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Abstract

Datasets that are terabytes in size are increasingly common, but computer bottlenecks often
frustrate a complete analysis of the data. While more data are better than less, diminishing
returns suggest that we may not need terabytes of data to estimate a parameter or test a hypoth-
esis. But which rows of data should we analyze, and might an arbitrary subset of rows preserve
the features of the original data? This paper reviews a line of work that is grounded in theo-
retical computer science and numerical linear algebra, and which finds that an algorithmically
desirable sketch, which is a randomly chosen subset of the data, must preserve the eigenstructure
of the data, a property known as a subspace embedding. Building on this work, we study how
prediction and inference can be affected by data sketching within a linear regression setup. We
show that the sketching error is small compared to the sample size effect which a researcher can
control. As a sketch size that is algorithmically optimal may not be suitable for prediction and
inference, we use statistical arguments to provide ‘inference conscious’ guides to the sketch size.
When appropriately implemented, an estimator that pools over different sketches can be nearly
as efficient as the infeasible one using the full sample.
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1 Introduction

The availability of terabytes of data for economic analysis is increasingly common. But analyzing

large datasets is time consuming and sometimes beyond the limits of our computers. The need to

work around the data bottlenecks was no smaller decades ago when the data were in megabytes

than it is today when data are in terabytes and petabytes. One way to alleviate the bottleneck is to

work with a sketch of the data.1 These are data sets of smaller dimensions and yet representative

of the original data. We study how the design of linear sketches affects estimation and inference

in the context of the linear regression model. Our formal statistical analysis complements those

in the theoretical computer science and numerical linear algebra derived using different notions of

accuracy and whose focus is computation efficiency.

There are several motivations for forming sketches of the data from the full sample. If the data

are too expensive to store and/or too large to fit into computer memory, the data would be of

limited practical use. It might be cost effective in some cases to get a sense from a smaller sample

whether an expensive test based on the full sample is worth proceeding. Debugging is certainly

faster with fewer observations. A smaller dataset can be adequate while a researcher is learning

how to specify the regression model, as loading a gigabyte of data is much faster than a terabyte

even we have enough computer memory to do so. With confidentiality reasons, one might only

want to circulate a subset rather than the full set of data.

For a sketch of the data to be useful, the sketch must preserve the characteristics of the original

data. Early work in the statistics literature used a sketching method known as ‘data squashing’. The

idea is to approximate the likelihood function by merging data points with similar likelihood profiles.

There are two different ways to squash the data. One approach is to construct subsamples randomly.

While these methods work well for the application under investigation, its general properties are

not well understood. An alternative is to take the data structure into account. Du Mouchel et

al. (1999) also forms multivariate bins of the data, but they match low order moments within the

bin by non-linear optimization. Owen (1990) reweighs a random sample of X to fit the moments

using empirical likelihood estimation. Madigan et al. (1999) uses likelihood-based clustering to

select data points that match the target distribution. While theoretically appealing, modeling the

likelihood profiles can itself be time consuming and not easily scalable.

Data sketching is of also interest to computer scientists because they are frequently required

to provide summaries (such as frequency, mean, and maximum) of data as they stream by contin-

uously.2 Instead of an exact answer which would be costly to compute, pass-efficient randomized

1The term ‘synopsis’ and ‘coresets’ have also been used. See Comrode et al. (2011), and Agarwal and Varadarajan
(2004). We generically refer to these as sketches.

2The seminal paper on frequency moments is Alon et al. (1999). For a review of the literature, he reader is referred
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algorithms are designed to run fast, requires little storage, and guarantee the correct answer with

a certain probability. But this is precisely the underlying premise of data sketching in statistical

analysis.3

Though randomized algorithms are increasingly used for sketching in a wide range of applica-

tions, the concept remains largely unknown to economists except for a brief exposition in Ng (2017).

This paper provides a gentle introduction to these algorithms in Sections 2 to 4. To our knowledge,

this is the first review on sketching in the econometrics literature. We will use the term algorithmic

subsampling to refer to randomized algorithms designed for the purpose of sketching, to distinguish

them from bootstrap and subsampling methods developed for frequentist inference. In repeated

sampling, we only observe one sample drawn from the population. Here, the complete data can

be thought of as the population which we observe, but we can only use a subsample. Algorithmic

subsampling does not make distributional assumptions, and balancing between fast computation

and favorable worst case approximation error often leads to algorithms that are oblivious to the

properties the data. In contrast, exploiting the probabilistic structure is often an important aspect

of econometric modeling.

Perhaps the most important tension between the algorithmic and the statistical view is that

while fast and efficient computation tend to favor sketches with few rows, efficient estimation and

inference inevitably favor using as many rows as possible. Sampling schemes that are optimal from

an algorithmic perspective may not be desirable from an econometric perspective, but it is entirely

possible for schemes that are not algorithmically optimal to be statistically desirable. As there

are many open questions about the usefulness of these sampling schemes for statistical modeling,

there is an increased interest in these methods within the statistics community. Recent surveys on

sketching with a regression focus include Ahfock et al. (2017) and Geppert, Ickstadt, Munteanu,

Quedenfeld and Sohler (2017), among others. Each paper offers distinct insights, and the present

paper is no exception.

Our focus is on efficiency of the estimates for prediction and inference within the context of the

linear regression model. Analytical and practical considerations confine our focus eventually back

to uniform sampling, and to a smaller extent, an algorithm known as the countsketch. The results

in Sections 5 and 6 are new. It will be shown that data sketching has two effects on estimation, one

due to sample size, and one due to approximation error, with the former dominating the later in all

quantities of empirical interest. Though the sample size effect has direct implications for the power

of any statistical test, it is at the discretion of a researcher. We show that moment restrictions

to Comrode et al. (2011).
3Pass-efficient algorithms read in data at most a constant number of times. A computational method is referred

to as a streaming model if only one pass is needed.
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can be used to guide the sketch size, with fewer rows being needed when more moments exist. By

targeting the power of a test at a prespecified alternative, the size of the sketch can also be tuned

so as not to incur excessive power loss in hypothesis testing. We refer to this as the ‘inference

conscious’ sketch size.

There is an inevitable trade-off between computation cost and statistical efficiency, but the sta-

tistical loss from using fewer rows of data can be alleviated by combining estimates from different

sketches. By the principle of ‘divide and conquer’, running several estimators in parallel can be

statistically efficient and still computationally inexpensive. Both uniform sampling and the counts-

ketch are amenable to parallel processing which facilitates averaging of quantities computed from

different sketches. We assess two ways of combining estimators: one that averages the parameter

estimates, and one that averages test statistics. Regardless of how information from the different

sketches are combined, pooling over subsamples always provides more efficient estimates and more

powerful tests. It is in fact possible to bring the power of a test arbitrarily close to the one using

the full sample, as will be illustrated in Section 6.

1.1 Motivating Examples

The sketching problem can be summarized as follows. Given an original matrix A ∈ Rn×d, we are

interested in Ã ∈ Rm×d constructed as

Ã = ΠA

where Π ∈ Rm×n, m < n. In a linear regression setting, A = [y X] where y is the dependent

variable, and X indicates the regressors. Computation of the least squares estimator takes O(nd2)

time which becomes costly when the number of rows, n is large. Non-parametric regressions fit into

this setup if X is a matrix of sieve basis. Interest therefore arises to use fewer rows of A without

sacrificing too much information.

To motivate why the choice of the sampling scheme (ie. Π) matters, consider as an example a

5× 2 matrix

A =

(
1 0 −.25 .25 0
0 1 .5 −.5 0

)T
.

The rows have different information content as the row norm is (1, 1, 0.559, 0.559, 0)T . Consider
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now three 2× 2 Ã matrices constructed as follows:

Π1 =

(
1 0 0 0 0
0 1 0 0 0

)
, Ã1 = Π1A =

(
1 0
0 1

)
Π2 =

(
1 0 0 0 0
0 0 0 0 1

)
, Ã2 = Π2A =

(
1 0
0 0

)
Π3 =

(
0 0 1 1 0
0 1 −1 1 1

)
, Ã3 = Π3A =

(
0 0
.5 0

)
.

Of the three sketches, only Π1 preserves the rank of A. The sketch defined by Π2 fails because

it chooses row 5 which has no information. The third sketch is obtained by taking a linear com-

bination of rows that do not have independent information. The point is that unless Π is chosen

appropriately, Ã may not have the same rank as A.

Of course, when m is large, changing rank is much less likely and one may also wonder if this

pen and pencil problem can ever arise in practice. Consider now estimation of a Mincer equation

which has the logarithm of wage as the dependent variable, estimated using the IPUMS (2020)

dataset which provides a preliminary but complete count data for the 1940 U.S. Census. This data

is of interest because it was the first census with information on wages and salary income. For

illustration, we use a sample of n = 24 million white men between the age of 16 and 64 as the

‘full sample’. The predictors that can be considered are years of education, denoted (edu), and

potential experience, denoted (exp).

Figure 1: Distribution of Potential Experience

Two Mincer equations with different covariates are considered:

log wage = β0 + β1edu + β2exp + β3exp2 + error (1a)

log wage = β0 + β1edu +
11∑
j=0

β2+j1{5j ≤ exp < 5(j + 1)}+ error. (1b)
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Model (1a) uses exp and exp2 as control variables. Model (1b) replaces potential experience with

indicators of experience in five year intervals. Even though there are three predictors including the

intercept, the number of covariates K is 4 in the first model and 14 in the second. In both cases,

the parameter of interest is the coefficient for years of education (β1). The full sample estimate of

β1 is 0.12145 in specification (1a) and 0.12401 in specification (1b).

Figure 1 shows the histogram of exp. The values of exp range from 0 to 58. The problem in this

example arises because there are few observations with over 50 years of experience. Hence there is

no guarantee that an arbitrary subsample will include observations with exp > 50. Without such

observations, the subsampled covariate matrix may not have full rank. Specification (1b) is more

vulnerable to this problem especially when m is small.

We verify that rank failure is empirically plausible in a small experiment with sketches of size

m = 100 extracted using two sampling schemes. The first method is uniform sampling without

replacement which is commonly used in economic applications. The second is the countsketch which

will be further explained below. Figure 2 and Figure 3 show the histograms of subsample estimates

for uniform sampling and the countsketch, respectively. The left panel is for specification (1a)

and the right panel is for specification (1b). In our experiments, singular matrices never occurred

with specification (1a); the OLS estimates can be computed using both sampling algorithms and

both performed pretty well. However, uniform sampling without replacement produced singular

matrices for specification (1b) 77% of the time. The estimates seem quite different from the full

sample estimates, suggesting not only bias in the estimates, but also that the bias might not be

random. In contrast, the countsketch failed only once out of 100 replications. The estimates are

shown in the right panel of Figure 3 excluding the singular case.

This phenomenon can be replicated in a Monte Carlo experiment with K = 3 normally dis-

tributed predictors. Instead of X3, it is assumed that we only observe a value of one if X3 is three

standard deviation from the mean. Together with an intercept, there are four regressors. As in the

Mincer equation, the regressor matrix has a reduced rank of 3 with probability of 0.58, 0.25, 0.076

when m = 200, 500, 1000 rows are sampled uniformly; it is always full rank only when m = 2000. In

contrast, the countsketch never encounters this problem even with m = 100. The simple example

underscores the point that the choice of sampling scheme matters. As will be seen below, the issue

remains in a more elaborate regression with several hundred covariates. This motivates the need

to better understand how to form sketches for estimation and inference.
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Figure 2: Distributions of Estimates from Uniform Sampling without Replacement

Figure 3: Distributions of Estimates from CountSketch Sampling

2 Matrix Sketching

This section presents the key concepts in algorithmic sampling. The material is based heavily

on the monographs by Mahoney (2011) and Woodruff (2014), as well as the seminal work of

Drineas, Mahoney and Muthukrishnan (2006), and subsequent refinements developed in Drineas et

al. (2011), Nelson and Nguyen (2013a), Nelson and Nguyen (2014), Cohen, Nelson and Woodruff

(2015), Wang, Gittens and Mahoney (2018), among many others.

We begin by setting up the notation. Consider an n × d matrix positive-definite A. Let A(j)

denote its j-th column of A and A(i) be its i-th row. Then

A =

A(1)
...

A(n)

 =
(
A(1) . . . A(d)

)
and ATA =

∑n
i=1A

T
(i)A(i). The singular value decomposition of A is A = UΣV T where U and

V are the left and right eigenvectors of dimensions (n × d) and (d × d) respectively. The matrix

Σ is d × d diagonal with entries containing the singular values of A denoted σ1, . . . , σd, which are

ordered such that σ1 is the largest. Since ATA is positive definite, its k-th eigenvalue ωk(A
TA)
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equals σk(A
TA) = σ2

k(A), for k = 1, . . . d. The best rank k approximation of A is given by

Ak = UkU
T
k A ≡ PUkA

where Uk is an n × k orthonormal matrix of left singular vectors corresponding to the k largest

singular values of A, and PUk = UkU
T
k is the projection matrix.

The Frobenius norm (an average type criterion) is ‖A‖F =
√∑n

i=1

∑d
j=1 |Aij |2 =

√∑k
i=1 σ

2
i .

The spectral norm (a worse-case type criterion) is ‖A‖2 = sup‖x‖2=1 ‖Ax‖2 =
√
σ2

1, where ‖x‖2 is

the Euclidean norm of a vector x. The spectral norm is bounded above by the Frobenius norm

since ‖A‖22 = |σ1|2 ≤
∑n

i=1

∑d
j=1 |Aij |2 = ‖A‖2F =

∑d
i=1 σ

2
i .

Let f and g be real valued functions defined on some unbounded subset of real positive numbers

n. We say that g(n) = O(f(n)) if |g(n)| ≤ k|f(n)| for some constant k for all n ≥ n0. This means

that g(n) is at most a constant multiple of f(n) for sufficiently large values of n. We say that

g(n) = Ω(f(n)) if g(n) ≥ kf(n) for all n ≥ n0. This means that g(n) is at least kf(n) for some

constant k. We say that g(n) = Θ(f(n)) if k1f(n) ≤ g(n) ≤ k2f(n) for all n ≥ n0. This means

that g(n) is at least k1f(n) and at most k2f(n).

2.1 Approximate Matrix Multiplication

Suppose we are given two matrices, A ∈ Rn×d and B ∈ Rn×p and are interested in the d× p matrix

C = ATB. The textbook approach is to compute each element of C by summing over dot products:

Cij = [ATB]ij =
n∑
k=1

ATikBkj .

Equivalently, each element is the inner product of two vectors A(i) and B(j). Computing the entire

C entails three loops through i ∈ [1, d], j ∈ [1, p], and k ∈ [1, n]. An algorithmically more efficient

approach is to form C from outer products:

C = ATB︸ ︷︷ ︸
d×p

=

n∑
i=1

AT(i)B(i)︸ ︷︷ ︸
(d×1)×(1×p)

,

making C a sum of n matrices each of rank-1. Viewing C as a sum of n terms suggests to

approximate it by summing m < n terms only. But which m amongst the n!
m!(n−m)! possible terms

to sum? Consider the following Approximate Matrix Multiplication algorithm (AMM). Let pj be

the probability that row j will be sampled.
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Algorithm AMM:

Input: A ∈ Rn×d, B ∈ Rn×p, m > 0, p = (p1, . . . , pn).
1 for s = 1 : m do
2 sample ks ∈ [1, . . . n] with probability pks independently with replacement;

3 set Ã(s) = 1√
mpks

A(ks) and B̃(s) = 1√
mpks

B(ks)

Output: C̃ = ÃT B̃.

The algorithm essentially produces

C̃ = (ΠA)TΠB =
1

m

m∑
s=1

1

pks
AT(ks)B(ks) (2)

where ks denotes the index for the non-zero entry in the s row of the matrix

Π =
1√
m

 0 1√
pk1

0 . . . 0

. . . . . . . . . . . . . . .
0 0 . . . 1√

pkm
0

 .

The Π matrix only has only one non-zero element per row, and the (i, j)-th entry Πij = 1√
mpj

with

probability pj . In the case of uniform sampling with pk = 1
n for all i, Π reduces to a sampling

matrix scaled by
√
n√
m

.

While C̃ defined by (2) is recognized in econometrics as the estimator of Horvitz and Thompson

(1952) which uses inverse probability weighting to account for different proportions of observations

in stratified sampling, C̃ is a sketch of C produced by the Monte Carlo algorithm AMM in the

theoretical computer science literature.4 The Monte-Carlo aspect is easily understood if we take A

and B to be n × 1 vectors. Then ATB =
∑n

i=1A
T
(i)B(i) =

∑n
i=1 f(i) ≈

∫ n
0 f(x)dx = f(a)n where

the last step follows from mean-value theorem for 0 < a < n. Approximating f(a) by 1
m

∑m
s=1 f(ks)

gives n
m

∑m
s=1 f(ks) as the Monte Carlo estimate of

∫ n
0 f(x)dx.

Two properties of C̃ produced by AMM are noteworthy. Under independent sampling,

E
[

1

m

m∑
s=1

AiksBksj
pks

]
=

1

m

m∑
s=1

n∑
k=1

pk
AikBkj
pk

= [ATB]ij .

Hence regardless of the sampling distribution, C̃ is unbiased. The variance of C̃ defined in terms

of the Frobenius norm is

E
[
‖C̃ − C‖2F

]
=

1

m

n∑
k=1

1

pk
‖AT(k)‖

2
2‖B(k)‖22 −

1

m
‖C‖2F

4In Mitzenmacher and Upfal (2006), a Monte Carlo algorithm is a randomized algorithm that may fail or return
an incorrect answer but whose time complexity is deterministic and does not depend on the particular sampling. This
contrasts with a Las Vegas algorithm which always returns the correct answer but whose time complexity is random.
See also Eriksson-Bique et al. (2011).
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which depends on the sampling distribution p. Drineas, Kannan and Mahoney (2006, Theorem

1) shows that minimizing
∑n

k=1
1
pk
‖AT(k)‖

2
2‖B(k)‖22 with respect to p subject to the constraint∑n

k=1 pk = 1 gives5

pk =
‖A(k)‖2‖B(k)‖2∑n
s=1 ‖A(s)‖2‖B(s)‖2

.

This optimal p yields a variance of

E
[
‖C̃ − C‖2F

]
≤ 1

m

[ n∑
k=1

‖A(k)‖2‖B(k)‖2
]2
≤ 1

m
‖A‖2F ‖B‖2F .

It follows from Markov’s inequality that for given error of size ε and failure probability δ > 0,

P

(
‖C̃ − C‖2F > ε2‖A‖2F ‖B‖2F

)
<

E
[
‖C̃ − C‖2F

]
ε2‖A‖2F ‖B‖2F

<
1

mε2
,

implying that to have an approximation error no larger than ε with probability 1− δ, the number

of rows used in the approximation must satisfy m = Ω( 1
δε2

).

The approximate matrix multiplication result ‖ATB − ÃT B̃‖F ≤ ε‖A‖F ‖B‖F is the building

block of many of the theoretical results to follow. The result also holds under the spectral norm

since it is upper bounded by the Frobenius norm. Since AT(i)B(i) is a rank one matrix, ‖AT(i)B(i)‖2 =

‖AT(i)‖2‖B(i)‖2. Many of the results to follow are in spectral norm because it is simpler to work

with a product of two Euclidean vector norms. Furthermore, putting A = B, we have

P (‖(ΠA)T (ΠA)−ATA)‖2 ≥ ε‖A‖22) < δ.

One may think of the goal of AMM as preserving the second moment properties of A. The challenge

in practice is to understand the conditions that validate the approximation. For example, even

though uniform sampling is the simplest of sampling schemes, it cannot be used blindly. Intuitively,

uniform sampling treats all data points equally, and when information in the rows are not uniformly

dispersed, the influential rows will likely be omitted. From the above derivations, we see that

var(C̃) = O( nm) when pk = 1
n , which can be prohibitively large. The Mincer equation in the

Introduction illustrates the pitfall with uniform sampling when m is too small, but that the problem

can by and large be alleviated when m > 2000. Hence, care must be taken in using the algorithmic

sampling schemes. We will provide some guides below.

5The first order condition satifies 0 = − 1
p2
k
‖AT(k)‖22‖B(k)‖22 + λ. Solving for

√
λ and imposing the constraint

gives the result stated. Eriksson-Bique et al. (2011) derives probabilities that minimize expected variance for given
distribution of the matrix elements.
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2.2 Subspace Embedding

To study the properties of the least squares estimates using sketched data, we first need to make

clear what features of A need to be preserved in Ã. Formally, the requirement is that Π has a

‘subspace embedding’ property. An embedding is a linear transformation of the data that has the

Johnson-Lindenstrauss (JL) property, and a subspace embedding is a matrix generalization of an

embedding. Hence it is useful to start with the celebrated JL Lemma.

The JL Lemma, due to Johnson and Lindenstauss (1994), is usually written for linear maps

that reduce the number of columns from an n × d matrix (i.e., d) to k. Given that our interest

is ultimately in reducing the number of rows from n to m while keeping d fixed, we state the JL

Lemma as follows:

Lemma 1 (JL Lemma) Let 0 < ε < 1 and {a1, . . . , ad} be a set of d points in Rn with n > d.

Let m ≥ 8 log d/ε2. There exists a linear map Π : Rn → Rm such that ∀ai, aj

(1− ε)||ai − aj ||22 ≤ ||Πai −Πaj ||22 ≤ (1 + ε)||ai − aj ||22.

In words, the Lemma states that every set of d points in Euclidean space of dimension n can

be represented by a Euclidean space of dimension m = Ω(log d/ε2) with all pairwise distances

preserved up to a 1 ± ε factor. Notice that m is logarithmic in d and does not depend on n. A

sketch of the proof is given in the Appendix.

The JL Lemma establishes that d vectors in Rn can be embedded into m = Ω(log d/ε2) dimen-

sions. But there are situations when we need to preserve the information in the d columns jointly.

This leads to the notion of ‘subspace embedding’ which requires that the norm of vectors in the

column space of A be approximately preserved by Π with high probability.

Definition 1 (Subspace-Embedding) Let A be an n×d matrix. An L2 subspace embedding for

the column space of A is an m(ε, δ, d)× n matrix Π such that ∀x ∈ Rd,

(1− ε)‖Ax‖22 ≤ ‖ΠAx‖22 ≤ (1 + ε)‖Ax‖22. (3)

Subspace embedding is an important concept and it is useful to understand it from different

perspectives. Given that ‖Ax‖22 = xTATAx, preserving the column space of A means preserving

the information in ATA. The result can analogously be written as

‖ΠAx‖22 ∈
[
(1− ε)‖Ax‖22, (1 + ε)‖Ax‖22

]
.
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Since Ax = UΣV Tx = Uz where z = ΣV Tx ∈ Rd and U is orthonormal, a change of basis gives:

‖ΠUz‖22 ∈
[
(1− ε)‖Uz‖22, (1 + ε)‖Uz‖22

]
=

[
(1− ε)‖z‖22, (1 + ε)‖z‖22

]
⇔ ‖(ΠU)T (ΠU)− UTU‖2 ≤ ε

⇔ zT
(

(ΠU)T (ΠU)− Id
)
z ≤ ε.

The following Lemma defines subspace embedding in terms of singular value distortions.

Lemma 2 Let U ∈ Rn×d be a unitary matrix and Π be a subspace embedding for the column space

of A. Let σk is the k-th singular value of A. Then (3) is equivalent to

σ2
k(ΠU) ∈ [1− ε, 1 + ε] ∀k ∈ [1, d].

To understand Lemma 2, consider the Rayleigh quotient form of ΠU :6

ωk((ΠU)T (ΠU)) =
vTk (ΠU)T (ΠU)vk

vTk vk

for some vector vk 6= 0. As ωk(A
TA) = σ2

k(A),

ωk((ΠU)T (ΠU)) =

vTk vk − vTk

(
Id − (ΠU)T (ΠU)

)
vk

vTk vk

= 1− ωk
(
Id − (ΠU)T (ΠU)

)
.

This implies that |1− σ2
k(ΠU)| = |ωk(Id − (ΠU)T (ΠU))| = σk(Id − (ΠU)T (ΠU)). It follows that

|1− σ2
k(ΠU)| =

∣∣∣∣σk(UTU − (ΠU)T (ΠU)

)∣∣∣∣
≤ σmax(UTU − (ΠU)T (ΠTU))

= ‖UTU − (ΠU)T (ΠU)‖2 ≤ ε

⇔ σ2
k(ΠU) ∈ [1− ε, 1 + ε] ∀k ∈ [1, d].

Hence the condition ‖(ΠU)TΠU − Id‖2 ≤ ε is equivalent to Π generating small singular value

distortions. Nelson and Nguyen (2013a) relates this condition to similar results in random matrix

theory.7

6For a Hermitian matrix M , the Rayleigh quotient is cTMc
cT c

for a nonzero vector c. By Rayleigh-Ritz Theorem,

min(σ(M)) ≤ cTMc
cT c

≤ max(σ(M)) with equalities when c is the eigenvector corresponding to the smallest and largest
eigenvalues of M , respectively. See, e.g. Hogben (2007, Section 8.2).

7Consider a T×N matrix of random variables with mean zero and unit variance with c = limN,T→∞
N
T

. In random
matrix theory, the largest and smallest eigenvalues of the sample covariance matrix have been shown to converge to
(1 +

√
c)2, (1−

√
c)2, respectively. See, e.g., Yin et al. (1988) and Bai and Yin (1993).
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But where to find these embedding matrices? We can look for data dependent or data oblivious

ones. We say that Π is a data oblivious embedding if it can be designed without knowledge of the

input matrix. The idea of oblivious subspace-embedding first appeared in Sarlos (2006) in which

it is suggested that Π can be drawn from a distribution with the JL properties.

Definition 2 A random matrix Π ∈ Rm×n drawn from a distribution F forms a JL transform with

parameters ε, δ, d if there exists a function f such that for any 0 ≤ ε, δ ≤ 1 and m = Ω(log( d
ε2
f(δ))),

(1− ε)‖x‖22 ≤ ‖Πx‖22 ≤ (1 + ε)‖x‖22 holds with probability at least 1− δ for all d-vector x ⊂ Rn.

A JL transform is often written JLT(ε, δ, d) for short. Embedding matrices Π that are JLT guarantee

good approximation to matrix products in terms of Frobenius norm. This means that for such Πs,

an m can be chosen such that for conformable matrices A,B having n rows:

P

(
‖(ΠA)T (ΠB)−ATB‖F ≤ ε‖A‖F ‖B‖F

)
≥ 1− δ. (4)

The Frobenius norm bound has many uses. If A = B, then ‖ΠA‖2F = (1 ± ε)‖A‖2F with high

probability. The result also holds in the spectral norm, Sarlos (2006, Corollary 11).

3 Random Sampling, Random Projections, and the Countsketch

There are two classes of Πs with the JL property: random sampling which reduces the row dimension

by randomly picking rows of A, and random projections which form linear combinations from the

rows of A. A scheme known as a countsketch that is not a JL transform can also achieve subspace

embedding efficiently. We will use a pen and pencil example with m = 3 and n = 9 to provide a

better understanding of the three types of Πs. In this example, A has 9 rows given by A1, . . . , A9.

3.1 Random Sampling (RS)

Let D be a diagonal rescaling matrix with 1√
mpi

in the i-th diagonal and pi is the probability that

row i is chosen. Under random sampling,

Π = DS,

where Sjk = 1 if row k is selected in the j-th draw and zero otherwise so that the j-th row of

the selection matrix S is the jth-row of an n dimensional indentity matrix. Examples of sampling

schemes are:

RS1. Uniform sampling without replacement: Π ∈ Rm×n, D ∈ Rm×m, pi = 1
n for all i. Each row is

sampled at most once.

12



RS2. Uniform sampling with replacement: Π ∈ Rm×n, D ∈ Rm×m, pi = 1
n for all i. Each row can

be sampled more than once.

RS3. Bernoulli sampling uses an n × n matrix Π = DS, where D =
√

n
mIn, S is initialized to be

0n×n and the j-th diagonal entry is updated by

Sjj =

{
1 with probability m

n

0 with probability 1− m
n

Each row is sampled at most once, and m is the expected number of sampled rows.

RS4. Leverage score sampling: the sampling probabilities are taken from importance sampling

distribution

pi =
`i∑n
i=1 `i

=
`i
d
, (5)

where for A with svd(A) = UDV T ,

`i = ‖U(i)‖22 = ‖eTi U‖22,

is the leverage score for row i,
∑

i `i = ‖U‖2F = d, and ei is a standard basis vector.

Notably, the rows of the sketch produced by random sampling are the rows of the original

matrix A. For example, If rows 9,5,1 are randomly chosen by uniform sampling, RS1 would give

Ã = D

0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0

A =

√
9√
3

A9

A5

A1

 .

Ipsen and Wentworth (2014, Section 3.3) shows that sampling schemes RS1-RS3 are similar

in terms of the condition number and rank deficiency in the matrices that are being subsampled.

Unlike these three sampling schemes, leverage score sampling is not data oblivious and warrants

further explanation.

As noted above, uniform sampling may not be efficient. More precisely, uniform sampling does

not work well when the data have high coherence, where coherence refers to the maximum of the

row leverage scores `i defined above. Early work suggests to use sampling weights that depend on

the Euclidean norm, pi =
‖Ai‖22
‖A‖2F

. See, e.g., Drineas, Kannan and Mahoney (2006) and Drineas and

Mahoney (2005). Subsequent work finds that a better approach is to sample according to the lever-

age scores which measure the correlation between the left singular vectors of A with the standard

basis, and thus indicates whether or not information is spread out. The idea of leverage-sampling,

first used in Jolliffe (1972), is to sampling a row more frequently if it has more information.8 Of

8There are other variations of leverage score sampling. McWilliams et al. (2014) considers subsampling in linear
regression models when the observations of the covariances may be corrupted by an additive noise. The influence of

observation i is defined by di =
e2i `i

(1−`i)2
, where ei is the OLS residual and `i is the leverage score. Unlike leverage

scores, di takes into account the relation between the predictor variables and the y.
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course, `i is simply the i-th diagonal element of the hat matrix A(ATA)−1AT , known to contain

information about influential observations. In practice, computation of the leverage scores requires

an eigen decomposition which is itself expensive. Drineas et al. (2012) and Cohen, Lee, Musco,

Musco, Peng and Sidford (2015) suggest fast approximation of leverage scores.

3.2 Random Projections (RP)

Some examples of random projections are:

RP1. Gaussian: Π ∈ Rm×n where Πij = 1√
m
N(0, 1).

RP2. Rademacher random variables: with entries of {+1,−1}, Sarlos (2006), Achiloptas (2003).

RP3. Randomized Orthogonal Systems: Π =
√

n
mPHD where D is an n×n is diagonal Rademacher

matrix with entries of ±1, P is a sparse matrix, and H is an orthonormal matrix.

RP4. Sparse Random Projections (SRP)

Π = DS

where D ∈ Rm×m is a diagonal matrix of
√

s
m and S ∈ Rm×n

Sij =


−1 with probability 1

2s

0 with probability 1− 1
s

1 with probability 1
2s

RP1 and RP2 form sub-Gaussian random projections:9 The rows of the sketch produced by

random projections are linear combinations of the rows of the original matrix. For example, RP4

with s = 3 could give

Ã = D

0 0 1 1 0 −1 0 0 0
1 0 −1 0 −1 0 0 0 1
0 1 0 0 0 0 1 0 −1

A =

√
3√
9

 A3 +A4 −A6

A1 −A3 −A5 +A9

A2 +A7 −A9


Early work on random projections such as Dasgupta et al. (2010) uses Πs that are dense, an

example being RP1. Subsequent work favors sparser Πs, an example being RP4. Achiloptas (2003)

initially considers s = 3. Li et al. (2006) suggests to increase s to
√
n. Given that uniform sampling

is algorithmically inefficient when information is concentrated, the idea of randomized orthogonal

systems is to first randomize the data by the matrix H to destroy uniformity, so that sampling in a

data oblivious manner using P and rescaling by D remains appropriate. The randomization step is

9A mean-zero vector s ∈ Rn is sub-Gaussian if for any u ∈ Rn and for all ε > 0, P{|uT s| ≥ ε‖u‖2} ≤ 2e−ε
2/K2

for
some absolute constant K > 0.
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sometimes referred to as ‘preconditioning’. Common choices of H are the Hadamard matrix as in

the SRHT of Ailon and Chazelle (2009)10 and the discrete Fourier transform as in FJLT of Woolfe

et al. (2008).

3.3 Countsketch

While sparse Πs reduce computation cost, Kane and Nelson (2014, Theorem 2.3) shows that each

column of Π must have Θ(d/ε) non-zero entries to create an L2 subspace embedding. This would

seem to suggest that Π cannot be too sparse. However, Clarkson and Woodruff (2013) argues that

if the non-zero entries of Π are carefully chosen, Π need not be a JLT and a very sparse subspace

embedding is actually possible. Their insight is that Π need not preserve the norms of an arbitrary

subset of vectors in Rn, but only those that sit in the d-dimensional subspace of Rn. The sparse

embedding matrix considered in Clarkson and Woodruff (2013) is the countsketch.11

A countsketch of sketching dimension m is a random linear map Π = PD : Rn → Rm where

D is an n × n random diagonal matrix with entries chosen independently to be +1 or −1 with

equal probability. Furthermore, P ∈ {0, 1} is an m × n binary matrix such that Ph(i),i = 1 and

Pj,i = 0 for all j 6= h(i), and h : [n] → [m] is a random map such that for each i ∈ [n], h(i) = m′

for m′ ∈ [m] with probability 1
m . As an example, a countsketch might be

Ã =

 0 0 1 0 1 −1 0 0 1
−1 0 0 −1 0 0 0 −1 0

0 −1 0 0 0 0 1 0 0

A =

A3 +A5 −A6 +A9

−A1 −A4 −A8

−A2 +A7

 .

Like random projections, the rows of a countsketch are also a linear combinations of the rows of A.

Though the countsketch is not a JLT, Nelson and Nguyen (2013b) and Meng and Mahoney

(2013) show that the following spectral norm bound holds for the countsketch with appropriate

choice of m:

P

(
‖(ΠU)T (ΠU)− Id‖2 > 3ε

)
≤ δ (6)

which implies that countsketch provides a 1 + ε subspace embedding for the column space of A in

spite of not being a JLT, see Woodruff (2014, Theorem 2.6).

The main appeal of the countsketch is that the run time needed to compute ΠA can be reduced

to O(nnz(A)), where nnz(A) denotes the number of non-zero entries of A. The efficiency gain is

due to extreme sparsity of a countsketch Π which only has one non-zero element per column. Still,

10The Hadamard matrix is defined recursively by Hn =

(
Hn/2 Hn/2
Hn/2 −Hn/2

)
, H2 =

(
1 1
1 −1

)
. A constraint is that

n must be in powers of two.
11The definition is taken from Dahiya et al. (2018). Given input j, a count-sketch matrix can also be characterized

by a hash function h(j) such that ∀j, j′, j 6= j′ → h(j) 6= h(j′). Then Πh(j),j = ±1 with equal probability 1/2.
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the Π matrix can be costly to store when n is large. Fortunately, it is possible to compute the

sketch without constructing Π.

The streaming version of the countsketch is a variant of the frequent-items algorithm where we

recall that having to compute summaries such as the most frequent item in the data that stream by

was instrumental to the development of sketching algorithms. The streaming algorithm proceeds

by initializing Ã to an m× n matrix of zeros. Each row A(i) of A is updated as

Ãh(i) = Ãh(i) + g(i)A(i)

where h(i) sampled uniformly at random from [1, 2, . . .m] and gi sampled from {+1,−1} are in-

dependent. Computation can be done one row at a time.12 The Appendix provides the streaming

implementation of the example above.

3.4 Properties of the Πs

To assess the actual performance of the different Πs, we conduct a small Monte Carlo experiment

with 1000 replications. For each replication b, we simulate an n × d matrix A and construct the

seven JL embeddings considered above. For each embedding, we count the number of times that

‖|Π(ai − aj)||22 is within (1± ε) of ||ai − aj ||22 for all d(d+ 1)/2 pairs of distinct (i, j). The success

rate for the replication is the total count divided by d((d + 1)/2. We also record ||σ(ΠA)
σ(A) − 1||2

where σ(ΠA) is a vector of d singular values of ΠA. According to theory, the pairwise distortion

of the vectors should be small if m ≥ C log d/ε2. We set (n, d) = (20, 000) and ε = 0.1. Four

values of C = {1, 2, 3, 4, 5, 6, 8, 16} are considered. We draw A from the (i) normal distribution,

and (ii) the exponential distribution. In matlab, these are generated as X=randn(n,d) and

X=exprnd(d,[n d]). Results for the Pearson distribution using X=pearsrnd(0,1,1,5,n,d) are

similar and not reported.

Table 1 reports the results averaged over 1000 simulations. With probability around 0.975, the

pairwise distance between columns with 1000 rows is close to the pairwise distance between columns

with 20000 rows. The average singular value distortion also levels off with about 1000 rows of data.

Hence, information in n rows can be well summarized by a smaller matrix with m rows. However,

note that more rows are generally needed for uniform sampling, while fewer rows are needed for

leverage score sampling, to have the same error as the remaining methods. The takeaway from

Table 1 is that the performance of the different Πs are quite similar, making computation cost and

analytical tractability two important factor in deciding which ones to use.

12See Ghashami et al. (2016). Similar schemes have been proposed in Charika et al. (2002); Conmode and Muthukr-
ishnan (2005).
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Choosing a Π is akin to choosing a kernel function in nonparametric regression and many will

work well, but there are analytical differences. Any ΠTΠ can be written as In + R11 + R12 where

R11 is a generic diagonal and R12 is a generic n× n matrix with zeros in each diagonal entry. Two

features will be particularly useful.

ΠTΠ = In +R11 (7a)

ΠΠT =
n

m
Im (7b)

Property (7a) imposes that ΠTΠ is a diagonal matrix, allowing R11 6= 0 but restricting R12 = 0.

Each ΠΠT can also be written as ΠΠT = n
mIm + R21 + R22 where R21 is a generic diagonal and

R22 is a generic m×m matrix with zeros in each diagonal entry. Property (7b) requires that ΠΠT

is proportional to an identity matrix, and hence that R21 = R22 = 0m×m.

For the Πs previously considered, we summarize their properties as follows:

(7a) (7b)

RS1 (Uniform,w/o) yes yes
RS2 (Uniform,w) yes no
RS3 (Bernoulli) yes no
RS4 (Leverage) yes no
RP1 (Gaussian) no no
RP2 (Rademacher) no no
RP3 (SRHT) yes yes
RP4 (SRP) no no
CS (Countsketch) no no

Property (7a) holds for all three random sampling methods but of all the random projection methods

considered, the property only holds for SRHT. This is because SRHT effectively performs uniform

sampling of the randomized data. For property (7b), it is easy to see that R21 = 0 and R22 =

0m×m when uniform sampling is done without replacement and ΠΠT = n
mIm. By implication,

the condition also holds for SRHT if sampling is done without replacement since H and D are

orthonormal matrices. But uniform sampling is computationally much cheaper than SRHT and

has the distinct advantage over the SRHT that the rows of the sketch are those of the original

matrix and hence interpretable. For this reason, we will subsequently focus on uniform sampling

and use its special structure to obtain precise statistical results. Though neither condition holds for

the countsketch, the computation advantage due to its extreme sparse structure makes it worthy

of further investigation.
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4 Algorithmic Results for the Linear Regression Model

The linear regression model with K regressors is y = Xβ+e. The least squares estimator minimizes

‖y −Xb‖2 with respect to b and is defined by

β̂ = (XTX)−1XT y = V Σ−1UT y.

We are familiar with the statistical properties of β̂ under assumptions about e and X. But even

without specifying a probabilistic structure, ‖y−Xb||2 with n > K is an over-determined system of

equations and can be solved by algebraically. The svd solution gives β∗ = X−y where svd(X) =

UΣV T , the pseudoinverse is X− = V Σ−1UT . The ’Choleski’ solution starts with the normal

equations XTXβ = XT y and factorizes XTX. The algebraic properties of these solutions are well

studied in the matrix computations literature when all data are used.

Given an embedding matrix Π and sketched data (Πy,ΠX), minimizing ‖Π(y − Xb)‖22 with

respect to b gives the sketched estimator

β̃ =

(
(ΠX)TΠX

)−1

(ΠX)TΠy.

Let ŝsr = ‖y − Xβ̂‖22 be the full sample sum of squared residuals. For an embedding matrix

Π ∈ Rm×n, let s̃sr = ‖ỹ − X̃β̃‖22 be the sum of squared residuals from using the sketched data.

Assume that the following two conditions hold with probability 1− δ for 0 < ε < 1:

|1− σ2
k(ΠU)| ≤ 1√

2
∀k = 1, . . . ,K; (8a)

‖(ΠU)TΠ(y −Xβ̂)‖22 ≤ ε ŝsr
2
/2. (8b)

Condition (8a) is is equivalent to ‖(ΠU)T (ΠU)−UTU‖2 ≤ 1√
2

as discussed above. Since σi(U) = 1

for all k ∈ [1,K], the condition requires the smallest singular value, σK(ΠU), to be positive so that

ΠX has the same rank as X. A property of the least squares estimator is for the least squares

residuals to be orthogonal to X, ie. UT (y −Xβ̂) = 0. Condition (8b) requires near orthogonality

when both quantities are multiplied by Π. The two algorithmic features of sketched least squares

estimation are summarized below.

Lemma 3 Let the sketched data be (Πy,ΠX) = (ỹ, X̃) where Π ∈ Rm×n is a subspace embedding

matrix. Let σmin(X) be the smallest singular value of X. Suppose that conditions (8a) and (8b)

hold. Then with probability at least (1− δ) and for suitable choice of m,

(i). s̃sr ≤ (1 + ε)ŝsr;

(ii). ‖β̃ − β̂‖2 ≤ ε · ŝsr/σmin.
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Sarlos (2006) provides the proof for random projections, while Drineas, Mahoney and Muthukrish-

nan (2006) analyzes the case of leverage score sampling. The desired m depends on the result and

the sampling scheme.

Part (i) is based on subspace embedding arguments. By optimality of β̃ and JL Lemma,

s̃sr = ‖Π(y −Xβ̃)|2

≤ ‖Π(y −Xβ̂)‖2 by optimality of β̃

≤ (1 + ε)‖y −Xβ̂‖2 by subspace embedding

= (1 + ε)ŝsr.

Part (ii) shows that the sketching error is data dependent. Consider a reparameterization of

Xβ̂ = UΣV T β̂ = Uθ̂ and Xβ̃ = UΣV T β̃ = Uθ̃. As shown in the Appendix, ‖θ̃ − θ̂‖2 ≤
√
ε ŝsr.

Taking norms on both sides of X(β̃ − β̂) = U(θ̃ − θ̂) and since U is orthonormal,

‖β̃ − β̂‖2 ≤ ‖U(θ̃ − θ̂)‖2
σmin

.

Notably, difference between β̂ and β̃ depends on the minimum singular value of X. Recall that for

consistent estimation, we also require that the minimum eigenvalue to diverge.

The non-asymptotic worse case error bounds in Lemma 3 are valid for any subspace embedding

matrix Π, though more precise statements are available for certain Πs. For leverage score sampling,

see Drineas, Mahoney and Muthukrishnan (2006), for uniform sampling and SRHT, see Drineas

et al. (2011); and for the countsketch, Woodruff (2014, Theorem 2.16), Meng and Mahoney (2013,

Theorem 1), Nelson and Nguyen (2013a). These algorithmic results are derived without reference

to the probabilistic structure of the data. Hence the results do not convey information such as

bias and sampling uncertainty. An interesting question is whether optimality from an algorithmic

perspective implies optimality from a statistical perspective. Using Taylor series expansion, Ma

et al. (2014) shows that leverage-based sampling does not dominate uniform sampling in terms

of bias and variance, while Raskutti and Mahoney (2016) finds that prediction efficiency requires

m to be quite large. Pilanci and Wainwright (2015) shows that the solutions from sketched least

squares regressions have larger variance than the oracle solution that uses the full sample. Pilanci

and Wainwright (2015) provides a result that relates m to the rank of the matrix. Wang, Gittens

and Mahoney (2018) studies four sketching methods in the context of ridge regressions that nests

least squares as a special case. It is reported that sketching schemes with near optimal algorithmic

properties may have features that not statistically optimal. Chi and Ipsen (2018) decomposes the

variance of β̃ into a model induced component and an algorithm induced component.
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5 Statistical Properties of β̃

We consider the linear regression model with K regressors:

y = XTβ + e, ei ∼ (0,Ωe)

where y is the dependent variable, X is the n ×K matrix of regressors, β is the K × 1 vector of

regression coefficients whose true value is β0. It should be noted that K is the number of predictors

which is generally larger than d, which is the number of covariates available since the predictors

may include transformation of the d covariates. In the Mincer example, we have data for edu, exp

collected into A with d = 2 columns. From these two covariates, K = 4 regressors are constructed

for regression (1a), while K = 14 regressors are constructed for regression (1b).

The full sample estimator using data (y,X) is β̂ = (XTX)−1XT y. For a given Π, the estimator

using sketched data (ỹ, X̃) = (Πy,ΠX) is

β̃ = (X̃T X̃)−1X̃T ỹ.

Assumption OLS:

(i) the regressors X are non-random, has svd X = UΣV T , and XTX is non-singular;

(ii) E[ei] = 0 and E[eeT ] = Ωe is a diagonal positive definite matrix.

Assumption PI:

(i) Π is independent of e;

(ii) for given singular value distortion parameter εσ ∈ (0, 1), there exists failure parameter δσ ∈
(0, 1) such that P

(
|1− σ2

k(ΠU)| ≤ εσ for all k = 1, . . .K
)
≥ 1− δσ.

(iii) ΠTΠ is an n× n diagonal matrix and ΠΠT = n
mIm.

Assumption OLS is standard in regression analyses. The errors are allowed to be possibly het-

eroskedastic but not cross-correlated. Under Assumption OLS, β̂ is unbiased, i.e. E[β̂] = β0 with

a sandwich variance

V(β̂) = (XTX)−1(XTΩeX)(XTX)−1.

Assumption PI.(i) is needed for β̃ to be unbiased. Assumption PI.(ii) restricts attention to Π

matrices that have subspace embedding property. As previously noted, the condition is equivalent
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to ‖Id − (ΠU)T (ΠU)‖2 ≤ εσ holding with probability 1− δσ. We use PI2 to refer Assumptions PI

(i) and (ii) holding jointly. Results under PI2 are not specific to any Π.

Assumption PI.(iii) simplifies the expression for V(β̃|Π), the variance of β̃ conditional on Π,

and we will use PI3 to denote Assumptions PI (i)-(iii) holding jointly. PI3 effectively narrows the

analysis to uniform sampling and SRHT without replacement. We will focus on uniform sampling

without replacement for a number of reasons. It is simple to implement, and unlike the SRHT,

the rows have meaningful interpretation. In a regression context, uniform sampling has an added

advantage that there is no need to reconstruct (ỹ, X̃) each time we add or drop a variable in the

X matrix. In contrast, most other Πs require (ỹ, X̃) to be reconstructed. This can be cumbersome

when variable selection is part of the empirical exercise. Uniform sampling without replacement is

an exception since the columns are unaffected once the rows are randomly chosen.

For regressions, we need to know not only the error in approximating XTX, but also the error

in approximating (XTX)−1. This is made precise in the next Lemma.

Lemma 4 Suppose that PI2 is satisfied. For given non-random matrix X ∈ Rn×K of full rank with

svd(X) = UΣV T , consider any non-zero K × 1 vector c. It holds with probability at least 1 − δσ
that ∣∣∣∣cT [(XTX)−1 − (X̃T X̃)−1]c

cT (XTX)−1c

∣∣∣∣ ≤ εσ
1− εσ

.

The Lemma follows from the fact that

(XTX)−1 = V Σ−2V T ≡ PP T(
(ΠX)T (ΠX)

)−1

= PQP T

where P = V Σ−1 and Q−1 = (ΠU)T (ΠU). By the property of Rayleigh quotient, the smallest

eigenvalue of (UTΠTΠU) is bounded below by (1− εσ). Hence∣∣∣∣cT (PQP T − PP T )c

cTPP T c

∣∣∣∣ =

∣∣∣∣cTP (Id −Q−1)QP T c

cTPP T c

∣∣∣∣ ≤ ‖Q‖2‖Id −Q−1‖2 ≤
εσ

(1− εσ)
.

The approximation error (XTX)−1 is thus larger than that for XTX, which equals εσ.

Under Assumptions OLS and PI3, β̃ is unbiased and has sandwich variance

V(β̃|Π) =
n

m
(X̃T X̃)−1(X̃TΩeX̃)−1(X̃T X̃)−1

since ΠΠT = n
mIm. The variance of β̃ is inflated over that of β̂ through the sketching error on the

‘bread’ (X̃T X̃)−1, as well as on the ‘meat’ because XTΩeX is now approximated by X̃TΠΩeΠ
T X̃.

If e ∼ (0, σ2
eIn) is homoskedastic, then β̃ has variance

V(β̃|Π) = σ2
e

n

m
(X̃T X̃)−1. (9)
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Though β̂ is the best linear unbiased estimator under homoskedasticity, β̃ may not be best in the

class of linear estimators using sketched data.

5.1 Efficiency of β̃ Under Uniform Sampling

Suppose we are interested in predicting y at some x0. According to the model, E[y|x = x0] =

βTx0. Feasible predictions are obtained upon replacing β with β̂ and β̃. Since both estimators are

unbiased, their respective variance is also the mean-squared prediction error.

Theorem 1 Suppose that ei ∼ (0, σ2
e) and Assumptions OLS and PI3 hold. Let mse(xT0 β̂) and

mse(xT0 β̃|Π) be the mean-squared prediction error of y at x0 using β̂ and β̃ conditional on Π,

respectively. Then with probability at least 1− δσ, it holds that

mse(xT0 β̃|Π)

mse(xT0 β̂)
≤ n

m︸︷︷︸
sample size

(
1

1− εσ

)
︸ ︷︷ ︸
sketching error

.

The prediction error has has two components: a sample size effect given by n
m > 1, and a sketching

effect given by 1
1−εσ > 1. The result arises because under homoskedasticity,

xT0 (X̃T X̃)−1x0 − xT0 (XTX)−1x0 =
n

m
xT0

[(
XTΠTΠX

)−1 − (XTX)−1
]
x0 +

n−m
m

xT0 (XTX)−1x0.

It follows that∣∣∣∣xT0 V(β̃|Π)x0 − xT0 V(β̂)x0

xT0 V(β̂)x0

∣∣∣∣ =

∣∣∣∣ nm xT0 [
(
(ΠX)TΠX

)−1 − (XTX)−1]x0

xT0 (XTX)−1x0
+
n−m
m

∣∣∣∣
≤ n

m

εσ
1− εσ

+
n−m
m

.

We will subsequently be interested in the effect of sketching for testing linear restrictions as given

by a K × 1 vector c. The estimated linear combination cT β̃ has variance V(cT β̃|Π) = cTV(β̃|Π)c.

When c is a vector of zeros except in the k-th entry, var(cT β̃|Π) is the variance of β̃k. When c is a

vector of ones, var(cT β̃|Π) is the variance of the sum of estimates. A straightforward generalization

of Theorem 1 leads to the following.

Corollary 1 Let c be a known K × 1 vector. Under the Assumptions of Theorem 1, it holds with

probability 1− δσ that

cTV(β̃|Π)c

cTV(β̂)c
≤ n

m

(
1

1− εσ

)
.
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The relative error is thus primarily determined by the relative sample size. As m is expected

to be much smaller than n, the efficiency loss is undeniable.

A lower bound in estimation error can be obtained for embedding matrices Φ ∈ Rm×n satisfying

‖ΦU‖22 ≤ 1 + εσ. For a sketch size of m rows, define a class of OLS estimators as follows:

B(m,n, εσ) :=
{
β̆ := ((XΦ)TΦX)−1(XΦ)TΦy

}
.

For such β̆, let V(β̆|Φ) denote its mse for given Φ. Assuming that ei ∼ (0, σ2
e),

cTV(β̆|Φ)c

cTV(β̂)c
=
m−1σ2

ec
T ((ΦX)TΦX)−1c

n−1σ2
ec
T (XTX)−1c

=
n

m

cT ((ΦX)TΦX)−1c

cT (XTX)−1c

=
n

m

cT (V ΣUTΦTΦUΣV T )−1c

cT (V Σ2V T )−1c
=

n

m

cTV Σ−1(UTΦTΦU)−1Σ−1V T c

cTV Σ−2V T c

≥ n

m
σmin[(UTΦTΦU)−1].

But by the definition of spectral norm, ‖ΦU‖22 = σ2
max(ΦU) for any Φ. Thus the subspace embed-

ding condition ‖ΦU‖22 ≤ 1 + εσ implies σ2
max(ΦU) = σmax((ΦU)TΦU) ≤ 1 + εσ, and hence

σmin

(
(UTΦTΦU)−1

)
≥ 1

1 + εσ
.

This leads to the following lower bound for β̆:

cTV(β̆|Φ)c

cTV(β̂)c
≥ n

m

(
1

1 + εσ

)
.

Combining the upper and lower bounds leads to the following:

Theorem 2 Under OLS and PI3, the estimator β̃ with ei ∼ (0, σ2
e) has mean-squared error relative

to the full sample estimator β̂ bounded by

n

m

(
1

1 + εσ

)
≤ cTV(β̃|Π)c

cTV(β̂)c
≤ n

m

1

1− εσ
.

These are the upper and lower bounds for uniform sampling when implemented by sampling

without replacement.

It is also of interest to know how heteroskedasticity affects the sketching error. Let Ωe,ii denote

the ith diagonal element of Ωe. Under OLS and PI3, it holds with probability at least 1− δσ that

mse(xT0 β̃|Π)

mse(xT0 β̂)
≤
(

maxi Ωe,ii

mini Ωe,ii

)(
n

m

)
(1 + εσ)

(1− εσ)2
.

Hence heteroskedasticity independently interacts with the structure of Π to inflate the mean-squared

prediction error. The upper and lower bound for V(cT β̃|Φ) are larger than under homoskedasticity

by a magnitude that depends on the extent of dispersion in Ωe,ii. A formal result is given in the

appendix.
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5.2 Efficiency of β̃ under Countsketch

Condition PI.(iii) puts restrictions on ΠTΠ and holds for uniform sampling. But the condition does

not hold for the countsketch. In its place, we assume the following to obtain a different embedding

result for the countsketch:

Assumption CS: For given εΠ > 0 and for all U ∈ Rn×K satisfying UTU = IK , there exists an

n× n matrix A(Ωe,m, n), which may depend on (Ωe,m, n), and a constant δΠ ∈ (0, 1) such that

P
(
‖UTΠTΠΩeΠ

TΠU − UTA(Ωe,m, n)U‖2 ≤
n

m
εΠ

)
≥ 1− δΠ.

The conditions for Assumption CS are verified in Appendix B. The Assumption is enough to provide

a subspace embedding result for ΠTΠΩeΠ
TΠ because as shown in the Appendix, the following holds

for Countsketch,∥∥∥UTΠTΠΩeΠ
TΠU − n

m
UTΩeU

∥∥∥
2

≤
∥∥UTΠTΠΩeΠ

TΠU − UTA(Ωe,m, n)U
∥∥

2
+
∥∥∥UTA(Ωe,m, n)U − n

m
UTΩeU

∥∥∥
2

≤ n

m

[
εΠ +

∥∥∥m
n
A(Ωe,m, n)− Ωe

∥∥∥
2

] (10)

where

A(Ωe,m, n) = Ωe +
1

m

(
tr(Ωe)In − Ωe

)
.

Hence under OLS, PI2, and CS it holds with probability at least 1− δΠ − δσ that

mse(xT0 β̃|Π)

mse(xT0 β̂)
≤
(

maxi Ωe,ii

mini Ωe,ii

)(
n

m

)(
1

1− εσ

)[
1 + εΠ + ‖mnA(Ωe,m, n)− Ωe‖2

]
(1− εσ)

.

The prediction error of the countsketch depends on the quantity A(Ωe,m, n). But if Ωe = σ2
eIn,∥∥m

nA(Ωe,m, n)− Ωe

∥∥
2

= σ2
e(
m−1
n ), which will be negligible if m/n = o(1). Hence to a first approxi-

mation, Theorem 1 also holds under the countsketch. This result is of interest since the countsketch

is computationally inexpensive.

5.3 Hypothesis Testing

The statistical implications of sketching in a regression setting have primarily focused on properties

of the point estimates. The implications for inference are largely unknown. We analyze the problem

from view point of hypothesis testing.

Consider the goal of testing q linear restrictions formulated as H0 : Rβ = r where R is a q ×K
matrix of restrictions with no unknowns. In this subsection, we further assume that ei ∼ N(0, σ2

e).
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Under normality, the F test is exact and has the property that at the true value of β = β0,

Fn = R(β̂ − β0)T
(
V̂(Rβ̂)

)−1

R(β̂ − β0) ∼ Fq,n−d.

Under the null hypothesis that β0 is the true value of β, Fn has a Fisher distribution with q and

n − d degrees of freedom. The power of a test given a data of size n against a fixed alternative

β1 6= β0 depends on V(β̂) only through non-centrality parameter φn,13 defined in Wallace (1972) as

φn =
(Rβ0 − r)TV(Rβ̂)−1(Rβ − r)

2
.

The non-centrality parameter is increasing in |Rβ0 − r| and the sample size through the variance,

but decreasing in σ2
e . In the case of one restriction (q = 1),

φn =
(Rβ0 − r)2

V(Rβ̂)
>

(Rβ0 − r)2

V(Rβ̃|Π)
= φm.

This leads to the relative non-centrality

φn
φm

=
V(Rβ̃|Π)

V(Rβ̂)
≤ n

m

1

(1− εφ)
.

which also has a sample size effect and an effect due to sketching error. The effective size of the

subsample from the viewpoint of power can be thought of as m(1− εφ).

A loss in power is to be expected when β̃ is used. But by how much? Insights can be performed

from some back of the envelope calculations. Recall that if U and V are independent χ2 variables

with ν1 and ν2 degrees of freedom, V is central and U has non-centrality parameter φ,

E[F ] = E
[

(U/ν1)

(V/ν2)

]
=
ν2(ν1 + φn)

ν1(ν2 − 2)
.

In the full sample case, ν1 = q and ν2 = n− d and hence

E[Fn] ≈ (n− d)(q + φn)

q(n− d− 2)
.

For the subsampled estimator, ν1 = q and ν2 = m− d, giving

E[Fm|Π] ≈ (m− d)(q + φm)

q(m− d− 2)
.

While q and φm affect absolute power, the relative power of testing a hypothesis against a fixed

alternative is mainly driven by the relative sample size, m
n . However, the power loss from using

β̃ to test hypothesis can be made negligible because in a big data setting, we have the luxury of

allowing m to be as large as we wish, irrespective of q. We will return to the choice of m.

13The definition of non-centrality is not universal, sometimes the factor of two is omitted. See, for example, Cramer
(1987) and Rudd (2000).
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6 Econometrically Motivated Refinements

As more and more data are being collected, sketching continues to be an active area of research.

For any sketching scheme, a solution of higher accuracy can be obtained by iteration. The idea

is to approximate the deviation from an initial estimate ∆ = β̂ − β̃(1) by solving, for example,

∆̂(1) = argmin∆‖y − (X(β̃(1) + ∆)‖22 and update β̃(2) = β̃(1) + ∆̂(1). Pilanci and Wainwright

(2016) starts with the observation that since the least squares objective function is ‖y −Xβ‖22 =

‖y‖22 + ‖Xβ‖22 − 2yTXβ, it is possible to sketch the quadratic term ‖Xβ‖22 but not the linear term

yTXβ. The result is a Hessian sketch of β, defined as ((ΠX)T (ΠX))−1XT y. Wang et al. (2017)

suggests that this can be seen as a type of Newton updating with the true Hessian replaced by the

sketched Hessian, and the iterative Hessian sketch is also a form of iterative random projection.

In the rest of this section, we consider statistically motivated ways to improve upon β̃. Subsec-

tion 6.1 considers pooling estimates from multiple sketches. Subsection 6.2 suggests an m that is

motivated by hypothesis testing.

6.1 Combining Sketches

The main result of the previous section is that the least squares estimates using sketched data has

two errors, one due to a smaller sample size, and one due to sketching. The efficiency loss is hardly

surprising, and there are different ways to improve upon it. Dhillon et al. (2013) proposes a two-

stage algorithm that uses m rows of (y,X) to obtain an initial estimate of ΣXX and ΣXy. In the

second stage, the remaining rows are used to estimate the bias of the first stage estimator. The final

estimate is a weighted average of the two estimates. An error bound of O(
√
K√
n

) is obtained. This

bound is independent of the amount of subsampling provided m > O(
√
K/n). Chen et al. (2016)

suggests to choose sample indices from an importance sampling distribution that is proportional

to a sampling score computed from the data. They show that the optimal pi depends on whether

minimizing mean-squared error of β̃ or ofXβ̃ is the goal, though E[e2
i ] plays a role in both objectives.

The sample size effect is to be expected, and is the cost we pay for not being able to use the

full data. But if it is computationally simple to create a sample of size m, the possibility arises

that we can better exploit information in the data without hitting the computation bottleneck by

generating many subsamples and subsequently pool estimates constructed from the subsamples.

Breiman (1999) explored an idea known as pasting bites that, when applied to regressions, would

repeatedly form training samples of size m by random sampling from the original data, then make

prediction by fitting the model to the training data. The final prediction is the average of the

predictions. Similar ideas are considered in Chawla et al. (2004) and Christmann et al. (2007). Also

related is distributed computing which takes advantage of many nodes in the computing cluster.
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Typically, each machine only sees a subsample of the full data and the parameter of interest is

updated. Heince et al. (2016) studies a situation when the data are distrubuted across workers

according to features of X rather than the sample and show that their dual loco algorithm has

bounded approximation error that depends only weakly on the number of workers.

Consider β̃1, . . . , β̃J computed from J subsamples each of size K. As mentioned above, uniform

sampling with too few rows is potentially vulnerable to omitting influential observations. Comput-

ing multiple sketches also provides the user with an opportunity to check the rank across sketches.

Let t̃j =
β̃j−β0
se(β̃j)

be the t test from sketch j. For a given m, we consider sampling without replacement

and J is then at most n/m. Define the average quantities

β̄ =
1

J

J∑
j=1

β̃j , se(β̄) =

√√√√ 1

J(J − 1)

J∑
j=1

[
se(β̃j)

]2
,

t̄2 =
1

J

J∑
j=1

t̃j , se(t̄2) =

√√√√ 1

J − 1

J∑
j=1

(
t̃j − t̄2

)2
.

Strictly speaking, pooling requires that subsamples are non-overlapping and observations are in-

dependent across different subsamples. Assuming independence across j, the pooled estimator β̄

has var(β̄) = 1
J2

∑J
j=1 var(β̃j). Thus, se(β̄) ≈

√
1
J2

∑J
j=1

[
se(β̃j)

]2
≥ 1√

J

[
1
J

∑J
j=1 se(β̃j)

]
because

of Jansen’s inequality. Our estimator for the standard error β̄ uses J − 1 in the denominator to

allow for a correction when J is relatively small.

Consider two pooled t statistics:

T̄1 =
β̄ − β0

se(β̄)
(11a)

T̄2 =
√
J

t̄2
se(t̄2)

. (11b)

Critical values from the standard normal distribution can be used for T̄1. For example, for the

5%-level test, we reject H0 if |T̄1| > 1.96. For T̄2, we recommend using critical values from the

t distribution with J − 1 degrees of freedom. For example, for the 5%-level test, we reject H0 if

|T̄2| > 2.776 for J = 5.

Assumption PI-Avg:

(i) (Π1, . . . ,ΠJ) is independent of e;

(ii) for all j, k such that j 6= k, ΠjΠ
T
j = n

mIm and ΠjΠ
T
k = Om where Om is an m×m matrix of

zeros.
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(iii) for given singular value distortion parameter εσ ∈ (0, 1), there exists failure parameter δσ ∈
(0, 1) such that P

(
|1− σ2

k(ΠjU)| ≤ εσ for all k = 1, . . .K and for all j = 1, . . . , J
)
≥ 1− δσ.

Condition (ii) is crucial; it is satisfied, for example, if Π1, . . . ,ΠJ are non-overlapping subsamples

and each of them is sampled uniformly without replacement. Assumptions OLS and PI-Avg (i)

and (ii) along with the homoskedastic error assumption ensure that

cTV(β̄|Π1, . . . ,ΠJ)c = σ2
e

n

mJ2

J∑
j=1

cT
(
XTΠT

j ΠjX
)−1

c.

Condition (iii) is equivalent to the statement that 1 − εσ ≤ σk(U
TΠT

j ΠjU) ≤ 1 + εσ ∀ k =

1, . . . ,K, ∀ j = 1, . . . , J.

Theorem 3 Consider J independent sketches obtained by uniform sampling. Suppose that ei ∼
(0, σ2

e), Assumptions OLS and PI-Avg hold. Then with probability at leat 1− δσ, the mean squared

error of cT β̄ conditional on (Π1, . . . ,ΠJ) satisifies

cTV(β̆|Π1, . . . ,ΠJ)c

cTV(β̂)c
≤ n

mJ

1

(1− εσ)
.

The significance of the Theorem is that by choice of m and J , the pooled estimator can be almost

as efficient as the full sample estimator. If we set J = 1, the theorem reduces to Theorem 1.

We use a small Monte Carlo experiment to assess the effectiveness of combining statistics com-

puted from different sketches. The data are generated as y = Xβ+e where e is normally distributed,

and X is drawn from a non-normal distribution. In matlab, we have X=pearsrnd(0,1,1,5,n,K).

With n = 1e6, we consider different values of m and J . Most of our results above were derived for

uniform sampling, so it is also of interest to evaluate the properties of the β̃ using data sketched

by Πs that do not satisfy PI.(iii). Four sketching schemes are considered: uniform sampling with-

out replacement labeled as rs1, srht, the countsketch labeled cs, and leverage score sampling,

labeled lev. It should be mentioned that results for shrt and lev took significantly longer time

to compute than rs1 and cs.

The top panel of Table 2 reports results for β̂3 when K = 3. All sampling schemes precisely

estimate β3 whose true value is one. The standard error is larger the smaller is m, which is the

sample size effect. But averaging β̃j over j reduces variability. The lev is slightly more efficient.

The size of the t test for β3 = 1.0 is accurate, and the power of the test against β3 < 1 when

β3 = 0.98 is increasing in the amount of total information used. Combining J sketches of size m

generally gives a more powerful test than a test based on a sketch size of mJ . The bottom panel of

Table 2 reports for K = 9, focusing on uniform sampling without replacement and the countsketch.

28



The results are similar to those for K = 3. The main point to highlight is that while there is a

sample size effect from sketching, it can be alleviated by pooling across sketches.

6.2 The Choice of m

The JL Lemma shows that m = O(log dε−2) rows are needed for d vectors from Rn to be embedded

into an m dimensional subspace. A rough and ready guide for embedding a d dimensional subspace

is m = Ω(d log dε−2). This is indeed the generic condition given in, for example, Sarlos (2006),

though more can be said for certain Πs.14 Notably, these desired m for random projections depend

only on d but not on n.

As shown in Boutidis and Gittens (2013, Lemma 4.3), subspace embedding by uniform sampling

without replacement requires that

m ≥ 6ε−2
σ n`max log(2J ·K/δσ). (12)

where `max = maxi`i is the maximum leverage score, also known as coherence. When coherence

is large, the information in the data is not well spread out, and more rows are required for uniform

sampling to provide subspace embedding. Hence unlike random projections, the desired m for

uniform sampling is not data oblivious.

But while this choice of m is algorithmically desirable, statistical analysis often cares about

the variability of the estimates in repeated sampling, and a larger m is always desirable for V(β̃).

The question arises as to whether m can be designed to take both algorithmic and statistical

considerations into account. We suggest two ways to fine-tune the algorithmic condition. Now

`i = ‖U(i)‖2 = XT
(i)(X

TX)−1X(i) =
1

n
XT

(i)S
−1
X X(i)

≤ σ1(S−1
X )

1

n
‖X(i)‖22 = σ−1

K (SX)
1

n
‖X(i)‖22.

where σK(SX) is the minimum eigenvalue of SX = n−1XTX, XT
(i) denotes the i-th row of X, and

X(i,j) the (i, j) element of X. But

∥∥X(i)

∥∥2

2
=

K∑
j=1

[
X(i,j)

]2 ≤ K ·maxj=1,...,K

[
X(i,j)

]2
= K ·X2

max,

whereXmax = maxi=1,...,nmaxj=1,...,d

∣∣X(i,j)

∣∣. This implies n·`max ≤ σ−1
K (SX)·K ·X2

max. Recalling

that pi = `i
K defines the importance sampling distribution, we can now restate the algorithmic

condition for m when J = 1 as

m = Ω

(
nK log(K) · pmax

)
where pmax ≤

σ−1
K (SX)X2

max
n

. (13)

14The result for SRHT is proved in Lemma 4.1 of Boutidis and Gittens (2013). The result for count sketch is from
Theorem 2 of Nelson and Nguyen (2013a).
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It remains to relate Xmax with quantities of statistical interest.

Assumption M:

a. σK(SX) is bounded below by cX with probability approaching one as n→∞;

b. E[|X(i,j)|r] ≤ CX for some CX and some r ≥ 2.

Condition (a) is a standard identification condition for SX to be positive definite so that it will

converge in probability to E
[
X(i)X

T
(i)

]
. Condition (b) requires the existence of r moments so as to

bound extreme values.15 If the condition holds,

Xmax = op((nK)1/r).

Proposition 1 Suppose that Assumption M holds. A deterministic rule for sketched linear regres-

sions by uniform sampling ism1 = Ω

(
(nK)1+2/r logK/n

)
if r <∞

m1 = Ω(K log(nK)) if E[exp(tX(i,j))] ≤ CX holds additionally.

Proposition 1 can be understood as follows. Suppose that r = 6 moments are known to exist.

Proposition 1 suggests a sketch of m1 = Ω(logK(nK)4/3/n) rows which will generally be larger

than Ω(K logK), which is the sketch size suggested for data with thin tails. For such data, the

moment generating function is uniformly bounded and E[exp(tX(i,j))] ≤ CX for some constant CX

and some t > 0 so that Xmax = op(log(nK)). In both cases, the desired m increases with the row

sample size n, the number of regressors K, as well as n · K, which is the number of data points

in the regressor matrix X. This contrasts with the algorithmic condition for m which does not

depend on n.

To use Proposition 1, we can either (i) fix r to determine m1 or (ii) target ‘observations-per-

regressor ratio’. As an example, suppose n = 1e7 and K = 10. If r = 6, Proposition 1 suggests to

sample m1 = 10, 687 rows, implying m1
K ≈ 1000. If instead we fix m

K at 100 and uniformly sample

m1 = 1000 rows, we must be ready to defend the existence of r = 2 log(nK)
log(m

K
)−log(logK) ≈ 10 moments.

There is a clear trade-off between m1 and r.

Though m1 depends on n, it is still a deterministic rule. To obtain a rule that is data dependent,

consider again cT β̃, where c is a K × 1 vector, and assume that ei ∼ N(0, σ2) so that var(β̃) =

n
mσ

2
e(X̃

T X̃)−1 where β0 is the true (unknown) value of β. Define

τ0(m) =
cT (β̃ − β0)

se(cT β̃)
=
cT (β̃ − β0) + cT (β0 − β0)

se(cT β̃)
.

15Similar conditions are used to obtain results for the hat matrix. See, for example, Section 6.23 of Hansen (2019)’s
online textbook.
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It holds that Pβ0(τ0 > z|Π, X1, . . . , Xn) = Φ(−z) for some z, where Φ(·) is the cdf of the standard

normal distribution. Now consider a one-sided test τ1 based on β̃ against an alternative, say, β0.

The test τ1 is related to τ0 by

τ1(m) =
cT (β̃ − β0)

se(cT β̃)
− cT (β0 − β0)

se(cT β̃)
= τ0(m) + τ2(m).

The power of τ1 at nominal size α is then

Pβ0(τ0 + τ2 > Φ−1
(1−α)|Π, X1, . . . , Xn) = Φ

(
−Φ−1

(1−α) + τ2

)
≡ γ.

Define

S(α, γ) = Φ−1
γ + Φ−1

1−α.

Common values of α and γ give the following:

Selected values of S(α, γ)
γ

α 0.500 0.600 0.700 0.800 0.900

0.010 2.326 2.580 2.851 3.168 3.608
0.050 1.645 1.898 2.169 2.486 2.926
0.100 1.282 1.535 1.806 2.123 2.563

Proposition 2 Suppose that ei ∼ N(0, σ2
e) and the Assumptions of Theorem 1 hold. Let γ̄ be the

target power of a one-sided test τ1 and ᾱ be the nominal size of the test.

• Let β̃ be obtained from a sketch of size m1. For a given effect size of β0−β0, a data dependent

‘inference conscious’ sketch size is

m2(m1) = S2(ᾱ, γ̄)
m1var(cT β̃)

[cT (β0 − β0)]2
= m1

S2(ᾱ, γ̄)

τ2
2 (m1)

. (14)

• For a pre- specified τ2(∞), a data oblivious ‘inference conscious’ sketch size is

m3 = n
S2(ᾱ, γ̄)

τ2
2 (∞)

. (15)

Inference considerations suggests to adjust m1 by a factor that depends on S(ᾱ, γ̄) and τ2. For

instance, when γ̄ ≥ 0.8 and/or ᾱ ≤ 0.01, m1 will be adjusted upwards when the τ2 is less than two.

The precise adjustment depends on the choice of τ2.

The proposed m2 in Part (i) requires an estimate of var(cT β̃) from a preliminary sketch. Table

3 provides an illustration for one draw of simulated data with n = 1e7 and K = 10. We consider

three values of σe, γ̄, as well as different effect size β0
1−β10. Assuming r = 10 and σe = 0.5, an effect
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size of 0.025 gives an m1 of roughly 1000. Using a sketch of this size to obtain an estimate of τ2

will almost hit the target power of 0.5. However, a target power of 0.9 would require m2 = 3, 759,

almost four times as many rows as a target power of 0.5. The larger is σe, the less precise is β̃ for

a given m, and more rows are needed. It is then up to the user how to trade of computation cost

and power of the test.

The proposed m3 in Part (ii) is motivatead by the fact that setting m1 to n gives m2(n) =

nS
2(ᾱ,γ̄)
τ22 (n)

. Though computation of τ2(n) is infeasible, τ2(n) is asymptotically normal as n → ∞.

Now if the full sample t-statistic cannot reject the null hypothesis, a test based on sketched data

will unlikely reject the null hypothesis. But when full sample t statistic is expected to be relatively

large (say, 5), the result can be used in conjunction with S(ᾱ, γ̄) to give m3. Say if S(ᾱ, γ̄) is 2,

m3 = (2/5)2n. This allows us to gauge the sample size effect since n
m =

τ22 (∞)
S2(ᾱ,γ̄)

. Note that m3 only

requires the choice of ᾱ, γ̄, and τ2(∞) which, unlike m2, can be computed without a preliminary

sketch.

Though Propositions 1 and 2 were derived for uniform sampling, they can still be used for other

choice of Π. The one exception in which some caution is warranted is the countsketch. The rule

given for the countsketch in Nelson and Nguyen (2013a, Theorem 5) of m ≥ ε−2K(K + 1)δ−1.

Though such an m is data oblivious, it is generally larger than the rule given by Boutidis and

Gittens (2013) for uniform sampling. The larger m required for countsketch can be seen as a cost

of specifying a sparse Π. Thus, one might want to first use a small r to obtain a conservative m1

for the countsketch. One can then use Proposition 2 to obtain an ‘inference conscious’ guide.

To illustrate how to use m1,m2 and m3, we consider Belenzon et al. (2017) which studies firms’

performance from naming the company after its owners, a phenomenon known as eponymy. The

parameter of interest is α1 in a ‘return on assets’ regression

roait = α0 + α1eponymousit + ZTitβ + ηi + τt + ci + εit.

The coefficient gives the effect of the eponymous dummy after controlling for time varying firm

specific variables Zit, SIC dummies ηi, country dummies ci, and year dummies τt. The panel

of data includes 1.8 million companies from 2002-2012, but we only use data for one year. An

interesting aspect of this regression is that even in the full sample with n = 562160, some dummies

are sparse while others are collinear, giving an effective number of K = 423 regressors. We will

focus on the four covariates: the indicator variable for being eponymous, the log of assets, the log

number of shareholders, and equity dispersion.

Given the values of (n,K) for this data, any assumed value of r less than 8 would give an m1

larger than n which is not sensible.16 This immediately restricts us to r ≥ 6. As point of reference,

16This is based on m1 = (nK)1+2/r logK/n. A smaller r is admissible if m1 = c1(nK)1+2/r logK/n for some
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(r,m1) = (8, 317657) and (r,m1) = (15, 33476). The smallest m1 is obtained by assuming that the

data have thin tails, resulting in m1 = K log(nK) = 8158.

Table 4 presents the estimation results for several values of m. The top panel presents results

for uniform sampling. Note that more than 50 covariates for uniform sampling are omitted due

to colinearity, even with a relatively large sketch size. The first column shows the full sample

estimates for comparison. Column (2) shows that the point estimates given by the smallest sketch

with m1 = 8158 are not too different from those in column (1), but the precision estimates are

much worse. To solve this problem, we compute m2(m1) by plugging in the t statistic for equity

dispersion (ie. τ̂0 = 0.67) as τ2. This gives an m2 of 112358. A similar sketch size can be obtained

by assuming r = 10 for m1, or by plugging in τ2(∞) = 5 for m3. As seen from Table 4, the point

estimates of all sketches are similar, but the inference conscious sketches are larger in size and give

larger test statistics.

The bottom panel of Table 4 presents results for the countsketch. Compared to uniform sampling

in the top panel, only one or two covariates are now dropped. Though the estimate of α1 is almost

almost identical to the one for the full sample and for uniform sampling, the estimated coefficient

for equity dispersion is somewhat different. This might be due to the fact that uniform sampling

drops much more covariates than countsketch.

7 Concluding Remarks

This paper provides an gentle introduction to sketching and studies its implications for prediction

and inference using a linear model. Sample codes for constructing the sketches are avaialble in

matlab, R, and stata. Our main findings are as follows:

1. Sketches incur an approximation error that is small relative to the sample size effect.

2. For speed and parallelization, it is best to use countsketch.

3. For simple implementation, it is best to use uniform sampling.

4. For improved estimates, it is best to average over multiple sketches.

5. Statistical analysis may require larger sketch size than what is algorithmically desirable. We

propose two inference conscious rules for the sketch size.

Sketching has also drawn attention of statisticians in recent years. Ahfock et al. (2017) pro-

vides an inferential framework to obtain distributional results for a large class of sketched estima-

tors. Geppert, Ickstadt, Munteanu, Quedenfeld and Sohler (2017) considers random projections in

constant 0 < c1 < 1. We limit our attention to c1 = 1.
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Bayesian regressions and provides sufficient conditions for a Gaussian likelihood based on sketched

data to have an error of 1 + O(ε) in terms of L2 Wasserstein distance. In the design of experi-

ments literature, the goal is to reveal as much information as possible given a fixed budget.17 Since

sketching is about forming random samples, it is natural to incorporate the principles in design of

experiments. Wang, Zhu and Ma (2018) considers the design of subsamples for logistic regressions.

A-optimality and practical considerations suggest to use pi = |êi|‖xi‖∑
i |êi|‖xi‖

, which may be understood

as score based sampling. Wang et al. (2019) considers the homoskedastic normal linear regression

model. The principle of D-optimality suggests to recursively selecting data according to extreme

values of covariances. The algorithm is suited for distributed storage and parallel computing.

Though analysis of the linear regression is an absolute first step in understanding the use and

implications of sketching, the real benefits are expected to be in estimation problems that are

complex. For example, Deaton and Ng (1998) uses ‘binning methods’ and uniform sampling to

speed up estimation of non-parametric average derivatives. Portnoy and Koenker (1997) uses a

fast interior point method for quantile regression by preprocessing a random subsample of data

to reduce the effective sample size. More generally, if the full-sample Hessian matrix is difficult

to estimate, one can consider an approximation of it by subsampling. This paper provides a new

perspective to evaluating the effectiveness of matrix approximations and aims to better understand

their implications for inference.

While using sketches to overcome the computation burden is a step forward, sometimes we need

more than a basic sketch. We have been silent about how to deal with data that are dependent

over time or across space, such as due to network effects. We may want our sketch to preserve,

say, the size distribution of firms in the original data. The sampling algorithms considered in

this review must then satisfy additional conditions. When the data have a probabilistic structure,

having more data is not always desirable, Boivin and Ng (2006). While discipline-specific problems

require discipline-specific input, there is also a lot to learn from what has already been done in

other literatures. Cross-disciplinary work is a promising path towards efficient handling of large

volumes of data.

17A criterion that uses the trace norm for ordering matrices is A-optimality. A criterion that uses the determinant
to order matrices is a D-optimal design.
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Appendices

A Proof of Lemma 3

Proof of Lemma 3 By an orthogonal decomposition of the least squares residuals,

‖y −Xβ̃‖22 = ‖y −Xβ̂‖22 + ‖Xβ̃ −Xβ̂‖22
= ‖y − Uθ̂‖22 + ‖U(θ̃ − θ̂)‖22
= ŝsr

2
+ ‖U(θ̃ − θ̂)‖

= ŝsr
2

+ ‖θ̃ − θ̂‖2, (16)

where

‖θ̃ − θ̂‖2 = ‖(ΠU)TΠU(θ̃ − θ̂) + (θ̃ − θ̂) + (ΠU)TΠU(θ̂ − θ̃)‖2

≤ ‖(ΠU)TΠU(θ̃ − θ̂)‖2 + ‖(ΠU)TΠU(θ̂ − θ̃)− (θ̂ − θ̃)‖2

≤ ‖(ΠU)TΠU(θ̃ − θ̂)‖2 + ‖(ΠU)TΠU − Id‖2‖(θ̃ − θ̂)‖2

≤ ‖(ΠU)T (ΠU)(θ̃ − θ̂)‖2 +
1√
2
‖θ̃ − θ̂‖2

≤
√

2‖(ΠU)TΠU(θ̃ − θ̂)‖2

by triangle inequality, Cauchy-Schwarz inequality, condition (8a), and rearranging terms. Now the

normal equations implies (ΠU)T (ΠU)θ̃ = (ΠU)TΠ(y −Xβ̃). Hence

‖θ̃ − θ̂‖2 ≤
√

2‖(ΠU)TΠ(y − Uθ̂)‖2

≤
√
ε0 ŝsr

by condition (8b) and for some failure probability δ0. It follows from (16) that s̃sr
2 ≤ (1 + ε2)ŝsr

2

holds with probability 1 − δ2 where ε2 = ε20 and δ2 < 2δ0. This probability can be made higher

with suitable choice of ε0 and m, which can be controlled by the researcher.

Proof of Theorem 3 Note that

cT (β̄ − β) =
1

J

J∑
j=1

cT
(
XTΠT

j ΠjX
)−1(

XTΠT
j Πje

)
.

Thus,

E[cT (β̄ − β)|Π1, . . . ,ΠJ ] =
1

J

J∑
j=1

cT
(
XTΠTΠX

)−1(
XTΠTΠE[e|Π1, . . . ,ΠJ ]

)
= 0.
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Write

E[{cT (β̄ − β)}2|Π1, . . . ,ΠJ ]

=
1

J2

J∑
j=1

J∑
k=1

cT
(
XTΠT

j ΠjX
)−1(

XTΠT
j ΠjE[eeT |Π1, . . . ,ΠJ ]ΠT

k ΠkX
)(
XTΠT

k ΠkX
)−1

c

= σ2
e

1

J2

J∑
j=1

cT
(
XTΠT

j ΠjX
)−1(

XTΠT
j ΠjΠ

T
j ΠjX

)(
XTΠT

j ΠjX
)−1

c

+ σ2
e

1

J2

J∑
j=1

J∑
k=1,k 6=J

cT
(
XTΠT

j ΠjX
)−1(

XTΠT
j ΠjΠ

T
k ΠkX

)(
XTΠT

k ΠkX
)−1

c

= σ2
e

n

mJ2

J∑
j=1

cT
(
XTΠT

j ΠjX
)−1

c.

Then, the desired result is obtained by arguments identical to those used in proving Theorem 1.

In particular, we can show that

n

m

cT
(
XTΠT

j ΠjX
)−1

c

cT (XTX)−1c
≤ n

m

1

(1− εσ)
(17)

jointly for all j = 1, . . . , J with probability at least 1− δσ. Q.E.D.

B Verification of Assumption CS for Countsketch

In this part of the appendix, we verify Assumption CS for the countsketch. Here, we use d to

denote the column dimension of Π.

Lemma 5 Let Π ∈ Rn×d be a random matrix such that (i) the (i, j) element Πij of Π is Πij = δijσij,

where σij’s are i.i.d. ±1 random variables and δij is an indicator random variable for the event

Πij 6= 0; (ii)
∑m

i=1 δij = 1 for each j = 1, . . . , n; (iii) for any S ⊂ [n], E (Πj∈Sδij) = m−|S|; (iv) the

columns of Π are i.i.d. Furthermore, there is a universal constant Ce such that maxi=1,...,nΩe,ii ≤ Ce.
Suppose that

(d2 + 1)m

n
+

(d2 + d)

m
≤
δΠε

2
Π

8C2
e

. (18)

Let

A(Ωe,m, n) = Ωe +
1

m
{tr(Ωe)In − Ωe} . (19)

Then, we have that

P
(∥∥UTΠTΠΩeΠ

TΠU − UTA(Ωe,m, n)U
∥∥

2
>

n

m
εΠ

)
≤ δΠ.
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This lemma states that Condition CS is satisfied for countsketch, provided that all the diagonal

elements of Ωe are bounded by a universal constant, d2m/n = o(δΠε
2
Π) and d2/m = o(δΠε

2
Π). The

rate conditions in (18) are not stringent. When n is very large, d is of a moderate size and δΠ and

εΠ are given, there is a range of m that satisfies (18).

Proof of Lemma 5 Since we assume that each diagonal element of Ωe is bounded by a universal

constant Ce,

tr(Ω2
e) ≤ C2

en, tr(Ωe) = Cen, and ‖Ωe‖2 = Ce.

Then Lemma F.1, which is given in Appendix F, implies that

P
(∥∥UTΠTΠΩeΠ

TΠU − UTA(Ωe,m, n)U
∥∥

2
> ε
)

≤ 2ε−2

{
2d2(m− 1)

m2
tr(Ω2

e) +
2d2

m2
‖Ωe‖2tr(Ωe) +

d2

m3

{
[tr(Ωe)]

2 + 2‖Ωe‖22
}

+
2

m
tr(Ω2

e) +
2

m2
tr(Ωe) +

1

m3

{
d [tr(Ωe)]

2 + 2tr(Ω2
e)
}}

≤ 2ε−2

{
2d2(m− 1)

m2
C2
en+

2d2

m2
C2
en+

d2

m3

{
C2
en

2 + 2C2
e

}
+

2

m
C2
en+

2

m2
Cen+

1

m3

{
dC2

en
2 + 2C2

en
}}

≤ 8C2
e ε
−2

(
(d2 + 1)n

m
+

(d2 + d)n2

m3

)
.

If we take ε = n
mεΠ, then

P
(∥∥UTΠTΠΩeΠ

TΠU − UTA(Ωe,m, n)U
∥∥

2
>

n

m
εΠ

)
≤ 8C2

e ε
−2
Π

(
(d2 + 1)m

n
+

(d2 + d)

m

)
.

To satisfy the probability above is bounded by δΠ, we need to assume that

8C2
e ε
−2
Π

(
(d2 + 1)m

n
+

(d2 + d)

m

)
≤ δΠ,

which is imposed by (18). Q.E.D.

C Proof of JL Lemma

The original proof assumes that Π is Gaussian.18 We highlight arguments for this case using

properties of sub-exponential random variables. For arbitrary (i, j), define u = (ai − aj) ∈ Rn and

18Subsequent proofs by Dasgupta and Gupta (2003), Indyk and Motwani (1998), Matousek (2008) use different
proof techniques to obtain tighter bounds. Fedoruk et al. (2018) summaries the evolution of the Lemma. Others
consider non-Gaussian Π matrices that are less costly to store.
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v = Πai − Πaj = 1√
m

Πu ∈ Rm. Note that vi = 1√
m

∑
j Πijuj ∼ N(0,

||u||22
m ). The Lemma then says∣∣∣∣ ||v||22||u||22

− 1

∣∣∣∣ ≤ ε. The proof of this statement proceeds in three steps.

(i) show that the expected value of the Euclidean distance of the random projection is equal to

the Euclidean distance of the original subspace:

E[||v||22] = E[
m∑
i=1

v2
i ] =

m∑
i=1

E[v2
i ]

=
m∑
i=1

1

m
E
[
(
∑
j

Πijui)
2

]
=

m∑
i=1

1

m

∑
1≤j,k≤n

ujukΠijΠik

=
m∑
i=1

1

m

∑
1≤j,k≤n

ujukδjk =
m∑
i=1

1

m

∑
1≤j≤n

u2
j

=
∑
j≤n

u2
j = ||u||22.

(ii) show that (i) holds with high probability. For this, let Zi = Πiu
||u|| . Then

∑m
i=1 Z

2
i =

m||v||22
||u||22

is

χ2
m, hence sub-exponential.19: A two-sided tail bound yields

P

(
1

m

∣∣∣∣ m∑
k=1

Z2
k − 1

∣∣∣∣ ≥ ε) = P

(∣∣∣∣ ||v||22||u||2
− 1

∣∣∣∣ > ε

)
≤ 2e−mε

2/8.

(iii) apply union bound: step (ii) holds for all d2 pairs of (i, j), so the overall failure probability

is at most 2

(
d
2

)
e−mε

2/8. Given a error rate ε, this failure probability can be driven below δ

by making m ≥ C
ε2

(log d/δ) for large enough C.

19A random variable X with mean µ is sub-exponential with parameters (ν, b) if E[eλ(X−µ)] ≤ eν
2λ2/2. If Zk ∼

N(0, 1), Z2
k ∼ χ2

m is sub-exponential with (ν, b) = (2, 4) and has two-sided tail bound P

(∣∣∣∣ 1√
m

∑m
k=1 Z

2
k − 1

∣∣∣∣ ≥ ε) ≤
2e−mε

2/8, ε ∈ (0, 1). See, for example, Wainwright (2019, Chapter 2) or Vershynin (2017, lecture 1).
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D Streaming Implementation of Countsketch

CountSketch, Streaming:

Input: Given A ∈ Rn×d and m < n
Output: Ã ∈ Rm×d, initialized to zero

1 for s = 1 : n do
2 sampled h (from [1, . . .m])
3 sample g from [+1,−1]

4 Ã(h(s)) := Ã(h(s)) + g ×A(h(s))

The example considered in the main text is the same as C = ΠA, where n = 9,

Π =

 0 0 1 0 1 −1 0 0 1
−1 0 0 −1 0 0 0 −1 0
0 −1 0 0 0 0 1 0 0

 and A =

A3 +A5 −A6 +A9

A1 −A4 −A8

A2 +A7

 .

Hence if d = 4,

Ã =

A31 +A51 −A61 +A91 A32 +A52 −A62 +A92 A33 +A53 −A63 +A93 A34 +A54 −A64 +A94

−A11 −A41 −A81 −A12 −A42 −A82 −A13 −A43 −A83 −A14 −A44 −A84

−A21 +A71 −A22 +A72 −A23 +A73 −A24 +A74

 .

Consider now the streaming approach when the random draws of h and g are(
h
g

)
=

(
2 3 1 2 1 1 3 2 1
−1 −1 +1 −1 +1 −1 +1 −1 1

)
1. s = 1: A(1) =

(
A11 A12 A13 A14

)
, h = 2, g = −1. Updating Ah(1) = A2 gives

Ã =

 0 0 0 0
A11 ×−1 A12 ×−1 A13 ×−1 A14 − 1

0 0 0 0

 .

2. s = 2: A(2) =
(
A21 A22 A23 A24

)
, h = 3, g = −1. Updating Ah(2) = A3 gives

Ã =

 0 0 0 0
−A11 −A12 −A13 −A14

A21 ×−1 A22 ×−1 A23 ×−1 A24 ×−1


3. s = 3: A(3) =

(
A31 A32 A33 A34

)
, h = 1, g = 1. Updating Ah(3) = A1 gives

Ã =

 A31 A32 A33 A34

−A11 −A12 −A13 −A14

−A21 −A22 −A23 −A24


4. s = 4: A(4) =

(
A41 A42 A43 A44

)
, h = 2, g = −1. Updating Ah(4) = A2 gives

Ã =

 A31 × 1 A32 × 1 A33 × 1 A34 × 1
−A11 + (A41 ×−1) −A12 + (A42 ×−1) −A13 + (A43 ×−1) −A14 + (A44 ×−1)

−A21 −A22 −A23 −A24
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5. s = 5: A(5) =
(
A51 A52 A53 A54

)
, h = 1, g = 1. Updating Ah(5) = A1 gives

Ã =

 A31 +A51 A32 +A52 A33 +A53 A34 +A54

−A11 −A41 −A12 −A42 −A13 −A43 −A14 −A44

A21 ×−1 A22 ×−1 A23 ×−1 A24 ×−1


6. s = 6: A(6) =

(
A61 A62 A63 A64

)
, h = 1, g = −1. Updating Ah(6) = A1 gives

Ã =

A31 +A51 −A61 A32 +A52 −A62 A33 +A53 −A63 A34 +A54 −A64

−A11 −A41 −A12 −A42 −A13 −A43 −A14 −A44

A21 ×−1 A22 ×−1 A23 ×−1 A24 ×−1


7. s = 7: A(7) =

(
A71 A72 A73 A74

)
, h = 3, g = 1. Updating Ah(7) = A3 gives

Ã =

A31 +A51 −A61 A32 +A52 −A62 A33 +A53 −A63 A34 +A54 −A64

−A11 −A41 −A12 −A42 −A13 −A43 −A14 −A44

−A21 +A71 −A22 +A72 −A23 +A73 −A24 +A74


8. s = 8: A(8) =

(
A81 A82 A83 A84

)
, h = 2, g = −1. Updating Ah(8) = A2 gives

Ã =

 A31 +A51 −A61 A32 +A52 −A62 A33 +A53 −A63 A34 +A54 −A64

−A11 −A41 −A81 −A12 −A42 −A82 −A13 −A43 −A83 −A14 −A44 −A84

−A21 +A71 −A22 +A72 −A23 +A73 −A24 +A74


9. s = 9: A(9) =

(
A91 A92 A93 A94

)
, h = 1, g = 1. Updating Ah(9) = A1 gives

Ã =

A31 +A51 −A61 +A91 A32 +A52 −A62 +A92 A33 +A53 −A63 +A93 A34 +A54 −A64 +A94

−A11 −A41 −A81 −A12 −A42 −A82 −A13 −A43 −A83 −A14 −A44 −A84

−A21 +A71 −A22 +A72 −A23 +A73 −A24 +A74

 .

This is precisely ΠA.
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E General Version of Theorem 1

In this section, we give a general version of Theorem 1 under heteroskedasticity.

Theorem 4 Let c be a known K × 1 vector. Assume that ei ∼ (0,Ωe,ii), where Ωe,ii denote the ith

diagonal element of Ωe. Under OLS and PI3, it holds with probability at least 1− δσ that

mse(xT0 β̃|Π)

mse(xT0 β̂)
≤
(

maxi Ωe,ii

mini Ωe,ii

)(
n

m

)
(1 + εσ)

(1− εσ)2
.

Proof of Theorem 4 We have V(β̃|Π) = (X̃T X̃)−1X̃TΠΩeΠ
T X̃(X̃T X̃)−1. The quantity of

interest is

cTV(β̃|Π)c− n

m
cTV(β̂)c

= cTA1B1A1c− cTA2B2A2c

= cT (A1 −A2)B1(A1 −A2)c+ 2cTA2B1(A1 −A2)c+ cTA2(B1 −B2)A2c,

where A1 =
(
XTΠTΠX

)−1
, B1 = XTΠTΠΩeΠ

TΠX, A2 =
(
XTX

)−1
, and B2 = n

m

(
XTΩeX

)
.

Write ∣∣∣cTV(β̃|Π)c− n

m
cTV(β̂)c

∣∣∣
≤
∣∣cT (A1 −A2)B2(A1 −A2)c

∣∣+
∣∣cT (A1 −A2)(B1 −B2)(A1 −A2)c

∣∣
+ 2

∣∣cTA2B2(A1 −A2)c
∣∣+ 2

∣∣cTA2(B1 −B2)(A1 −A2)c
∣∣+
∣∣cTA2(B1 −B2)A2c

∣∣ .
Let

C(Ωe) =
maxi Ωe,ii

mini Ωe,ii
.

We will bound each of the terms above by establishing the following lemma.

Lemma 6 The following statements hold with probability at least 1− δσ :∣∣∣∣∣cTA2B2(A1 −A2)c

cTV(β̂)c

∣∣∣∣∣ ≤ n

m
C(Ωe)

1/2 εσ
(1− εσ)

, (20a)∣∣∣∣∣cT (A1 −A2)B2(A1 −A2)c

cTV(β̂)c

∣∣∣∣∣ ≤ n

m
C(Ωe)

ε2
σ

(1− εσ)2
, (20b)∣∣∣∣∣cT (A1 −A2)(B1 −B2)(A1 −A2)c

cTV(β̂)c

∣∣∣∣∣ ≤ n

m
C(Ωe)

ε2
σ

(1− εσ)2
εσ, (20c)∣∣∣∣∣cTA2(B1 −B2)(A1 −A2)c

cTV(β̂)c

∣∣∣∣∣ ≤ n

m
C(Ωe)

1/2 εσ
(1− εσ)

εσ, (20d)∣∣∣∣∣cTA2(B1 −B2)A2c

cTV(β̂)c

∣∣∣∣∣ ≤ n

m
εσ. (20e)
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Proof of Lemma 6 To show part (20a), define W = (UTΩeU)1/2Σ−1V T . Note that

V(β̂) = (XTX)−1(XTΩeX)(XTX)−1

= V Σ−1UTΩeUΣ−1V T

= W TW.

Write

A2B2(A1 −A2) =
n

m

(
XTX

)−1(
XTΩeX

) [(
XTΠTΠX

)−1 −
(
XTX

)−1
]

=
n

m
V Σ−1UTΩeU

[
(UTΠTΠU)−1 − In

]
Σ−1V T

=
n

m
V Σ−1UTΩeU

[
(UTΠTΠU)−1 − In

]
(UTΩeU)−1/2(UTΩeU)1/2Σ−1V T

=
n

m
W T (UTΩeU)1/2

[
(UTΠTΠU)−1 − In

]
(UTΩeU)−1/2W.

Then ∣∣∣∣∣cTA2B2(A1 −A2)c

cTV(β̂)c

∣∣∣∣∣ =
n

m

∣∣∣∣∣cTW T (UTΩeU)1/2
[
(UTΠTΠU)−1 − In

]
(UTΩeU)−1/2Wc

cTW TWc

∣∣∣∣∣
≤ n

m

∥∥∥(UTΩeU)1/2
∥∥∥

2

∥∥(UTΠTΠU)−1 − In
∥∥

2

∥∥∥(UTΩeU)−1/2
∥∥∥

2

≤ n

m
C(Ωe)

1/2 εσ
(1− εσ)

,

which proves part (20a).

For the second part, write

(A1 −A2)B2(A1 −A2)

=
n

m

[(
XTΠTΠX

)−1 −
(
XTX

)−1
] (
XTΩeX

) [(
XTΠTΠX

)−1 −
(
XTX

)−1
]

=
n

m
V Σ−1

[
(UTΠTΠU)−1 − In

]
UTΩeU

[
(UTΠTΠU)−1 − In

]
Σ−1V T

=
n

m
W T (UTΩeU)−1/2

[
(UTΠTΠU)−1 − In

]
UTΩeU

[
(UTΠTΠU)−1 − In

]
(UTΩeU)−1/2W.

Thus, ∣∣∣∣∣cT (A1 −A2)B2(A1 −A2)c

cTV(β̂)c

∣∣∣∣∣ ≤ n

m
C(Ωe)

ε2
σ

(1− εσ)2
,

which proves part (20b).
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For the third part, write

(A1 −A2)(B1 −B2)(A1 −A2)

= V Σ−1
[
(UTΠTΠU)−1 − In

] [
UTΩ1/2

e ΠTΠΠTΠΩ1/2
e U − n

m
UTΩ1/2

e Ω1/2
e U

] [
(UTΠTΠU)−1 − In

]
Σ−1V T

= W T (UTΩeU)−1/2
[
(UTΠTΠU)−1 − In

]
(UTΩeU)1/2

× (UTΩeU)−1/2
[
UTΩ1/2

e ΠTΠΠTΠΩ1/2
e U − n

m
UTΩ1/2

e Ω1/2
e U

]
(UTΩeU)−1/2

× (UTΩeU)1/2
[
(UTΠTΠU)−1 − In

]
(UTΩeU)−1/2W.

Define Ue = Ω
1/2
e U(UTΩeU)−1/2, so that

(UTΩeU)−1/2
[
UTΩ1/2

e ΠTΠΠTΠΩ1/2
e U − n

m
UTΩ1/2

e Ω1/2
e U

]
(UTΩeU)−1/2

= UTe ΠTΠΠTΠUe −
n

m
UTe Ue.

Now observe that∥∥∥UTe ΠTΠΠTΠUe −
n

m
UTe Ue

∥∥∥
2

≤
∥∥∥UTe ΠTΠΠTΠUe −

n

m
UTe ΠTΠUe

∥∥∥
2

+
n

m

∥∥UTe ΠTΠUe − UTe Ue
∥∥

2

≤ n

m
εσ.

(21)

Thus, ∣∣∣∣∣cT (A1 −A2)(B1 −B2)(A1 −A2)c

cTV(β̂)c

∣∣∣∣∣ ≤ C(Ωe)
ε2
σ

(1− εσ)2

n

m
εσ,

which proves part (20c).

Similarly,

A2(B1 −B2)(A1 −A2)

= V Σ−1
[
UTΩ1/2

e ΠTΠΠTΠΩ1/2
e U − n

m
UTΩ1/2

e Ω1/2
e U

] [
(UTΠTΠU)−1 − In

]
Σ−1V T .

Then ∣∣∣∣∣cTA2(B1 −B2)(A1 −A2)c

cTV(β̂)c

∣∣∣∣∣ ≤ C(Ωe)
1/2 εσ

(1− εσ)

n

m
εσ,

which proves part (20d).

Finally,

A2(B1 −B2)A2 = V Σ−1
[
UTΩ1/2

e ΠTΠΠTΠΩ1/2
e U − n

m
UTΩ1/2

e Ω1/2
e U

]
Σ−1V T .
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Therefore, ∣∣∣∣∣cTA2(B1 −B2)A2c

cTV(β̂)c

∣∣∣∣∣ ≤ n

m
εσ,

which proves part (20e). Q.E.D.

We now return to the proof of the theorem. Applying (20a)-(20e) and simplifying,∣∣∣∣∣cTV(β̃|Π)c− n
mc

TV(β̂)c

cTV(β̂)c

∣∣∣∣∣ ≤ C(Ωe)
n

m

[
εσ(2− εσ)

(1− εσ)2
(1 + εσ) + εσ

]
∣∣∣∣∣cTV(β̃|Π)c− cTV(β̂)c

cTV(β̂)c

∣∣∣∣∣ ≤ C(Ωe)
n

m

[
εσ(2− εσ)

(1− εσ)2
(1 + εσ) + εσ)

]
+
n−m
m

with probability at least 1− δσ − δΠ. This in turn implies that with the same probability,

cTV(β̃|Π)c

cTV(β̂)c
≤ C(Ωe)

n

m

(1 + εσ)

(1− εσ)2
.

Q.E.D.
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F Subspace embedding for ΠTΠΨΠTΠ

In this appendix, we consider ΠTΠΨΠTΠ for a diagonal matrix Ψ in the case of countsketch.

Lemma 7 Let Π ∈ Rn×d be a random matrix such that (i) the (i, j) element Πij of Π is Πij = δijσij,

where σij’s are i.i.d. ±1 random variables and δij is an indicator random variable for the event

Πij 6= 0; (ii)
∑m

i=1 δij = 1 for each j = 1, . . . , n; (iii) for any S ⊂ [n], E (Πj∈Sδij) = m−|S|; (iv) the

columns of Π are i.i.d. Choose

A(Ψ,m, n) = Ψ +
1

m
{tr(Ψ)In −Ψ} . (22)

Then

P
(∥∥UTΠTΠΨΠTΠU − UTA(Ψ,m, n)U

∥∥
2
> ε
)

≤ 2ε−2

{
2d2(m− 1)

m2
tr(Ψ2) +

2d2

m2
‖Ψ‖2tr(Ψ) +

d2

m3

{
[tr(Ψ)]2 + 2‖Ψ‖22

}
+

2

m
tr(Ψ2) +

2

m2
tr(Ψ) +

1

m3

{
d [tr(Ψ)]2 + 2tr(Ψ2)

}}
.

Proof of Lemma 7 To show the desired result, we follow Nelson and Nguyen (2013). That is,

we start with the following moment inequality:

P
(∥∥UTΠTΠΨΠTΠU − UTA(Ψ,m, n)U

∥∥
2
> ε
)

≤ ε−2E
[∥∥UTΠTΠΨΠTΠU − UTA(Ψ,m, n)U

∥∥2

F

]
.

For countsketch, we have one non-zero entry for each column. This implies that ΠΨΠT is a

diagonal matrix. Hence,

[ΠΨΠT ]ii =
n∑
k=1

ΨkkΠ
2
ik =

n∑
k=1

Ψkkδik.

Now

[ΠTΠΨΠTΠ]``′ =

m∑
i=1

n∑
k=1

Πi`ΨkkδikΠi`′ =

m∑
i=1

n∑
k=1

Ψkkδikδi`δi`′σi`σi`′ ,

where the last equality comes from the fact that Πij = δijσij . Then

[UTΠTΠΨΠTΠU ]uv =

n∑
`=1

n∑
`′=1

[ΠTΠΨΠTΠ]``′U`uU`′v

=

n∑
`=1

n∑
`′=1

m∑
i=1

n∑
k=1

Ψkkδikδi`δi`′σi`σi`′U`uU`′v.
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Write

[UTΠTΠΨΠTΠU ]uv =

n∑
`=1

m∑
i=1

n∑
k=1

Ψkkδikδi`U`uU`v

+

n∑
`=1

n∑
`′=1,`′ 6=`

m∑
i=1

n∑
k=1

Ψkkδikδi`δi`′σi`σi`′U`uU`′v

=

n∑
`=1

m∑
i=1

Ψ``δi`U`uU`v

+

n∑
`=1

m∑
i=1

n∑
k=1,k 6=`

Ψkkδikδi`U`uU`v

+
n∑
`=1

n∑
`′=1,`′ 6=`

m∑
i=1

n∑
k=1

Ψkkδikδi`δi`′σi`σi`′U`uU`′v

=
n∑
`=1

Ψ``U`uU`v

+
n∑
`=1

m∑
i=1

n∑
k=1,k 6=`

Ψkkδikδi`U`uU`v

+
n∑
`=1

n∑
`′=1,`′ 6=`

m∑
i=1

n∑
k=1

Ψkkδikδi`δi`′σi`σi`′U`uU`′v

since
∑m

i=1 δi` = 1 for each `. Recall that we have assumed that for any S ⊂ [n], E (Πj∈Sδij) =

m−|S|. Then, note that

E

 n∑
`=1

m∑
i=1

n∑
k=1,k 6=`

Ψkkδikδi`U`uU`v


=

n∑
`=1

m∑
i=1

n∑
k=1,k 6=`

ΨkkE (δikδi`)U`uU`v

=
1

m

n∑
`=1

n∑
k=1,k 6=`

ΨkkU`uU`v

=
1

m

n∑
`=1

[
n∑
k=1

Ψkk −Ψ``

]
U`uU`v

=
tr(Ψ)

m
1(u = v)−m−1

n∑
`=1

Ψ``U`uU`v.

Since

n∑
k=1

ΨkkUkuUkv = [UTΨU ]uv,
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UTΠTΠΨΠTΠU should center on

tr(Ψ)

m
UTU +

(
1− 1

m

)
UTΨU = UT

[
Ψ +

1

m
{tr(Ψ)In −Ψ}

]
U.

If Ψ = σ2
eIn, then its form is

σ2
e

n

m
UTU + σ2

e

(
1− 1

m

)
UTU = σ2

e

[
n+m− 1

m

]
UTU.

Now [
UTΠTΠΨΠTΠU − UT

(
Ψ +

1

m
{tr(Ψ)In −Ψ}

)
U

]
uv

=
n∑
`=1

n∑
k=1,k 6=`

Ψkk

[
m∑
i=1

δikδi` −
1

m

]
U`uU`v

+
n∑
`=1

n∑
`′=1,`′ 6=`

n∑
k=1

Ψkk

[
m∑
i=1

δikδi`δi`′σi`σi`′

]
U`uU`′v

=: T1,uv + T2,uv.

First consider T1,uv. Define

km(k, `) :=

m∑
i=1

δikδi` −
1

m
.

Write

km(k, `)km(k′, `′)

=

m∑
i=1

δikδi`δik′δi`′ +

m∑
i=1

m∑
i′=1,i′ 6=i

δikδi`δi′k′δi′`′ −
1

m

m∑
i=1

δikδi` −
1

m

m∑
i′=1

δi′k′δi′`′ +
1

m2
.

Then for any ` 6= k and `′ 6= k′,

m∑
i=1

δikδi`δik′δi`′ =



∑m
i=1 δikδi` if ` = `′, k = k′∑m
i=1 δikδi`δik′ if ` = `′, k 6= k′∑m
i=1 δikδi`δi`′ if ` 6= `′, k = k′∑m
i=1 δikδi` if ` 6= `′, k 6= k′, k = `′, ` = k′∑m
i=1 δikδi`δik′ if ` 6= `′, k 6= k′, k = `′, ` 6= k′∑m
i=1 δikδi`δi`′ if ` 6= `′, k 6= k′, k 6= `′, ` = k′∑m
i=1 δikδi`δik′δi`′ if ` 6= `′, k 6= k′, k 6= `′, ` 6= k′.
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Then

E

(
m∑
i=1

δikδi`δik′δi`′

)
=



m−1 if ` = `′, k = k′

m−2 if ` = `′, k 6= k′

m−2 if ` 6= `′, k = k′

m−1 if ` 6= `′, k 6= k′, k = `′, ` = k′

m−2 if ` 6= `′, k 6= k′, k = `′, ` 6= k′

m−2 if ` 6= `′, k 6= k′, k 6= `′, ` = k′

m−3 if ` 6= `′, k 6= k′, k 6= `′, ` 6= k′.

In addition, since there is one non-zero entry for each column in count sketch,

m∑
i=1

m∑
i′=1,i′ 6=i

δikδi`δi′k′δi′`′ =



0 if ` = `′, k = k′

0 if ` = `′, k 6= k′

0 if ` 6= `′, k = k′

0 if ` 6= `′, k 6= k′, k = `′, ` = k′

0 if ` 6= `′, k 6= k′, k = `′, ` 6= k′

0 if ` 6= `′, k 6= k′, k 6= `′, ` = k′∑m
i=1

∑m
i′=1,i′ 6=i δikδi`δi′k′δi′`′ if ` 6= `′, k 6= k′, k 6= `′, ` 6= k′.

Hence,

E

 m∑
i=1

m∑
i′=1,i′ 6=i

δikδi`δi′k′δi′`′

 =



0 if ` = `′, k = k′

0 if ` = `′, k 6= k′

0 if ` 6= `′, k = k′

0 if ` 6= `′, k 6= k′, k = `′, ` = k′

0 if ` 6= `′, k 6= k′, k = `′, ` 6= k′

0 if ` 6= `′, k 6= k′, k 6= `′, ` = k′

m−1
m3 if ` 6= `′, k 6= k′, k 6= `′, ` 6= k′.

Combining the results above yields

E
[
km(k, `)km(k′, `′)

]
=



m−1
m2 if ` = `′, k = k′

0 if ` = `′, k 6= k′

0 if ` 6= `′, k = k′

m−1
m2 if ` 6= `′, k 6= k′, k = `′, ` = k′

0 if ` 6= `′, k 6= k′, k = `′, ` 6= k′

0 if ` 6= `′, k 6= k′, k 6= `′, ` = k′

0 if ` 6= `′, k 6= k′, k 6= `′, ` 6= k′.
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Note that

E
[
T 2

1,uv

]
=

n∑
`=1

n∑
`′=1

n∑
k=1,k 6=`

n∑
k′=1,k′ 6=`′

ΨkkΨk′k′E
[
km(k, `)km(k′, `′)

]
U`uU`vU`′uU`′v

=
m− 1

m2

n∑
`=1

n∑
k=1,k 6=`

Ψ2
kkU

2
`uU

2
`v +

m− 1

m2

n∑
`=1

Ψ``U`uU`v

n∑
`′=1,`′ 6=`

Ψ`′`′U`′uU`′v

=
m− 1

m2

n∑
`=1

[
tr(Ψ2)−Ψ2

``

]
U2
`uU

2
`v

+
m− 1

m2

n∑
`=1

Ψ``U`uU`v

[
n∑

`′=1

Ψ`′`′U`′uU`′v −Ψ``U`uU`v

]

≤ m− 1

m2

{
tr(Ψ2) + [UTΨU ]2uv

}
Therefore,

d∑
u=1

d∑
v=1

E
[
T 2

1,uv

]
≤ d2(m− 1)

m2
tr(Ψ2) +

m− 1

m2

d∑
u=1

d∑
v=1

[UTΨU ]2uv

=
d2(m− 1)

m2
tr(Ψ2) +

m− 1

m2

∥∥UTΨU
∥∥2

F

=
2d2(m− 1)

m2
tr(Ψ2).

Now consider T2,uv. Recall that

T2,uv =
n∑
`=1

n∑
`′=1,`′ 6=`

n∑
k=1

Ψkk

[
m∑
i=1

δikδi`δi`′σi`σi`′

]
U`uU`′v.

Define

qn,m(`, `′) :=

n∑
k=1

Ψkk

[
m∑
i=1

δikδi`δi`′σi`σi`′

]
.

Note that

E
[
T 2

2,uv

]
=

n∑
`=1

n∑
˜̀=1

n∑
`′=1,`′ 6=`

n∑
˜̀′=1,˜̀′ 6=˜̀E

[
qn,m(`, `′)qn,m(˜̀, ˜̀′)]U`uU`′vU˜̀uU˜̀′v.

Write

qn,m(`, `′)qn,m(˜̀, ˜̀′)
=

n∑
k=1

n∑
k′=1

m∑
i=1

m∑
i′=1

ΨkkΨk′k′δikδi`δi`′δi′k′δi′ ˜̀δi′ ˜̀′σi`σi`′σi′ ˜̀σi′ ˜̀′ .
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Then for any ` 6= `′ and ˜̀ 6= ˜̀′,
E
[
qn,m(`, `′)qn,m(˜̀, ˜̀′)]

=


∑n

k=1

∑n
k′=1

∑m
i=1 ΨkkΨk′k′E [δikδi`δi`′δik′ ] if ` = ˜̀, `′ = ˜̀′∑n

k=1

∑n
k′=1

∑m
i=1 ΨkkΨk′k′E [δikδi`δi`′δik′ ] if ` = ˜̀′, `′ = ˜̀

0 otherwise.

Thus,

E
[
T 2

2,uv

]
=

n∑
`=1

n∑
`′=1,`′ 6=`

E
[
q2
n,m(`, `′)

]
U2
`uU

2
`′v

+
n∑
`=1

n∑
`′=1,`′ 6=`

E
[
qn,m(`, `′)qn,m(`′, `)

]
U`uU`′vU`′uU`v.

Further, write

n∑
k=1

n∑
k′=1

m∑
i=1

ΨkkΨk′k′E [δikδi`δi`′δik′ ]

=

n∑
k=1

m∑
i=1

Ψ2
kkE [δikδi`δi`′ ] +

n∑
k=1

n∑
k′=1,k′ 6=k

m∑
i=1

ΨkkΨk′k′E [δikδi`δi`′δik′ ] .

Note that for any ` 6= `′,

E [δikδi`δi`′ ] =

{
1
m2 if k = ` or k = `′

1
m3 otherwise,

so that

n∑
k=1

m∑
i=1

Ψ2
kkE [δikδi`δi`′ ] =

[
2

m2
+
m− 2

m3

]
tr(Ψ2)

=
n∑
k=1

Ψ2
kk

[
1(k = ` or k = `′)

1

m
+ 1(k 6= ` and k 6= `′)

1

m2

]
≤ tr(Ψ2)

m
.

Similarly, for any ` 6= `′ and k 6= k′,

E [δikδi`δi`′δik′ ] =



1
m2 if k = `, k′ = `′

1
m2 if k = `′, k′ = `
1
m3 if k = `, k′ 6= `′

1
m3 if k 6= `, k′ = `′

1
m4 if k 6= `, k′ 6= `′
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Thus,

n∑
k=1

n∑
k′=1,k′ 6=k

m∑
i=1

ΨkkΨk′k′E [δikδi`δi`′δik′ ]

=
2

m
Ψ``Ψ`′`′ +

1

m2
Ψ``

n∑
k′=1,k′ 6=`,k′ 6=`′

Ψk′k′ +
1

m2
Ψ`′`′

n∑
k=1,k 6=`′,k 6=`

Ψkk

+
1

m3

n∑
k=1,k 6=`

n∑
k′=1,k′ 6=k,k′ 6=`′

ΨkkΨk′k′

=
2

m
Ψ``Ψ`′`′ +

1

m2
(Ψ`` + Ψ`′`′) [tr(Ψ)−Ψ`` −Ψ`′`′ ]

+
1

m3

{
[tr(Ψ)−Ψ``] [tr(Ψ)−Ψ`′`′ ]−

[
tr(Ψ2)−Ψ2

``

]}
=

2

m
Ψ``Ψ`′`′ −

1

m2
(Ψ`` + Ψ`′`′)

2

+
1

m2
(Ψ`` + Ψ`′`′) tr(Ψ)− 1

m3
(Ψ`` + Ψ`′`′) tr(Ψ)− 1

m3
tr(Ψ2)

+
1

m3

{
[tr(Ψ)]2 + Ψ``Ψ`′`′ + Ψ2

``

}
≤ 2

m
Ψ``Ψ`′`′ +

1

m2
(Ψ`` + Ψ`′`′) tr(Ψ) +

1

m3

{
[tr(Ψ)]2 + Ψ``Ψ`′`′ + Ψ2

``

}
.

Note that

n∑
`=1

n∑
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`uU

2
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`uU

2
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n∑
`=1
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`uU

2
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n∑
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Ψ2
``U

2
`uU

2
`′v ≤ ‖Ψ‖22,

n∑
`=1

n∑
`′=1,`′ 6=`

U2
`uU

2
`′v ≤ 1.

Using these to obtain

n∑
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n∑
`′=1,`′ 6=`

E
[
q2
n,m(`, `′)

]
U2
`uU

2
`′v
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m
‖Ψ‖22 +

2
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‖Ψ‖2tr(Ψ) +

1

m3

{
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}
.
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Now

n∑
`=1

n∑
`′=1,`′ 6=`

Ψ``Ψ`′`′U`uU`′vU`′uU`v

=
n∑
`=1
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 n∑
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=
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Ψ``U`uU`v
{

[UTΨU ]uv −Ψ``U`vU`u
}

≤ [UTΨU ]2uv.

Similarly,
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n∑
`=1

n∑
`′=1,`′ 6=`

Ψ2
``U`uU`′vU`′uU`v ≤ [UTΨ2U ]uv[U

TU ]uv,

n∑
`=1

n∑
`′=1,`′ 6=`

U`uU`′vU`′uU`v ≤ [UTU ]uv.

Then

n∑
`=1

n∑
`′=1,`′ 6=`

E
[
qn,m(`, `′)qn,m(`′, `)

]
U`uU`′vU`′uU`v

≤ 2

m
[UTΨU ]2uv +

2

m2
[UTΨU ]uv[U

TU ]uv

+
1

m3

{
[tr(Ψ)]2 [UTU ]uv + [UTΨU ]2uv + [UTΨ2U ]uv[U

TU ]uv

}
.

Combing the results above together gives

E
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]
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m
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Thus,
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T 2
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Choose A(Ψ,m, n) as in (22). Then
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Q.E.D.
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Table 1: Assessment of JL Lemma: n = 20, 000, d = 5.

m Random Sampling Random Projections

rs1 rs2 rs3 rp1 rp2 rp3 rp4 cs lev

Normal Norm approximation

161 0.627 0.624 0.538 0.628 0.633 0.631 0.640 0.642 0.757
322 0.801 0.792 0.700 0.790 0.795 0.795 0.800 0.793 0.909
644 0.931 0.931 0.871 0.926 0.929 0.927 0.931 0.928 0.982
966 0.978 0.972 0.932 0.971 0.974 0.974 0.975 0.972 0.997
1288 0.990 0.987 0.973 0.990 0.991 0.989 0.990 0.991 1.000
2576 1.000 1.000 0.998 1.000 1.000 1.000 1.000 1.000 1.000

Eigenvalue distortion

161 0.189 0.191 0.191 0.189 0.187 0.188 0.189 0.188 0.158
322 0.126 0.128 0.127 0.127 0.127 0.128 0.126 0.129 0.105
644 0.082 0.085 0.084 0.086 0.084 0.085 0.085 0.086 0.071
966 0.065 0.067 0.065 0.067 0.066 0.067 0.067 0.068 0.055
1288 0.055 0.056 0.055 0.056 0.056 0.056 0.055 0.055 0.045
2576 0.033 0.036 0.033 0.036 0.037 0.036 0.035 0.037 0.029

Exponential Norm approximation

161 0.432 0.429 0.402 0.627 0.624 0.636 0.628 0.637 0.717
322 0.580 0.578 0.548 0.796 0.795 0.794 0.800 0.791 0.875
644 0.747 0.738 0.717 0.925 0.930 0.929 0.930 0.928 0.972
966 0.851 0.840 0.812 0.971 0.968 0.973 0.969 0.972 0.992
1288 0.899 0.894 0.866 0.990 0.988 0.989 0.991 0.989 0.998
2576 0.986 0.974 0.975 1.000 1.000 1.000 1.000 1.000 1.000

Eigenvalue distortion

161 0.263 0.257 0.259 0.188 0.193 0.188 0.190 0.188 0.158
322 0.176 0.177 0.175 0.126 0.128 0.127 0.127 0.127 0.104
644 0.116 0.118 0.116 0.084 0.083 0.083 0.082 0.085 0.069
966 0.090 0.094 0.090 0.066 0.067 0.066 0.065 0.065 0.055
1288 0.076 0.079 0.075 0.055 0.055 0.055 0.054 0.055 0.045
2576 0.048 0.052 0.048 0.036 0.036 0.037 0.035 0.036 0.030
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Table 2: Monte Carlo Experiments: Properties of Combining Sketches, n = 1e6

K = 3
m J rs1 srht cs lev rs1 srht cs lev

β̂3 with β3 = 1.0 se(β̂3)

500 1 0.999 1.002 0.999 1.000 0.046 0.044 0.045 0.039
500 5 0.999 1.000 1.000 1.001 0.021 0.020 0.020 0.018
500 10 1.000 1.000 1.000 1.000 0.014 0.015 0.015 0.012
1000 1 1.000 0.999 0.998 1.000 0.032 0.032 0.031 0.026
1000 5 1.000 1.000 1.000 1.000 0.014 0.015 0.015 0.012
1000 10 1.000 0.999 1.000 1.000 0.010 0.010 0.010 0.008
2000 1 1.001 1.000 1.001 1.000 0.021 0.022 0.022 0.019
2000 5 1.000 1.000 1.000 1.000 0.010 0.010 0.010 0.008
2000 10 1.000 1.000 1.000 1.000 0.007 0.007 0.007 0.006
5000 1 1.000 1.001 0.999 1.000 0.014 0.014 0.014 0.012
5000 5 1.000 1.000 0.999 1.000 0.006 0.006 0.006 0.005
5000 10 1.000 1.000 1.000 1.000 0.005 0.005 0.004 0.004

Size Power, β3 = 0.98

500 1 0.050 0.040 0.062 0.063 0.081 0.069 0.071 0.104
500 5 0.035 0.029 0.021 0.045 0.114 0.115 0.123 0.185
500 10 0.039 0.051 0.053 0.037 0.276 0.258 0.265 0.345
1000 1 0.048 0.044 0.050 0.052 0.101 0.101 0.085 0.113
1000 5 0.024 0.046 0.032 0.023 0.221 0.218 0.233 0.320
1000 10 0.041 0.035 0.044 0.042 0.461 0.454 0.452 0.617
2000 1 0.045 0.052 0.058 0.055 0.136 0.142 0.147 0.189
2000 5 0.034 0.022 0.035 0.025 0.436 0.432 0.451 0.545
2000 10 0.040 0.043 0.038 0.053 0.763 0.761 0.767 0.902
5000 1 0.053 0.046 0.040 0.047 0.298 0.322 0.275 0.399
5000 5 0.026 0.018 0.026 0.019 0.835 0.832 0.829 0.930
5000 10 0.045 0.046 0.036 0.054 0.987 0.993 0.989 0.999

K = 9
m J rs1 cs rs1 cs rs1 cs rs1 cs

Size Power β̂9 se(β̂9)

500 1 0.049 0.067 0.076 0.079 0.999 0.998 0.046 0.047
500 5 0.038 0.029 0.129 0.120 1.000 1.000 0.021 0.020
500 10 0.032 0.039 0.241 0.268 0.999 1.000 0.014 0.015
1000 1 0.052 0.041 0.099 0.087 1.000 1.000 0.032 0.031
1000 5 0.036 0.027 0.219 0.214 1.000 1.000 0.014 0.014
1000 10 0.033 0.042 0.461 0.484 1.000 1.000 0.010 0.010
2000 1 0.043 0.050 0.143 0.128 1.000 0.999 0.022 0.022
2000 5 0.025 0.028 0.411 0.400 1.000 1.000 0.010 0.010
2000 10 0.041 0.044 0.782 0.773 1.000 1.000 0.007 0.007
5000 1 0.051 0.057 0.260 0.292 0.999 1.000 0.014 0.015
5000 5 0.021 0.037 0.839 0.813 1.000 1.000 0.006 0.007
5000 10 0.033 0.044 0.988 0.990 1.000 1.000 0.005 0.005
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Table 3: Inference Conscious Choice of m

n = 1e7, r = 10,K = 10,m0 = 1000, ᾱ = 0.05
(β0

1 − β10)

γ̄ σe .005 .01 .015 .02 .025

0.50 0.50 29686 7421 3298 1855 1187
0.80 0.50 67837 16959 7537 4240 2713
0.90 0.50 93965 23491 10441 5873 3759
0.50 1.00 98296 24574 10922 6143 3932
0.80 1.00 224620 56155 24958 14039 8985
0.90 1.00 311136 77784 34571 19446 12445
0.50 3.00 981128 245282 109014 61321 39245
0.80 3.00 2242020 560505 249113 140126 89681
0.90 3.00 3105562 776391 345062 194098 124222
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Table 4: Example of Belenzon et al. (2017)

(1) (2) (3) (4)
Uniform Sampling Full Sample m1 m2(m1) m3

K log(nK) (ᾱ, γ̄) = (.05, .8) τ2(∞) = 5

Dummy for eponymous 0.031** 0.035** 0.031** 0.031**
(0.001) (0.010) (0.003) (0.002)

ln(assets) 0.005** 0.000 0.006** 0.007**
(0.001) (0.004) (0.001) (0.001)

ln(no. shareholders) -0.032** -0.025** -0.030** -0.031**
(0.001) (0.007) (0.002) (0.002)

Equity dispersion -0.012** -0.007 -0.016** -0.017**
(0.001) (0.011) (0.003) (0.003)

Omitted Covariates 132 58 54

Observations 562,170 8,158 112,355 139,022

(1) (2) (3) (4)
Countsketch Full Sample m1 m2 m3

Dummy for eponymous 0.031** 0.035** 0.030** 0.032**
(0.001) (0.011) (0.003) (0.003)

ln(assets) 0.005** 0.009** 0.004** 0.005**
(0.001) (0.003) (0.001) (0.001)

ln(no. shareholders) -0.032** -0.028** -0.032** -0.032**
(0.001) (0.008) (0.002) (0.002)

Equity dispersion -0.012** -0.024 -0.010* -0.011**
(0.001) (0.014) (0.004) (0.004)

Omitted Covariates 2 1 1

Observations 562,170 8,147 112,347 139,015

Robust standard errors in parentheses
** p<0.01, * p<0.05
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