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“When an industry has thus chosen a locality ... it is likely to stay there ... so great
are the advantages ... The mysteries of the trade become no mysteries; but are as it were
in the air,... inventions and improvements in machinery, in processes and the general
organization of the business have the merits promptly discussed; if one man starts a new
idea, it is taken up by others and combined with suggestions of their own...” (Marshall
(1890), IV,x,3)

1 Introduction

The international diffusion of ideas lies at the heart of economic growth and the im-

provement of the welfare of nations. Unlike most commodities, knowledge is hard to

appropriate by its inventors and “spills over” to other agents in the economy. Under-

standing how knowledge spreads is key to understanding a number of growth enhancing

policies (for example, to work out the optimal subsidy to R&D or the degree of intellec-

tual property protection). In this paper we revisit the question of whether geographic

proximity plays an important role in the spread of knowledge and in particular how this

has changed over time. In the popular imagination the notion of the “death of distance”

(Friedman, 2005, Cairncross, 1997; Coyle, 1997) expresses the idea that information now

travels around the globe at rapid speed. Under this view, ideas generated in California

spread to Calcutta or Coventry through the Internet, conferences, telephone and other

communication devices at an unprecedented rate, and international boundaries play lit-

tle role. There is some empirical evidence to support this view (see, inter alia, Keller

(2002) and Thompson (2006)).

There are also several counter-arguments that suggest that geographical proximity

continues to exert a strong influence over knowledge flows. Indeed, in the trade literature

there is little evidence that distance has become any less important for trade flows (e.g.

the meta-analysis of Disdier and Head, 2008 or Leamer, 2007), and some evidence that its

importance may have actually increased (e.g. Evans and Harrigan, 2005, and references

therein). Distance may still matter if face-to-face interaction is important even in high

tech sectors, because knowledge is tacit and hard to codify. Globalization may also
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mean increasing specialization in the technologies where countries have comparative

advantage, implying that they have “less to learn” from one another. So ultimately this

is an empirical question - do technology spillovers increase with geographic proximity

and has this changed over time?

Figure 1 presents some raw data that is consistent with the view that distance has

become less important over time for the international transmission of ideas (we will

discuss the data in much more detail later in the paper). We plot the relative speed

of patent citations over time. For example, in the top left panel consider successful

applications to the US Patent Office for inventors living in Germany in an “early”

period (1975-1989) on the left and then in a “later” period (1990-1999) on the right.

Looking first at the early period, the height of each bar indicates how much slower

foreign inventors were in being first to cite German inventors relative to other German

inventors. So American inventors were about 40% slower in citing Germans patents than

Germans themselves and the French were about 25% slower. The fact that the bars are

almost all positive suggests the well-known phenomenon of home bias in ideas - Germans

are quicker at citing other Germans, British quicker at citing other British, etc. What

is more interesting about Figure 1 is how home bias has changed over time. On average

the bars in the later period are lower than the bars in the earlier period, suggesting

that home bias in ideas has fallen, consistent with some “death of distance” ideas. In

the post 1990 period, Americans are only about 20% slower in citing Germans and the

French are only about 10% slower in citing Germans, than the Germans themselves.

Table 1 holds the underlying data: the average time to the first citation in the early

period from a German inventor to another German inventor was 1,383 days compared

to 1,901 days for an American inventor. This shows that home bias exists. The speed of

transmission within Germany increased over time - in the later period the average time

to first citation was only 880 days. But the fall was even greater elsewhere: the time to
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first American citation fell to 1,054.

Looking across Figure 1 as a whole, the pattern is repeated in most regions - foreigners

became relatively much quicker at citing domestic patents after 1990.1 There are, of

course, many reasons why the simple patterns in the raw data might be misleading,

and much of this paper is devoted to developing and implementing the appropriate

econometric tools to show that the results in the raw data are essentially robust to

controlling for confounding factors such as unobserved fixed effects and censoring.

In terms of related literature, it is well known that tracking international knowledge

spillovers is a difficult task. One branch of the literature tries to identify the transfer

of technology indirectly by examining changing rates of total factor productivity (TFP)

growth across countries and assuming that the faster productivity growth rates of (some)

countries or industries that lie further behind the frontier is due to the transfer of ideas.2

While attractive in its simplicity, a drawback of this approach is that it only provides

indirect evidence, the positive correlation between productivity growth and the lagged

productivity gap could represent many statistical and economic mechanisms that have

nothing to do with the spread of ideas.

A second branch of the literature takes a production function and includes the R&D

of other countries as an additional variable. These papers tend to find that the R&D of

other countries is valuable, but usually not as valuable as R&D in the domestic economy.3

Most closely related to this paper, Keller (2002) takes this approach and finds evidence

1There are other interesting features in Figure 1 over and above the general fall in home bias. First,
Japanese inventors appear particularly quick at citing other countries’ inventors and this has grown
stronger over time. Second, although home bias has fallen for the US with respect to the Rest of World,
it has if anything increased with respect to the main EU countries (Germany, France and Britain). As
we will see in the econometric section, once we control for other factors, there is not much evidence for
home bias of US inventions in the later period.

2For example see Griffith, Redding and Van Reenen (2004).
3For an introduction to spillovers in general see Griliches (1992). At the cross country level see Coe

and Helpman (1995) and Keller (1998). At the industry level see Bernstein and Mohnen (1998). Work
at the firm level finds evidence that countries’ behind the frontier benefit much more from frontier R&D
than vice versa, see Bransetter (2001), Bransetter and Sakibora (2002) and Griffith, Harrison and Van
Reenen (2006).
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that technology has become more global over time. This approach has the advantage

of using a direct measure of technology, however, it is necessary to identify the relevant

external pool of information (i.e. to find a way to appropriately weight the R&D of

other countries by order of importance) and the correlation of productivity with R&D

is still a very indirect measure of the spillover itself.

A third branch is based around using patent citation information as a direct measure

of the transfer of knowledge. The citation of one patent by another strongly suggests that

the first patent contained useful knowledge which helped the second innovation. A classic

paper in this field is Jaffe, Trajtenberg and Henderson (1993), which uses a matching

methodology to show that inventors were far more likely to cite other inventors living

in geographic proximity (e.g. the same state or country) when compared to inventors in

other states or countries. Several papers have followed this approach, and a consensus

has emerged that knowledge is subject to a significant degree of “home bias”. As with

the R&D-production function, distance appears to matter.4 Most closely related to our

work Thompson (2006) uses citation data to investigate the localization of knowledge

spillovers and finds evidence to suggest that this has declined over time.

In this paper we also use citations to proxy knowledge spillovers but take a somewhat

different approach. We consider the speed with which a patent is cited, and propose

a duration modelling framework that explicitly deals with the problem of unobserved

patent characteristics that may be correlated with location or other characteristics. To

see how fixed effects could generate a bias consider the case of two countries - the US and

Japan. Assume that higher quality patents will be cited more quickly than lower quality

patents. If US inventors produce higher quality patents and inventors that produce

higher quality patents are also more nimble at using the ideas of other countries then we

4For example, Jaffe and Trajtenberg (1999) found that inventors in one country were far more likely
to cite inventors living in the same country than in other countries, although this difference tended
to diminish over time. Thompson and Fox-Kean (2005) argue that using more disaggregated patent
classes drives away localization effects within the US, but they still observe home bias between the US
and other countries. See also Henderson, Jaffe and Trajtenberg (2005) for a rejoinder.
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will observe that US inventors will tend to cite other US inventors more than they cite

Japanese inventors. This will give the impression of “home bias” whereas in fact it is to

do with the higher average quality of US inventors which leads to both the generation

of new knowledge and the faster absorption of older knowledge. Controlling for fixed

effects will therefore reduce the degree of “home bias” observed in naive estimators5.

Using a duration model without fixed effects we find evidence of large home bias, in

line with the most of the existing literature. But, we find that home bias is partly a sta-

tistical artefact of the failure to control for unobserved heterogeneity (e.g. differences in

patent quality). This heterogeneity has been found to be an important feature of patent

values (e.g. Pakes, 1986). Our most important finding is that even after controlling

for fixed effects, other covariates and censoring inter-country home bias appears to have

fallen over time. This is consistent with the raw data shown in Figure 1 and Table 1.

Other econometric evidence that we are aware of that shows that geography matters less

over time is Keller (2002) and Thompson (2006), mentioned above, and Kim, Morse and

Zingales (2006), who find that the lower apparent degree of spillovers within elite US

university departments.6 Our work provides new evidence that the geographical local-

ization of knowledge spillovers has fallen over time. Furthermore, the fall in home bias

has been greater in the more “traditional” sectors (such as Chemicals and Mechanical

Engineering) than the more “modern” technological sectors (such as the Information

and Communication Technologies sector and the Pharmaceutical sector). The is con-

sistent with the evidence for agglomeration and clustering in these high tech sectors as

5The bias is not easily signed. Consider a second scenario where inventions in Japan remain of lower
quality on average than in the US, but Japanese inventors are faster at absorbing old knowledge than
their US counterparts. This will make it appear that Japanese inventors cite US inventors a lot and
could disguise the existence of home bias. In this case, controlling for fixed effects will remove the bias
and increase the degree of home bias observed in non-fixed effects estimators. In summary, the fixed
effects bias could go in either direction, but certainly could be important.

6A recent paper by Head, Mayer and Ries (2007) estimates a gravity model of trade for services. As
with goods, they find no evidence of distance mattering less for services as a whole. However for one
important sub-sector, “miscellaneous business services”, distance does appear to matter less in 2004
than in 1992.
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suggested by some economic geography models (see Redding, 2009).

Our econometric method builds on Chamberlain (1985) and Ridder and Tunali

(1999), which is based on a multiple-spell duration model, is new in the empirical lit-

erature on knowledge spillovers. Our method has several important advantages over

previously used methods in the literature: first, we focus on the first few citations, for

which we believe geography matters most (note that we are careful to show the sensi-

tivity of our results to using the different numbers of citations). Second, we allow for a

very general form of patent heterogeneity, thus providing new empirical evidence that is

unlikely to be driven by different qualities or unobserved characteristics of cited patents.

Third, we correct for the censoring problem, which is that newly granted patents are less

likely to be cited by other patents, hence avoiding the standard problem in analyzing

patent citation data. The method we apply has a number of potential applications be-

yond the one we investigate in this paper, for example, one could analyze the degrees of

importance of geography within the United Sates across different states. Another pos-

sible application is to look at the extent to which knowledge spreads differently across

institutions, such as universities, private firms and government labs.

The paper is laid out as follows. Section 2 sketches our econometric model. Section

3 details the data and Section 4 gives the results. Some concluding comments are in

Section 5. Appendix A provides the details of our estimation method, the asymptotic

distribution of our estimator, and comparisons between our econometric model and

related models in the literature. Appendix B gives additional data description and

estimation results.
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2 Modelling Strategy

Consider that there are a set of inventions i = 1, ...., I and a set of inventors j = 1, ...J .

We take this pool of inventions and inventors as exogenously determined7, with their

numbers growing over time. The inventors will “learn”8 of invention i after a time period

Tij . We think of Tij as the “diffusion lag” between invention i and inventor j.

T is is non-negative random variable with distribution F (t) and density f(t). There

are several factors which determine the diffusion lag including characteristics of the in-

vention Zi, characteristics of the inventor Zj and the joint characteristics of the invention-

inventor match, Zij . There will be a set of non-geographical variables that will influence

the speed at which information flows. For example news of a higher quality invention

may travel more quickly as will inventions in a more established technological fields

compared to newer areas. Similarly, lower quality inventors may be slow in picking up

on news of new technologies. Finally, information will diffuse more quickly for inventors

and inventions operating in the same technological field compared to those operating in

different fields.

Our main interest is in geographical barriers to knowledge transfusion as proxied

national boundaries. Thus, we hypothesize the non-geographical factors determine the

expected diffusion lag, but there will be an additional cost of transmitting information

depending upon whether inventors are located in the same country as an invention or

are in a different country. To the extent that this slows down the diffusion of knowledge

we will say that there is a “home bias”. Note that this home bias exists over and above

any effect arising that inventions or inventors might be intrinsically faster (or slower) in

picking up knowledge in general. We can control for these by linear country dummies

7Many general equilibrium growth models seek to derive the stocks of inventions and inventors as
endogneously related to the diffusion lag (e.g. Cabellero and Jaffe 1993), but we abstract from these
considerations here.

8Learning can be interpreted in different ways. It is a combination of becoming aware of the inven-
tion, understanding it and then finding it useful enough to build on to develop new knowledge.
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of invention (CTYi) and inventor (CTYj), with the key home bias term being terms in

whether the particular pair of countries (CTYij) matters for diffusion.

The hazard function of the diffusion lag is defined as f(t)
1−F (t)

which we model as a

function of observables, Xij incorporating the empirically observable counterparts to Zij

and Zj , and an unobservable fixed effect, Ui which absorbs all the factors specific to the

cited patent (such as quality).

In our application inventions will be measured by cited patents, inventors by citing

patents and the diffusion lag by the duration of the citation lag between invention and

inventor. We estimate the impact of home bias on knowledge spillovers using a multiple-

spell duration model. Consider a patent that is taken out (the cited patent) and the

patents that subsequently cite it (the citing patents) - if geography is important for the

flow of information then we should expect to see that durations are shorter when the

citing inventor is located near the cited inventor. We focus on the first few citations.

Geography matters because most of the knowledge in a new invention is tacit, whereas

over time this information becomes codified. Consequently, over time information about

the invention is more easily transmitted across distances, and researchers with direct

knowledge of the invention become more geographically disperse. We see evidence of

this in the raw patents data. For example, if we look at all patents taken out by German

firms, and we look at who first cites that patent, in 17% of cases it is another firm located

in Germany, while if we look at the fifth time the patent is cited then 12% are firms

located in Germany, while by the 10th time the patent is cited 10% are located in

Germany. Looking across other locations we see that the share of cases where the cited

and citing firm are in the same country falls monotonically, with a higher share of the

1st citations being in the same country.

As highlighted above, unobserved heterogeneity could confound our estimates as

higher quality patents may be cited more quickly. To control for this we use an estimator
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that is analogous to the linear difference estimator by comparing the first and second

citations for each cited patent. By comparing the difference between the citing patents

we are able to “difference out” the unobserved characteristics of the cited patent.9

Let subscript i index cited patents and subscript j citing patents. Under this con-

vention, let Y ∗

ij denote the j-th citation duration for the i-th patent, that is the number

of days from the date when the i-th cited patent is granted to the date when the j-th

citing patent is granted, where i = 1, . . . , n and j = 1, . . . , J .10 Here n is the the num-

ber of patents and J is the number of (potential) citations for each cited patent. Also,

let Xij denote the attributes of the j-th citing patent for the i-th cited patent and Ui

denote unobserved characteristics of the cited patent. For example, Ui may represent

unobserved quality of the cited patent.

We consider a multiple-spell version of the mixed proportional hazards model. The

hazard that Y ∗

ij = y∗ij conditional on Xij = xij and Ui = ui has the form

λi(y
∗

ij) exp(x
′

ijβ + ui) (1)

where β is a vector of unknown parameters and λi(·) is a cited-patent specific baseline

hazard function.

The citation durations Y ∗

ij are assumed to be independent of each other, conditional

on the observed and unobserved characteristics (Xij, Ui). In addition, the observed

covariates Xij are assumed to be constant within each spell but to vary over spells. For

example, Xij may include the location of the inventor of the j-th citing patent for the i-

th cited patent. We allow Ui to be arbitrarily correlated with Xij and do not impose any

distributional assumptions on Ui, and therefore, Ui is a fixed effect. The multiple-spell

structure allows Ui to have a very general form, compared to unobserved heterogeneity

9See, for example, Chamberlain (1985), Ridder and Tunali (1999), Horowitz and Lee (2004), and
Lee (2008).

10The notation Y ∗
ij is used to reflect that Y ∗

ij is a latent variable due to the usual right censoring
problem. In fact, we observe Yij = min(Y ∗

ij , Ci) and ∆ij = 1(Y ∗
ij < Ci), where 1(·) is the usual indicator

function and Ci denotes the censoring time. See Appendix A for details on how to handle censoring.
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in the single-spell duration models. The functional form of the baseline hazard function

λi(·) is unspecified and it can also vary across different cited patents. Therefore, the

model also allows for unobserved heterogeneity in the shape of the hazard function.11

The conditional independence assumption is indispensable in our econometric mod-

elling strategy. The important implication of this assumption is that it requires that one

citation does not lead to another citation. What would cause us problems is if the first

citation of a patent provided information to other potential citers and therefore affected

the duration to the next citation.12

Under the conditional independence assumption, such that Y ∗

ij are independent of

each other conditional on (Xij, Ui), we can estimate β using a conditional likelihood

approach (e.g. Chamberlain, 1985; Ridder and Tunali, 1999). The idea behind the

conditional likelihood approach is as follows. Assume that there are only two potential

citing patents (J = 2). The probability that the observed first citation duration is first,

conditional on the duration of the first citation, is given by

Pr[Y ∗

i1 ≤ Y ∗

i2|min{Y ∗

i1, Y
∗

i2} = y∗1i, Xi1 = xi1, X2 = xi2, Ui = ui]

=
λi(y

∗

1i) exp(x
′

i1β + ui)

λi(y∗1i) exp(x
′

i1β + ui) + λi(y∗1i) exp(x
′

i2β + ui)

=
exp(x′

i1β)

exp(x′

i1β) + exp(x′

i2β)
, (2)

which does not depend on ui or λi. Therefore, β can be estimated based on this condi-

tional likelihood without the ‘incidental parameters’ problem.13

11The heterogeneity term Ui is not separately identified from the baseline hazard function λi(·). The
model in (1) can be re-written as λ̃i(y

∗
ij) exp(x

′
ijβ) with λ̃i = exp(ui)λi.

12While this is of course possible we believe that it is not a major problem in our context because we
are focussing on first and second (or third and fourth) citations. Due to the publication lag, the first
citation is often not public by time when the second citation is made.

13Thompson (2006) uses Chamberlain’s (1980) conditional logit model to estimate the effects of
localized knowledge spillovers. His paper is different from ours in two main ways. First, he uses pairs of
citing and cited patents to construct the binary matching indicators (the dependent variable), whereas
we start from a multi-spell duration model and then use only the first few citations. Second, Thompson
(2006) uses an interaction term between the indicator variable for inventor citations and the cited patent
age to identify the effects of knowledge spillovers, whereas we use the location of the inventor of a citing
patent. See Appendix A.3.2 for more details.
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A usual problem with analyzing such data is censoring. Given any dataset there

will be some patents that have not (yet) been cited, but which could in future be

cited. The standard conditional likelihood approach (see, e.g. Chamberlain, 1985)

can handle censoring if one always observes covariates Xij. In our application, like

many others, Xij are only observed when durations are uncensored. For example, we

can identify the location of the inventor of a citing patent only in the case when it is

observed. This problem forces us to use only uncensored spells and this may introduce a

selection problem. In our data, citation durations are obtained by looking at all recorded

citations at a particular date (December 31st 1999). We therefore treat the censoring as

independent of citation durations and covariates (what we need is that the application

and grant dates are independent of quality), and then weight the observations by the

inverse of the propensity to observe complete spells. This is analogous to the way that

missing data are treated in inverse probability weighted estimation (e.g. Wooldridge,

2007). See Appendix A for details of our estimation method.

There are two main differences between our approach and the more usual Jaffe and

Trajtenberg (1999) approach. First, a major advantage is that we can control for un-

observed heterogeneity in a way that they do not. Consistent with Thompson and

Fox-Kean (2005) we find that using three digit technology classes is an inadequate con-

trol as the number of rejections of home bias fall substantially when we include our

fixed effects over and above these technology dummies. Second, as with any fixed effect

estimator a potential disadvantage of our approach is that we use only a sub-sample of

the data that they use (two or more cites instead of all cites). We do not attempt to

characterize the entire shape of the citation function, but rather focus on the first few

cites. We believe that this is a natural approach to examining international spillovers,

as localization effects should be strongest soon after a patent is granted when knowledge

is still mostly tacit. Nevertheless, we see this approach as a complement rather than a
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substitute for the Jaffe and Trajtenberg (1999) model.14 See Appendix A.3 for a more

detailed comparison of our approach with others in the literature.

3 Data

To implement this estimator we use data from the NBER US Patent Citations Data

File.15 These data include information on all patents taken out at the United States

Patent Office (USPTO) and have been widely used in the economic analysis of spillovers.

Table 2 shows the sample sizes for our analysis. The NBER data consist of patents

granted and citations made to these patents between 1975 and 1999. In total we use

data on over 2.1 million cited patents. While these patents were all taken out in the

USPTO, the assignees and inventors can be located anywhere in the world. We use

the information on the inventors’ addresses to identify the location of the patent.16 We

focus on inventors located in the G5 countries - US, Japan, France, Germany and Great

Britain. We group the remaining EU countries together,17 and then consider the Rest

of the World (“RW”) as the residual category. Unsurprisingly, the US is the leading

country with nearly 1.2 million patents, and Japan is second with nearly 400,000. We

split our sample into two sub-periods, 1975-1989 and 1990-1999, and consider whether

the evidence for home bias differs over these two periods.

Crucially for our purposes, the NBER data contain information on all subsequent

citations to each patent made by other patents. In our baseline results, we use the infor-

mation contained in the first and second citations to implement the estimator described

in the previous section. As highlighted above, an issue that arises with using citation

14See Belenzon and Van Reenen (2007) for evidence on the changing time patterns of citations using
an approach closer to Jaffe and Trajtenberg (1999).

15See Jaffe (1986), Hall, Jaffe and Trajtenberg (2001), Jaffe and Trajtenberg (2002) and Hall, Jaffe
and Trajtenberg (2005).

16Where there is more than one inventor we follow Jaffe et al (1993) and allocate patents to the
country where the majority of inventors are located. In the case of ties we randomly choose one of the
countries.

17These are Austria, Belgium, Denmark, Finland, Greece, Ireland, Italy, Luxembourg, Netherlands,
Portugal, Spain and Sweden.
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data is the problem that for some patents (those taken out near the end of the period)

these citations will be censored - that is the first or second citation will not have occurred

yet. This is a well documented problem with using citation data18. For example, in our

data (see Table 3), for 28% of patents in the chemicals technology sector we never see

a citation, for 15% we see only one citation, and for the remaining 56% we see two or

more citations. Similar patterns are observed for other technology sectors. Because of

this it is important that our empirical methods correct for censoring biases.

We control for whether or not the citation is a self-citation (i.e. whether the assignee

is the same on the cited and citing patent) and whether or not the cited and citing patent

are in the same technology class. We also control for the size of the base of potential

citing patents, that is the number of patents in the citing country and technology sub-

category for the citing year. We discuss the interpretation of this variable in sub-section

4.4. below, but it is there reflect the explosion of patenting which led to some diminution

of average patent quality (see Kortum and Lerner, 1999; Jaffe and Lerner, 2004).

Table 3 reports some summary statistics for these control variables by technology

category. In Chemicals, 22% of all first citations are self-citations, and this falls to

19% for the second citation. On average across technology sectors just under 20% are

self citations and this declines by 2-4% from the first citation to the second citation.

More than 65% of citations are from the same technology class. The proportions of

self-citations, same technology class and the averages of the bases (potential cites) are

characteristics of citing patents and thus they are obtained from only complete citation

spells.

18For example, Hall, Jaffe and Trajtenberg, (2001) and Bloom and Van Reenen (2002).
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4 Results

4.1 Basic Results

We implement the estimator described above on all patents granted by the USPTO

between 1975 and 1999. We report results across seven regions and six technology

categories, and allow all the coefficients to vary across these groups.

4.1.1 An example - Chemical Engineering

We begin by going through the results for one technology category in one country to

illustrate our methodology. In Table 4 we show the coefficient estimates for the citing

country dummies when we look at Chemical Engineering in Germany. Each column in

Table 4 reports the results from a different regression. The omitted category is the own

country - the location of the cited patent - which in this case is Germany (DE). There

are potentially 46,697 cited patents in Chemical Engineering in Germany over this time

period, and from this sample 25,016 patents are cited at least twice. The main variables

of interest are the indicators of the country of the citing firm. Also included in the

regression is an indicator of whether the citation is a self-citation, whether the cited and

citing patent are in the same technology class (three digit), and the total number of

citing patents in that country and technology class for the citing year.

In column (1) of Table 4 we estimate the coefficients using a proportional hazard

model with only the first citation duration. This is equivalent to our model without

fixed effects (and constraining the baseline hazard to be the same across patents), i.e.

compared to equation (1) we assume,

λ(y∗ij) exp(x
′

ijβ). (3)

To keep the sample the same as when estimating the fixed effects model we restrict

the estimation to patents with at least two citations. The coefficients on the country

dummies indicate whether inventors located in that country cite German inventors in
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chemical engineering faster (a positive coefficient) or slower (a negative coefficient) than

inventors from the omitted category (which is always the own country, in this case

Germany). If there is home bias we expect negative coefficients on the other country

dummies, i.e. they are slower to cite than home inventors. In column (1) we see negative

and significant coefficients on four country dummies; these suggest strong support for

home bias. Japanese inventors are the swiftest foreign group to cite German inventors -

they are actually 3% faster than German inventors themselves, although the estimated

coefficient is insignificant at the 5% level. By contrast inventors in France are 15% slower

to cite German patents.

In column (2) of Table 4 we control for unobserved cited patent characteristics (e.g.

quality) which may be correlated with the speed with which the patent is cited, by

estimating the coefficients using the fixed effect estimator (without correcting for cen-

soring).19 When fixed effects are included most coefficients become closer to zero and

the all country dummies become statistically insignificantly different from zero, except

for the rest of the world (RW). This suggests that failure to control for unobserved

heterogeneity increases the degree of home bias.20 The simple fixed effects estimator in

column (2) ignores the problem of censoring. In column (3) we also allow for censor-

ing, which leads to little change in most of the coefficients (but increases the standard

errors a bit), and has relatively little effect on the qualitative findings. As would be

expected, if the patent is taken out by the same assignee (a self-citation) the citation

speed is significantly faster (about 48% faster than non self-citations in column (3)).

Similarly, patents in the same technology class cite each other significantly faster (15%

faster than patents in different technology classes according to column (3)). Patents in

larger country-technology classes are cited less frequently.

19Specifically, the estimator maximizes the likelihood equation (A1) in the Appendix without the
correction term Gn(max[Yi1, Yi2]).

20It is possible to have a case in which failure to control for unobserved heterogeneity decreases the
degree of home bias since the direction of bias from failure to control for fixed effects cannot be signed
a priori.
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We continue to illustrate the method by looking across all countries but still restrict-

ing ourselves to patents in the Chemical Engineering category. In Table 5 each row

contains parameter estimates from a separate multiple spell duration model for each

country. For example, the first row shows the results from column (3) of Table 4 (the

coefficients on self-citation, technology class and base are not reported). Table 5 shows

only the results for the fixed effects and censoring model (denoted “FE + C”), i.e. the

model shown in column (3) of Table 4.

What do the coefficients in Table 5 tell us? As before, the omitted base category is

always the home country, and negative coefficients suggest home bias. Looking across

the second row for France, we see that only inventors from the “rest of the world”

(mainly developing countries) are significantly slower to cite French inventors than the

French themselves: the coefficients for German, British, EU, Japanese, and US inventors

are insignificant and inventors from the rest of the world are 33% slower to cite French

inventors. So, just as in the German case, we do not see home bias after controlling for

unobserved heterogeneity within the main developed nations. Note that all regressions

include unreported controls for whether the citation is a self citation, whether it is in

the same technology sub-category (three digit) and the total number of citing patents in

that country and technology class (“base”). Most of these controls are highly significant

and would lead to the impression of home bias if omitted.21 The story is different if

we look at the US (row (6) in Table 5). All countries except Germany are significantly

slower to cite US investors than the American themselves: the French inventors are

15% slower to cite US inventors, British are 10% slower, other Europeans 22% slower,

Japanese 6% slower, and the rest of world 24% slower. A similar pattern exists for Japan

- the European countries are much slower to cite Japanese patents than the Japanese

themselves.

We give a graphical representation of the results from Table 5 in Figure 2 to make

21This is true for all econometric models, as seen in all columns in Table 4.
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it easier to eyeball the results. Each cell corresponds to the equivalent cell in Table 5.

A circle represents a negative coefficient (home bias) and a cross represents a positive

coefficient. The size of the circle or the cross corresponds to the level of statistical

significance of a one-sided test for the null hypothesis that the corresponding coefficient

is zero. A large circle represents significance at the 1% level, a medium circle significance

at the 5% level, a small circle significance at the 10% level, and a tiny circle insignificance

at the 10% level. The same ordering applies to crosses. The leading diagonal corresponds

to the omitted variable in each regression and therefore no coefficient is estimated or

displayed.22 So it is possible to immediately detect the degree of home bias for a country

by looking at the number and size of circles across a row. The United States as country

of cited patents, for example, has a full row of large circles indicating significant home

bias, whereas European countries do not (this feature is not apparent from the raw

data from all sectors in Figure 1). It is also clear from Figure 2 that there is less

home bias among the EU countries (points in the top-left quadrant marked with the

dashed line box), compared to between the non-EU countries and EU countries. The

top right quadrant contains no rejections for the Japan and US columns, suggesting

that Japan and the US are no slower in citing European patents than European own

inventors; however, the bottom left quadrant contains many rejections for the Japan

and US rows, suggesting that European countries (except Germany) are slower in citing

Japanese and US patents. Hence, there exists an interesting asymmetry between the

European block and the Japan/US block, in the sense that European inventors are slow

to cite Japanese and American patents but Japan/US-located inventors are quick to cite

European patents. Another interesting asymmetry exists - the rest of the world is slow

to cite main developed countries, while the main developed countries are quick to cite

the rest of the world23.

22A full set of results are available on request from the authors.
23Germany is different to the other European countries in that it is particularly quick to cite other

countries in Chemicals, but not other industries (see Figure 3). This may be because Germany has a
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4.1.2 Main Results

We conduct the equivalent analysis across all seven regions and six sectors. Table 6

summarizes the results (full results available on request). The number of rejections of

one-sided t-tests for the coefficients on country dummies are shown for each sector. Test

results are shown for three levels (1%, 5%, and 10%) using the no fixed effect hazard

model estimator (“No FE”), the fixed effect estimator (“FE”), and the censored fixed

effect estimator (“FE+C”).

The first striking result in Table 6 is that there appears to be strong evidence for

home bias when we consider the model that does not control for unobserved heterogeneity

(columns (1)-(3)). Of the 252 tests24 for no home bias, we reject 150 at the 5% level,

or around 60%. This is consistent with evidence from the analysis of citations data in

other econometric studies (Jaffe and Trajtenberg, 1999; Jaffe et al, 2005; Thompson

and Fox-Kean, 2005). However, the picture changes when we control for unobserved

heterogeneity (columns (4) through (6)). Comparing column (5) to column (2), for

example, the rejection rate (the proportion of possible rejections that are in fact rejected)

falls from 60% to 31%. In other words, there are far fewer rejections of home bias once

we control for unobserved heterogeneity. Controlling for censoring makes relatively little

difference to the total number of rejects in columns (7) through (9), the rejection rate

is the same in column (8), where we control for censoring, as in column (5), where we

do not, although it does affect some of the individual results.

The impact of controlling for unobserved cited patent effects can also be seen graphi-

cally in Figure 3. For each sector, the left hand side diagrams shows the pattern without

controlling for fixed effects (no FE), whereas the right hand side presents results from

long standing comparative advantage in the Chemical industry. Arora, Landau and Rosenberg (1999)
emphasise the historically strong international links of scientists working in organic chemistry in Ger-
many. Another possible reason is that public sector investment in applied research in Germany has taken
quite a different form than in other countries, notably the major investments by the government in the
Fraunhofer Institutes, which has included several located in the US (see http://www.fraunhofer.de/en/).

24Seven country regressions and six country dummies for each regression gives 42 tests for each sector.
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our preferred specifications with controls for fixed effects and censoring (FE + C). It is

clear that the proportion of large circles (evidence of significantly slower citations by an-

other country) falls when moving from the no-fixed-effects specifications to the preferred

specifications. This phenomenon is much less apparent in Computers and Communica-

tions - in Table 6 the number of rejections generally halves when we move between the

no fixed effects specifications of column (2) to the fixed effects specifications of column

(5), yet for Computers and Communications the number of rejections essentially remains

the same. There are far fewer rejections even without fixed effects for Computers, while

once we control for unobserved quality (column (5) Table 6) The number of rejections

is quite similar across industries.

Why does unobserved heterogeneity not lead to the same sort of bias in Computers

as it did in other industries? That is hard to say. The bias from omitted unobserved

heterogeneity is not easily signed and could in principle go in either direction (see foot-

note 5). In the raw data (when we do not control for unobserved quality) it seems that

the computer industry is very international compared to other industries, yet when we

control for unobserved quality this wipes out most of this difference by reducing the

evidence for home bias in other industries.

A second feature of Table 6 and Figure 3 is that the models without fixed effects

suggest a sectoral pattern with less home bias in the “modern” sectors of Electrical and

Electronic and Computers and Communications than in the more traditional sectors (e.g.

Chemicals). This is similar to Peri (2005) who finds that knowledge spreads much more

quickly across regional boundaries in the computer and communication sector. However,

once we control for unobserved heterogeneity the sectors look relatively similar.

A third feature of Figure 3 is that the Rest of World (mainly non-OECD countries)

are consistently slower in citing the patents of the OECD countries. This suggests that

non-OECD countries are more “cut-off” from international pools of knowledge, either
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because of their distance, infrastructure or development levels.

4.2 Falling home bias over time?

We now turn to the important issue of whether home bias has fallen over time, as some

commentators have suggested (e.g. due to the falling costs of international communi-

cation and/or travel). We divide our sample into an “early” period (1975-1989) and

a “late” period (1990-1999) where there are a similar absolute number of citations in

each period (see Table 2). We re-estimate all of our models on these two sub-periods

separately. We report a summary of these results in Tables 7 and 8 and Figure 4.25 It

is particularly important to control for censoring in this comparison, as the results from

the second period will be much more affected by censoring than the former period.

In columns (1) and (2) of Table 7 we see that there is a large decline in rejection

rates over time. No home bias is rejected in 48% of cases in the early period, but only

for 28% of cases in the later period (in the table we report results at the 5% significance

level). In columns (3) and (4) we repeat the exercise, but focus on OECD countries.26

There is substantial home bias for the non-OECD countries, as noted above, so we

wanted to check that the time series changes are not being driven by them alone. It is

clear that the main patterns of results stand up. Although the absolute level of home

bias is lower, the fall in the degree of home bias is dramatic. On average the rejection

rate falls from 47% to 24%. The final two columns look within the European countries

(counting rejections only on European country dummy coefficients of European-country-

cited-patent regressions). The patterns are similar, with a large decline in home bias.

As we saw above, controlling for unobserved heterogeneity is important. In Table 8

we find that in most cases in both periods, the level of home bias is lower when we control

25The full results of these estimations are available on request from the authors.
26In other words we report the number of rejections for country dummy coefficients dropping the

“Rest of the World” coefficients and also dropping coefficients from the “Rest of the World” cited
patent regressions.
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for fixed effects (and censoring), but the reduction in home bias is more substantial in

the early period than in the later period (the rejection rate falls from 30% to 22%).

The reduction in home bias over time is less striking, because there is less evidence of

home bias existing in the first place. Looking at the first two columns of Table 8 we

see that home bias declined in Chemicals, Electrical and Mechanical. By contrast in

Computers and Communication (ICT) and Drugs, the “modern” sectors, we see little

change (if anything an increase in the number of rejections). At first glance this might

seem surprising as it is commonly assumed that ICT leads to delocalization.

Our aim in this paper is to identify “stylized facts” on home bias; what we identify

is a reduced form of various structural influences that could slow down knowledge dif-

fusion. What might these structural influences be? First, there are explicit information

acquisition and communication costs that make it harder for inventors in country A to

learn about inventions in country B because of telecommunication prices. The advent

of e-mail, cellular phones, the Internet, liberalization of state telephone monopolies, etc.

has clearly reduced the costs of these explicit costs. In opposition to this there are var-

ious agglomeration effects which will tend to make local interaction more important (at

least in some sectors). When technologies are complex and/or at an early stage then

local communication to facilitate the transfer of tacit know-how may be particularly

important.

ICT and pharmaceuticals are the two sectors where there has been the most dis-

cussion of “clustering” (e.g. ICT in Silicon Valley and biotechnology in Cambridge,

Massachusetts)27. These results are also shown in Figure 4, where the left hand side

diagrams are of the early period and the right hand side diagrams are of the late period:

the later period has far fewer “circles” (evidence for home bias) than the earlier period.

It is plausible that in Computers and Communications agglomeration effects may

have become stronger over time (relative to other sectors) so as to offset the falling com-

27For example see Zucker, Darby and Brewer (1998) on biotechnology.
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munication costs that they would disproportionately benefit from. It is hard to produce

direct evidence to support this case, but there is some indirect evidence consistent with

this idea. First, in terms of technological complexity, the ICT-producing industries have

enjoyed very rapid technological change over our sample period. Quality-adjusted prices

for computers were falling at something like 15% per annum until the early 1990s after

which the price falls accelerated to around 30%. This appeared to be partially driven by

a speed-up in the technological cycle of the semi-conductor industry28. Rapid techno-

logical change is thought to make face to face communication and geographically-based

knowledge spillovers more important.

Second, the geographical clustering of the ICT industry appears to have strengthened

rather than weakened over time. For example, despite high wages and land prices in

Silicon Valley leading software companies such as Apple, Oracle or Google have not

chosen to decamp en masse, but seem to benefit from proximity to other ICT-oriented

firms.

Third, several recent papers have pointed to the rise of “superstar cities” with high

skilled workers and high tech industries and workers increasingly co-located in the same

localities (for example, Gyourko et al, 2006). These cities (such as San Francisco and

New York) have an increasing concentration of graduate workers and high tech jobs

and have lead to increasing spatial inequality. There are various hypotheses that could

explain this, but one leading explanation is that high-tech sectors, such as ICT, are

increasing clustered in certain areas and this generates demand for high skilled workers

(for example, Moretti, 2010).

While we cannot be certain that these are the reasons that there we do not see a fall

in home bias in some industries, the most likely rationalization seems to be an increased

importance of agglomeration has offset the fall in explicit communication costs along

28Some authors go so far to say that the productivity acceleration in the US was in large part due to
accelerated technical progress in ICT (Jorgenson, 2001 and van Ark et al, 2008).
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the lines discussed.

One of the things that Figure 4 shows quite clearly is that in the early period the US

had a substantial advantage in terms of “absorptive capacity”, US firms were quick to

learn from and cite European patents, while European firms were slower to cite US firms

and each other. In the later period European firms now cite US patents more quickly,

and the US has lost this advantage. We see this by comparing the “US” row for US

cited patents in the early period (on the left-hand side) with the later period (the US

row on the right-hand side). The evidence of home bias (large circles) has been replaced

by evidence of no home bias (a dot) or in some cases even evidence of more speedy

knowledge flows (indicated by pluses). This is true in all industries except Computers,

where the US seems to have maintained its advantage in terms of absorptive capacity.

The obvious conclusion is that home bias has fallen, and it has fallen in those sectors

where one would a priori expect it to fall. This seems to be the new concrete quantitative

evidence for an aspect of globalization that is much discussed - the increasing propensity

of knowledge to slip over geographic boundaries. Our conclusion is consistent with Keller

(2002) who shows geographic localization declined over time between countries, using a

model in which productivity depends on domestic and foreign R&D and the effectiveness

of foreign R&D is negatively related to the distance from the foreign economy, and also

consistent with recent evidence from Kim, Morse and Zingales (2006) that the “spillover”

benefits that academics obtain from their colleagues within the same university are less

important now than they were two decades ago.

4.3 Using longer lags of citations

Our baseline results use only the first two citations to measure home bias. Why not use

the third, fourth, fifth, etc. citation? Our main reason is because we believe that the

theoretically relevant information is contained in the first few citations. This is before

the patent has become more general public knowledge, it is when information is the
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most tacit. After the patent has been published and cited it becomes codified, and there

is less reason to believe that geography should matter. In addition, we have argued for

a smaller number of citations on grounds of theory (the first few cites are likely to be

where home bias is greatest due to tacitness of knowledge) and parsimony (we need at

least two observations to “difference out” the fixed effect, so the first two citations is the

minimum number).

Nevertheless, to tackle this issue directly we also checked the robustness of our results

to including the third and fourth cites. The conditional likelihood estimator developed

in Section 2 can easily be extended for more than two citations. Suppose that J = 3,

i.e. that there are three potential citing patents. Then it is straightforward to show that

the probability that the observed second citation is second, conditional on the durations

of the first and second citations, has the logit form as in equation (1), independent of

unobserved heterogeneity. Thus, this implies that one can obtain another censored fixed

effect estimator in exactly the same way as in equation (2) by replacing the subscripts

1 and 2 with subscript 2 and 3, respectively.29

Our qualitative findings did not change.30 For example, in Table 6, for the 5%

level, the number of rejections falls from 150 (No FE) to 77 (FE+C) as we control for

unobserved heterogeneity of citing patents and the censoring problem. When we use the

second and third citations, for the same level, the number of rejections changes from 130

(No FE) to 75 (FE+C); when we use the third and fourth citations, the number falls

from 121 (No FE) to 48 (FE+C). The larger decline with the third and fourth citations

is consistent with our conjecture that geography is less important as the patent becomes

more general public knowledge.

29Similarly, if J = 4, one can show that the probability that the observed third citation is third,
conditional on the durations of the first, second and third citations has the logit form again, independent
of unobserved heterogeneity. Then one can obtain yet another censored fixed estimator exactly the same
way as in equation (2) by replacing the subscripts 1 and 2 with subscript 3 and 4, respectively.

30See Tables A7 and A8 in the Appendix.
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4.4 The importance of controlling for base of citing patents

Our specifications include a control for the number of citing patents (the “base”) by

country and technology class. Although this might seem natural, in our econometric

specification we may not need to control for it because the partial likelihood estimator

is based on the partial likelihood of the identity (including origin country) of the first

citation, given the time of this first citation and the identities of the first two citations.

However, our alternative interpretation is that the legal and organizational changes to

the patent system led to large increase in patenting in some technology class/country

pairs that led to falls in average patent quality. Indeed the coefficient on base is robustly

negative, consistent with this interpretation.

We re-estimated all our regressions dropping base which led in the main to qualitively

similar results. In particular, we found evidence of home bias weakening both with fixed

effects and over time. We did find, however, that other countries appeared to cite US

inventors more quickly than inventors in their own countries when we failed to control

for base (e.g. more crosses in the row marked “US” in Table 3). We suspect that this

is because many countries took advantage of looser rules on US patenting to expand

their portfolios and also cited more out of fear of litigation. Conditioning on the total

number of cited patents controls for this bias and restores the result that (in general)

other countries cite themselves more quickly than they do US inventors.

4.5 Further Robustness tests

Could there be other reasons why the apparent decline in home bias is spurious? Firstly, a

concern may be that the number of rejections of home bias has fallen because the number

of observations is lower in the late period. But Table 2 shows that if anything the number

of patents is slightly higher in the later period (1.107 million vs. 1.031 million), so this

cannot be the reason. Secondly, could it be that the differential quality of patents has
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caused this to occur? For example, a lot of the decline in Figure 4 is because European

firms have become relatively faster at citing US patents, and Japanese firms have become

relatively slower. Our technique of using multiple cites to “difference out” the fixed effect

means that we have controlled for cited patent quality. Consequently, differential quality

cannot be the reason for the patterns we observe in Table 8 (but it might be the reason

for the patterns observed in Table 7 which does not control for fixed effects). Thirdly,

we also tried using different cut-off years and found that this lead to similar results. For

example, we obtain qualitatively similar results using 1985 as a cut-off year with the

censored fixed effect estimator - in chemicals the number of rejections using all countries

decreases from 13 in the pre-1985 period to 8 in the post-1985 period and in mechanical

engineering the fall was from 12 to 5.31 See Table A6 in the Appendix for the details.

A final concern is that our results might be driven by self-citations. Of course,

the positive coefficient on self-citations may reflect some degree of localized knowledge

spillovers and so is of interest in its own right. Nevertheless, self-citations could reflect

a bias simply to over-cite oneself, so we re-estimated all models dropping self citations.

This made little difference to the preferred results with fixed effects and censoring. For

example, the number of rejections at the 5% level in Table 6 fell merely from 77 to 76.

Dropping self-citations did make more of a difference for the no fixed effects models,

however, with the number of rejections falling from 150 in column (2) to 118 when we

drop self-citations. We conclude that another benefit of our methodology is that it helps

correct for biases induced from self-citations. See Table A9 in the Appendix for the

details.

31As before, the “modern” sectors have seen an increase in the number of rejections from 7 to 9 in
pharmaceuticals and from 9 to 11 in electrical and electronic.
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5 Conclusions

Patent citations have become an important source of information about the ways in

which knowledge flows between firms and countries. But knowledge can spread more or

less quickly due to the unobservable characteristics of patents, which may be poorly cap-

tured by observable characteristics. In this paper we propose an econometric technique

for dealing with fixed effects in duration models that exploits the existence of multiple

citations on the same patent, and implements this estimator on a database of over two

million citations between 1975 and 1999. We have focused on the speed of knowledge

flows between countries, which is a key feature of models of growth and international

trade. Many papers have argued that there is substantial “home bias” in the way that

knowledge is transmitted, in the sense that being geographically close makes knowledge

transfers easier, and this has become accepted wisdom in government support for clusters

and other forms of technology policy.

We find that controlling for unobserved heterogeneity makes a large quantitative and

qualitative difference to estimates of home bias in innovative activity. First, the evidence

for home bias is much weaker once we control for fixed effects (and censoring). The non-

fixed effects models (which are standard in the literature) suggest home bias in a majority

of cases, whereas our preferred models indicate home bias in only a minority of cases.

Second, and perhaps most provocatively, we find evidence that home bias has declined

over time, being much stronger in the pre-1990 period than the post-1990 period. We

interpret this as suggesting that information flows more easily across national boundaries

as the cost of international communication and travel has fallen. Furthermore, there is

heterogeneity in the fall in home bias: it has not occurred in the more high tech sectors

of ICT and pharmaceuticals, precisely those areas where clusters and agglomeration

are believed to be important. This suggests that international boundaries may be less

important, but that in many sectors distance is far from dead.

28



References

van Ark, Bart, Mary O’Mahony, and Marcel Timmer (2008) “The Productivity Gap

Between Europe and the United States: Trends and Causes.” Journal of Economic

Perspectives, 22(1): 25-44

Arora, Ashish, Ralph Landau and Nathan Rosenberg (1999) ”Dynamics of Comparative

Advantage in Chemical Industry” Chapter 6 in Sources of Industrial Leadership: Studies

in Seven Industries, David Mowery and Richard Nelson (eds), Cambridge University

Press

Belenzon, Sharon and John Van Reenen (2007) “How international citation propensities

have changed over time: has America become better at absorbing knowledge?”, mimeo,

Centre for Economic Performance, London School of Economics

Bernstein, Jeff and Pierre Mohnen (1998), “International R&D spillovers between US

and Japanese R&D intensive sectors” Journal of International Economics, 44, pp. 315-

38

Bloom, Nick and John Van Reenen (2002), “Real options, patents, productivity and

market value: Evidence from a panel of British firms”, Economic Journal, 112, 478,

C97-C116

Branstetter, Lee (2001), “Are knowledge spillovers international or intranational in

scope? Microeconometric evidence from the U.S. and Japan”, Journal of International

Economics, 53, pp. 53-79

Branstetter, Lee and Mariko Sakakibara (2002) “When do research consortia work well

and why? Evidence from Japanese panel data” American Economic Review, 92,1, pp.

143-159

Cabellero, Ricardo and Adam Jaffe (1993) “How high are the giants’ shoulders: an

29



empirical assessment of knowledge spillovers and creative destruction in a model of

economic growth” NBER Macroeconomics Annual, 1-64

Cairncross, Francis (1997) The Death of Distance: How the Communications Revolution

Will Change Our Lives, Harvard: Harvard Business School Press

Chamberlain, Gary (1980), “Analysis of Covariance with Qualitative Data,” Review of

Economic Studies, 47, pp. 225–238

Chamberlain, Gary (1985) “Heterogeneity, omitted variable bias, and duration depen-

dence” in: J.J. Heckman and B. Singer, (eds.) Longitudinal analysis of labor market

data Cambridge: Cambridge University Press.

Coe, David and Elhanen Helpman (1995) “International R&D Spillovers” European Eco-

nomic Review, 39 pp. 859-887

Coyle, Diane (1997) Weightless World, Princeton: Princeton University Press

Disdier, Anna-Celia and Keith Head (2008) “The Puzzling persistence of the Distance

Effect on bilateral trade” Review of Economics and Statistics, 90(1): 37-41.

Evans, Carolyn and James Harrigan (2005) “Distance, time and specialization: Lean

Retailing in general equilibrium” American Economic Review, 95, pp. 292-313

Friedman, Thomas (2005) The World is Flat, New York: Farrar, Strauss and Giroux

Griffith, Rachel, Steven Redding, and John Van Reenen (2004) “Mapping the The Two

Faces of R&D” Review of Economics and Statistics, 86 (4) pp. 883 - 895.

Griffith, Rachel, Rupert Harrison, and John Van Reenen (2006) “How special is the

special relationship? Using the impact of US R&D spillovers on UK firms as a test of

technology sourcing” American Economic Review, 76 (5), pp. 1859-1875

Griliches, Zvi (1992), “The search for R&D spillovers”, Scandinavian Journal of Eco-

30



nomics 94, pp. S29-S47

Gyourko, Joseph, Mayer, Christopher and Todd Sinai (2006) “Superstar Cities” NBER

Working Papers 12355

Hall, Bronwyn, Adam Jaffe and Manuel Trajtenberg (2001) “The NBER Patent Citation

Data File: Lessons, Insights and Methodological Tools” NBER Working Paper 8498; see

also http://www.nber.org/patents/

Hall, Bronwyn, Jaffe, Adam and Manuel Trajtenberg (2005), “Market Value and Patent

Citations: A First Look” RAND Journal of Economics, 36, pp.16-38

Heckman and Borjas (1980) ”Does Unemployment Cause Future Unemployment? Def-

initions, Questions and Answers from a Continuous Time Model of Heterogeneity and

State Dependence” Economica, Vol. 47, No. 187, Special Issue on Unemployment (Aug.,

1980), pp. 247-283

Henderson, Rebecca, Adam Jaffe and Manuel Trajtenberg (2005), “Patent citations and

the geography of spillovers: A Reassessment - Comment” American Economic Review

95, 1, pp. 461-464

Head, Keith, Mayer, Thierry and Ries, John (2007) “How remote is the offshoring

threat?”, mimeo, University of Toronto.

Horowitz, Joel L., and Sokbae Lee (2004) “Semiparametric estimation of a panel data

proportional hazards model with fixed effects”, Journal of Econometrics, 119, pp. 155-

198.

Jaffe, Adam and Manuel Trajtenberg (2002) Patents, citations and innovation: A Win-

dow on the knowledge economy” Cambridge: MIT Press

Jaffe, Adam and Manuel Trajtenberg (1999), “International knowledge flows: Evidence

31



from patent citations”, Economics of Innovation and New Technology, 8(1-2), pp 105-36

Jaffe, Adam, Manuel Trajtenberg and Rebecca Henderson (1993), “Geographic local-

ization of knowledge spillovers as evidenced by patent citations”, Quarterly Journal of

Economics 108 (3), pp 577-598

Jaffe, Adam and Josh Lerner (2004) Innovation and its Discontents: How our Bro-

ken Patent System is Endangering Innovation and Progress, and What to do About It,

Princeton: Princeton University Press

Jorgenson, Dale (2001) “Information Technology and the U.S. Economy.” American

Economic Review, 91(1): 1-32.

Keller, Wolfgang (1998) “Are international spillovers trade related? Analyzing spillovers

among randomly attached trade partners” European Economic Review, 42, pp. 1469-

1481

Keller, Wolfgang (2002), “Geographic Localization of International Technology Diffu-

sion,” American Economic Review, Vol. 92, No. 1, pp. 120-142

Khan, Shakeeb, and Elie Tamer (2010): “Irregular Identification, Support Conditions,

and Inverse Weight Estimation,” Econometrica, forthcoming.

Kim, E Han, Adair Morse and Luigi Zingales (2006) “Are Elite Universities Losing their

Competitive Edge?” NBER Working Paper 12245

Kortum, Samuel and Josh Lerner (1999) “What is behind the recent surge in patenting?”

Research Policy, 28(1), 1-22

Leamer, Edward (2007) “A Flat world, a level playing field, a small world or none of the

above?” Journal of Economic Literature, XLV(1), 83-126

Lee, Sokbae (2008) “Estimating Panel Data Duration Models with Censored Data”

32



Econometric Theory, 24: 1254-1276.

Marshall, Alfred (1890) Principles of Economics, London: Macmillan

Moretti, Enrico (2010) “Real Wage Inequality” IZA Discussion Paper 3706.

http://emlab.berkeley.edu/˜moretti/inequality.pdf

Pakes, Ariel (1986) “Patents as Options: Some estimates of the value of holding Euro-

pean Patent stocks” Econometrica, 54(4), pp755-784

Peri, Giovani (2005) “Determinants of Knowledge Flows and the effect on innovation”

Review of Economics and Statistics, 87(2), pp. 308-322

Redding, Stephen (2009) “Economic Geography:A Review of the Theoretical and Em-

pirical Literature” Centre for Economic Performance Discussion Paper No. 904

Ridder, Geert, and Insan Tunali (1999) “Stratified partial likelihood estimation” Journal

of Econometrics, 92, pp. 193-232.

Thompson, Peter (2006), “ Patent Citations and the Geography of Knowledge Spillovers:

Evidence from Inventor- and Examiner-Added Citations,” Review of Economics and

Statistics, 88 (2), pp. 383-389

Thompson, Peter and Melanie Fox-Kean (2005) “Patent citations and the geography of

knowledge spillovers: A re-assessment” American Economic Review, 95 (1) pp. 450-461

Wooldridge, Jeffrey M. (2007), “Inverse probability weighted estimation for general miss-

ing data problems” Journal of Econometrics, Volume 141, Issue 2, pp. 1281-1301.

Zucker, Lynne, Michael Darby and Marilyn Brewer (1998) “Intellectual Property and the

Birth of US Biotechnology Enterprises” American Economic Review, 88(1), pp. 290-306

33



German cited patents

DE DE

FR

FR

GB

GB

EU

EUJP

JP

US

US

RW

RW

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Early (1975-1989) Late (1990-1999)

Figure 1: Time to first citation, by cited and citing inventor location
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Notes: This graph shows the relative time (in mean number of day) from the date that a Germany inventor was granted a patent until the first citation of that patent, 
by the location of the inventor that made the first citation. For example, the first bar (diagonal bricks) for France in the early period indicates that when the first 
citation to a Germany patent was made by a French inventor this citation took on average 25% longer than when the first citation was made by a Germany 
inventor (i.e. the mean citation length to a German inventor was 1383 days compared to 1729 days (1729=1383*1.25) to a French inventor). 
Table1 shows the raw numbers for all cells. `DE' = Germany, `FR' = France, `GB' = Great Britain, `EU' = remaining EU countries together, `JP' = Japan, `US' = 
United States and `RW' = the rest of the world. In particular, `EU' consists of Austria, Belgium, Denmark, Finland, Greece, Ireland, Italy, Luxembourg, 
Netherlands, Portugal, Spain and Sweden. 



Figure 2: Graphical Representation of Estimation Results

Notes: Each cell in Figure 2 corresponds to the equivalent coefficient in column (3) of Table 4. A
circle represents a negative coefficient (home bias) and a cross represents a positive coefficient. The
size of the circle or the cross corresponds to the level of statistical significance of a one-side test for
the null hypothesis that the corresponding coefficient is zero. A large circle represents significance
at the 1% level, a medium circle significance at the 5% level, a small circle significance at the 10%
level, and a tiny circle insignificance at the 10% level. The same ordering applies to crosses. The
leading diagonal corresponds to the omitted variable in each regression and therefore no coefficient is
estimated. The upper left quadrant with dashed lines contains the cross-citations from the European
Countries. ‘DE’ = Germany, ‘FR’ = France, ‘GB’ = Great Britain, ‘EU’ = remaining EU countries
together, ‘JP’ = Japan, ‘US’ = United States and ‘RW’ = the rest of the world. In particular, ‘EU’
consists of Austria, Belgium, Denmark, Finland, Greece, Ireland, Italy, Luxembourg, Netherlands,
Portugal, Spain and Sweden.
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Figure 3: No Fixed Effects (“No FE”) and Fixed Effects with Censoring (“FE+C”)

Panel A: No Fixed Effects Panel B: Censored Fixed Effects

Notes: For each sector, the left-hand side diagram shows the pattern without controlling for fixed
effects whereas the right-hand side presents results from our preferred specifications with controls for
fixed effects and censoring. The upper left quadrant with dashed lines contains the cross-citations
from the European Countries. ‘DE’ = Germany, ‘FR’ = France, ‘GB’ = Great Britain, ‘EU’ =
remaining EU countries together, ‘JP’ = Japan, ‘US’ = United States and ‘RW’ = the rest of the
world. In particular, ‘EU’ consists of Austria, Belgium, Denmark, Finland, Greece, Ireland, Italy,
Luxembourg, Netherlands, Portugal, Spain and Sweden.
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Figure 3: No Fixed Effects (“No FE”) and Fixed Effects with Censoring (“FE+C”) (Continued)

Panel A: No Fixed Effects Panel B: Censored Fixed Effects

Notes: For each sector, the left-hand side diagram shows the pattern without controlling for fixed
effects whereas the right-hand side presents results from our preferred specifications with controls for
fixed effects and censoring. The upper left quadrant with dashed lines contains the cross-citations
from the European Countries. ‘DE’ = Germany, ‘FR’ = France, ‘GB’ = Great Britain, ‘EU’ =
remaining EU countries together, ‘JP’ = Japan, ‘US’ = United States and ‘RW’ = the rest of the
world. In particular, ‘EU’ consists of Austria, Belgium, Denmark, Finland, Greece, Ireland, Italy,
Luxembourg, Netherlands, Portugal, Spain and Sweden.
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Figure 4: Early Period vs. Late Period

Panel A: Early Period (1975-1989) Panel B: Late Period (1990-1999)

Notes: The left-hand side diagrams are estimation results for the early period (1975-1989) and
the right hand side diagrams are for the late period (1990-1999). Estimation results are from our
preferred fixed effects plus censoring specifications. The upper left quadrant with dashed lines
contains the cross-citations from the European Countries. ‘DE’ = Germany, ‘FR’ = France, ‘GB’
= Great Britain, ‘EU’ = remaining EU countries together, ‘JP’ = Japan, ‘US’ = United States and
‘RW’ = the rest of the world. In particular, ‘EU’ consists of Austria, Belgium, Denmark, Finland,
Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain and Sweden.
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Figure 4: Early Period vs. Late Period (Continued)

Panel A: Early Period (1975-1989) Panel B: Late Period (1990-1999)

Notes: The left-hand side diagrams are estimation results for the early period (1975-1989) and
the right hand side diagrams are for the late period (1990-1999). Estimation results are from our
preferred fixed effects plus censoring specifications. The upper left quadrant with dashed lines
contains the cross-citations from the European Countries. ‘DE’ = Germany, ‘FR’ = France, ‘GB’
= Great Britain, ‘EU’ = remaining EU countries together, ‘JP’ = Japan, ‘US’ = United States and
‘RW’ = the rest of the world. In particular, ‘EU’ consists of Austria, Belgium, Denmark, Finland,
Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain and Sweden.
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Table 1: Time to first citation, by cited and citing inventor location

Period: 1975 - 1989

Citing:
DE FR GB EU JP US RW

Cited:
DE 1383 1729 1620 1812 1629 1901 1963
FR 1723 1377 1698 1806 1712 1874 2016
GB 1743 1767 1223 1802 1675 1868 2059
EU 1748 1750 1773 1460 1708 1960 2051
JP 1445 1516 1482 1548 1121 1534 1851
US 1801 1849 1815 1936 1695 1742 2179
RW 1859 1880 1931 1962 1859 2076 1635

Period: 1990 - 1999

Citing:
DE FR GB EU JP US RW

Cited:
DE 880 986 1066 1040 933 1054 1056
FR 1028 872 1002 1030 944 1052 1052
GB 983 1005 800 985 892 1022 1033
EU 1009 977 991 874 919 1038 1019
JP 897 895 934 965 764 905 853
US 951 945 959 978 844 891 943
RW 999 978 1024 994 851 1014 800

Notes: The table shows the mean number of day from the date that a cited inventor was granted
a patent until the first citation of that patent, by the location of the inventor that made the first
citation. For example, the number in the top panel for the first French (FR) citation to a German
(DE) patents in the early period indicates that when the first citation to a Germany patent was
made by a French inventor this citation took on average 1729 days. The top and bottom panels show
the average time to first citation for the period of 1975 to 1989 and that of 1990 to 1999, respectively.
‘DE’ = Germany, ‘FR’ = France, ‘GB’ = Great Britain, ‘EU’ = remaining EU countries together,
‘JP’ = Japan, ‘US’ = United States and ‘RW’ = the rest of the world. In particular, ‘EU’ consists
of Austria, Belgium, Denmark, Finland, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal,
Spain and Sweden.
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Table 2: Sample Sizes of Patent Citation Data

Technological Period Country of Cited Patents
Category DE FR GB EU JP US RW Total

Chemical All 46697 13840 14414 21662 73211 231594 27714 429132
Early 26663 7355 8802 11173 32385 130532 14388 231298
Late 20034 6485 5612 10489 40826 101062 13326 197834

Computers All 8485 6725 6236 7781 70657 134335 12830 247049
and Communications Early 4094 3137 2713 2904 19808 45308 2763 80727

Late 4391 3588 3523 4877 50849 89027 10067 166322

Drugs All 12578 6992 7862 9887 18044 115365 12612 183340
and Medical Early 5841 2741 3494 3391 6763 38777 4472 65479

Late 6737 4251 4368 6496 11281 76588 8140 117861

Electrical All 25723 12029 10585 13942 85591 193424 25467 366761
and Electronic Early 14251 6374 6448 7300 30747 97099 8003 170222

Late 11472 5655 4137 6642 54844 96325 17464 196539

Mechanical All 46260 13976 13837 24266 96811 240766 31535 467451
Early 26429 8220 8979 14009 42672 133759 14822 248890
Late 19831 5756 4858 10257 54139 107007 16713 218561

Others All 30064 11452 12117 21711 46330 284448 38853 444975
Early 17475 6519 7438 12214 21275 151837 17383 234141
Late 12589 4933 4679 9497 25055 132611 21470 210834

Total All 169807 65014 65051 99249 390644 1199932 149011 2138708
Early 94753 34346 37874 50991 153650 597312 61831 1030757
Late 75054 30668 27177 48258 236994 602620 87180 1107951

Notes: Data consist of patents that were granted between 1975 and 1999. The patents in the data
were all taken out at the United States Patent Office (USPTO). A country of cited patents refers
to the location of an applicant: ‘DE’ = Germany, ‘FR’ = France, ‘GB’ = Great Britain, ‘EU’ =
remaining EU countries together, ‘JP’ = Japan, ‘US’ = United States and ‘RW’ = the rest of the
world. In particular, ‘EU’ consists of Austria, Belgium, Denmark, Finland, Greece, Ireland, Italy,
Luxembourg, Netherlands, Portugal, Spain and Sweden. Period ‘All’ includes years from 1975 to
1999 in which cited patents are granted. ‘Early’ and ‘Late’ Periods correspond to 1975-1989 and
1990-1999, respectively.
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Table 3: Summary Statistics for Patent Citation Data

Variable Chemical Computers and Drugs and Electrical and Mechanical Others
Communications Medical Electronic

Proportion of patents 0.56 0.62 0.49 0.60 0.54 0.49
with two or more citations

Proportion of patents 0.15 0.12 0.14 0.14 0.17 0.17
with only one citation

Proportion of patents 0.28 0.26 0.37 0.25 0.30 0.34
with no citation

Proportion of self-citation 0.22 0.15 0.19 0.15 0.17 0.14
(first citation)

Proportion of self-citation 0.19 0.13 0.15 0.13 0.14 0.12
(second citation)

Proportion of same technology 0.65 0.71 0.76 0.67 0.68 0.68
class (first citation)

Proportion of same technology 0.63 0.71 0.75 0.65 0.67 0.66
class (second citation)

Average of Base 0.20 0.18 0.15 0.11 0.13 0.16
(first citation)

Average of Base 0.21 0.19 0.17 0.12 0.14 0.17
(second citation)

Notes: Data consist of patents that were granted between 1975 and 1999. The patents in the data
were all taken out at the United States Patent Office (USPTO). The base variable is defined as the
number of patents in the citing country and technology sub-category for the citing year. (1 unit =
1,000 patents).
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Table 4: Estimation Results

Technological Category: Chemical

Country of Cited Patents: Germany (DE)

Sample Size: 46697; Obs. with at least two citations: 25016

(1) (2) (3)
Variable No Fixed Effect Fixed Effect Fixed Effect plus Censoring

FR -0.15 -0.03 -0.03
( 0.04 ) ( 0.07 ) ( 0.08 )

GB -0.03 0.03 0.02
( 0.04 ) ( 0.06 ) ( 0.08 )

EU -0.12 -0.04 0.04
( 0.03 ) ( 0.05 ) ( 0.07 )

JP 0.03 0.00 0.00
( 0.02 ) ( 0.04 ) ( 0.05 )

US -0.08 -0.02 0.05
( 0.02 ) ( 0.04 ) ( 0.05 )

RW -0.13 -0.12 -0.14
( 0.03 ) ( 0.05 ) ( 0.07 )

Self Cit. 0.38 0.39 0.48
( 0.02 ) ( 0.04 ) ( 0.04 )

Tech.Class 0.16 0.15 0.15
( 0.01 ) ( 0.02 ) ( 0.03 )

Base -0.15 -0.53 -0.80
( 0.06 ) ( 0.09 ) ( 0.12 )

Notes: Standard errors are in the parentheses. The dummy variables for the location of an applicant
of citing patent are ‘DE’ = Germany, ‘FR’ = France, ‘EU’ = remaining EU countries together, ‘JP’
= Japan, ‘US’ = United States and ‘RW’ = the rest of the world. In particular, ‘EU’ consists of
Austria, Belgium, Denmark, Finland, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal,
Spain and Sweden. The omitted category in citing patent country dummies is Great Britain (GB).
The Self Citation and Technology Class variables are dummy variables. The Base variable is the
number of patents in citing country and subcategory for the citing year (one unit = 1,000 patents).
Different columns show different estimates. Column (1) shows no-fixed-effect estimates using the
only first citation duration, Column (2) shows fixed-effect (FE) estimates using first two citation
durations, and Column (3) shows FE estimates accounting for censoring.
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Table 5: Estimation Results of Chemical (FE + C)

Chemical (FE + C) - Full Sample

(1) (2) (3) (4) (5) (6) (7)
Country of Country of Citing Patents

Cited Patents DE FR GB EU JP US RW

DE -0.03 0.02 0.04 0.00 0.05 -0.14
( 0.08 ) ( 0.08 ) ( 0.07 ) ( 0.05 ) ( 0.05 ) ( 0.07 )

FR 0.03 -0.01 -0.25 -0.10 -0.02 -0.33
( 0.11 ) ( 0.17 ) ( 0.20 ) ( 0.12 ) ( 0.12 ) ( 0.14 )

GB -0.10 -0.32 0.00 -0.06 -0.05 -0.29
( 0.09 ) ( 0.13 ) ( 0.13 ) ( 0.09 ) ( 0.09 ) ( 0.11 )

EU 0.07 -0.06 0.13 -0.06 -0.04 -0.18
( 0.08 ) ( 0.12 ) ( 0.13 ) ( 0.09 ) ( 0.09 ) ( 0.10 )

JP -0.03 -0.23 -0.17 -0.24 0.03 -0.24
( 0.04 ) ( 0.08 ) ( 0.07 ) ( 0.07 ) ( 0.03 ) ( 0.05 )

US 0.01 -0.15 -0.10 -0.22 -0.06 -0.24
( 0.02 ) ( 0.04 ) ( 0.04 ) ( 0.03 ) ( 0.02 ) ( 0.03 )

RW 0.15 -0.14 0.01 -0.12 0.03 0.08
( 0.09 ) ( 0.16 ) ( 0.12 ) ( 0.12 ) ( 0.08 ) ( 0.08 )

Notes: Each row contains parameter estimates and their standard errors (in parentheses) from a
separate multiple-spell duration model for each country. The censored fixed effect estimator (FE+C)
is used with the entire sample for a technology category called “Mechanical”. The country name in
the first column corresponds to the location of the patent’s inventor, which is subsequently cited.
The country names in columns (1) through (7) correspond to the inventor location of the patent
which subsequently cites the original patent. The left-out base country dummy is the cited patent’s
country. Country codes with corresponding country names are as follows: ‘DE’ = Germany, ‘FR’
= France, ‘GB’ = Great Britain, ‘EU’ = remaining EU countries together, ‘JP’ = Japan, ‘US’ =
United States and ‘RW’ = the rest of the world. In particular, ‘EU’ consists of Austria, Belgium,
Denmark, Finland, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain and Sweden.
In addition to country dummies, each hazard regression includes, as explanatory variables, dummy
variables for self citation and technology class and the number of patents in citing country and
subcategory for the citing year.
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Table 6: Number of Rejections of No Home Bias using Entire Sample

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Technological Max. # of No FE FE FE+C
Category rejections 10% 5% 1% 10% 5% 1% 10% 5% 1%

Chemical 42 34 32 23 16 12 9 14 14 12

Computers 42 18 17 10 16 14 14 17 15 15
& Communications

Drugs 42 26 24 18 15 11 5 15 10 6
& Medical

Electrical 42 22 19 16 13 13 11 15 14 12
& Electronic

Mechanical 42 26 25 17 16 13 6 15 11 9

Others 42 36 33 30 20 14 11 15 13 11

Total 252 162 150 114 96 77 56 91 77 65

Percentage 0.64 0.60 0.45 0.38 0.31 0.22 0.36 0.31 0.26

Notes: The number of rejections of one-sided t-tests for individual coefficients is shown in each
cell of the table. Three levels of tests are considered: 1%, 5%, and 10 %. Also, three different
estimators are used: no-fixed-effect estimator (No FE) using only first citation duration, fixed-effect
(FE) estimator using first two spells, and censored fixed effect (FE+C) estimator.
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Table 7: Number of Rejections of No Home Bias using Sub-Samples

Estimation Method: No Fixed Effect Estimator

(1) (2) (3) (4) (5) (6)
Technological All countries OECD countries EU countries
Category Early Late Early Late Early Late

Chemical 23 8 17 6 5 0

Computers 16 5 12 2 3 1
and Communications

Drugs 18 9 12 7 4 3
and Medical

Electrical 16 17 11 9 2 2
and Electronic

Mechanical 18 14 12 9 2 1

Others 30 18 21 11 7 1

Total 121 71 85 44 23 8

Max. # of rejections 252 252 180 180 72 72

Percentage 0.48 0.28 0.47 0.24 0.32 0.11

Notes: The number of rejections of one-sided 5% t-tests for individual coefficients is shown in each
cell of the table for the early period (1975-1989) and for the late period (1990-1999) separately.
The columns under “All countries” show the number of rejections for all coefficients for country
dummies (42 coefficients), those under “OECD countries” show the number of rejections for country
dummy coefficients dropping the “Rest of the World” coefficients and also coefficients from “Rest
of the World” cited patent regressions (as a result, 30 coefficients), and those under “EU countries”
show the number of rejections for EU country dummy coefficients of EU cited patent regressions
(hence, further reduced to 12 coefficients). The test results are based on the no fixed effect (No FE)
estimator.
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Table 8: Number of Rejections of No Home Bias using Sub-Samples

Estimation Method: Censored Fixed Effect Estimator

(1) (2) (3) (4) (5) (6)
Technological All countries OECD countries EU countries
Category Early Late Early Late Early Late

Chemical 13 7 9 4 1 0

Computers 13 15 10 10 1 2
& Communications

Drugs 9 10 6 7 1 4
& Medical

Electrical 12 6 9 5 0 1
& Electronic

Mechanical 15 8 12 5 4 1

Others 14 10 10 6 2 2

Total 76 56 56 37 9 10

Max. # of rejections 252 252 180 180 72 72

Percentage 0.30 0.22 0.31 0.21 0.12 0.14

Notes: The number of rejections of one-sided 5% t-tests for individual coefficients is shown in each
cell of the table for the early period (1975-1989) and for the late period (1990-1999) separately. The
columns under “All countries” show the number of rejections for all coefficients for country dummies
(42 coefficients), those under “OECD countries” show the number of rejections for country dummy
coefficients dropping the “Rest of the World” coefficients and also coefficients from “Rest of the
World” cited patent regressions (as a result, 30 coefficients), and those under “EU countries” show
the number of rejections for EU country dummy coefficients of EU cited patent regressions (hence,
further reduced to 12 coefficients). The test results are based on the censored fixed effect (FE+C)
estimator.
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A Econometric Appendix

A.1 Likelihood Function with Censoring

The censoring time Ci for patent i is defined as the number of days from the date of patent i be-

ing granted to the common censoring date. We assume that the censoring time Ci is independent

(Y ∗
ij , Xij , Ui) and identically distributed with an unknown probability distribution. Furthermore, we

assume that the support of Ci is the whole real line. Under this censoring mechanism, our data consist

of {(Yij ,∆ij , Xij , Ci) : i = 1, . . . , n, j = 1, . . . , J}, where Yij = min(Y ∗
ij , Ci) and ∆ij = 1(Y ∗

ij < Ci).

Here, 1(·) is the usual indicator function. Thus, we observe uncensored citation durations only when

∆ij = 1, that is citation durations are less than the censoring time.

In this paper, we propose a modified version of the conditional likelihood estimator to correct for

the selection bias. Specifically, the proposed estimator of β, say β̂, maximizes the following weighted

conditional log-likelihood function with J = 2:

L (b) = n−1

n
∑

i=1

∆i1∆i2

Gn (max [Yi1, Yi2])

{[

1 (Yi1 ≤ Yi2) ln

(

exp (X ′
i1b)

exp (X ′
i1b) + exp (X ′

i2b)

)]

+1 (Yi1 ≥ Yi2) ln

[

exp (X ′
i2b)

exp (X ′
i1b) + exp (X ′

i2b)

]}

, (A1)

where Gn(·) is an estimator of the survivor function G(·) of the censoring time Ci, in particular Gn(c) =

n−1
∑n

i=1
1(Ci > c). Our econometric framework is based on a continuous-time duration model, which

is suitable for our application since we have citation durations measured in days. However, it is possible

to have ties and they are included in both contributed terms in (A1). Observe that the selection

bias is corrected for by multiplying weights Gn(max{Yi1, Yi2})−1 in equation (A1). The reason why

Gn(max{Yi1, Yi2})−1’s are proper weights is that

E

[

∆i1∆i2

G(max{Yi1, Yi2})
|Y ∗

i1, Y
∗
i2, Xi1, Xi2] = 1 (A2)

In other words, (A1) converges in probability uniformly over b to a limiting function to which an

infeasible log-likelihood function would converge under no censoring. In maximizing (A1), we trim

away 0.5% of observations with the smallest values of Gn(max[Yi1, Yi2]) to mitigate the leverage of

outliers.

A.2 Asymptotic Distribution of the Censored Fixed-Effect Estimator

This section of the appendix describes regularity conditions under which the censored fixed-effect es-

timator is consistent and asymptotically normal. Also, it gives the form of asymptotic variance of the

censored fixed-effect estimator.

Assumption A.1 (1) β is an interior point of a compact subset of Rd for some finite d. (2) The

data {(Yi1, Yi2, Xi1, Xi2,∆i1,∆i2, Ci) : i = 1, . . . , n} are independent and identically distributed. (3)

Y ∗
i1 and Y ∗

i2 are independent of each other conditional on (Xi1, Xi2, Ui). (4) λi(·) is strictly posi-

tive. (5) E
[

‖Xi1 −Xi2‖2
]

< ∞ and E[(Xi1 − Xi2)(Xi1 − Xi2)
′] is nonsingular. (6) The censoring
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variable Ci is random with an unknown continuous probability distribution. (7) Ci is independent of

(Y ∗
i1, Y

∗
i2, Xi1, Xi2, Ui). (8) The survivor function of Ci, G(c) ≡ Pr(Ci > c) is positive for every c ∈ R,

and furthermore, it is bounded away from zero.

These assumptions are not unrestrictive, but in our application, they might be viewed as plausible.

Recall that citation durations are obtained by looking at all recorded citations as of December 31st, 1999.

Hence, the censoring variable is defined as the difference between this particular end date and the date

when a patent is granted. It is reasonable that the censoring time Ci is independent of potential citation

durations Y ∗
ij , the attributes of the citing patent Xij , and the heterogeneity term Ui, because the dates

of patents being granted may have little to do with underlying patent-citing processes.1 Also, the full

support condition (8) on the censoring time is not so restrictive in our application given that we follow

patent citations over a long period and we focus mainly on the first two citations. The assumption that

G(·) is bounded away from zero is useful to ensure that our estimator behaves regularly. For example,

see Khan and Tamer (2010) for general issues regarding inverse weight estimation.

Let

Hi(b) = 1(Yi1 ≤ Yi2)[Xi1 −Xi2]
exp(X ′

i2b)

exp(X ′
i1b) + exp(X ′

i2b)

+ 1(Yi1 ≥ Yi2)[Xi2 −Xi1]
exp(X ′

i1b)

exp(X ′
i1b) + exp(X ′

i2b)
.

(A3)

Define

Ω = Γ−1

{

Var

[

∆1∆2

G(max{Y1, Y2})
H(β)

]

−Var [ρ(C)]

}

Γ−1,

where

Γ = E

[

−∂2L(β)

∂b∂b′

]

and ρ(c) = E

[

∆1∆2H(β)

G2(max{Y1, Y2})
1(c > max{Y1, Y2})

]

.

Then the following theorem gives the asymptotic normality of the censored fixed-effect estimator.

Theorem A.1 Let Assumption A.1 hold. Assume that Ω exists and is finite. Then as n → ∞,

√
n(β̂ − β) →d N(0,Ω). (A4)

The proof of Theorem A.1 is omitted and it can be proved as in the proof of Theorem 1 of Lee

(2008). The asymptotic variance Ω can be consistently estimated by

Ω̂ = Γ̂−1

[

n−1

n
∑

i=1

(Φ̂i − ρ̂i)(Φ̂i − ρ̂i)
′

]

Γ̂−1,

1What we need is that the application and grant dates are independent of quality. However, the restriction that the

application date is independent of quality can be violated if there is a cohort effect on cited patents such as technology

waves. Another problematic case would be if the time lag between the application date and the grant date is systematically

correlated with the quality of the patent. Then this would induce the dependence between the grant date and quality

even when the application date is exogenous.
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where Gni = Gn(max{Yi1, Yi2}),

Γ̂ = n−1

n
∑

i=1

∆i1∆i2

Gni

[Xi1 −Xi2][Xi1 −Xi2]
′ exp(X ′

i1β̂ +X ′
i2β̂)

[

exp(X ′
i1β̂) + exp(X ′

i2β̂)
]2

Φ̂i =
∆i1∆i2

Gni

Hi(β̂),

and

ρ̂i = n−1

n
∑

k=1

[

∆1k∆2kHk(β̂)

G2

nk

1(Ci > max{Y1k, Y2k})
]

.

A.3 Related Econometric Models in the Literature

A.3.1 Jaffe and Trajtenberg (1999)

In Jaffe and Trajtenberg (1999), the likelihood that a particular patent K (citing patent) granted in

year T will cite some patent k granted in year t (cited patent) has the form

α(k,K) · exp[−β1(k,K) · (T − t)] · {1− exp[−β2 · (T − t)]},

where α is a shift parameter that depends on the attributes of patents k and K, β1 is an obsolescence

parameter that also depends on the characteristics of patents k and K, and β2 is a diffusion parameter.

The first exponential process, exp[−β1(T − t)], describes how knowledge becomes obsolete and the

second exponential process, 1 − exp[−β2(T − t)], models how knowledge diffuses. Since we focus on

the first few citations, the aspect of knowledge obsolescence is far less important in our empirical work

than in Jaffe and Trajtenberg (1999). Roughly speaking, a natural form of specializing the citation

frequency of Jaffe and Trajtenberg (1999) to our setup would be

PJT := α(k,K) · {1− exp[−β2 · (T − t)]}. (A5)

Note that our mixed proportional hazards model specification gives the following citation frequency

PMPH := 1− exp[−Λi(T − t) exp(x′
ijβ + ui)], (A6)

where Λi(u) :=
∫ u

0
λi(s)ds is the integrated baseline function. The Jaffe-Trajtenberg-style model in

(A5) assumes proportionality in terms of the citation frequency PJT ; however, our mixed proportional

hazards model in (A6) takes the proportionality in terms of the hazard function. In general, these two

models are non-nested; however, if we assume that α(k,K) ≡ 1 but β2 may depend on xij and ui as

in (A6), then (A5) is a special case of (A6) with Λi(u) = u (no duration dependence in the baseline

hazards).

As we mentioned in the main text, we control for unobserved heterogeneity in a way that Jaffe and
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Trajtenberg (1999) do not. Still, we see our approach as a complement rather than a substitute for

Jaffe and Trajtenberg (1999) since strictly speaking, both models are non-nested.

A.3.2 Thompson (2006)

Thompson (2006) reports estimates from conditional logits with fixed effects for each cited patent.

Although our estimates are also from a conditional logit with fixed effects for cited patents, two methods

are quite distinct.

First of all, we need to worry about the problem of censoring since our framework is based on a

duration model; however, Thompson (2006) is free from censoring problems since he considers observed

pairs of cited/citing patents for the conditional logit. Furthermore, our conditional logit estimates use

an indicator whether citation from an inventor residing in the same country has a shorter duration as the

dependent variable and country dummies as important explanatory variables; whereas Thompson’s logit

estimates use an indicator whether both inventors of the cited/citing patents reside in the same country

as the dependent variable and an indicator variable whether the citation is added by the inventor as

the main explanatory variable.

Thompson (1996, Table 3)’s estimation results suggest that the localization of international knowl-

edge spillovers has not declined over time. However, two different estimation results are associated with

different samples of patent citation data. Thompson’s sample starts from all patents granted during the

first week of January 2003 and having an institutional assignee and then pairs of cited/citing patents

are constructed by all patents cited in this particular cohort of citing patents. Our sample consists

of potentially cited patents between 1975 and 1999 and its corresponding first few citing patents. In

short, Thompson’s data extract is based on citing patents; whereas, our data extract is based on cited

patents.

B Additional Data Description and Results

In this Appendix we include several tables showing additional results.

Table A1 shows a tabulation of the country of the first patent citing each of the cited patents in our

data. The diagonal elements show that there is substantial home bias in the raw data. A problem we

face in evaluating the time taken until the first patent is that not all patents have been cited. Estimating

on only those patents where observe two citations would lead to potential selection bias. Table A2 shows

the number of patents that are censored, by industry. Table A3 splits this down into the early and late

period, clearly showing that the censoring problem is much more significant in the later period. Table

A4 shows this by cited country. This motivates our use of estimators that explicitly allow for censoring.

In investigating the change in home bias over time we have chosen 1990 as a cutoff year because this

approximately balanced the number of citations in early and later years. In Table A5 and A6 we show

the robustness of the results to using the middle year of our sample period, 1985. As also discussed

in the main test, we focus on the first two citations for a patent. We can easily extend our method

using also the third citation and quasi-difference between the second and third citation and we show

the results from doing this in Table A7. Similarly we can use up to the fourth citation (see Table A8).

Table A9 provides estimation results after dropping all self citations. Our results are robust to using

these alternative citations.
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Table A1: Raw data: home bias in first citation

Citing:
Cited: DE FR GB EU JP US RW

DE 30.58 2.96 2.90 5.05 14.67 38.82 5.03

FR 8.56 19.00 3.37 5.24 13.29 45.18 5.36

GB 8.36 3.10 16.57 4.57 12.76 49.46 5.17

EU 8.98 3.41 2.81 21.21 13.15 44.18 6.25

JP 5.47 1.68 1.59 2.74 50.90 33.05 4.56

US 5.03 2.04 2.29 3.12 10.86 71.83 4.82

RW 7.17 2.64 2.47 4.63 12.49 49.00 21.61

Notes: Data consists of all patents that were granted between 1975 and 1999 (the cited patent) and the
first patent to cite it (the citing patent). An element {i, j} in the Table shows the proportion of patents
granted to an inventor located in row-country i that are first cited by an inventor in a column country
j. For example, element {1, 2} indicates that 2.96% of patents from German inventors were first cited
by an inventor in France.

Table A2: Censoring - many patents have not (yet) been cited

Chemicals Computer Drugs Electrical Mechanical Other Total

obs 2 cites 241,799 152,557 90,718 220,584 250,258 217,545 1,173,461

(56.35) (61.75) (49.48) (60.14) (53.54) (48.89) (54.87)

obs 1 cite 65,969 29,483 25,348 52,985 78,875 774,91 330,151

(15.37) (11.93) (13.83) (14.45) (16.87) (17.41) (15.44)

obs no cites 121,364 65,009 67,274 93,192 138,318 149,939 635,096

(28.28) (26.31) (36.69) (25.41) (29.59) (33.70) (29.70)

Notes: Each row indicates the number of observations that had at least two cites (“obs 2 cites”), one
cite (“obs 1 cite”) or no cites (“obs no cite”). The number in parentheses indicates the proportion of
observations by industry that had different numbers of cites. For example, our dataset contains 254,301
cites to patents in the chemicals technology sector that had at least two cites.
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Table A3: Censoring - by early and late time period

1975-1989 Chemicals Computer Drugs Electrical Mechanical Other Total

obs 2 cites 166,715 69,718 48,007 133,242 169,426 151,371 738,479

(72.08) (86.36) (73.32) (78.28) (68.07) (64.65) (71.64)

obs 1 cite 31,987 6,324 8,268 20,397 39,596 39,510 146,082

(13.83) (7.83) (12.63) (11.98) (15.91) (16.87) (14.17)

obs no cites 32,596 4,685 9,204 16,583 39,868 43,260 146,196

(14.09) (5.80) (14.06) (9.74) (16.02) (18.48) (14.18)

1990-1999

obs 2 cites 75,084 82,839 42,711 87,342 80,832 66,174 434,982

(37.95) (49.81) (36.24) (44.44) (36.98) (31.39) (39.26)

obs 1 cite 33,982 23,159 17,080 32,588 39,279 37,981 184,069

(17.18) (13.92) (14.49) (16.58) (17.97) (18.01) (16.61)

obs no cites 88,768 60,324 58,070 76,609 98,450 106,679 488,900

(44.87) (36.27) (49.27) (38.98) (45.04) (50.60) (44.13)

Notes: This is the same as Table A2 except we now split into early and later years.

Table A4: Censoring - by cited country

cited country: DE FR GB EU JP US RW Total

obs 2 cites 91,587 33,852 36,684 49,356 229,321 668,492 64,169 1,173,461

(53.94) (52.07) (56.39) (49.73) (58.70) (55.71) (43.06) (54.87)

obs 1 cite 28,724 11,170 10,337 16,955 56,077 180,929 25,959 330,151

(16.92) (17.18) (15.89) (17.08) (14.36) (15.08) (17.42) (15.44)

obs no cites 49,496 19,992 18,030 32,938 105,246 350,511 58,883 635,096

(29.15) (30.75) (27.72) (33.19) (26.94) (29.21) (39.52) (29.70)

Notes: This is the same as Table A2 except we now split country. DE: Germany, FR: France, GB:
Great Britain, EU: other European Union (Austria, Belgium, Denmark, Finland, Greece, Ireland, Italy,
Luxembourg, Netherlands, Portugal, Spain and Sweden), JP: Japan, US: United States, RW: Rest of
World.
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Table A5: Number of Rejections of No Home Bias using Sub-Samples

Estimation Method: No Fixed Effect Estimator

Cutoff Year: 1985

(1) (2) (3) (4) (5) (6)
Technological All countries OECD countries EU countries
Category Early Late Early Late Early Late

Chemical 24 20 18 15 6 5

Computers 14 9 11 5 2 1
and Communications

Drugs 15 14 8 8 2 4
and Medical

Electrical 16 18 10 10 1 1
and Electronic

Mechanical 19 23 13 14 3 4

Others 29 24 21 14 5 3

Total 117 108 81 66 19 18

Max. # of rejections 252 252 180 180 72 72

Percentage 0.46 0.43 0.45 0.37 0.26 0.25

Notes: The number of rejections of one-sided 5% t-tests for individual coefficients is shown in each
cell of the table for the early period (1975-1984) and for the late period (1985-1999) separately. Note
that the tables in the main text use 1990 as the cut-off year. The columns under “All countries” show
the number of rejections for all coefficients for country dummies (42 coefficients), those under “OECD
countries” show the number of rejections for country dummy coefficients dropping the “Rest of the
World” coefficients and also coefficients from “Rest of the World” cited patent regressions (as a result,
30 coefficients), and those under “EU countries” show the number of rejections for EU country dummy
coefficients of EU cited patent regressions (hence, further reduced to 12 coefficients). The test results
are based on the no fixed effect (No FE) estimator.
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Table A6: Number of Rejections of No Home Bias using Sub-Samples

Estimation Method: Censored Fixed Effect Estimator

Cutoff Year: 1985

(1) (2) (3) (4) (5) (6)
Technological All countries OECD countries EU countries
Category Early Late Early Late Early Late

Chemical 13 8 8 4 1 0

Computers 12 13 9 10 1 1
& Communications

Drugs 7 9 5 6 0 2
& Medical

Electrical 9 11 7 7 0 1
& Electronic

Mechanical 12 5 9 2 3 0

Others 13 12 9 9 2 3

Total 66 58 47 38 7 7

Max. # of rejections 252 252 180 180 72 72

Percentage 0.26 0.23 0.26 0.21 0.10 0.10

Notes: The number of rejections of one-sided 5% t-tests for individual coefficients is shown in each
cell of the table for the early period (1975-1984) and for the late period (1985-1999) separately. Note
that the tables in the main text use 1990 as the cut-off year. The columns under “All countries” show
the number of rejections for all coefficients for country dummies (42 coefficients), those under “OECD
countries” show the number of rejections for country dummy coefficients dropping the “Rest of the
World” coefficients and also coefficients from “Rest of the World” cited patent regressions (as a result,
30 coefficients), and those under “EU countries” show the number of rejections for EU country dummy
coefficients of EU cited patent regressions (hence, further reduced to 12 coefficients). The test results
are based on the censored fixed effect (FE+C) estimator.
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Table A7: Number of Rejections of No Home Bias using Entire Sample with Second and Third Citation
Spells

Technological No FE FE FE+C
Category 10% 5% 1% 10% 5% 1% 10% 5% 1 %

Chemical 30 26 19 13 12 5 12 8 3

Computers 26 20 15 15 14 8 18 15 8
& Communications

Drugs 25 19 7 16 12 9 15 13 11
& Medical
Electrical 20 16 15 17 12 9 21 16 10

& Electronic
Mechanical 26 22 19 22 17 11 17 14 9

Others 29 27 21 12 8 5 12 9 7

Total 156 130 96 95 75 47 95 75 48

Notes: This is equivalent of Table 6 in the main text except we use estimates based on the second and
third citation (instead of the first and second citation).

Table A8: Number of Rejections of No Home Bias using Entire Sample with Third and Fourth Citation
Spells

Technological No FE FE FE+C
Category 10% 5% 1% 10% 5% 1% 10% 5% 1 %

Chemical 28 22 17 13 11 6 11 8 4

Computers 20 17 11 11 10 9 13 11 8
& Communications

Drugs 22 14 7 12 9 4 12 8 6
& Medical
Electrical 24 20 16 14 11 8 17 11 8

& Electronic
Mechanical 23 20 16 8 6 3 9 5 3

Others 29 28 20 12 7 4 7 5 2

Total 146 121 87 70 54 34 69 48 31

Notes: This is equivalent of Table 6 in the main text except we use estimates based on the third and
fourth citation (instead of the first and second citation).
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Table A9: Number of Rejections of No Home Bias Using Entire Sample (without Self- Citations)

Technological No FE FE FE+C
Category 10% 5% 1% 10% 5% 1% 10% 5% 1 %

Chemical 27 25 21 16 12 9 14 14 9

Computers 16 13 6 14 13 12 17 15 12
& Communications

Drugs 19 18 11 14 10 5 13 10 6
& Medical
Electrical 20 16 15 13 11 11 13 13 10

& Electronic
Mechanical 20 19 10 14 11 7 15 13 8

Others 30 27 23 17 11 8 14 11 10

Total 132 118 86 88 68 52 86 76 55

Notes: This is equivalent of Table 6 in the main text except we re-estimate all models dropping self
citations.
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