly

shrinking, neighborhood of constant functions. Section 4 shows that our monotonicity

conditions have non-trivial identification power. Section 5 provides new tests of our two

monotonicity assumptions. In Section 6, we present results of a Monte Carlo simulation

study that demonstrates large gains in performance of the constrained estimator relative to

the unconstrained one. Finally, Section 7 applies the constrained estimator to the problem

of estimating gasoline demand functions. All proofs are collected in the appendix.

2 Boundedness of the Measure of Ill-posedness under

Monotonicity

In this section, we discuss the sense in which the ill-posedness of the NPIV model (1)

is weakened by imposing our monotonicity conditions. In particular, we introduce a

restricted measure of ill-posedness for this model (see equation (9)) and show that, in

stark contrast to the existing literature, our measure is bounded (Corollary 1) when the

monotone IV condition holds.

The NPIV model requires solving the equation E[Y |W ] = E[g(X)|W ] for the func-

tion g. Letting T : L2[0, 1] → L2[0, 1] be the linear operator defined by (Th)(w) :=

E[h(X)|W = w]fW (w) and denoting m(w) := E[Y |W = w]fW (w), we can express this

equation as

Tg = m. (3)

In finite-dimensional regressions, the operator T corresponds to a finite-dimensional ma-

trix whose singular values are typically assumed to be nonzero (rank condition). There-

fore, the solution g is continuous in m, and consistent estimation of m at a fast con-

vergence rate leads to consistent estimation of g at the same fast convergence rate. In

infinite-dimensional models, however, T is an operator that, under weak conditions, pos-

sesses infinitely many singular values that tend to zero. Therefore, small perturbations in

m may lead to large perturbations in g. This discontinuity renders equation (3) ill-posed
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and introduces challenges in estimation of the NPIV model (1) that are not present in

parametric regressions nor in nonparametric regressions with exogenous regressors; see

Horowitz (2011, 2014) for a more detailed discussion.

In this section, we show that, under our monotonicity conditions, there exists a finite

constant C̄ such that for any monotone function g′ and any constant function g′′, with

m′ = Tg′ and m′′ = Tg′′, we have

‖g′ − g′′‖2,t ≤ C̄‖m′ −m′′‖2,

where ‖ · ‖2,t is a truncated L2-norm defined below. This result plays a central role in our

derivation of the upper bound on the restricted measure of ill-posedness, of identification

bounds, and of fast convergence rates of a constrained NPIV estimator that imposes

monotonicity of g in a large but slowly shrinking neighborhood of constant functions.

We now introduce our assumptions. Let 0 ≤ x1 < x̃1 < x̃2 < x2 ≤ 1 and 0 ≤ w1 <

w2 ≤ 1 be some constants. We implicitly assume that x1, x̃1, and w1 are close to 0 whereas

x2, x̃2, and w2 are close to 1. Our first assumption is the monotone IV condition that

requires a monotone relationship between the endogenous regressor X and the instrument

W .

Assumption 1 (Monotone IV). For all x,w′, w′′ ∈ (0, 1),

w′ ≤ w′′ ⇒ FX|W (x|w′) ≥ FX|W (x|w′′). (4)

Furthermore, there exists a constant CF > 1 such that

FX|W (x|w1) ≥ CFFX|W (x|w2), ∀x ∈ (0, x2) (5)

and

CF (1− FX|W (x|w1)) ≤ 1− FX|W (x|w2), ∀x ∈ (x1, 1) (6)

Assumption 1 is crucial for our analysis. The first part, condition (4), requires first-

order stochastic dominance of the conditional distribution of the endogenous regressor X

given the instrument W as we increase the value of the instrument W . This condition

(4) is testable; see, for example, Lee, Linton, and Whang (2009). In Section 5 below, we

extend the results of Lee, Linton, and Whang (2009) by providing an adaptive test of the

first-order stochastic dominance condition (4).

The second and third parts of Assumption 1, conditions (5) and (6), strengthen the

stochastic dominance condition (4) in the sense that the conditional distribution is re-

quired to “shift to the right” by a strictly positive amount at least between two values of

the instrument, w1 and w2, so that the instrument is not redundant. Conditions (5) and
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(6) are rather weak as they require such a shift only in some intervals (0, x2) and (x1, 1),

respectively.

Condition (4) can be equivalently stated in terms of monotonicity with respect to the

instrument W of the reduced form first stage function. Indeed, by the Skorohod repre-

sentation, it is always possible to construct a random variable U distributed uniformly on

[0, 1] such that U is independent of W , and equation X = r(W,U) holds for the reduced

form first stage function r(w, u) := F−1
X|W (u|w) := inf{x : FX|W (x|w) ≥ u}. Therefore,

condition (4) is equivalent to the assumption that the function w 7→ r(w, u) is increasing

for all u ∈ [0, 1]. Notice, however, that our condition (4) allows for general unobserved

heterogeneity of dimension larger than one, for instance as in Example 2 below.

Condition (4) is related to a corresponding condition in Kasy (2014) who assumes

that the (structural) first stage has the form X = r̃(W, Ũ) where Ũ , representing (poten-

tially multidimensional) unobserved heterogeneity, is independent of W , and the function

w 7→ r̃(w, ũ) is increasing for all values ũ. Kasy employs his condition for identifica-

tion of (nonseparable) triangular systems with multidimensional unobserved heterogene-

ity whereas we use our condition (4) to derive a useful bound on the restricted measure

of ill-posedness and to obtain a fast rate of convergence of a monotone NPIV estima-

tor of g in the (separable) model (1). Condition (4) is not related to the monotone IV

assumption in the influential work by Manski and Pepper (2000) which requires the func-

tion w 7→ E[ε|W = w] to be increasing. Instead, we maintain the mean independence

condition E[ε|W ] = 0.

Assumption 2 (Density). (i) The joint distribution of the pair (X,W ) is absolutely

continuous with respect to the Lebesgue measure on [0, 1]2 with the density fX,W (x,w)

satisfying
∫ 1

0

∫ 1

0
fX,W (x,w)2dxdw ≤ CT for some finite constant CT . (ii) There exists a

constant cf > 0 such that fX|W (x|w) ≥ cf for all x ∈ [x1, x2] and w ∈ {w1, w2}. (iii)

There exists constants 0 < cW ≤ CW <∞ such that cW ≤ fW (w) ≤ CW for all w ∈ [0, 1].

This is a mild regularity assumption. The first part of the assumption implies that

the operator T is compact. The second and the third parts of the assumption require the

conditional distribution of X given W = w1 or w2 and the marginal distribution of W to

be bounded away from zero over some intervals. Recall that we have 0 ≤ x1 < x2 ≤ 1

and 0 ≤ w1 < w2 ≤ 1. We could simply set [x1, x2] = [w1, w2] = [0, 1] in the second part

of the assumption but having 0 < x1 < x2 < 1 and 0 < w1 < w2 < 1 is required to allow

for densities such as the normal, which, even after a transformation to the interval [0, 1],

may not yield a conditional density fX|W (x|w) bounded away from zero; see Example 1

below. Therefore, we allow for the general case 0 ≤ x1 < x2 ≤ 1 and 0 ≤ w1 < w2 ≤ 1.

The restriction fW (w) ≤ CW for all w ∈ [0, 1] imposed in Assumption 2 is not actually

required for the results in this section, but rather those of Section 3.
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We now provide two examples of distributions of (X,W ) that satisfy Assumptions 1

and 2, and show two possible ways in which the instrument W can shift the conditional

distribution of X given W . Figure 1 displays the corresponding conditional distributions.

Example 1 (Normal density). Let (X̃, W̃ ) be jointly normal with mean zero, variance

one, and correlation 0 < ρ < 1. Let Φ(u) denote the distribution function of a N(0, 1)

random variable. Define X = Φ(X̃) and W = Φ(W̃ ). Since X̃ = ρW̃ + (1 − ρ2)1/2U for

some standard normal random variable U that is independent of W̃ , we have

X = Φ(ρΦ−1(W ) + (1− ρ2)1/2U)

where U is independent of W . Therefore, the pair (X,W ) satisfies condition (4) of our

monotone IV Assumption 1. Lemma 7 in the appendix verifies that the remaining condi-

tions of Assumption 1 as well as Assumption 2 are also satisfied. �

Example 2 (Two-dimensional unobserved heterogeneity). Let X = U1 + U2W , where

U1, U2,W are mutually independent, U1, U2 ∼ U [0, 1/2] and W ∼ U [0, 1]. Since U2

is positive, it is straightforward to see that the stochastic dominance condition (4) is

satisfied. Lemma 8 in the appendix shows that the remaining conditions of Assumption 1

as well as Assumption 2 are also satisfied. �

Figure 1 shows that, in Example 1, the conditional distribution at two different values

of the instrument is shifted to the right at every value of X, whereas, in Example 2, the

conditional support of X given W = w changes with w, but the positive shift in the cdf

of X|W = w occurs only for values of X in a subinterval of [0, 1].

Before stating our results in this section, we introduce some additional notation. Define

the truncated L2-norm ‖ · ‖2,t by

‖h‖2,t :=

(∫ x̃2

x̃1

h(x)2dx

)1/2

, h ∈ L2[0, 1].

Also, let M denote the set of all monotone functions in L2[0, 1]. Finally, define ζ :=

(cf , cW , CF , CT , w1, w2, x1, x2, x̃1, x̃2). Below is our first main result in this section.

Theorem 1 (Lower Bound on T ). Let Assumptions 1 and 2 be satisfied. Then there

exists a finite constant C̄ depending only on ζ such that

‖h‖2,t ≤ C̄‖Th‖2 (7)

for any function h ∈M.
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To prove this theorem, we take a function h ∈ M with ‖h‖2,t = 1 and show that

‖Th‖2 is bounded away from zero. A key observation that allows us to establish this

bound is that, under monotone IV Assumption 1, the function w 7→ E[h(X)|W = w] is

monotone whenever h is. Together with non-redundancy of the instrument W implied

by conditions (5) and (6) of Assumption 1, this allows us to show that E[h(X)|W = w1]

and E[h(X)|W = w2] cannot both be close to zero so that ‖E[h(X)|W = ·]‖2 is bounded

from below by a strictly positive constant from the values of E[h(X)|W = w] in the

neighborhood of either w1 or w2. By Assumption 2, ‖Th‖2 must then also be bounded

away from zero.

Theorem 1 has an important consequence. Indeed, consider the linear equation (3).

By Assumption 2(i), the operator T is compact, and so

‖hk‖2

‖Thk‖2

→∞ as k →∞ for some sequence {hk, k ≥ 1} ⊂ L2[0, 1]. (8)

Property (8) means that ‖Th‖2 being small does not necessarily imply that ‖h‖2 is small

and, therefore, the inverse of the operator T : L2[0, 1] → L2[0, 1], when it exists, cannot

be continuous. Therefore, (3) is ill-posed in Hadamard’s sense3, if no other conditions are

imposed. This is the main reason why standard NPIV estimators have (potentially very)

slow rate of convergence. Theorem 1, on the other hand, implies that, under Assump-

tions 1 and 2, (8) is not possible if hk belongs to the set M of monotone functions in

L2[0, 1] for all k ≥ 1 and we replace the L2-norm ‖ · ‖2 in the numerator of the left-hand

side of (8) by the truncated L2-norm ‖ · ‖2,t, indicating that shape restrictions may be

helpful to improve statistical properties of the NPIV estimators. Also, in Remark 1, we

show that replacing the norm in the numerator is not a significant modification in the

sense that for most ill-posed problems, and in particular for all severely ill-posed prob-

lems, (8) holds even if we replace L2-norm ‖ · ‖2 in the numerator of the left-hand side of

(8) by the truncated L2-norm ‖ · ‖2,t.

Next, we derive an implication of Theorem 1 for the (quantitative) measure of ill-

posedness of the model (1). We first define the restricted measure of ill-posedness. For

a ∈ R, let

H(a) :=

{
h ∈ L2[0, 1] : inf

0≤x′<x′′≤1

h(x′′)− h(x′)

x′′ − x′
≥ −a

}
3Well- and ill-posedness in Hadamard’s sense are defined as follows. Let A : D → R be a continuous

mapping between metric spaces (D, ρD) and (R, ρR). Then, for d ∈ D and r ∈ R, the equation Ad = r

is called “well-posed” on D in Hadamard’s sense (see Hadamard (1923)) if (i) A is bijective and (ii)

A−1 : R→ D is continuous, so that for each r ∈ R there exists a unique d = A−1r ∈ D satisfying Ad = r,

and, moreover, the solution d = A−1r is continous in “the data” r. Otherwise, the equation is called

“ill-posed” in Hadamard’s sense.
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be the space containing all functions in L2[0, 1] with lower derivative bounded from below

by −a uniformly over the interval [0, 1]. Note that H(a′) ⊂ H(a′′) whenever a′ ≤ a′′

and that H(0) is the set of increasing functions in L2[0, 1]. For continuously differentiable

functions, h ∈ L2[0, 1] belongs to H(a) if and only if infx∈[0,1]Dh(x) ≥ −a. Further, define

the restricted measure of ill-posedness:

τ(a) := sup
h∈H(a)
‖h‖2,t=1

‖h‖2,t

‖Th‖2

. (9)

As we discussed above, under our Assumptions 1 and 2, τ(∞) =∞ if we use the L2-norm

instead of the truncated L2-norm in the numerator in (9). We show in Remark 1 below,

that τ(∞) = ∞ for many ill-posed and, in particular, for all severely ill-posed problems

even with the truncated L2-norm as defined in (9). However, Theorem 1 implies that τ(0)

is bounded from above by C̄ and, by definition, τ(a) is increasing in a, i.e. τ(a′) ≤ τ(a′′)

for a′ ≤ a′′. It turns out that τ(a) is bounded from above even for some positive values

of a:

Corollary 1 (Bound for the Restricted Measure of Ill-Posedness). Let Assumptions 1

and 2 be satisfied. Then there exist constants cτ > 0 and 0 < Cτ <∞ depending only on

ζ such that

τ(a) ≤ Cτ (10)

for all a ≤ cτ .

This is our second main result in this section. It is exactly this corollary of Theorem

1 that allows us to obtain a fast convergence rate of our constrained NPIV estimator ĝc

not only when the regression function g is constant but, more generally, when g belongs

to a large but slowly shrinking neighborhood of constant functions.

Remark 1 (Ill-posedness is preserved by norm truncation). Under Assumptions 1 and

2, the integral operator T satisfies (8). Here we demonstrate that, in many cases, and in

particular in all severely ill-posed cases, (8) continues to hold if we replace the L2-norm

‖ · ‖2 by the truncated L2-norm ‖ · ‖2,t in the numerator of the left-hand side of (8), that

is, there exists a sequence {lk, k ≥ 1} in L2[0, 1] such that

‖lk‖2,t

‖T lk‖2

→∞ as k →∞. (11)

Indeed, under Assumptions 1 and 2, T is compact, and so the spectral theorem implies that

there exists a spectral decomposition of operator T , {(hj, ϕj), j ≥ 1}, where {hj, j ≥ 1}
is an orthonormal basis of L2[0, 1] and {ϕj, j ≥ 1} is a decreasing sequence of positive

numbers such that ϕj → 0 as j →∞, and ‖Thj‖2 = ϕj‖hj‖2 = ϕj. Also, Lemma 6 in the

12



appendix shows that if {hj, j ≥ 1} is an orthonormal basis in L2[0, 1], then for any α > 0,

‖hj‖2,t > j−1/2−α for infinitely many j, and so there exists a subsequence {hjk , k ≥ 1}
such that ‖hjk‖2,t > jk

−1/2−α. Therefore, under a weak condition that j1/2+αϕj → 0 as

j →∞, using ‖hjk‖2 = 1 for all k ≥ 1, we conclude that for the subsequence lk = hjk ,

‖lk‖2,t

‖T lk‖2

≥ ‖hjk‖2

jk
1/2+α‖Thjk‖2

=
1

jk
1/2+αϕjk

→∞ as k →∞

leading to (11). Note also that the condition that j1/2+αϕj → 0 as j → ∞ necessarily

holds if there exists a constant c > 0 such that ϕj ≤ e−cj for all large j, that is, if the

problem is severely ill-posed. Thus, under our Assumptions 1 and 2, the restriction in

Theorem 1 that h belongs to the spaceM of monotone functions in L2[0, 1] plays a crucial

role for the result (7) to hold. On the other hand, whether the result (7) can be obtained

for all h ∈ M without imposing our monotone IV Assumption 1 appears to be an open

(and interesting) question. �

Remark 2 (Severe ill-posedness is preserved by norm truncation). One might wonder

whether our monotone IV Assumption 1 excludes all severely ill-posed problems, and

whether the norm truncation significantly changes these problems. Here we show that

there do exist severely ill-posed problems that satisfy our monotone IV Assumption 1,

and also that severely ill-posed problems remain severely ill-posed even if we replace the

L2-norm ‖ · ‖2 by the truncated L2-norm ‖ · ‖2,t. Indeed, consider Example 1 above.

Because, in this example, the pair (X,W ) is a transformation of the normal distribution,

it is well known that the integral operator T in this example has singular values decreasing

exponentially fast. More specifically, the spectral decomposition {(hk, ϕk), k ≥ 1} of the

operator T satisfies ϕk = ρk for all k and some ρ < 1. Hence,

‖hk‖2

‖Thk‖2

=

(
1

ρ

)k
.

Since (1/ρ)k →∞ as k →∞ exponentially fast, this example leads to a severely ill-posed

problem. Moreover, by Lemma 6, for any α > 0 and ρ′ ∈ (ρ, 1),

‖hk‖2,t

‖Thk‖2

>
1

k1/2+α

(
1

ρ

)k
≥
(

1

ρ′

)k
for infinitely many k. Thus, replacing the L2 norm ‖ · ‖2 by the truncated L2 norm ‖ · ‖2,t

preserves the severe ill-posedness of the problem. However, it follows from Theorem 1 that

uniformly over all h ∈M, ‖h‖2,t/‖Th‖2 ≤ C̄. Therefore, in this example, as well as in all

other severely ill-posed problems satisfying Assumptions 1 and 2, imposing monotonicity

on the function h ∈ L2[0, 1] significantly changes the properties of the ratio ‖h‖2,t/‖Th‖2.

�
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Remark 3 (Monotone IV Assumption does not imply control function approach). Our

monotone IV Assumption 1 does not imply the applicability of a control function ap-

proach to estimation of the function g. Consider Example 2 above. In this example, the

relationship between X and W has a two-dimensional vector (U1, U2) of unobserved het-

erogeneity. Therefore, by Proposition 4 of Kasy (2011), there does not exist any control

function C : [0, 1]2 → R such that (i) C is invertible in its second argument, and (ii)

X is independent of ε conditional on V = C(X,W ). As a consequence, our monotone

IV Assumption 1 does not imply any of the existing control function conditions such as

those in Newey, Powell, and Vella (1999) and Imbens and Newey (2009), for example.4

Since multidimensional unobserved heterogeneity is common in economic applications

(see Imbens (2007) and Kasy (2014)), we view our approach to avoiding ill-posedness as

complementary to the control function approach. �

Remark 4 (On the role of norm truncation). Let us also briefly comment on the role

of the truncated norm ‖ · ‖2,t in (7). There are two reasons why we need the truncated

L2-norm ‖ · ‖2,t rather than the usual L2-norm ‖ · ‖2. First, Lemma 2 in the appendix

shows that, under Assumptions 1 and 2, there exists a constant 0 < C2 <∞ such that

‖h‖1 ≤ C2‖Th‖1

for any increasing and continuously differentiable function h ∈ L1[0, 1]. This result does

not require any truncation of the norms and implies boundedness of a measure of illposed-

ness defined in terms of L1[0, 1]-norms: suph∈L1[0,1],h increasing ‖h‖1/‖Th‖1. To extend this

result to L2[0, 1]-norms we need to introduce a positive, but arbitrarily small, amount of

truncation at the boundaries, so that we have a control ‖h‖2,t ≤ C‖h‖1 for some constant

C and all monotone functions h ∈ M. Second, we want to allow for the normal density

as in Example 1, which violates condition (ii) of Assumption 2 if we set [x1, x2] = [0, 1].

�

Remark 5 (Bounds on the measure of ill-posedness via compactness). Another approach

to obtain a result like (7) would be to employ compactness arguments. For example, let b >

0 be some (potentially large) constant and consider the class of functionsM(b) consisting

of all functions h inM such that ‖h‖∞ = supx∈[0,1] |h(x)| ≤ b. It is well known that the set

M(b) is compact under the L2-norm ‖ · ‖2, and so, as long as T is invertible, there exists

some C > 0 such that ‖h‖2 ≤ C‖Th‖2 for all h ∈M(b) since (i) T is continuous and (ii)

any continuous function achieves its minimum on a compact set. This bound does not

require the monotone IV assumption and also does not require replacing the L2-norm by

4It is easy to show that the existence of a control function does not imply our monotone IV condition

either, so our and the control function approach rely on conditions that are non-nested.
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the truncated L2-norm. Further, defining τ̃(a, b) := suph∈H(a):‖h‖∞≤b,‖h‖2=1 ‖h‖2/‖Th‖2 for

all a > 0 and using the same arguments as those in the proof of Corollary 1, one can show

that there exist some finite constants c, C > 0 such that τ̃(a, b) ≤ C for all a ≤ c. This

(seemingly interesting) result, however, is not useful for bounding the estimation error of

an estimator of g because, as the proof of Theorem 2 in the next section reveals, obtaining

meaningful bounds would require a result of the form τ̃(a, bn) ≤ C for all a ≤ c for some

sequence {bn, n ≥ 1} such that bn →∞, even if we know that supx∈[0,1] |g(x)| ≤ b and we

impose this constraint on the estimator of g. In contrast, our arguments in Theorem 1,

being fundamentally different, do lead to meaningful bounds on the estimation error of

the constrained estimator ĝc of g. �

3 Non-asymptotic Risk Bounds Under Monotonicity

The rate at which unconstrained NPIV estimators converge to g depends crucially on

the so-called sieve measure of ill-posedness, which, unlike τ(a), does not measure ill-

posedness over the space H(a), but rather over the space Hn(∞), a finite-dimensional

(sieve) approximation to H(∞). In particular, the convergence rate is slower the faster

the sieve measure of ill-posedness grows with the dimensionality of the sieve spaceHn(∞).

The convergence rates can be as slow as logarithmic in the severely ill-posed case. Since

by Corollary 1, our monotonicity assumptions imply boundedness of τ(a) for some range

of finite values a, we expect these assumptions to translate into favorable performance of

a constrained estimator that imposes monotonicity of g. This intuition is confirmed by

the novel non-asymptotic error bounds we derive in this section (Theorem 2).

Let (Yi, Xi,Wi), i = 1, . . . , n, be an i.i.d. sample from the distribution of (Y,X,W ). To

define our estimator, we first introduce some notation. Let {pk(x), k ≥ 1} and {qk(w), k ≥
1} be two orthonormal bases in L2[0, 1]. For K = Kn ≥ 1 and J = Jn ≥ Kn, denote

p(x) := (p1(x), . . . , pK(x))′ and q(w) := (q1(w), . . . , qJ(w))′.

Let P := (p(X1), . . . , p(Xn))′ and Q := (q(W1), . . . , q(Wn))′. Similarly, stack all observa-

tions on Y in Y := (Y1, . . . , Yn)′. Let Hn(a) be a sequence of finite-dimensional spaces

defined by

Hn(a) :=

{
h ∈ H(a) : ∃b1, . . . , bKn ∈ R with h =

Kn∑
j=1

bjpj

}

which become dense inH(a) as n→∞. Throughout the paper, we assume that ‖g‖2 ≤ Cb

where Cb is a large but finite constant known by the researcher. We define two estimators
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of g: the unconstrained estimator ĝu(x) := p(x)′β̂u with

β̂u := argminb∈RK :‖b‖≤Cb(Y −Pb)′Q(Q′Q)−1Q′(Y −Pb) (12)

which is similar to the estimator defined in Horowitz (2012) and a special case of the esti-

mator considered in Blundell, Chen, and Kristensen (2007), and the constrained estimator

ĝc(x) := p(x)′β̂c with

β̂c := argminb∈RK : p(·)′b∈Hn(0),‖b‖≤Cb(Y −Pb)′Q(Q′Q)−1Q′(Y −Pb), (13)

which imposes the monotonicity of g through the constraint p(·)′b ∈ Hn(0).

To study properties of the two estimators we introduce a finite-dimensional, or sieve,

counterpart of the restricted measure of ill-posedness τ(a) defined in (9) and also recall

the definition of the (unrestricted) sieve measure of ill-posedness. Specifically, define the

restricted and unrestricted sieve measures of ill-posedness τn,t(a) and τn as

τn,t(a) := sup
h∈Hn(a)
‖h‖2,t=1

‖h‖2,t

‖Th‖2

and τn := sup
h∈Hn(∞)

‖h‖2

‖Th‖2

.

The sieve measure of ill-posedness defined in Blundell, Chen, and Kristensen (2007) and

also used, for example, in Horowitz (2012) is τn. Blundell, Chen, and Kristensen (2007)

show that τn is related to the singular values of T .5 If the singular values converge

to zero at the rate K−r as K → ∞, then, under certain conditions, τn diverges at a

polynomial rate, that is τn = O(Kr
n). This case is typically referred to as “mildly ill-

posed”. On the other hand, when the singular values decrease at a fast exponential rate,

then τn = O(ecKn), for some constant c > 0. This case is typically referred to as “severely

ill-posed”.

Our restricted sieve measure of ill-posedness τn,t(a) is smaller than the unrestricted

sieve measure of ill-posedness τn because we replace the L2-norm in the numerator by the

truncated L2-norm and the space Hn(∞) by Hn(a). As explained in Remark 1, replacing

the L2-norm by the truncated L2-norm does not make a crucial difference but, as follows

from Corollary 1, replacing Hn(∞) by Hn(a) does. In particular, since τ(a) ≤ Cτ for all

a ≤ cτ by Corollary 1, we also have τn,t(a) ≤ Cτ for all a ≤ cτ because τn,t(a) ≤ τ(a).

Thus, for all values of a that are not too large, τn,t(a) remains bounded uniformly over

all n, no matter how fast the singular values of T converge to zero.

We now specify conditions that we need to derive non-asymptotic error bounds for the

constrained estimator ĝc(x).

5In fact, Blundell, Chen, and Kristensen (2007) talk about the eigenvalues of T ∗T , where T ∗ is the

adjoint of T but there is a one-to-one relationship between eigenvalues of T ∗T and singular values of T .
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Assumption 3 (Monotone regression function). The function g is monotone increasing.

Assumption 4 (Moments). For some constant CB < ∞, (i) E[ε2|W ] ≤ CB and (ii)

E[g(X)2|W ] ≤ CB.

Assumption 5 (Relation between J and K). For some constant CJ <∞, J ≤ CJK.

Assumption 3, along with Assumption 1, is our main monotonicity condition. As-

sumption 4 is a mild moment condition. Assumption 5 requires that the dimension of the

vector q(w) is not much larger than the dimension of the vector p(x). Let s > 0 be some

constant.

Assumption 6 (Approximation of g). There exist βn ∈ RK and a constant Cg <∞ such

that the function gn(x) := p(x)′βn, defined for all x ∈ [0, 1], satisfies (i) gn ∈ Hn(0), (ii)

‖g − gn‖2 ≤ CgK
−s, and (iii) ‖T (g − gn)‖2 ≤ Cgτ

−1
n K−s.

The first part of this condition requires the approximating function gn to be increasing.

The second part requires a particular bound on the approximation error in the L2-norm.

De Vore (1977a,b) show that the assumption ‖g − gn‖2 ≤ CgK
−s holds when the ap-

proximating basis p1, . . . , pK consists of polynomial or spline functions and g belongs to

a Hölder class with smoothness level s. Therefore, approximation by monotone functions

is similar to approximation by all functions. The third part of this condition is similar to

Assumption 6 in Blundell, Chen, and Kristensen (2007).

Assumption 7 (Approximation of m). There exist γn ∈ RJ and a constant Cm < ∞
such that the function mn(w) := q(w)′γn, defined for all w ∈ [0, 1], satisfies ‖m−mn‖2 ≤
Cmτ

−1
n J−s .

This condition is similar to Assumption 3(iii) in Horowitz (2012). Also, define the

operator Tn : L2[0, 1]→ L2[0, 1] by

(Tnh)(w) := q(w)′E[q(W )p(X)′]E[p(U)h(U)], w ∈ [0, 1]

where U ∼ U [0, 1].

Assumption 8 (Operator T ). (i) The operator T is injective and (ii) for some constant

Ca <∞, ‖(T − Tn)h‖2 ≤ Caτ
−1
n K−s‖h‖2 for all h ∈ Hn(∞).

This condition is similar to Assumption 5 in Horowitz (2012). Finally, let

ξK,p := sup
x∈[0,1]

‖p(x)‖, ξJ,q := sup
w∈[0,1]

‖q(w)‖, ξn := max(ξK,p, ξJ,q).

We start our analysis in this section with a simple observation that, if the function

g is strictly increasing and the sample size n is sufficiently large, then the constrained

estimator ĝc coincides with the unconstrained estimator ĝu, and the two estimators share

the same rate of convergence.
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Lemma 1 (Asymptotic equivalence of constrained and unconstrained estimators). Let

Assumptions 1-8 be satisfied. In addition, assume that g is continuously differentiable

and Dg(x) ≥ cg for all x ∈ [0, 1] and some constant cg > 0. If τ 2
nξ

2
n log n/n → 0,

supx∈[0,1] ‖Dp(x)‖(τn(K/n)1/2+K−s)→ 0, and supx∈[0,1] |Dg(x)−Dgn(x)| → 0 as n→∞,

then

P
(
ĝc(x) = ĝu(x) for all x ∈ [0, 1]

)
→ 1 as n→∞. (14)

The result in Lemma 1 is similar to that in Theorem 1 of Mammen (1991), which

shows equivalence (in the sense of (14)) of the constrained and unconstrained estimators

of conditional mean functions. Lemma 1 implies that imposing monotonicity of g cannot

lead to improvements in the rate of convergence of the estimator if g is strictly increasing.

However, the result in Lemma 1 is asymptotic and only applies to the interior of the

monotonicity constraint. It does not rule out faster convergence rates on or near the

boundary of the monotonicity constraint nor does it rule out significant performance

gains in finite samples. In fact, our Monte Carlo simulation study in Section 6 shows

significant finite-sample performance improvements from imposing monotonicity even if

g is strictly increasing and relatively far from the boundary of the constraint. Therefore,

we next derive a non-asymptotic estimation error bound for the constrained estimator ĝc

and study the impact of the monotonicity constraint on this bound.

Theorem 2 (Non-asymptotic error bound for the constrained estimator). Let Assump-

tions 1-8 be satisfied, and let δ ≥ 0 be some constant. Assume that ξ2
n log n/n ≤ c for

sufficiently small c > 0. Then with probability at least 1− α− n−1, we have

‖ĝc − g‖2,t ≤ C
{
δ + τn,t

(‖Dgn‖∞
δ

)( K
αn

+
ξ2
n log n

n

)1/2

+K−s
}

(15)

and

‖ĝc− g‖2,t ≤ C min
{
‖Dg‖∞+

( K
αn

+
ξ2
n log n

n

)1/2

, τn

( K
αn

+
ξ2
n log n

n

)1/2}
+CK−s. (16)

Here the constants c, C <∞ can be chosen to depend only on the constants appearing in

Assumptions 1-8.

This is the main result of this section. An important feature of this result is that

since the constant C depends only on the constants appearing in Assumptions 1-8, the

bounds (15) and (16) hold uniformly over all data-generating processes that satisfy those

assumptions with the same constants. In particular, for any two data-generating processes

in this set, the same finite-sample bounds (15) and (16) hold with the same constant C,

even though the unrestricted sieve measure of ill-posedness τn may be of different order

of magnitude for these two data-generating processes.
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Another important feature of the bound (15) is that it depends on the restricted sieve

measure of ill-posedness that we know to be smaller than the unrestricted sieve measure

of ill-posedness, appearing in the analysis of the unconstrained estimator. In particular,

we know from Section 2 that τn,t(a) ≤ τ(a) and that, by Corollary 1, τ(a) is uniformly

bounded if a is not too large. Employing this result, we obtain the bound (16) of Theorem

2.6

The bound (16) has two regimes depending on whether the following inequality

‖Dg‖∞ ≤ (τn − 1)
( K
αn

+
ξ2
n log n

n

)1/2

(17)

holds. The most interesting feature of this bound is that in the first regime, when the

inequality (17) is satisfied, the bound is independent of the (unrestricted) sieve measure of

ill-posedness τn, and can be small if the function g is not too steep, regardless of whether

the original NPIV model (1) is mildly or severely ill-posed. This is the regime in which

the bound relies upon the monotonicity constraint imposed on the estimator ĝc. For a

given sample size n, this regime is active if the function g is not too steep.

As the sample size n grows large, the right-hand side of inequality (17) decreases (if

K = Kn grows slowly enough) and eventually becomes smaller than the left-hand side,

and the bound (16) switches to its second regime, in which it depends on the (unrestricted)

sieve measure of ill-posedness τn. This is the regime in which the bound does not employ

the monotonicity constraint imposed on ĝc. However, since τn →∞, potentially at a very

fast rate, even for relatively large sample sizes n and/or relatively steep functions g, the

bound may be in its first regime, where the monotonicity constraint is important. The

presence of the first regime and the observation that it is active in a (potentially very)

large set of data generated processes provides a theoretical justification for the importance

of imposing the monotonicity constraint on the estimators of the function g in the NPIV

model (1) when the monotone IV Assumption 1 is satisfied.

A corollary of the existence of the first regime in the bound (16) is that the constrained

estimator ĝc possesses a very fast rate of convergence in a large but slowly shrinking

neighborhood of constant functions, independent of the (unrestricted) sieve measure of

ill-posedness τn:

Corollary 2 (Fast convergence rate of the constrained estimator under local-to-con-

stant asymptotics). Consider the triangular array asymptotics where the data generating

process, including the function g, is allowed to vary with n. Let Assumptions 1-8 be sat-

isfied with the same constants for all n. In addition, assume that ξ2
n ≤ CξK for some

6Ideally, it would be of great interest to have a tight bound on the restricted sieve measure of ill-

posedness τn,t(a) for all a ≥ 0, so that it would be possible to optimize (15) over δ. Results of this form,

however, are not yet available in the literature, and so the optimization is not possible.
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0 < Cξ <∞ and K log n/n→ 0. If supx∈[0,1]Dg(x) = O((K log n/n)1/2), then

‖ĝc − g‖2,t = Op((K log n/n)1/2 +K−s). (18)

In particular, if supx∈[0,1]Dg(x) = O(n−s/(1+2s)
√

log n) and K = Kn = CKn
1/(1+2s) for

some 0 < CK <∞, then

‖ĝc − g‖2,t = Op(n
−s/(1+2s)

√
log n).

Remark 6 (On the condition ξ2
n ≤ CξK). The condition ξ2

n ≤ CξK, for 0 < Cξ < ∞,

is satisfied if the sequences {pk(x), k ≥ 1} and {qk(w), k ≥ 1} consist of commonly used

bases such as Fourier, spline, wavelet, or local polynomial partition series; see Belloni,

Chernozhukov, Chetverikov, and Kato (2014) for details. �

The local-to-constant asymptotics considered in this corollary captures the finite sam-

ple situation in which the regression function is not too steep relative to the sample

size. The convergence rate in this corollary is the standard polynomial rate of non-

parametric conditional mean regression estimators up to a (log n)1/2 factor, regardless of

whether the original NPIV problem without our monotonicity assumptions is mildly or

severely ill-posed. One way to interpret this result is that the constrained estimator ĝc

is able to recover regression functions in the shrinking neighborhood of constant func-

tions at a fast polynomial rate. Notice that the neighborhood of functions g that satisfy

supx∈[0,1]Dg(x) = O((K log n/n)1/2) is shrinking at a slow rate because K →∞, in par-

ticular the rate is much slower than n−1/2. Therefore, in finite samples, we expect the

estimator to perform well for a wide range of (non-constant) regression functions g as long

as the maximum slope of g is not too large relative to the sample size.

Remark 7 (The convergence rate of ĝc is not slower than that of ĝu). If we replace the

condition ξ2
n log n/n ≤ c in Theorem 2 by a more restrictive condition τ 2

nξ
2
n log n/n ≤ c,

then in addition to the bounds (15) and (16), it is possible to show that with probability

at least 1− α− n−1, we have

‖ĝc − g‖2 ≤ C(τn(K/(αn))1/2 +K−s).

This implies that the constrained estimator ĝc satisfies ‖ĝc − g‖2 = Op(τn(K/n)1/2 +

K−s), which is the standard minimax optimal rate of convergence established for the

unconstrained estimator ĝu in Blundell, Chen, and Kristensen (2007). �

In conclusion, in general, the convergence rate of the constrained estimator is the same

as the standard minimax optimal rate, which depends on the degree of ill-posedness and

may, in the worst-case, be logarithmic. This case occurs in the interior of the monotonicity
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constraint when g is strictly monotone. On the other hand, under the monotone IV

assumption, the constrained estimator converges at a very fast rate, independently of

the degree of ill-posedness, in a large but slowly shrinking neighborhood of constant

functions, a part of the boundary of the monotonicity constraint. In finite samples, we

expect to experience cases between the two extremes, and the bounds (15) and (16)

provide information on what the performace of the constrained estimator depends in that

general case. Since the first regime of bound (16) is active in a large set of data generating

processes and sample size combinations, and since the fast convergence rate in Corollary 2

is obtained in a large but slowly shrinking neighborhood of constant functions, we expect

the boundary effect due to the monotonicity constraint to be strong even far away from

the boundary and for relatively large sample sizes.

Remark 8 (Average Partial Effects). We expect similar results to Theorem 2 and Corol-

lary 2 to hold in the estimation of linear functionals of g, such as average marginal effects.

In the unconstrained problem, estimators of linear functionals do not necessarily converge

at polynomial rates and may exhibit similarly slow, logarithmic rates as for estimation of

the function g itself (e.g. Breunig and Johannes (2015)). Therefore, imposing monotonic-

ity as we do in this paper may also improve statistical properties of estimators of such

functionals. While we view this as a very important extension of our work, we develop

this direction in a separate paper. �

Remark 9 (On the role of the monotonicity constraint). Imposing the monotonicity con-

straint in the NPIV estimation procedure reduces variance by removing non-monotone

oscillations in the estimator that are due to sampling noise. Such oscillations are a com-

mon feature of unconstrained estimators in ill-posed inverse problems and lead to large

variance of such estimators. The reason for this phemonon can be seen in the conver-

gence rate of unconstrained estimators,7 τn(K/n)1/2 + K−s, in which the variance term

(K/n)1/2 is blown up by the multiplication by the measure of ill-posedness τn. Because

of this relatively large variance of NPIV estimators we expect the unconstrained estima-

tor to possess non-monotonicities even in large samples and even if g is far away from

constant functions. Therefore, imposing monotonicity of g can have significant impact on

the estimator’s performance even in those cases. �

Remark 10 (On robustness of the constrained estimator, I). Implementation of the

estimators ĝc and ĝu requires selecting the number of series terms K = Kn and J = Jn.

This is a difficult problem because the measure of ill-posedness τn = τ(Kn), appearing in

the convergence rate of both estimators, depends on K = Kn and can blow up quickly as

we increase K. Therefore, setting K higher than the optimal value may result in a severe

7see, for example, Blundell, Chen, and Kristensen (2007)
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deterioration of the statistical properties of ĝu. The problem is alleviated, however, in

the case of the constrained estimator ĝc because ĝc satisfies the bound (16) of Theorem 2,

which is independent of τn for sufficiently large K. In this sense, the constrained estimator

ĝc possesses some robustness against setting K too high. �

Remark 11 (On robustness of the constrained estimator, II). Notice that the fast con-

vergence rates in the local-to-constant asymptotics derived in this section are obtained

under two monotonicity conditions, Assumptions 1 and 3, but the estimator imposes only

the monotonicity of the regression function, not that of the instrument. Therefore, our

proposed constrained estimator consistently estimates the regression function g even when

the monotone IV assumption is violated. �

Remark 12 (On alternative estimation procedures). In the local-to-constant asymptotic

framework where supx∈[0,1]Dg(x) = O((K log n/n)1/2), the rate of convergence in (18)

can also be obtained by simply fitting a constant. However, such an estimator, unlike

our constrained estimator, is not consistent when the regression function g does not drift

towards a constant. Alternatively, one can consider a sequential approach to estimating

g, namely one can first test whether the function g is constant, and then either fit the

constant or apply the unconstrained estimator ĝu depending on the result of the test.

However, it seems difficult to tune such a test to match the performance of the constrained

estimator ĝc studied in this paper. �

Remark 13 (Estimating partially flat functions). Since the inversion of the operator T

is a global inversion in the sense that the resulting estimators ĝc(x) and ĝu(x) depend

not only on the shape of g(x) locally at x, but on the shape of g over the whole domain,

we do not expect convergence rate improvements from imposing monotonicity when the

function g is partially flat. However, we leave the question about potential improvements

from imposing monotonicity in this case for future research. �

Remark 14 (Computational aspects). The implementation of the constrained estima-

tor in (13) is particularly simple when the basis vector p(x) consists of polynomials or

B-splines of order 2. In that case, Dp(x) is linear in x and, therefore, the constraint

Dp(x)′b ≥ 0 for all x ∈ [0, 1] needs to be imposed only at the knots or endpoints of [0, 1],

respectively. The estimator β̂c thus minimizes a quadratic objective function subject to

a (finite-dimensional) linear inequality constraint. When the order of the polynomials or

B-splines in p(x) is larger than 2, imposing the monotonicity constraint is slightly more

complicated, but it can still be transformed into a finite-dimensional constraint using a

representation of non-negative polynomials as a sum of squared polynomials:8 one can

8We thank A. Belloni for pointing out this possibility.
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represent any non-negative polynomial f : R→ R as a sum of squares of polynomials (see

the survey by Reznick (2000), for example), i.e. f(x) = p̃(x)′Mp̃(x) where p̃(x) is the vec-

tor of monomials up to some order and M a matrix of coefficients. Letting f(x) = Dp(x)′b,

our monotonicity constraint f(x) ≥ 0 can then be written as p̃(x)′Mp̃(x) ≥ 0 for some

matrix M that depends on b. This condition is equivalent to requiring the matrix M to

be positive semi-definite. β̂c thus minimizes a quadratic objective function subject to a

(finite-dimensional) semi-definiteness constraint.

For polynomials defined not over whole R but only over a compact sub-interval of R,

one can use the same reasoning as above together with a result attributed to M. Fekete

(see Powers and Reznick (2000), for example): for any polynomial f(x) with f(x) ≥ 0 for

x ∈ [−1, 1], there are polynomials f1(x) and f2(x), non-negative over whole R, such that

f(x) = f1(x) + (1 − x2)f2(x). Letting again f(x) = Dp(x)′b, one can therefore impose

our monotonicity constraint by imposing the positive semi-definiteness of the coefficients

in the sums-of-squares representation of f1(x) and f2(x). �

Remark 15 (Penalization and shape constraints). Recall that the estimators ĝu and ĝc

require setting the constraint ‖b‖ ≤ Cb in the optimization problems (12) and (13). In

practice, this constraint, or similar constraints in terms of Sobolev norms, which also

impose bounds on derivatives of g, are typically not enforced in the implementation of an

NPIV estimator. Horowitz (2012) and Horowitz and Lee (2012), for example, observe that

imposing the constraint does not seem to have an effect in their simulations. On the other

hand, especially when one includes many series terms in the computation of the estimator,

Blundell, Chen, and Kristensen (2007) and Gagliardini and Scaillet (2012), for example,

argue that penalizing the norm of g and of its derivatives may stabilize the estimator by

reducing its variance. In this sense, penalizing the norm of g and of its derivatives may

have a similar effect as imposing monotonicity. However, there are at least two important

differences between penalization and imposing monotonicity. First, penalization increases

bias of the estimators. In fact, especially in severely ill-posed problems, even small amount

of penalization may lead to large bias. In contrast, the monotonicity constraint on the

estimator does not increase bias much when the function g itself satisfies the monotonicity

constraint. Second, penalization requires the choice of a tuning parameter that governs

the strength of penalization, which is a difficult statistical problem. In contrast, imposing

monotonicity does not require such choices and can often be motivated directly from

economic theory. �
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4 Identification Bounds under Monotonicity

In the previous section, we derived non-asymptotic error bounds on the constrained es-

timator in the NPIV model (1) assuming that g is point-identified, or equivalently, that

the linear operator T is invertible. Newey and Powell (2003) linked point-identification

of g to completeness of the conditional distribution of X given W , but this completeness

condition has been argued to be strong (Santos (2012)) and non-testable (Canay, San-

tos, and Shaikh (2013)). In this section, we therefore discard the completeness condition

and explore the identification power of our monotonicity conditions, which appear nat-

ural in many economic applications. Specifically, we derive informative bounds on the

identified set of functions g satisfying (1). This means that, under our two monotonicity

assumptions, the identified set is a proper subset of all monotone functions g ∈M.

By a slight abuse of notation, we define the sign of the slope of a differentiable,

monotone function f ∈M by

sign(Df) :=


1, Df(x) ≥ 0∀x ∈ [0, 1] and Df(x) > 0 for some x ∈ [0, 1]

0, Df(x) = 0 ∀x ∈ [0, 1]

−1, Df(x) ≤ 0∀x ∈ [0, 1] and Df(x) < 0 for some x ∈ [0, 1]

and the sign of a scalar b by sign(b) := 1{b > 0} − 1{b < 0}. We first show that if

the function g is monotone, the sign of its slope is identified under our monotone IV

assumption (and some other technical conditions):

Theorem 3 (Identification of the sign of the slope). Suppose Assumptions 1 and 2 hold

and fX,W (x,w) > 0 for all (x,w) ∈ (0, 1)2. If g is monotone and continuously differen-

tiable, then sign(Dg) is identified.

This theorem shows that, under certain regularity conditions, the monotone IV as-

sumption and monotonicity of the regression function g imply identification of the sign

of the regression function’s slope, even though the regression function itself is, in general,

not point-identified. This result is useful because in many empirical applications it is

natural to assume a monotone relationship between outcome variable Y and the endoge-

nous regressor X, given by the function g, but the main question of interest concerns not

the exact shape of g itself, but whether the effect of X on Y , given by the slope of g, is

positive, zero, or negative; see, for example, the discussion in Abrevaya, Hausman, and

Khan (2010)).

Remark 16 (A test for the sign of the slope of g). In fact, Theorem 3 yields a surprisingly

simple way to test the sign of the slope of the function g. Indeed, the proof of Theorem

3 reveals that g is increasing, constant, or decreasing if the function w 7→ E[Y |W = w]

24



is increasing, constant, or decreasing, respectively. By Chebyshev’s association inequality

(Lemma 5 in the appendix), the latter assertions are equivalent to the coefficient β in the

linear regression model

Y = α + βW + U, E[UW ] = 0 (19)

being positive, zero, or negative since sign(β) = sign(cov(W,Y )) and

cov(W,Y ) = E[WY ]− E[W ]E[Y ]

= E[WE[Y |W ]]− E[W ]E[E[Y |W ]] = cov(W,E[Y |W ])

by the law of iterated expectations. Therefore, under our conditions, hypotheses about the

sign of the slope of the function g can be tested by testing the corresponding hypotheses

about the sign of the slope coefficient β in the linear regression model (19). In particular,

under our two monotonicity assumptions, one can test the hypothesis of “no effect” of X

on Y , i.e. that g is a constant, by testing whether β = 0 or not using the usual t-statistic.

The asymptotic theory for this statistic is exactly the same as in the standard regression

case with exogenous regressors, yielding the standard normal limiting distribution and,

therefore, completely avoiding the ill-posed inverse problem of recovering g. �

It turns out that our two monotonicity assumptions possess identifying power even

beyond the slope of the regression function.

Definition 1 (Identified set). We say that two functions g′, g′′ ∈ L2[0, 1] are observation-

ally equivalent if E[g′(X)− g′′(X)|W ] = 0. The identified set Θ is defined as the set of all

functions g′ ∈M that are observationally equivalent to the true function g satisfying (1).

The following theorem provides necessary conditions for observational equivalence.

Theorem 4 (Identification bounds). Let Assumptions 1 and 2 be satisfied, and let g′, g′′ ∈
L2[0, 1]. Further, let C̄ := C1/cp where C1 := (x̃2 − x̃1)1/2 /min{x̃1 − x1, x2 − x̃2} and

cp := min{1 − w2, w1}min{CF − 1, 2}cwcf/4. If there exists a function h ∈ L2[0, 1] such

that g′ − g′′ + h ∈ M and ‖h‖2,t + C̄‖T‖2‖h‖2 < ‖g′ − g′′‖2,t, then g′ and g′′ are not

observationally equivalent.

Under Assumption 3 that g is increasing, Theorem 4 suggests the construction of a

set Θ′ that includes the identified set Θ by Θ′ :=M+\∆, whereM+ := H(0) denotes all

increasing functions in M and

∆ :=
{
g′ ∈M+ : there exists h ∈ L2[0, 1] such that

g′ − g + h ∈M and ‖h‖2,t + C̄‖T‖2‖h‖2 < ‖g′ − g‖2,t

}
. (20)
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We emphasize that ∆ is not empty, which means that our Assumptions 1–3 possess

identifying power leading to nontrivial bounds on g. Notice that the constant C̄ depends

only on the observable quantities cw, cf , and CF from Assumptions 1–2, and on the

known constants x̃1, x̃2, x1, x2, w1, and w2. Therefore, the set Θ′ could, in principle, be

estimated, but we leave estimation and inference on this set to future research.

Remark 17 (Further insight on identification bounds). It is possible to provide more

insight into which functions are in ∆ and thus not in Θ′. First, under the additional

minor condition that fX,W (x,w) > 0 for all (x,w) ∈ (0, 1)2, all functions in Θ′ have to

intersect g; otherwise they are not observationally equivalent to g. Second, for a given

g′ ∈ M+ and h ∈ L2[0, 1] such that g′ − g + h is monotone, the inequality in condition

(20) is satisfied if ‖h‖2 is not too large relative to ‖g′− g‖2,t. In the extreme case, setting

h = 0 shows that Θ′ does not contain elements g′ that disagree with g on [x̃1, x̃2] and such

that g′− g is monotone. More generally, Θ′ does not contain elements g′ whose difference

with g is too close to a monotone function. Therefore, for example, functions g′ that are

much steeper than g are excluded from Θ′. �

5 Testing the Monotonicity Assumptions

In this section, we propose tests of our two monotonicity assumptions based on an i.i.d.

sample (Xi,Wi), i = 1, . . . , n, from the distribution of (X,W ). First, we discuss an

adaptive procedure for testing the stochastic dominance condition (4) in our monotone

IV Assumption 1. The null and alternative hypotheses are

H0 : FX|W (x|w′) ≥ FX|W (x|w′′) for all x,w′, w′′ ∈ (0, 1) with w′ ≤ w′′

Ha : FX|W (x|w′) < FX|W (x|w′′) for some x,w′, w′′ ∈ (0, 1) with w′ ≤ w′′,

respectively. The null hypothesis, H0, is equivalent to stochastic monotonicity of the

conditional distribution function FX|W (x|w). Although there exist several good tests of

H0 in the literature (see Lee, Linton, and Whang (2009), Delgado and Escanciano (2012)

and Lee, Song, and Whang (2014), for example), to the best of our knowledge there

does not exist any procedure that adapts to the unknown smoothness level of FX|W (x|w).

We provide a test that is adaptive in this sense, a feature that is not only theoretically

attractive, but also important in practice: it delivers a data-driven choice of the smoothing

parameter hn (bandwidth value) of the test whereas nonadaptive tests are usually based

on the assumption that hn → 0 with some rate in a range of prespecified rates, leaving the

problem of the selection of an appropriate value of hn in a given data set to the researcher

(see, for example, Lee, Linton, and Whang (2009) and Lee, Song, and Whang (2014)).
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We develop the critical value for the test that takes into account the data dependence

induced by the data-driven choice of the smoothing parameter. Our construction leads

to a test that controls size, and is asymptotically non-conservative.

Our test is based on the ideas in Chetverikov (2012) who in turn builds on the methods

for adaptive specification testing in Horowitz and Spokoiny (2001) and on the theoretical

results on high dimensional distributional approximations in Chernozhukov, Chetverikov,

and Kato (2013c) (CCK). Note that FX|W (x|w) = E[1{X ≤ x}|W = w], so that for a

fixed x ∈ (0, 1), the hypothesis that FX|W (x|w′) ≥ FX|W (x,w′′) for all 0 ≤ w′ ≤ w′′ ≤ 1

is equivalent to the hypothesis that the regression function w 7→ E[1{X ≤ x}|W = w] is

decreasing. An adaptive test of this hypothesis was developed in Chetverikov (2012). In

our case, H0 requires the regression function w 7→ E[1{X ≤ x}|W = w] to be decreasing

not only for a particular value x ∈ (0, 1) but for all x ∈ (0, 1), and so we need to extend

the results obtained in Chetverikov (2012).

Let K : R→ R be a kernel function satisfying the following conditions:

Assumption 9 (Kernel). The kernel function K : R → R is such that (i) K(w) > 0

for all w ∈ (−1, 1), (ii) K(w) = 0 for all w /∈ (−1, 1), (iii) K is continuous, and (iv)∫∞
−∞K(w)dw = 1.

We assume that the kernel function K(w) has bounded support, is continuous, and is

strictly positive on the support. The last condition excludes higher-order kernels. For a

bandwidth value h > 0, define

Kh(w) := h−1K(w/h), w ∈ R.

Suppose H0 is satisfied. Then, by the law of iterated expectations,

E [(1{Xi ≤ x} − 1{Xj ≤ x})sign(Wi −Wj)Kh(Wi − w)Kh(Wj − w)] ≤ 0 (21)

for all x,w ∈ (0, 1) and i, j = 1, . . . , n. Denoting

Kij,h(w) := sign(Wi −Wj)Kh(Wi − w)Kh(Wj − w),

taking the sum of the left-hand side in (21) over i, j = 1, . . . , n, and rearranging give

E

[
n∑
i=1

1{Xi ≤ x}
n∑
j=1

(Kij,h(w)−Kji,h(w))

]
≤ 0,

or, equivalently,

E

[
n∑
i=1

ki,h(w)1{Xi ≤ x}

]
≤ 0, (22)
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where

ki,h(w) :=
n∑
j=1

(Kij,h(w)−Kji,h(w)).

To define the test statistic T , let Bn be a collection of bandwidth values satisfying the

following conditions:

Assumption 10 (Bandwidth values). The collection of bandwidth values is Bn := {h ∈
R : h = ul/2, l = 0, 1, 2, . . . , h ≥ hmin} for some u ∈ (0, 1) where hmin := hmin,n is such

that 1/(nhmin) ≤ Chn
−ch for some constants ch, Ch > 0.

The collection of bandwidth values Bn is a geometric progression with the coefficient

u ∈ (0, 1), the largest value 1/2, and the smallest value converging to zero not too fast.

As the sample size n increases, the collection of bandwidth values Bn expands.

Let Wn := {W1, . . . ,Wn}, and Xn := {ε+ l(1− 2ε)/n : l = 0, 1, . . . , n} for some small

ε > 0. We define our test statistic by

T := max
(x,w,h)∈Xn×Wn×Bn

∑n
i=1 ki,h(w)1{Xi ≤ x}
(
∑n

i=1 ki,h(w)2)
1/2

. (23)

The statistic T is most closely related to that in Lee, Linton, and Whang (2009). The

main difference is that we take the maximum with respect to the set of bandwidth values

h ∈ Bn to achieve adaptiveness of the test.

We now discuss the construction of a critical value for the test. Suppose that we

would like to have a test of level (approximately) α. As succinctly demonstrated by

Lee, Linton, and Whang (2009), the derivation of the asymptotic distribution of T is

complicated even when Bn is a singleton. Moreover, when Bn is not a singleton, it is

generally unknown whether T converges to some nondegenerate asymptotic distribution

after an appropriate normalization. We avoid these complications by employing the non-

asymptotic approach developed in CCK and using a multiplier bootstrap critical value

for the test. Let e1, . . . , en be an i.i.d. sequence of N(0, 1) random variables that are

independent of the data. Also, let F̂X|W (x|w) be an estimator of FX|W (x|w) satisfying

the following conditions:

Assumption 11 (Estimator of FX|W (x|w)). The estimator F̂X|W (x|w) of FX|W (x|w) is

such that (i)

P

(
P

(
max

(x,w)∈Xn×Wn

|F̂X|W (x|w)− FX|W (x|w)| > CFn
−cF |{Wn}

)
> CFn

−cF
)
≤ CFn

−cF

for some constants cF , CF > 0, and (ii) |F̂X|W (x|w)| ≤ CF for all (x,w) ∈ Xn ×Wn.
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This is a mild assumption implying uniform consistency of an estimator F̂X|W (x|w) of

FX|W (x|w) over (x,w) ∈ Xn ×Wn. Define a bootstrap test statistic by

T b := max
(x,w,h)∈Xn×Wn×Bn

∑n
i=1 ei

(
ki,h(w)(1{Xi ≤ x} − F̂X|W (x|Wi))

)
(
∑n

i=1 ki,h(w)2)
1/2

.

Then we define the critical value9 c(α) for the test as

c(α) := (1− α) conditional quantile of T b given the data.

We reject H0 if and only if T > c(α). To prove validity of this test, we assume that

the conditional distribution function FX|W (x|w) satisfies the following condition:

Assumption 12 (Conditional Distribution Function FX|W (x|w)). The conditional dis-

tribution function FX|W (x|w) is such that cε ≤ FX|W (ε|w) ≤ FX|W (1 − ε|w) ≤ Cε for all

w ∈ (0, 1) and some constants 0 < cε < Cε < 1.

The first theorem in this section shows that our test controls size asymptotically and

is not conservative:

Theorem 5 (Polynomial Size Control). Let Assumptions 2, 9, 10, 11, and 12 be satisfied.

If H0 holds, then

P (T > c(α)) ≤ α + Cn−c. (24)

If the functions w 7→ FX|W (x|w) are constant for all x ∈ (0, 1), then

|P (T > c(α))− α| ≤ Cn−c. (25)

In both (24) and (25), the constants c and C depend only on cW , CW , ch, Ch, cF , CF , cε, Cε,

and the kernel K.

Remark 18 (Weak Condition on the Bandwidth Values). Our theorem requires

1

nh
≤ Chn

−ch (26)

for all h ∈ Bn, which is considerably weaker than the analogous condition in Lee, Linton,

and Whang (2009) who require 1/(nh3) → 0, up-to logs. This is achieved by using a

conditional test and by applying the results of CCK. As follows from the proof of the

theorem, the multiplier bootstrap distribution approximates the conditional distribution

9In the terminology of the moment inequalities literature, c(α) can be considered a “one-step” or

“plug-in” critical value. Following Chetverikov (2012), we could also consider two-step or even multi-step

(stepdown) critical values. For brevity of the paper, however, we do not consider these options here.
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of the test statistic given Wn = {W1, . . . ,Wn}. Conditional on Wn, the denominator in

the definition of T is fixed, and does not require any approximation. Instead, we could

try to approximate the denominator of T by its probability limit. This is done in Ghosal,

Sen, and Vaart (2000) using the theory of Hoeffding projections but they require the

condition 1/nh2 → 0. Our weak condition (26) also crucially relies on the fact that we

use the results of CCK. Indeed, it has already been demonstrated (see Chernozhukov,

Chetverikov, and Kato (2013a,b), and Belloni, Chernozhukov, Chetverikov, and Kato

(2014)) that, in typical nonparametric problems, the techniques of CCK often lead to

weak conditions on the bandwidth value or the number of series terms. Our theorem is

another instance of this fact. �

Remark 19 (Polynomial Size Control). Note that, by (24) and (25), the probability of

rejecting H0 when H0 is satisfied can exceed the nominal level α only by a term that

is polynomially small in n. We refer to this phenomenon as a polynomial size control.

As explained in Lee, Linton, and Whang (2009), when Bn is a singleton, convergence of

T to the limit distribution is logarithmically slow. Therefore, Lee, Linton, and Whang

(2009) used higher-order corrections derived in Piterbarg (1996) to obtain polynomial size

control. Here we show that the multiplier bootstrap also gives higher-order corrections

and leads to polynomial size control. This feature of our theorem is also inherited from

the results of CCK. �

Remark 20 (Uniformity). The constants c and C in (24) and (25) depend on the data

generating process only via constants (and the kernel) appearing in Assumptions 2, 9, 10,

11, and 12. Therefore, inequalities (24) and (25) hold uniformly over all data generating

processes satisfying these assumptions with the same constants. We obtain uniformity

directly from employing the distributional approximation theorems of CCK because they

are non-asymptotic and do not rely on convergence arguments. �

Our second result in this section concerns the ability of our test to detect models in

the alternative Ha. Let ε > 0 be the constant appearing in the definition of T via the set

Xn.

Theorem 6 (Consistency). Let Assumptions 2, 9, 10, 11, and 12 be satisfied and assume

that FX|W (x|w) is continuously differentiable. If Ha holds with DwFX|W (x|w) > 0 for

some x ∈ (ε, 1− ε) and w ∈ (0, 1), then

P (T > c(α))→ 1 as n→∞. (27)

This theorem shows that our test is consistent against any model in Ha (with smooth

FX|W (x|w)) whose deviation from H0 is not on the boundary, so that the deviation
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DwFX|W (x|w) > 0 occurs for x ∈ (ε, 1 − ε). It is also possible to extend our results

to show that Theorems 5 and 6 hold with ε = 0 at the expense of additional technicali-

ties. Further, using the same arguments as those in Chetverikov (2012), it is possible to

show that the test suggested here has minimax optimal rate of consistency against the

alternatives belonging to certain Hölder classes for a reasonably large range of smoothness

levels. We do not derive these results here for the sake of brevity of presentation.

We conclude this section by proposing a simple test of our second monotonicity as-

sumption, that is, monotonicity of the regression function g. The null and alternative

hypotheses are

H0 : g(x′) ≤ g(x′′) for all x′, x′′ ∈ (0, 1) with x′ ≤ x′′

Ha : g(x′) > g(x′′) for some x′, x′′ ∈ (0, 1) with x′ ≤ x′′,

respectively. The discussion in Remark 16 reveals that, under Assumptions 1 and 2,

monotonicity of g(x) implies monotonicity of w 7→ E[Y |W = w]. Therefore, under As-

sumptions 1 and 2, we can test H0 by testing monotonicity of the conditional expectation

w 7→ E[Y |W = w] using existing tests such as Chetverikov (2012) and Lee, Song, and

Whang (2014), among others. This procedure tests an implication of H0 instead of H0

itself and therefore may have low power against some alternatives. On the other hand, it

does not require solving the model for g(x) and therefore avoids the ill-posedness of the

problem.

6 Simulations

In this section, we study the finite-sample behavior of our constrained estimator that im-

poses monotonicity and compare its performance to that of the unconstrained estimator.

We consider the NPIV model Y = g(X) + ε, E[ε|W ] = 0, for two different regression

functions, one that is strictly increasing and a weakly increasing one that is constant over

part of its domain:

Model 1: g(x) = κ sin(πx− π/2)

Model 2: g(x) = 10κ [−(x− 0.25)21{x ∈ [0, 0.25]}+ (x− 0.75)21{x ∈ [0.75, 1]}]

where ε = κσεε̄ and ε̄ = ηε +
√

1− η2ν. The regressor and instrument are generated

by X = Φ(ξ) and W = Φ(ζ), respectively, where Φ is the standard normal cdf and

ξ = ρζ +
√

1− ρ2ε. The errors are generated by (ν, ζ, ε) ∼ N(0, I).

We vary the parameter κ in {1, 0.5, 0.1} to study how the constrained and uncon-

strained estimators’ performance compares depending on the maximum slope of the re-

gression function. η governs the dependence of X on the regression error ε and ρ the
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strength of the first stage. All results are based on 1, 000 MC samples and the normalized

B-spline basis for p(x) and q(w) of degree 3 and 4, respectively.

Tables 1–4 report the Monte Carlo approximations to the squared bias, variance, and

mean squared error (“MSE”) of the two estimators, each averaged over a grid on the

interval [0, 1]. We also show the ratio of the constrained estimator’s MSE divided by the

unconstrained estimator’s MSE. kX and kW denote, respectively, the number of knots used

for the basis p(x) and q(w). The first two tables vary the number of knots, and the latter

two the dependence parameters ρ and η. Different sample sizes and different values for

ρ, η, and σε yield qualitatively similar results. Figures 2 and 3 show the two estimators

for a particular combination of the simulation parameters. The dashed lines represent

confidence bands, computed as two times the (pointwise) empirical standard deviation of

the estimators across simulation samples. Both, the constrained and the unconstrained,

estimators are computed by ignoring the bound ‖b‖ ≤ Cb in their respective definitions.

Horowitz and Lee (2012) and Horowitz (2012) also ignore the constraint ‖b‖ ≤ Cb and

state that it does not affect the qualitative results of their simulation experiment.

The MSE of the constrained estimator (and, interestingly, also of the unconstrained

estimator) decreases as the regression function becomes flatter. This observation is con-

sistent with the error bound in Theorem 2 depending positively on the maximum slope

of g.

Because of the joint normality of (X,W ), the simulation design is severely ill-posed

and we expect high variability of both estimators. In all simulation scenarios, we do in

fact observe a very large variance relative to bias. However, the magnitude of the variance

differs significantly across the two estimators: in all scenarios, even in the design with a

strictly increasing regression function, imposing the monotonicity constraint significantly

reduces the variance of the NPIV estimator. The MSE of the constrained estimator is

therefore much smaller than that of the unconstrained estimator, from about a factor of

two smaller when g is strictly increasing and the noise level is low (σε = 0.1), to around 20

times smaller when g contains a flat part and the noise level is high (σε = 0.7). Generally,

the gains in MSE from imposing monotonicity are larger the higher the noise level σε in

the regression equation and the higher the first-stage correlation ρ.10

7 Gasoline Demand in the United States

In this section, we revisit the problem of estimating demand functions for gasoline in the

United States. Because of the dramatic changes in the oil price over the last few decades,

10Since Tables 1 and 2 report results for the lower level of ρ, and Tables 3 and 4 results for the lower

noise level σε, we consider the selection of results as, if at all, favoring the unconstrained estimator.
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understanding the elasticity of gasoline demand is fundamental to evaluating tax policies.

Consider the following partially linear specification of the demand function:

Y = g(X,Z1) + γ′Z2 + ε, E[ε|W,Z1, Z2] = 0,

where Y denotes annual log-gasoline consumption of a household, X log-price of gasoline

(average local price), Z1 log-household income, Z2 are control variables (such as population

density, urbanization, and demographics), and W distance to major oil platform. We

allow for price X to be endogenous, but assume that (Z1, Z2) is exogenous. W serves

as an instrument for price by capturing transport cost and, therefore, shifting the cost

of gasoline production. We use the same sample of size 4, 812 from the 2001 National

Household Travel Survey and the same control variables Z2 as Blundell, Horowitz, and

Parey (2012). More details can be found in their paper.

Moving away from constant price and income elasticities is likely very important as

individuals’ responses to price changes vary greatly with price and income level. Since

economic theory does not provide guidance on the functional form of g, finding an appro-

priate parametrization is difficult. Hausman and Newey (1995) and Blundell, Horowitz,

and Parey (2012), for example, demonstrate the importance of employing flexible estima-

tors of g that do not suffer from misspecification bias due to arbitrary restrictions in the

model. Blundell, Horowitz, and Parey (2013) argue that prices at the local market level

vary for several reasons and that they may reflect preferences of the consumers in the local

market. Therefore, one would expect prices X to depend on unobserved factors in ε that

determine consumption, rendering price an endogenous variable. Furthermore, the theory

of the consumer requires downward-sloping compensated demand curves. Assuming a pos-

itive income derivative11 ∂g/∂z1, the Slutsky condition implies that the uncompensated

(Marshallian) demand curves are also downward-sloping, i.e. g(·, z1) should be mono-

tone for any z1, as long as income effects do not completely offset price effects. Finally,

we expect the cost shifter W to monotonically increase cost of producing gasoline and

thus satisfy our monotone IV condition. In conclusion, our constrained NPIV estimator

appears to be an attractive estimator of demand functions in this setting.

We consider three benchmark estimators. First, we compute the unconstrained non-

parametric (“uncon. NP”) series estimator of the regression of Y on X and Z1, treat-

ing price as exogenous. As in Blundell, Horowitz, and Parey (2012), we accommodate

the high-dimensional vector of additional, exogenous covariates Z2 by (i) estimating γ

by Robinson (1988)’s procedure, (ii) then removing these covariates from the outcome,

and (iii) estimating g by regressing the adjusted outcomes on X and Z1. The second

11Blundell, Horowitz, and Parey (2012) estimate this income derivative and do, in fact, find it to be

positive over the price range of interest.
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benchmark estimator (“con. NP”) repeats the same steps (i)–(iii) except that it imposes

monotonicity (in price) of g in steps (i) and (iii). The third benchmark estimator is the

unconstrained NPIV estimator (“uncon. NPIV”) that accounts for the covariates Z2 in

similar fashion as the first, unconstrained nonparametric estimator, except that (i) and

(iii) employ NPIV estimators that impose additive separability and linearity in Z2.

The fourth estimator we consider is the constrained NPIV estimator (“con. NPIV”)

that we compare to the three benchmark estimators. We allow for the presence of the

covariates Z2 in the same fashion as the unconstrained NPIV estimator except that, in

steps (i) and (iii), we impose monotonicity in price.

We report results for the following choice of bases. All estimators employ a quadratic

B-spline basis with 3 knots for price X and a cubic B-spline with 10 knots for the instru-

ment W . Denote these two bases by P and Q, using the same notation as in Section 3.

In step (i), the NPIV estimators include the additional exogenous covariates (Z1, Z2) in

the respective bases for X and W , so they use the estimator defined in Section 3 except

that the bases P and Q are replaced by P̃ := [P,P×Z1,Z2] and Q̃ := [Q,Q× (Z1,Z2)],

respectively, where Zk := (Zk,1, . . . , Zk,n)′, k = 1, 2, stacks the observations i = 1, . . . , n

and P× Z1 denotes the tensor product of the columns of the two matrices. Since, in the

basis P̃, we include interactions of P with Z1, but not with Z2, the resulting estimator

allows for a nonlinear, nonseparable dependence of Y on X and Z1, but imposes additive

separability in Z2. The conditional expectation of Y given W , Z1, and Z2 does not have

to be additively separable in Z2, so that, in the basis Q̃, we include interactions of Q with

both Z1 and Z2.12

We estimated the demand functions for many different combinations of the order of B-

spline for W , the number of knots in both bases, and even with various penalization terms

(as discussed in Remark 15). While the shape of the unconstrained NPIV estimate varied

slightly across these different choices of tuning parameters (mostly near the boundary of

the support of X), the constrained NPIV estimator did not exhibit any visible changes

at all.

Figure 4 shows a nonparametric kernel estimate of the conditional distribution of the

price X given the instrument W . Overall the graph indicates an increasing relationship

between the two variables as required by our stochastic dominance condition (4). We

formally test this monotone IV assumption by applying our new test proposed in Section 5.

We find a test statistic value of 0.139 and 95%-critical value of 1.720.13 Therefore, we fail

12Notice that P and Q include constant terms so it is not necessary to separately include Zk in addition

to its interactions with P and Q, respectively.
13The critical value is computed from 1, 000 bootstrap samples, using the bandwidth set Bn =

{2, 1, 0.5, 0.25, 0.125, 0.0625}, and a kernel estimator for F̂X|W with bandwidth 0.3 which produces the

estimate in Figure 4.
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to reject the monotone IV assumption.

Figure 5 shows the estimates of the demand function at three income levels, at the lower

quartile ($42, 500), the median ($57, 500), and the upper quartile ($72, 500). The area

shaded in grey represents the 90% uniform confidence bands around the unconstrained

NPIV estimator as proposed in Horowitz and Lee (2012).14 The black lines correspond

to the estimators assuming exogeneity of price and the red lines to the NPIV estimators

that allow for endogeneity of price. The dashed black line shows the kernel estimate of

Blundell, Horowitz, and Parey (2012) and the solid black line the corresponding series

estimator that imposes monotonicity. The dashed and solid red lines similarly depict the

unconstrained and constrained NPIV estimators, respectively.

All estimates show an overall decreasing pattern of the demand curves, but the two

unconstrained estimators are both increasing over some parts of the price domain. We

view these implausible increasing parts as finite-sample phenomena that arise because the

unconstrained nonparametric estimators are too imprecise. The wide confidence bands of

the unconstrained NPIV estimator are consistent with this view. Hausman and Newey

(1995) and Horowitz and Lee (2012) find similar anomalies in their nonparametric esti-

mates, assuming exogenous prices. Unlike the unconstrained estimates, our constrained

NPIV estimates are downward-sloping everywhere and smoother. They lie within the

90% uniform confidence bands of the unconstrained estimator so that the monotonicity

constraint appears compatible with the data.

The two constrained estimates are very similar, indicating that endogeneity of prices

may not be important in this problem, but they are both significantly flatter than the

unconstrained estimates across all three income groups, which implies that households

appear to be less sensitive to price changes than the unconstrained estimates suggest.

The small maximum slope of the constrained NPIV estimator also suggests that the error

bound in Theorem 2 may be small and therefore we expect the constrained NPIV estimate

to be precise for this data set.

14Critical values are computed from 1, 000 bootstrap samples and the bands are computed on a grid of

100 equally-spaced points in the support of the data for X.
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A Proofs for Section 2

For any h ∈ L1[0, 1], let ‖h‖1 :=
∫ 1

0
|h(x)|dx, ‖h‖1,t :=

∫ x2
x1
|h(x)|dx and define the operator

norm by ‖T‖2 := suph∈L2[0,1]: ‖h‖2>0 ‖Th‖2/‖h‖2. Note that ‖T‖2 ≤
∫ 1

0

∫ 1

0
f 2
X,W (x,w)dxdw,

and so under Assumption 2, ‖T‖2 ≤ CT .

Proof of Theorem 1. We first show that for any h ∈M,

‖h‖2,t ≤ C1‖h‖1,t (28)

for C1 := (x̃2 − x̃1)1/2 /min{x̃1 − x1, x2 − x̃2}. Indeed, by monotonicity of h,

‖h‖2,t =

(∫ x̃2

x̃1

h(x)2dx

)1/2

≤
√
x̃2 − x̃1 max {|h(x̃1)|, |h(x̃2)|}

≤
√
x̃2 − x̃1

∫ x2
x1
|h(x)|dx

min {x̃1 − x1, x2 − x̃2}

so that (28) follows. Therefore, for any increasing continuously differentiable h ∈M,

‖h‖2,t ≤ C1‖h‖1,t ≤ C1C2‖Th‖1 ≤ C1C2‖Th‖2,

where the first inequality follows from (28), the second from Lemma 2 below (which is

the main step in the proof of the theorem), and the third by Jensen’s inequality. Hence,

conclusion (7) of Theorem 1 holds for increasing continuously differentiable h ∈ M with

C̄ := C1C2 and C2 as defined in Lemma 2.

Next, for any increasing function h ∈ M, it follows from Lemma 9 that one can find

a sequence of increasing continuously differentiable functions hk ∈ M, k ≥ 1, such that

‖hk − h‖2 → 0 as k →∞. Therefore, by the triangle inequality,

‖h‖2,t ≤ ‖hk‖2,t + ‖hk − h‖2,t ≤ C̄‖Thk‖2 + ‖hk − h‖2,t

≤ C̄‖Th‖2 + C̄‖T (hk − h)‖2 + ‖hk − h‖2,t

≤ C̄‖Th‖2 + C̄‖T‖2‖(hk − h)‖2 + ‖hk − h‖2,t

≤ C̄‖Th‖2 + (C̄‖T‖2 + 1)‖(hk − h)‖2

≤ C̄‖Th‖2 + (C̄CT + 1)‖hk − h‖2

where the third line follows from the Cauchy-Schwarz inequality, the fourth from ‖hk −
h‖2,t ≤ ‖hk − h‖2, and the fifth from Assumption 2(i). Taking the limit as k → ∞ of

both the left-hand and the right-hand sides of this chain of inequalities yields conclusion

(7) of Theorem 1 for all increasing h ∈M.

Finally, since for any decreasing h ∈M, we have that−h ∈M is increasing, ‖−h‖2,t =

‖h‖2,t and ‖Th‖2 = ‖T (−h)‖2, conclusion (7) of Theorem 1 also holds for all decreasing

h ∈M, and thus for all h ∈M. This completes the proof of the theorem. Q.E.D.
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Lemma 2. Let Assumptions 1 and 2 hold. Then for any increasing continuously differ-

entiable h ∈ L1[0, 1],

‖h‖1,t ≤ C2‖Th‖1

where C2 := 1/cp and cp := cwcf/2 min{1− w2, w1}min{(CF − 1)/2, 1}.

Proof. Take any increasing continuously differentiable function h ∈ L1[0, 1] such that

‖h‖1,t = 1. Define M(w) := E[h(X)|W = w] for all w ∈ [0, 1] and note that

‖Th‖1 =

∫ 1

0

|M(w)fW (w)|dw ≥ cW

∫ 1

0

|M(w)|dw

where the inequality follows from Assumption 2(iii). Therefore, the asserted claim follows

if we can show that
∫ 1

0
|M(w)|dw is bounded away from zero by a constant that depends

only on ζ.

First, note that M(w) is increasing. This is because, by integration by parts,

M(w) =

∫ 1

0

h(x)fX|W (x|w)dx = h(1)−
∫ 1

0

Dh(x)FX|W (x|w)dx,

so that condition (4) of Assumption 1 and Dh(x) ≥ 0 for all x imply that the function

M(w) is increasing.

Consider the case in which h(x) ≥ 0 for all x ∈ [0, 1]. Then M(w) ≥ 0 for all w ∈ [0, 1].

Therefore,∫ 1

0

|M(w)|dw ≥
∫ 1

w2

|M(w)|dw ≥ (1− w2)M(w2) = (1− w2)

∫ 1

0

h(x)fX|W (x|w2)dx

≥ (1− w2)

∫ x2

x1

h(x)fX|W (x|w2)dx ≥ (1− w2)cf

∫ x2

x1

h(x)dx

= (1− w2)cf‖h‖1,t = (1− w2)cf > 0

by Assumption 2(ii). Similarly,∫ 1

0

|M(w)|dw ≥ w1cf > 0

when h(x) ≤ 0 for all x ∈ [0, 1]. Therefore, it remains to consider the case in which there

exists x∗ ∈ (0, 1) such that h(x) ≤ 0 for x ≤ x∗ and h(x) ≥ 0 for x > x∗. Since h(x) is

continuous, h(x∗) = 0, and so integration by parts yields

M(w) =

∫ x∗

0

h(x)fX|W (x|w)dx+

∫ 1

x∗
h(x)fX|W (x|w)dx

= −
∫ x∗

0

Dh(x)FX|W (x|w)dx+

∫ 1

x∗
Dh(x)(1− FX|W (x|w))dx. (29)
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For k = 1, 2, let Ak :=
∫ 1

x∗
Dh(x)(1 − FX|W (x|wk)) and Bk :=

∫ x∗
0
Dh(x)FX|W (x|wk)dx,

so that M(wk) = Ak −Bk.

Consider the following three cases separately, depending on where x∗ lies relative to

x1 and x2.

Case I (x1 < x∗ < x2): First, we have

A1 +B2 =

∫ 1

x∗
Dh(x)(1− FX|W (x|w1))dx+

∫ x∗

0

Dh(x)FX|W (x|w2)dx

=

∫ 1

x∗
h(x)fX|W (x|w1)dx−

∫ x∗

0

h(x)fX|W (x|w2)dx

≥
∫ x2

x∗
h(x)fX|W (x|w1)dx−

∫ x∗

x1

h(x)fX|W (x|w2)dx

≥ c1

∫ x2

x∗
h(x)dx+ cf

∫ x∗

x1

|h(x)|dx = cf

∫ x2

x1

|h(x)|dx

= cf‖h‖1,t = cf > 0 (30)

where the fourth line follows from Assumption 2(ii). Second, by (4) and (5) of Assump-

tion 1,

M(w1) =

∫ 1

x∗
Dh(x)(1− FX|W (x|w1))dx−

∫ x∗

0

Dh(x)FX|W (x|w1)dx

≤
∫ 1

x∗
Dh(x)(1− FX|W (x|w2))dx− CF

∫ x∗

0

Dh(x)FX|W (x|w2)dx

= A2 − CFB2

so that, together with M(w2) = A2 −B2, we obtain

M(w2)−M(w1) ≥ (CF − 1)B2. (31)

Similarly, by (4) and (6) of Assumption 1,

M(w2) =

∫ 1

x∗
Dh(x)(1− FX|W (x|w2))dx−

∫ x∗

0

Dh(x)FX|W (x|w2)dx

≥ CF

∫ 1

x∗
Dh(x)(1− FX|W (x|w1))dx−

∫ x∗

0

Dh(x)FX|W (x|w1)dx

= CFA1 −B1

so that, together with M(w1) = A1 −B1, we obtain

M(w2)−M(w1) ≥ (CF − 1)A1. (32)
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In conclusion, equations (30), (31), and (32) yield

M(w2)−M(w1) ≥ (CF − 1)(A1 +B2)/2 ≥ (CF − 1)cf/2 > 0. (33)

Consider the case M(w1) ≥ 0 and M(w2) ≥ 0. Then M(w2) ≥M(w2)−M(w1) and thus∫ 1

0

|M(w)|dw ≥
∫ 1

w2

|M(w)|dw ≥ (1− w2)M(w2) ≥ (1− w2)(CF − 1)cf/2 > 0. (34)

Similarly, ∫ 1

0

|M(w)|dw ≥ w1(CF − 1)cf/2 > 0 (35)

when M(w1) ≤ 0 and M(w2) ≤ 0.

Finally, consider the case M(w1) ≤ 0 and M(w2) ≥ 0. If M(w2) ≥ |M(w1)|, then

M(w2) ≥ (M(w2)−M(w1))/2 and the same argument as in (34) shows that∫ 1

0

|M(w)|dw ≥ (1− w2)(CF − 1)cf/4.

If |M(w1)| ≥M(w2), then |M(w1)| ≥ (M(w2)−M(w1))/2 and we obtain∫ 1

0

|M(w)|dw ≥
∫ w1

0

|M(w)|dw ≥ w1(CF − 1)cf/4 > 0.

This completes the proof of Case I.

Case II (x2 ≤ x∗): Suppose M(w1) ≥ −cf/2. As in Case I, we have M(w2) ≥ CFA1 −
B1. Together with M(w1) = A1 −B1, this inequality yields

M(w2)−M(w1) = M(w2)− CFM(w1) + CFM(w1)−M(w1)

≥ (CF − 1)B1 + (CF − 1)M(w1)

= (CF − 1)

(∫ x∗

0

Dh(x)FX|W (x|w1)dx+M(w1)

)
= (CF − 1)

(∫ x∗

0

|h(x)|fX|W (x|w1)dx+M(w1)

)
≥ (CF − 1)

(∫ x2

x1

|h(x)|fX|W (x|w1)dx− cf
2

)
≥ (CF − 1)

(
cf

∫ x2

x1

|h(x)|dx− cf
2

)
=

(CF − 1)cf
2

> 0

With this inequality we proceed as in Case I to show that
∫ 1

0
|M(w)|dw is bounded

from below by a positive constant that depends only on ζ. On the other hand, when

M(w1) ≤ −cf/2 we bound
∫ 1

0
|M(w)|dw as in (35), and the proof of Case II is complete.
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Case III (x∗ ≤ x1): Similarly as in Case II, suppose first that M(w2) ≤ cf/2. As in

Case I we have M(w1) ≤ A2 − CFB2 so that together with M(w2) = A2 −B2,

M(w2)−M(w1) = M(w2)− CFM(w2) + CFM(w2)−M(w1)

≥ (1− CF )M(w2) + (CF − 1)A2

= (CF − 1)

(∫ 1

x∗
Dh(x)(1− FX|W (x|w2))dx−M(w2)

)
= (CF − 1)

(∫ 1

x∗
h(x)fX|W (x|w2)dx−M(w2)

)
≥ (CF − 1)

(∫ x2

x1

h(x)fX|W (x|w2)dx−M(w2)

)
≥ (CF − 1)

(
cf

∫ x2

x1

h(x)dx− cf
2

)
=

(CF − 1)cf
2

> 0

and we proceed as in Case I to bound
∫ 1

0
|M(w)|dw from below by a positive constant

that depends only on ζ. On the other hand, when M(w2) > cf/2, we bound
∫ 1

0
|M(w)|dw

as in (34), and the proof of Case III is complete. The lemma is proven. Q.E.D.

Proof of Corollary 1. Note that since τ(a′) ≤ τ(a′′) whenever a′ ≤ a′′, the claim for

a ≤ 0, follows from τ(a) ≤ τ(0) ≤ C̄, where the second inequality holds by Theorem 1.

Therefore, assume that a > 0. Fix any α ∈ (0, 1). Take any function h ∈ H(a) such

that ‖h‖2,t = 1. Set h′(x) = ax for all x ∈ [0, 1]. Note that the function x 7→ h(x) + ax

is increasing and so belongs to the class M. Also, ‖h′‖2,t ≤ ‖h′‖2 ≤ a/
√

3. Thus, the

bound (36) in Lemma 3 below applies whenever (1 + C̄‖T‖2)a/
√

3 ≤ α. Therefore, for all

a satisfying the inequality

a ≤
√

3α

1 + C̄‖T‖2

,

we have τ(a) ≤ C̄/(1− α). This completes the proof of the corollary. Q.E.D.

Lemma 3. Let Assumptions 1 and 2 be satisfied. Consider any function h ∈ L2[0, 1]. If

there exist h′ ∈ L2[0, 1] and α ∈ (0, 1) such that h+ h′ ∈ M and ‖h′‖2,t + C̄‖T‖2‖h′‖2 ≤
α‖h‖2,t, then

‖h‖2,t ≤
C̄

1− α
‖Th‖2 (36)

for the constant C̄ defined in Theorem 1.

Proof. Define

h̃(x) :=
h(x) + h′(x)

‖h‖2,t − ‖h′‖2,t

, x ∈ [0, 1].
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By assumption, ‖h′‖2,t < ‖h‖2,t, and so the triangle inequality yields

‖h̃‖2,t ≥
‖h‖2,t − ‖h′‖2,t

‖h‖2,t − ‖h′‖2,t

= 1.

Therefore, since h̃ ∈M, Theorem 1 gives

‖T h̃‖2 ≥ ‖h̃‖2,t/C̄ ≥ 1/C̄.

Hence, applying the triangle inequality once again yields

‖Th‖2 ≥ (‖h‖2,t − ‖h′‖2,t)‖T h̃‖2 − ‖Th′‖2 ≥ (‖h‖2,t − ‖h′‖2,t)‖T h̃‖2 − ‖T‖2‖h′‖2

≥ ‖h‖2,t − ‖h′‖2,t

C̄
− ‖T‖2‖h′‖2 =

‖h‖2,t

C̄

(
1− ‖h

′‖2,t + C̄‖T‖2‖h′‖2

‖h‖2,t

)
Since the expression in the last parentheses is bounded from below by 1−α by assumption,

we obtain the inequality

‖Th‖2 ≥
1− α
C̄
‖h‖2,t,

which is equivalent to (36). Q.E.D.

B Proofs for Section 3

In this section, we use C to denote a strictly positive constant, which value may change

from place to place. Also, we use En[·] to denote the average over index i = 1, . . . , n; for

example, En[Xi] = n−1
∑n

i=1Xi.

Proof of Lemma 1. Observe that if Dĝu(x) ≥ 0 for all x ∈ [0, 1], then ĝc coincides with

ĝu, so that to prove (14), it suffices to show that

P
(
Dĝu(x) ≥ 0 for all x ∈ [0, 1]

)
→ 1 as n→∞. (37)

In turn, (37) follows if

sup
x∈[0,1]

|Dĝu(x)−Dg(x)| = op(1) (38)

since Dg(x) ≥ cg for all x ∈ [0, 1] and some cg > 0.

To prove (38), define a function m̂ ∈ L2[0, 1] by

m̂(w) = q(w)′En[q(Wi)Yi], w ∈ [0, 1], (39)

and an operator T̂ : L2[0, 1]→ L2[0, 1] by

(T̂ h)(w) = q(w)′En[q(Wi)p(Xi)
′]E[p(U)h(U)], w ∈ [0, 1], h ∈ L2[0, 1].
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Throughout the proof, we assume that the events

‖En[q(Wi)p(Xi)
′]− E[q(W )p(X)′]‖ ≤ C(ξ2

n log n/n)1/2, (40)

‖En[q(Wi)q(Wi)
′]− E[q(W )q(W )′]‖ ≤ C(ξ2

n log n/n)1/2, (41)

‖En[q(Wi)gn(Xi)]− E[q(W )gn(X)]‖ ≤ C(J/(αn))1/2, (42)

‖m̂−m‖2 ≤ C((J/(αn))1/2 + τ−1
n J−s) (43)

hold for some sufficiently large constant 0 < C <∞. It follows from Markov’s inequality

and Lemmas 4 and 10 that all four events hold jointly with probability at least 1−α−n−1

since the constant C is large enough.

Next, we derive a bound on ‖ĝu − gn‖2. By the definition of τn,

‖ĝu − gn‖2 ≤ τn‖T (ĝu − gn)‖2

≤ τn‖T (ĝu − g)‖2 + τn‖T (g − gn)‖2 ≤ τn‖T (ĝu − g)‖2 + CgK
−s

where the second inequality follows from the triangle inequality, and the third inequality

from Assumption 6(iii). Next, since m = Tg,

‖T (ĝu − g)‖2 ≤ ‖(T − Tn)ĝu‖2 + ‖(Tn − T̂ )ĝu‖2 + ‖T̂ ĝu − m̂‖2 + ‖m̂−m‖2

by the triangle inequality. The bound on ‖m̂−m‖2 is given in (43). Also, since ‖ĝu‖2 ≤ Cb

by construction,

‖(T − Tn)ĝu‖2 ≤ CbCaτ
−1
n K−s

by Assumption 8(ii). In addition, by the triangle inequality,

‖(Tn − T̂ )ĝu‖2 ≤ ‖(Tn − T̂ )(ĝu − gn)‖2 + ‖(Tn − T̂ )gn‖2

≤ ‖Tn − T̂‖2‖ĝu − gn‖2 + ‖(Tn − T̂ )gn‖2.

Moreover,

‖Tn − T̂‖2 = ‖En[q(Wi)p(Xi)
′]− E[q(W )p(X)′]‖ ≤ C(ξ2

n log n/n)1/2

by (40), and

‖(Tn − T̂ )gn‖2 = ‖En[q(Wi)gn(Xi)]− E[q(W )gn(X)]‖ ≤ C(J/(αn))1/2

by (42).

Further, by Assumption 2(iii), all eigenvalues of E[q(W )q(W )′] are bounded from below

by cw and from above by Cw, and so it follows from (41) that for large n, all eigenvalues
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of Qn := En[q(Wi)q(Wi)
′] are bounded below from zero and from above. Therefore,

‖T̂ ĝu − m̂‖2 = ‖En[q(Wi)(p(Xi)
′β̂u − Yi)]‖

≤ C‖En[(Yi − p(Xi)
′β̂u)q(Wi)

′]Q−1
n En[q(Wi)(Yi − p(Xi)

′β̂u)]‖1/2

≤ C‖En[(Yi − p(Xi)
′βn)q(Wi)

′]Q−1
n En[q(Wi)(Yi − p(Xi)

′βn)]‖1/2

≤ C‖En[q(Wi)(p(Xi)
′βn − Yi)]‖

by optimality of β̂u. Moreover,

‖En[q(Wi)(p(Xi)
′βn − Yi)]‖ ≤ ‖(T̂ − Tn)gn‖2 + ‖(Tn − T )gn‖2

+ ‖T (gn − g)‖2 + ‖m− m̂‖2

by the triangle inequality. The terms ‖(T̂ − Tn)gn‖2 and ‖m − m̂‖2 have been bounded

above. Also, by Assumptions 8(ii) and 6(iii),

‖(Tn − T )gn‖2 ≤ Cτ−1
n K−s, ‖T (g − gn)‖2 ≤ Cgτ

−1
n K−s.

Combining the inequalities above shows that the inequality

‖ĝu − gn‖2 ≤ C
(
τn(J/(αn))1/2 +K−s + τn(ξ2

n log n/n)1/2‖ĝ − gn‖2

)
(44)

holds with probability at least 1 − α − n−c. Since τ 2
nξ

2
n log n/n → 0, it follows that with

the same probability,

‖β̂u − βn‖ = ‖ĝu − gn‖2 ≤ C
(
τn(J/(αn))1/2 +K−s

)
,

and so by the triangle inequality,

|Dĝu(x)−Dg(x)| ≤ |Dĝu(x)−Dgn(x)|+ |Dgn(x)−Dg(x)|
≤ C sup

x∈[0,1]

‖Dp(x)‖(τn(K/(αn))1/2 +K−s) + o(1)

uniformly over x ∈ [0, 1] since J ≤ CJK by Assumption 5. Since by the conditions of the

lemma, supx∈[0,1] ‖Dp(x)‖(τn(K/n)1/2 + K−s) → 0, (38) follows by taking α = αn → 0

slowly enough. This completes the proof of the lemma. Q.E.D.

Proof of Theorem 2. Consider the event that inequalities (40)-(43) hold for some suffi-

ciently large constant C. As in the proof of Lemma 1, this events occurs with probability

at least 1− α− n−1. Also, applying the same arguments as those in the proof of Lemma

1 with ĝc replacing ĝu and using the bound

‖(Tn − T̂ )ĝc‖2 ≤ ‖Tn − T̂‖2‖ĝc‖2 ≤ Cb‖Tn − T̂‖2
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instead of the bound for ‖(Tn − T̂ )ĝu‖2 used in the proof of Lemma 1, it follows that on

this event,

‖T (ĝc − gn)‖2 ≤ C
(

(K/(αn))1/2 + (ξ2
n log n/n)1/2 + τ−1

n K−s
)
. (45)

Further,

‖ĝc − gn‖2,t ≤ δ + τn,t

(‖Dgn‖∞
δ

)
‖T (ĝc − gn)‖2

since ĝc is increasing (indeed, if ‖ĝc − g‖2,t ≤ δ, the bound is trivial; otherwise, ap-

ply the definition of τn,t to the function (ĝc − gn)/‖ĝc − gn‖2,t and use the inequality

τn,t(‖Dgn‖∞/‖ĝc − gn‖2,t) ≤ τn,t(‖Dgn‖∞/δ)). Finally, by the triangle inequality,

‖ĝc − g‖2,t ≤ ‖ĝc − gn‖2,t + ‖gn − g‖2,t ≤ ‖ĝc − gn‖2,t + CgK
−s.

Combining these inequalities gives the asserted claim (15).

To prove (16), observe that combining (45) and Assumption 6(iii) and applying the

triangle inequality shows that with probability at least 1− α− n−1,

‖T (ĝc − g)‖2 ≤ C
(

(K/(αn))1/2 + (ξ2
n log n/n)1/2 + τ−1

n K−s
)
,

which, by the same argument as that used to prove (15), gives

‖ĝc − g‖2,t ≤ C
{
δ + τ

(‖Dg‖∞
δ

)( K
αn

+
ξ2
n log n

n

)1/2

+K−s
}
. (46)

The asserted claim (16) now follows by applying (15) with δ = 0 and (46) with δ =

‖Dg‖∞/cτ and using Corollary 1 to bound τ(cτ ). This completes the proof of the theorem.

Q.E.D.

Lemma 4. Under conditions of Theorem 2, ‖m̂−m‖2 ≤ C((J/(αn))1/2 + τ−1
n J−s) with

probability at least 1− α where m̂ is defined in (39).

Proof. Using the triangle inequality and an elementary inequality (a+ b)2 ≤ 2a2 + 2b2 for

all a, b ≥ 0,

‖En[q(Wi)Yi]−E[q(W )g(X)]‖2 ≤ 2‖En[q(Wi)εi]‖2 + 2‖En[q(Wi)g(Xi)]−E[q(W )g(X)]‖2.

To bound the first term on the right-hand side of this inequality, we have

E
[
‖En[q(Wi)εi]‖2

]
= n−1E[‖q(W )ε‖2] ≤ (CB/n)E[‖q(W )‖2] ≤ CJ/n

where the first and the second inequalities follow from Assumptions 4 and 2, respectively.

Similarly,

E
[
‖En[q(Wi)g(Xi)]− E[q(W )g(X)]‖2

]
≤ n−1E[‖q(W )g(X)‖2]

≤ (CB/n)E[‖q(W )‖2] ≤ CJ/n
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by Assumption 4. Therefore, denoting m̄n(w) := q(w)′E[q(W )g(X)] for all w ∈ [0, 1], we

obtain

E[‖m̂− m̄n‖2
2] ≤ CJ/n,

and so by Markov’s inequality, ‖m̂−m̄n‖2 ≤ C(J/(αn))1/2 with probability at least 1−α.

Further, using γn ∈ RJ from Assumption 7, so that mn(w) = q(w)′γn for all w ∈ [0, 1],

and denoting rn(w) := m(w)−mn(w) for all w ∈ [0, 1], we obtain

m̄n(w) = q(w)′
∫ 1

0

∫ 1

0

q(t)g(x)fX,W (x, t)dxdt

= q(w)′
∫ 1

0

q(t)m(t)dt = q(w)′
∫ 1

0

q(t)(q(t)′γn + rn(t))dt

= q(w)′γn + q(w)′
∫ 1

0

q(t)rn(t)dt = m(w)− rn(w) + q(w)′
∫ 1

0

q(t)rn(t)dt.

Hence, by the triangle inequality,

‖m̄n −m‖2 ≤ ‖rn‖2 +

∥∥∥∥∫ 1

0

q(t)rn(t)dt

∥∥∥∥ ≤ 2‖rn‖2 ≤ 2Cmτ
−1
n J−s

by Bessel’s inequality and Assumption 7. Applying the triangle inequality one more time,

we obtain

‖m̂−m‖2 ≤ ‖m̂− m̄n‖+ ‖m̄n −m‖2 ≤ C((J/(αn))1/2 + τ−1
n J−s)

with probability at least 1− α. This completes the proof of the lemma. Q.E.D.

Proof of Corollary 2. The corollary follows immediately from Theorem 2. Q.E.D.

C Proofs for Section 4

Let M↑ be the set of all functions in M that are increasing but not constant. Similarly,

letM↓ be the set of all functions inM that are decreasing but not constant, and letM→

be the set of all constant functions in M.

Proof of Theorem 3. Assume that g is increasing but not constant, that is, g ∈ M↑.

Define M(w) := E[Y |W = w], w ∈ [0, 1]. Below we show that M ∈ M↑. To prove it,

observe that, as in the proof of Lemma 2, integration by parts gives

M(w) = g(1)−
∫ 1

0

Dg(x)FX|W (x|w)dx,
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and so Assumption 1 implies that M is increasing. Let us show that M is not constant.

To this end, note that

M(w2)−M(w1) =

∫ 1

0

Dg(x)(FX|W (x|w1)− FX|W (x|w2))dx.

Since g is not constant and is continuously differentiable, there exists x̄ ∈ (0, 1) such that

Dg(x̄) > 0. Also, since 0 ≤ x1 < x2 ≤ 1 (the constants x1 and x2 appear in Assumption

1), we have x̄ ∈ (0, x2) or x̄ ∈ (x1, 1). In the first case,

M(w2)−M(w1) ≥
∫ x2

0

(CF − 1)Dg(x)FX|W (x|w2)dx > 0.

In the second case,

M(w2)−M(w1) ≥
∫ 1

x1

(CF − 1)Dg(x)(1− FX|W (x|w1))dx > 0.

Thus, M is not constant, and so M ∈ M↑. Similarly, one can show that if g ∈ M↓,

then M ∈ M↓, and if g ∈ M→, then M ∈ M→. However, the distribution of the triple

(Y,X,W ) uniquely determines whether M ∈ M↑, M↓, or M→, and so it also uniquely

determines whether g ∈M↑, M↓, or M→ This completes the proof. Q.E.D.

Proof of Theorem 4. Suppose g′ and g′′ are observationally equivalent. Then ‖T (g′ −
g′′)‖2 = 0. On the other hand, since 0 ≤ ‖h‖2,t + C̄‖T‖2‖h‖2 < ‖g′ − g′′‖2,t, there

exists α ∈ (0, 1) such that ‖h‖2,t + C̄‖T‖2‖h‖2 ≤ α‖g′ − g′′‖2,t. Therefore, by Lemma 3,

‖T (g′ − g′′)‖2 ≥ ‖g′ − g′′‖2,t(1− α)/C̄ > 0, which is a contradiction. This completes the

proof of the theorem. Q.E.D.

D Proofs for Section 5

Proof of Theorem 5. In this proof, c and C are understood as sufficiently small and large

constants, respectively, whose values may change at each appearance but can be chosen

to depend only on cW , CW , ch, CH , cF , CF , cε, Cε, and the kernel K.

To prove the asserted claims, we apply Corollary 3.1, Case (E.3), from CCK conditional

on Wn = {W1, . . . ,Wn}. Under H0,

T ≤ max
(x,w,h)∈Xn×Wn×Bn

∑n
i=1 ki,h(w)(1{Xi ≤ x} − FX|W (x|Wi))

(
∑n

i=1 ki,h(w)2)
1/2

=: T0 (47)

with equality if the functions w 7→ FX|W (x|w) are constant for all x ∈ (0, 1). Using the

notation of CCK,

T0 = max
1≤j≤p

1√
n

n∑
i=1

xij
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where p = |Xn × Wn × Bn|, the number of elements in the set Xn × Wn × Bn, xij =

zijεij with zij having the form
√
nki,h(w)/(

∑n
i=1 ki,h(w)2)1/2, and εij having the form

1{Xi ≤ x} − FX|W (x|Wi) for some (x,w, h) ∈ Xn ×Wn × Bn. The dimension p satisfies

log p ≤ C log n. Also, n−1
∑n

i=1 z
2
ij = 1. Further, since 0 ≤ 1{Xi ≤ x} ≤ 1, we have

|εij| ≤ 1, and so E[exp(|εij|/2)|Wn] ≤ 2. In addition, E[ε2
ij|Wn] ≥ cε(1 − Cε) > 0 by

Assumption 12. Thus, T0 satisfies the conditions of Case (E.3) in CCK with a sequence

of constants Bn as long as |zij| ≤ Bn for all j = 1, . . . , p. In turn, Proposition B.2

in Chetverikov (2012) shows that under Assumptions 2, 9, and 10, with probability at

least 1− Cn−c, zij ≤ C/
√
hmin =: Bn uniformly over all j = 1, . . . , p (Proposition B.2 in

Chetverikov (2012) is stated with “w.p.a.1” replacing “1−Cn−c”; however, inspecting the

proof of Proposition B.2 (and supporting Lemma H.1) shows that the result applies with

“1 − Cn−c” instead of “w.p.a.1”). Let B1,n denote the event that |zij| ≤ C/
√
hmin = Bn

for all j = 1, . . . , p. As we just established, P(B1,n) ≥ 1−Cn−c. Since (log n)7/(nhmin) ≤
Chn

−ch by Assumption 10, we have that B2
n(log n)7/n ≤ Cn−c, and so condition (i) of

Corollary 3.1 in CCK is satisfied on the event B1,n.

Let B2,n denote the event that

P

(
max

(x,w)∈Xn×Wn

|F̂X|W (x|w)− FX|W (x|w)| > CFn
−cF |{Wn}

)
≤ CFn

−cF .

By Assumption 11, P(B2,n) ≥ 1−CFn−cF . We apply Corollary 3.1 from CCK conditional

on Wn on the event B1,n ∩ B2,n. For this, we need to show that on the event B2,n,

ζ1,n

√
log n+ ζ2,n ≤ Cn−c where ζ1,n and ζ2,n are positive sequences such that

P
(
Pe(|T b − T b0 | > ζ1,n) > ζ2,n|Wn

)
< ζ2,n (48)

where

T b0 := max
(x,w,h)∈Xn×Wn×Bn

∑n
i=1 ei

(
ki,h(w)(1{Xi ≤ x} − FX|W (x|Wi))

)
(
∑n

i=1 ki,h(w)2)
1/2

and where Pe(·) denotes the probability distribution with respect to the distribution of

e1, . . . , en and keeping everything else fixed. To find such sequences ζ1,n and ζ2,n, note

that ζ1,n

√
log n + ζ2,n ≤ Cn−c follows from ζ1,n + ζ2,n ≤ Cn−c (with different constants

c, C > 0), so that it suffices to verify the latter condition. Also,

|T b − T b0 | ≤ max
(x,w,h)∈Xn×Wn×Bn

∣∣∣∣∣
∑n

i=1 eiki,h(w)(F̂X|W (x|Wi)− FX|W (x|Wi))

(
∑n

i=1 ki,h(w)2)
1/2

∣∣∣∣∣ .
For fixed W1, . . . ,Wn and X1, . . . , Xn, the random variables under the modulus on the

right-hand side of this inequality are normal with zero mean and variance bounded from

above by max(x,w)∈Xn×Wn |F̂X|W (x|w)− FX|W (x|w)|2. Therefore,

Pe

(
|T b − T b0 | > C

√
log n max

(x,w)∈Xn×Wn

∣∣∣F̂X|W (x|w)− FX|W (x|w)
∣∣∣) ≤ Cn−c.
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Hence, on the event that

max
(x,w)∈Xn×Wn

∣∣∣F̂X|W (x|w)− FX|W (x|w)
∣∣∣ ≤ CFn

−cF ,

whose conditional probability given Wn on B2,n is at least 1 − CFn−cF by the definition

of B2,n,

Pe

(
|T b − T b0 | > Cn−c

)
≤ Cn−c

implying that (48) holds for some ζ1,n and ζ2,n satisfying ζ1,n + ζ2,n ≤ Cn−c.

Thus, applying Corollary 3.1, Case (E.3), from CCK conditional on {W1, . . . ,Wn} on

the event B1,n ∩ B2,n gives

α− Cn−c ≤ P(T0 > c(α)|Wn) ≤ α + Cn−c.

Since P(B1,n ∩ B2,n) ≥ 1 − Cn−c, integrating this inequality over the distribution of

Wn = {W1, . . . ,Wn} gives (25). Combining this inequality with (47) gives (24). This

completes the proof of the theorem. Q.E.D.

Proof of Theorem 6. Conditional on the data, the random variables

T b(x,w, h) :=

∑n
i=1 ei

(
ki,h(w)(1{Xi ≤ x} − F̂X|W (x|Wi))

)
(
∑n

i=1 ki,h(w)2)
1/2

for (x,w, h) ∈ Xn × Wn × Bn are normal with zero mean and variances bounded from

above by∑n
i=1

(
ki,h(w)(1{Xi ≤ x} − F̂X|W (x|Wi))

)2∑n
i=1 ki,h(w)2

≤ max
(x,w,h)∈Xn×Wn×Bn

max
1≤i≤n

(
1{Xi ≤ x} − F̂X|W (x|Wi)

)2

≤ (1 + Ch)
2

by Assumption 11. Therefore, c(α) ≤ C(log n)1/2 for some constant C > 0 since c(α) is the

(1 − α) conditional quantile of T b given the data, T b = max(x,w,h)∈Xn×Wn×Bn T
b(x,w, h),

and p := |Xn × Wn × Bn|, the number of elements of the set Xn × Wn × Bn, satisfies

log p ≤ C log n (with a possibly different constant C > 0). Thus, the growth rate of

the critical value c(α) satisfies the same upper bound (log n)1/2 as if we were testing

monotonicity of one particular regression function w 7→ E[1{X ≤ x0}|W = w] with Xn
replaced by x0 for some x0 ∈ (0, 1) in the definition of T and T b. Hence, the asserted

claim follows from the same arguments as those given in the proof of Theorem 4.2 in

Chetverikov (2012). This completes the proof of the theorem. Q.E.D.
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E Technical tools

In this section, we provide a set of technical results that are used to prove the statements

from the main text.

Lemma 5. Let W be a random variable with the density function bounded below from zero

on its support [0, 1], and let M : [0, 1] → R be a monotone function. If M is constant,

then cov(W,M(W )) = 0. If M is increasing in the sense that there exist 0 < w1 < w2 < 1

such that M(w1) < M(w2), then cov(W,M(W )) > 0.

Proof. The first claim is trivial. The second claim follows by introducing an independent

copy W ′ of the random variable W , and rearranging the inequality

E[(M(W )−M(W ′))(W −W ′)] > 0,

which holds for increasing M since (M(W ) −M(W ′))(W −W ′) ≥ 0 almost surely and

(M(W ) −M(W ′))(W −W ′) > 0 with strictly positive probability. This completes the

proof of the lemma. Q.E.D.

Lemma 6. For any orthonormal basis {hj, j ≥ 1} in L2[0, 1], any 0 ≤ x1 < x2 ≤ 1, and

any α > 0,

‖hj‖2,t =

(∫ x2

x1

h2
j(x)dx

)1/2

> j−1/2−α

for infinitely many j.

Proof. Fix M ∈ N and consider any partition x1 = t0 < t1 < · · · < tM = x2. Further, fix

m = 1, . . . ,M and consider the function

h(x) =

 1√
tm−tm−1

x ∈ (tm−1, tm],

0, x /∈ (tm−1, tm].

Note that ‖h‖2 = 1, so that

h =
∞∑
j=1

βjhj in L2[0, 1], βj :=

∫ tm
tm−1

hj(x)dx

(tm − tm−1)1/2
, and

∞∑
j=1

β2
j = 1.

Therefore, by the Cauchy-Schwarz inequality,

1 =
∞∑
j=1

β2
j =

1

tm − tm−1

∞∑
j=1

(∫ tm

tm−1

hj(x)dx

)2

≤
∞∑
j=1

∫ tm

tm−1

(hj(x))2dx.

Hence,
∑∞

j=1 ‖hj‖2
2,t ≥ M . Since M is arbitrary, we obtain

∑∞
j=1 ‖hj‖2

2,t = ∞, and so

for any J , there exists j > J such that ‖hj‖2,t > j−1/2−α. Otherwise, we would have∑∞
j=1 ‖hj‖2

2,t <∞. This completes the proof of the lemma. Q.E.D.
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Lemma 7. Let (X,W ) be a pair of random variables defined as in Example 1. Then

Assumptions 1 and 2 of Section 2 are satisfied if 0 < x1 < x2 < 1 and 0 < w1 < w2 < 1.

Proof. As noted in Example 1, we have

X = Φ(ρΦ−1(W ) + (1− ρ2)1/2U)

where Φ(x) is the distribution function of a N(0, 1) random variable and U is a N(0, 1)

random variable that is independent of W . Therefore, the conditional distribution func-

tion of X given W is

FX|W (x|w) := Φ

(
Φ−1(x)− ρΦ−1(w)√

1− ρ2

)
.

Since the function w 7→ FX|W (x|w) is decreasing for all x ∈ (0, 1), condition (4) of

Assumption 1 follows. Further, to prove condition (5) of Assumption 1, it suffices to show

that
∂ logFX|W (x|w)

∂w
≤ cF (49)

for some constant cF < 0, all x ∈ (0, x2), and all w ∈ (w1, w2) because, for every x ∈ (0, x2)

and w ∈ (w1, w2), there exists w̄ ∈ (w1, w2) such that

log

(
FX|W (x|w1)

FX|W (x|w2)

)
= logFX|W (x|w1)− logFX|W (x|w2) = −(w2 − w1)

∂ logFX|W (x|w̄)

∂w
.

Therefore, ∂ logFX|W (x|w)/∂w ≤ cF < 0 for all x ∈ (0, x2) and w ∈ (w1, w2) implies

FX|W (x|w1)

FX|W (x|w2)
≥ e−cF (w2−w1) > 1

for all x ∈ (0, x2). To show (49), observe that

∂ logFX|W (x|w)

∂w
= − ρ√

1− ρ2

φ(y)

Φ(y)

1

φ(Φ−1(w))
≤ −

√
2πρ√

1− ρ2

φ(y)

Φ(y)
(50)

where y := (Φ−1(x)− ρΦ−1(w))/(1− ρ2)1/2. Thus, (49) holds for some cF < 0 and all x ∈
(0, x2) and w ∈ (w1, w2) such that Φ−1(x) ≥ ρΦ−1(w) since x2 < 1 and 0 < w1 < w2 < 1.

On the other hand, when Φ−1(x) < ρΦ−1(w), so that y < 0, it follows from Proposition

2.5 in Dudley (2014) that φ(y)/Φ(y) ≥ (2/π)1/2, and so (50) implies that

∂ logFX|W (x|w)

∂w
≤ − 2ρ√

1− ρ2

in this case. Hence, condition (5) of Assumption 1 is satisfied. Similar argument also

shows that condition (6) of Assumption 1 is satisfied as well.
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We next consider Assumption 2. Since W is distributed uniformly on [0, 1] (remember

that W̃ ∼ N(0, 1) and W = Φ(W̃ )), condition (iii) of Assumption 2 is satisfied. Further,

differentiating x 7→ FX|W (x|w) gives

fX|W (x|w) :=
1√

1− ρ2
φ

(
Φ−1(x)− ρΦ−1(w)√

1− ρ2

)
1

φ(Φ−1(x))
. (51)

Since 0 < x1 < x2 < 1 and 0 < w1 < w2 < 1, condition (ii) of Assumption 2 is satisfied

as well. Finally, to prove condition (i) of Assumption 2, note that since fW (w) = 1 for

all w ∈ [0, 1], (51) combined with the change of variables formula with x = Φ(x̃) and

w = Φ(w̃) give

(1− ρ2)

∫ 1

0

∫ 1

0

f 2
X,W (x,w)dxdw = (1− ρ2)

∫ 1

0

∫ 1

0

f 2
X|W (x|w)dxdw

=

∫ +∞

−∞

∫ +∞

−∞
φ2

(
x̃− ρw̃√

1− ρ2

)
φ(w̃)

φ(x̃)
dx̃dw̃

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
exp

[(
1

2
− 1

1− ρ2

)
x̃2 +

2ρ

1− ρ2
x̃w̃ −

(
ρ2

1− ρ2
+

1

2

)
w̃2

]
dx̃dw̃

=
1

2π

∫ +∞

−∞

∫ +∞

−∞
exp

[
− 1 + ρ2

2(1− ρ2)

(
x̃2 − 4ρ

1 + ρ2
x̃w̃ + w̃2

)]
dx̃dw̃.

Since 4ρ/(1 + ρ2) < 2, the integral in the last line is finite implying that condition (i) of

Assumption 2 is satisfied. This completes the proof of the lemma. Q.E.D.

Lemma 8. Let X = U1 + U2W where U1, U2,W are mutually independent, U1, U2 ∼
U [0, 1/2] and W ∼ U [0, 1]. Then Assumptions 1 and 2 of Section 2 are satisfied if

0 < w1 < w2 < 1, 0 < x1 < x2 < 1, and w1 > w2 −
√
w2/2.

Proof. Since X|W = w is a convolution of the random variables U1 and U2w,

fX|W (x|w) =

∫ 1/2

0

fU1(x− u2w)fU2(u2)du2

= 4

∫ 1/2

0

1

{
0 ≤ x− u2w ≤

1

2

}
du2

= 4

∫ 1/2

0

1

{
x

w
− 1

2w
≤ u2 ≤

x

w

}
du2

=


4x
w
, 0 ≤ x < w

2

2, w
2
≤ x < 1

2
2(1+w)
w
− 4x

w
, 1

2
≤ x < 1+w

2

0, 1+w
2
≤ x ≤ 1
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and, thus,

FX|W (x|w) =


2x2

w
, 0 ≤ x < w

2

2x− w
2
, w

2
≤ x < 1

2

1− 2
w

(
x− 1+w

2

)2
, 1

2
≤ x < 1+w

2

1, 1+w
2
≤ x ≤ 1

.

It is easy to check that ∂FX|W (x|w)/∂w ≤ 0 for all x,w ∈ [0, 1] so that condition (4) of

Assumption 1 is satisfied. To check conditions (5) and (6), we proceed as in Lemma 7

and show ∂ logFX|W (x|w)/∂w < 0 uniformly for all x ∈ [x2, x1] and w ∈ (w̃1, w̃2). First,

notice that, as required by Assumption 2(iv), [xk, xk] = [0, (1 + w̃k)/2], k = 1, 2. For

0 ≤ x < w/2 and w ∈ (w̃1, w̃2),

∂FX|W (x|w)

∂w
=
−2x2/w2

2x2/w
= − 1

w
< − 1

w̃1

< 0,

and, for w/2 ≤ x < 1/2 and w ∈ (w̃1, w̃2),

∂FX|W (x|w)

∂w
=

−1/2

2x− w/2
<
−1/2

w − w/2
< − 1

w̃1

< 0.

Therefore, (5) holds uniformly over x ∈ (x2, 1/2) and (6) uniformly over x ∈ (x1, 1/2).

Now, consider 1/2 ≤ x < (1 + w̃1)/2 and w ∈ (w̃1, w̃2). Notice that, on this interval,

∂(FX|W (x|w̃1)/FX|W (x|w̃2))/∂x ≤ 0 so that

FX|W (x|w̃1)

FX|W (x|w̃2)
=

1− 2
w̃1

(
x− 1+w̃1

2

)2

1− 2
w̃2

(
x− 1+w̃2

2

)2 ≥
1

1− 2
w̃2

(
1+w̃1

2
− 1+w̃2

2

)2 =
w̃2

w̃2 − 2(w̃1 − w̃2)2
> 1,

where the last inequality uses w̃1 > w̃2 −
√
w̃2/2, and thus (5) holds also uniformly over

1/2 ≤ x < x2. Similarly,

1− FX|W (x|w̃2)

1− FX|W (x|w̃1)
=

2
w̃2

(
x− 1+w̃2

2

)2

2
w̃1

(
x− 1+w̃1

2

)2 ≥
2
w̃2

(
w̃2

2

)2

2
w̃1

(
w̃1

2

)2 =
w̃2

w̃1

> 1

so that (6) also holds uniformly over 1/2 ≤ x < x1. Assumption 2(i) trivially holds. Parts

(ii) and (iii) of Assumption 2 hold for any 0 < x̃1 < x̃2 ≤ x1 ≤ 1 and 0 ≤ w1 < w̃1 <

w̃2 < w2 ≤ 1 with [xk, xk] = [0, (1 + w̃k)/2], k = 1, 2. Q.E.D.

Lemma 9. For any increasing function h ∈ L2[0, 1], one can find a sequence of increasing

continuously differentiable functions hk ∈ L2[0, 1], k ≥ 1, such that ‖hk − h‖2 → 0 as

k →∞.
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Proof. Fix some increasing h ∈ L2[0, 1]. For a > 0, consider the truncated function:

h̃a(x) := h(x)1{|h(x)| ≤ a}+ a1{h(x) > a} − a1{h(x) < −a}

for all x ∈ [0, 1]. Then ‖h̃a − h‖2 → 0 as a → ∞ by Lebesgue’s dominated convergence

theorem. Hence, by scaling and shifting h if necessary, we can assume without loss of

generality that h(0) = 0 and h(1) = 1.

To approximate h, set h(x) = 0 for all x ∈ R\[0, 1] and for σ > 0, consider the function

hσ(x) :=
1

σ

∫ 1

0

h(y)φ

(
y − x
σ

)
dy =

1

σ

∫ ∞
−∞

h(y)φ

(
y − x
σ

)
dy

for y ∈ R where φ is the density function of a N(0, 1) random variable. Theorem 6.3.14

in Stroock (1999) shows that

‖hσ − h‖2 =

(∫ 1

0

(hσ(x)− h(x))2dx

)1/2

≤
(∫ ∞
−∞

(hσ(x)− h(x))2dx

)1/2

→ 0

as σ → 0. The function hσ is continuously differentiable but it is not necessarily increasing,

and so we need to further approximate it by an increasing continuously differentiable

function. However, integration by parts yields for all x ∈ [0, 1],

Dhσ(x) = − 1

σ2

∫ 1

0

h(y)Dφ

(
y − x
σ

)
dy

= − 1

σ

(
h(1)φ

(
1− x
σ

)
− h(0)φ

(
−x
σ

)
−
∫ 1

0

φ

(
y − x
σ

)
dh(y)

)
≥ − 1

σ
φ

(
1− x
σ

)
since h(0) = 0, h(1) = 1, and

∫ 1

0
φ((y − x)σ)dh(y) ≥ 0 by h being increasing. Therefore,

the function

hσ,x̄(x) =

hσ(x) + (x/σ)φ((1− x̄)/σ), for x ∈ [0, x]

hσ(x̄) + (x̄/σ)φ((1− x̄)/σ), for x ∈ (x, 1]

defined for all x ∈ [0, 1] and some x̄ ∈ (0, 1) is increasing and continuously differentiable

for all x ∈ (0, 1)\x̄, where it has a kink. Also, setting x̄ = x̄σ = 1 −
√
σ and observing

that 0 ≤ hσ(x) ≤ 1 for all x ∈ [0, 1], we obtain

‖hσ,xσ − hσ‖2 ≤
1

σ
φ

(
1√
σ

)(∫ 1−
√
σ

0

dx

)1/2

+

(
1 +

1

σ
φ

(
1√
σ

))(∫ 1

1−
√
σ

dx

)1/2

→ 0

as σ → 0 because σ−1φ(σ−1/2) → 0. Smoothing the kink of hσ,x̄σ and using the triangle

inequality, we obtain the asserted claim. This completes the proof of the lemma. Q.E.D.
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Lemma 10. Let (p′1, q
′
1)′, . . . , (p′n, q

′
n)′ be a sequence of i.i.d. random vectors where pi’s are

vectors in RK and qi’s are vectors in RJ . Assume that ‖p1‖ ≤ ξn, ‖q1‖ ≤ ξn, ‖E[p1p
′
1]‖ ≤

Cp, and ‖E[q1q
′
1]‖ ≤ Cq where ξn ≥ 1. Then for all t ≥ 0,

P (‖En[piq
′
i]− E[p1q

′
1]‖ ≥ t) ≤ exp

(
log(K + J)− Ant2

ξ2
n(1 + t)

)
where A > 0 is a constant depending only on Cp and Cq.

Remark 21. Closely related results have been used previously by Belloni, Chernozhukov,

Chetverikov, and Kato (2014) and Chen and Christensen (2013).

Proof. The proof follows from Corollary 6.2.1 in Tropp (2012). Below we perform some

auxiliary calculations. For any a ∈ RK and b ∈ RJ ,

a′E[p1q
′
1]b = E[(a′p1)(b′q1)]

≤
(
E[(a′p1)2]E[(b′q1)2]

)1/2 ≤ ‖a‖‖b‖(CpCq)1/2

by Hölder’s inequality. Therefore, ‖E[p1q
′
1]‖ ≤ (CpCq)

1/2. Further, denote Si := piq
′
i −

E[piq
′
i] for i = 1, . . . , n. By the triangle inequality and calculations above,

‖S1‖ ≤ ‖p1q
′
1‖+ ‖E[p1q

′
1]‖

≤ ξ2
n + (CpCq)

1/2 ≤ ξ2
n(1 + (CpCq)

1/2) =: R.

Now, denote Zn :=
∑n

i=1 Si. Then

‖E[ZnZ
′
n]‖ ≤ n‖E[S1S

′
1]‖

≤ n‖E[p1q
′
1q1p

′
1]‖+ n‖E[p1q

′
1]E[q1p

′
1]‖ ≤ n‖E[p1q

′
1q1p

′
1]‖+ nCpCq.

For any a ∈ RK ,

a′E[p1q
′
1q1p

′
1]a ≤ ξ2

nE[(a′p1)2] ≤ ξ2
n‖a‖2Cp.

Therefore, ‖E[p1q
′
1q1p

′
1]‖ ≤ ξ2

nCp, and so

‖E[ZnZ
′
n]‖ ≤ nCp(ξ

2
n + Cq) ≤ nξ2

n(1 + Cp)(1 + Cq).

Similarly, ‖E[Z ′nZn]‖ ≤ nξ2
n(1 + Cp)(1 + Cq), and so

σ2 := max(‖E[ZnZ
′
n]‖, ‖E[Z ′nZn]‖) ≤ nξ2

n(1 + Cp)(1 + Cq).

Hence, by Corollary 6.2.1 in Tropp (2012),

P
(
‖n−1Zn‖ ≥ t

)
≤ (K + J) exp

(
− n2t2/2

σ2 + 2nRt/3

)
≤ exp

(
log(K + J)− Ant2

ξ2
n(1 + t)

)
.

This completes the proof of the lemma. Q.E.D.
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3rd edn.

Tropp, J. A. (2012): User-friendly tools for random matrices: an introduction.

Wright, F. T. (1981): “The Asymptotic Behavior of Monotone Regression Estimates,”

The Annals of Statistics, 9(2), 443–448.

Yatchew, A. (1998): “Nonparametric Regression Techniques in Economics,” Journal of

Economic Literature, 36(2), 669–721.

Zhang, C.-H. (2002): “Risk Bounds in Isotonic Regression,” Annals of Statistics, 30(2),

528–555.

59



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Example 1

x

w1 = 0.5
w2 = 0.8

0 x1 x~1 x~2 x2 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Example 2

x

w1 = 0.5
w2 = 0.8

0 x1 x~1 x~2 x2 1

Figure 1: Plots of FX|W (x|w1) and FX|W (x|w2) in Examples 1 and 2, respectively.
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Model 1

κ = 1 κ = 0.5 κ = 0.1

σε kX kW uncon. con. uncon. con. uncon. con.

0.1 2 3 bias sq. 0.000 0.001 0.000 0.000 0.000 0.000

var 0.021 0.007 0.005 0.002 0.000 0.000

MSE 0.021 0.009 0.005 0.002 0.000 0.000

MSE ratio 0.406 0.409 0.347

2 5 bias sq. 0.000 0.001 0.000 0.000 0.000 0.000

var 0.009 0.004 0.002 0.001 0.000 0.000

MSE 0.009 0.005 0.002 0.001 0.000 0.000

MSE ratio 0.529 0.510 0.542

3 4 bias sq. 0.000 0.001 0.000 0.000 0.000 0.000

var 0.026 0.009 0.005 0.002 0.000 0.000

MSE 0.026 0.009 0.005 0.002 0.000 0.000

MSE ratio 0.355 0.412 0.372

3 7 bias sq. 0.000 0.000 0.000 0.000 0.000 0.000

var 0.013 0.005 0.003 0.001 0.000 0.000

MSE 0.013 0.005 0.003 0.001 0.000 0.000

MSE ratio 0.405 0.486 0.605

5 8 bias sq. 0.000 0.000 0.000 0.000 0.000 0.000

var 0.027 0.007 0.005 0.002 0.000 0.000

MSE 0.027 0.007 0.005 0.002 0.000 0.000

MSE ratio 0.266 0.339 0.411

0.7 2 3 bias sq. 0.001 0.020 0.000 0.005 0.000 0.000

var 0.857 0.097 0.263 0.024 0.012 0.001

MSE 0.857 0.118 0.263 0.029 0.012 0.001

MSE ratio 0.137 0.110 0.101

2 5 bias sq. 0.001 0.015 0.000 0.004 0.000 0.000

var 0.419 0.080 0.102 0.020 0.004 0.001

MSE 0.420 0.095 0.102 0.024 0.004 0.001

MSE ratio 0.227 0.235 0.221

3 4 bias sq. 0.001 0.016 0.000 0.004 0.000 0.000

var 0.763 0.104 0.223 0.026 0.010 0.001

MSE 0.763 0.121 0.223 0.030 0.010 0.001

MSE ratio 0.158 0.133 0.119

3 7 bias sq. 0.001 0.011 0.000 0.003 0.000 0.000

var 0.350 0.083 0.104 0.020 0.004 0.001

MSE 0.351 0.094 0.104 0.023 0.004 0.001

MSE ratio 0.267 0.218 0.229

5 8 bias sq. 0.001 0.011 0.000 0.003 0.000 0.000

var 0.433 0.094 0.131 0.023 0.006 0.001

MSE 0.434 0.105 0.131 0.025 0.006 0.001

MSE ratio 0.243 0.193 0.170

Table 1: Model 1: Performance of the unconstrained and constrained estimators for

N = 500, ρ = 0.3, η = 0.3.
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Model 2

κ = 1 κ = 0.5 κ = 0.1

σε kX kW uncon. con. uncon. con. uncon. con.

0.1 2 3 bias sq. 0.001 0.002 0.000 0.001 0.000 0.000

var 0.024 0.003 0.007 0.001 0.000 0.000

MSE 0.024 0.006 0.007 0.001 0.000 0.000

MSE ratio 0.229 0.201 0.222

2 5 bias sq. 0.001 0.002 0.000 0.000 0.000 0.000

var 0.010 0.002 0.002 0.001 0.000 0.000

MSE 0.011 0.004 0.002 0.001 0.000 0.000

MSE ratio 0.405 0.475 0.446

3 4 bias sq. 0.000 0.001 0.000 0.000 0.000 0.000

var 0.022 0.003 0.006 0.001 0.000 0.000

MSE 0.022 0.004 0.006 0.001 0.000 0.000

MSE ratio 0.192 0.176 0.157

3 7 bias sq. 0.000 0.001 0.000 0.000 0.000 0.000

var 0.009 0.002 0.002 0.001 0.000 0.000

MSE 0.009 0.003 0.002 0.001 0.000 0.000

MSE ratio 0.325 0.292 0.323

5 8 bias sq. 0.000 0.001 0.000 0.000 0.000 0.000

var 0.014 0.003 0.003 0.001 0.000 0.000

MSE 0.014 0.004 0.003 0.001 0.000 0.000

MSE ratio 0.269 0.268 0.217

0.7 2 3 bias sq. 0.002 0.005 0.001 0.001 0.000 0.000

var 1.102 0.032 0.321 0.008 0.012 0.000

MSE 1.104 0.038 0.321 0.009 0.012 0.000

MSE ratio 0.034 0.029 0.032

2 5 bias sq. 0.001 0.006 0.000 0.002 0.000 0.000

var 0.462 0.031 0.103 0.008 0.004 0.000

MSE 0.463 0.037 0.104 0.009 0.004 0.000

MSE ratio 0.080 0.088 0.088

3 4 bias sq. 0.001 0.004 0.000 0.001 0.000 0.000

var 0.936 0.036 0.255 0.009 0.012 0.000

MSE 0.936 0.040 0.255 0.010 0.012 0.000

MSE ratio 0.043 0.039 0.034

3 7 bias sq. 0.001 0.005 0.000 0.001 0.000 0.000

var 0.387 0.035 0.110 0.009 0.004 0.000

MSE 0.388 0.040 0.110 0.010 0.004 0.000

MSE ratio 0.103 0.089 0.092

5 8 bias sq. 0.002 0.005 0.000 0.001 0.000 0.000

var 0.508 0.041 0.144 0.010 0.007 0.000

MSE 0.510 0.046 0.144 0.011 0.007 0.000

MSE ratio 0.090 0.078 0.065

Table 2: Model 2: Performance of the unconstrained and constrained estimators for

N = 500, ρ = 0.3, η = 0.3.
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Model 1

κ = 1 κ = 0.5 κ = 0.1

ρ η uncon. con. uncon. con. uncon. con.

0.3 0.3 bias sq. 0.000 0.001 0.000 0.000 0.000 0.000

var 0.026 0.009 0.005 0.002 0.000 0.000

MSE 0.026 0.009 0.005 0.002 0.000 0.000

MSE ratio 0.355 0.412 0.372

0.3 0.7 bias sq. 0.000 0.001 0.000 0.000 0.000 0.000

var 0.026 0.008 0.005 0.002 0.000 0.000

MSE 0.026 0.009 0.005 0.002 0.000 0.000

MSE ratio 0.342 0.395 0.449

0.7 0.3 bias sq. 0.000 0.001 0.000 0.000 0.000 0.000

var 0.025 0.002 0.003 0.001 0.000 0.000

MSE 0.025 0.003 0.003 0.001 0.000 0.000

MSE ratio 0.125 0.248 0.266

0.7 0.7 bias sq. 0.000 0.001 0.000 0.000 0.000 0.000

var 0.023 0.002 0.004 0.001 0.000 0.000

MSE 0.023 0.003 0.004 0.001 0.000 0.000

MSE ratio 0.136 0.212 0.259

Table 3: Model 1: Performance of the unconstrained and constrained estimators for

σε = 0.1, kX = 3, kW = 4, N = 500.
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Model 2

κ = 1 κ = 0.5 κ = 0.1

ρ η uncon. con. uncon. con. uncon. con.

0.3 0.3 bias sq. 0.000 0.001 0.000 0.000 0.000 0.000

var 0.022 0.003 0.006 0.001 0.000 0.000

MSE 0.022 0.004 0.006 0.001 0.000 0.000

MSE ratio 0.192 0.176 0.157

0.3 0.7 bias sq. 0.000 0.001 0.000 0.000 0.000 0.000

var 0.020 0.003 0.006 0.001 0.000 0.000

MSE 0.020 0.004 0.006 0.001 0.000 0.000

MSE ratio 0.209 0.163 0.160

0.7 0.3 bias sq. 0.000 0.000 0.000 0.000 0.000 0.000

var 0.013 0.000 0.002 0.000 0.000 0.000

MSE 0.013 0.001 0.002 0.000 0.000 0.000

MSE ratio 0.040 0.063 0.047

0.7 0.7 bias sq. 0.000 0.000 0.000 0.000 0.000 0.000

var 0.010 0.000 0.002 0.000 0.000 0.000

MSE 0.011 0.001 0.002 0.000 0.000 0.000

MSE ratio 0.051 0.060 0.050

Table 4: Model 2: Performance of the unconstrained and constrained estimators for

σε = 0.1, kX = 3, kW = 4, N = 500.
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Figure 2: Model 1: unconstrained and constrained estimates of g(x) for N = 500, ρ = 0.3,

η = 0.3, σε = 0.1, kX = 3, kW = 4.
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Figure 3: Model 2: unconstrained and constrained estimates of g(x) for N = 500, ρ = 0.3,

η = 0.3, σε = 0.1, kX = 3, kW = 4.
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Figure 4: Nonparametric kernel estimate of the conditional cdf FX|W (x|w).
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Figure 5: Estimates of g(x, z1) plotted as a function of price x for z1 fixed at three income

levels.
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