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ABSTRACT

We consider estimation of a linear or nonparametric additive model in which a few
coefficients or additive components are “large” and may be objects of substantive interest,
whereas others are “small” but not necessarily zero. The number of small coefficients or additive
components may exceed the sample size. It is not known which coefficients or components are
large and which are small. The large coefficients or additive components can be estimated with a
smaller mean-square error or integrated mean-square error if the small ones can be identified and
the covariates associated with them dropped from the model. We give conditions under which
several penalized least squares procedures distinguish correctly between large and small
coefficients or additive components with probability approaching 1 as the sample size increases.
The results of Monte Carlo experiments and an empirical example illustrate the benefits of our
methods.
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PENALIZED ESTIMATION OF HIGH-DIMENSIONAL MODELS UNDER A
GENERALIZED SPARSITY CONDITION

1. Introduction

We consider the mean-regression models

p -
(1) Yi:zxijﬂj‘l‘gi; |=1,...,n

j=1
and

p -
(2) Yi=ij(Xij)+€i; |=1,...,n,

j=1
where Y; e R s a response variable, the X;;’s are scalar covariates that are fixed in model (1)
and random in model (2), and the &;’s are unobserved mean-zero random variables. In model

(1), the B;’s are unknown constant coefficients. In model (2), the f;’s are unknown functions.

We assume without loss of generality that the data are centered and the f;’s are normalized so

that there is no intercept in either model. In model (1), we also assume that n‘lzin:lxij2 =1 for

each j=1,..,p. The number of covariates ( p) may be large, possibly larger than the sample
size (n).
Motivated by applications in economics and other social sciences, we assume that some

Bj’sor f;’sare “large” in a sense that will be defined and that one or more of the large ;s or

fj’s are the objects of substantive interest. The remaining g;’s or f;’s are small but not

necessarily zero. They are not objects of substantive interest, but including them in the model

reduces the bias of estimates of the large S;’s or f;’s. Our interest is in estimating the large
Bj’sor f;’s that are of substantive interest. It turns out that the mean-square estimation errors
of the large p;’s or integrated mean-square estimation errors of the large f; ’s can be reduced by
identifying and dropping from the model the covariates associated with small ;s or f;’s. We

give conditions under which several penalized least squares procedures distinguish correctly

between large and small S;’s or f;’s with probability approaching one as n—oo. We also
show that these methods provide consistent estimators of the large S;’s and f;’s. The

penalization methods we consider include the adaptive LASSO, bridge estimation, and estimation

with the SCAD or minimax concave (MC) penalty functions.



In model (1), let A, c{1,..., p} denote the set of small coefficients. These are defined as

coefficients satisfying the generalized sparsity condition (GSC)

(3) Z|ﬁj|377n’
feA

where {n,} is a sequence of non-negative constants. In our most general approach, which is the
adaptive LASSO, 7, =o(n‘1’2) . This condition is weaker than the one commonly used in the
literature, which is that

@)  |pjl=01ifjeA.

Note that (4) is a special case of the GSC. In practice, the GSC can be a more realistic
formulation of sparse models than is (4). Let A, denote the complement of A,. We define the

elements of A, to be large coefficients. In the adaptive LASSO, we assume that the coefficients
Bj in A satisfy | B; > J/(log p)/n . We define a covariate to be important if its coefficient is in

A, and unimportant if its coefficient is in A;. The other penalization methods that we consider

require more restrictive definitions of the large and/or small coefficients. These definitions
depend on the penalization method and are given in Section 3.2 of this paper.

In model (2), let Ay, ={L,..., p} again denote the set of large additive components. We

define these to be components that are non-zero in the sense that Ef; (Xij)2 >0 and assume that
the number of such components, q, is fixed as n — oo . Specifically,

Ao ={i: Efj(X;j)* >0}
and | Ay |=q is fixed. We assume that the remaining additive components are small or zero in the

sense that
®) p max fj(x)2 _o(n20/2d+2)y
X jeh

where d is measures the smoothness of the additive components. Let A denote the set of small

additive components. Condition (5) is weaker than but includes as a special case the condition
used by Huang, Horowitz, and Wei (2010), which is that f;(v)=0 forall v if je A,.

In model (1), we assume that the number of large coefficients is fixed as n —oo. Thus,

-1/2

for example, if p is fixed, the small coefficients are smaller than O(n"~'“) and the large

-1/2

coefficients are larger than O(n™*'“) as n—oo. In this case, the mean-square estimation errors

of the large coefficients are smaller if all the unimportant covariates are excluded from the model



than if any of the unimportant covariates is included. Thus, when the objective is to estimate one
or more large coefficients, it is better to drop the unimportant covariates from the model.

The assumption that the number of large coefficients is fixed is motivated by applications
in the social sciences. In these applications, it is not unusual for survey data to contain hundreds
or thousands of variables that are arguably related to the dependent variable of interest in the

sense of having non-zero f; coefficients in (1). However, in typical applications, most of these

coefficients are thought to be small in the sense of having magnitudes and effects on the
dependent variable that are smaller than the random sampling errors of their estimates. The
“large” coefficients are typically few in number. For example, in an economic wage equation, the
dependent variable is the logarithm of an individual’s weekly wage, and the objects of interest are
the coefficients of a few covariates such as an individual’s years of education, years of labor-
force experience, and labor union membership. However, widely available data sets for
estimating wage equations can contain hundreds or even thousands of variables that may be
weakly related to wages. It is not clear a priori which of these variables should be included in a
wage equation, though it is clear that including all of them will result in very imprecise estimates
of the coefficients of interest. This illustrates the usefulness of a systematic method for
discriminating between covariates with large and small coefficients. We give conditions under
which certain penalized least squares estimators do this with probability approaching 1 as
n—o,

In model (2), the asymptotic distributions and, therefore, integrated mean-square errors of

the estimators of the large f;’s is independent of the number of small f;’s, provided that this

number is also fixed as n — o (Horowitz and Mammen 2004). We give conditions under which

a penalized least-squares estimation procedure reduces the number of small f; s to a fixed value
when the number of covariates associated with small f; s is an increasing function of n.

Our objectives in this paper differ from those of most of the literature on estimation of

high-dimensional mean-regression models. In most of the literature, the large g;’sor f;’sare

assumed to be bounded away from zero, and the small ones are assumed to be exactly zero.

Interest centers on identifying and estimating the large f;’s or f;’s (model selection) or
selecting covariates that yield good predictions of Y . In this paper, the large S;’s are not

necessarily bounded away from zero as n—oo and the small g;’s or f;’s are not necessarily



zero. Moreover, our concern is with estimating a few large ﬁj ’s or fj ’s , not with model

selection or predicting Y .

The remainder of this paper is organized as follows. Section 2 presents a literature
review. Section 3 describes penalized least-squares methods for selecting and estimating the
large coefficients of model (1). These include the adaptive LASSO (Zou 2006) and a class of
penalization methods that includes the bridge, SCAD, and MC penalties as special cases. Section
4 deals with model (2). Section 5 presents the results of a Monte Carlo investigation of the
numerical performance of the adaptive LASSO. Section 6 presents an empirical example, and
Section 7 presents concluding comments. The proofs of theorems are in the appendix, which is

Section 8.

2. Review of the Literature

LASSO-type penalization methods for model selection (Tibshirani 1996) have attracted
much attention in recent years. There is also a large literature on the use of LASSO for the
related problem of prediction (see, e.g., Greenshtein and Ritov (2004) and Bickel, Ritov, and
Tsybakov 2009). Meinshausen and BiihImann (2006) and Zhao and Yu (2006) showed that,
under a strong irrepresentable condition on the design matrix, the LASSO for model (1) is model-
selection consistent in high-dimensional settings. Zhang (2009) gave conditions under which the

LASSO combined with a thresholding procedure consistently distinguishes between coefficients

that are zero and coefficients whose magnitudes as n— o exceed n~° for some s<1/2. Zou
(2006) proposed the adaptive LASSO and gave conditions under which it is model-selection
consistent when the number of covariates is fixed. Huang, Ma, and Zhang (2008) provided

conditions under which the adaptive LASSO is model-selection consistent even when the number
of covariates is as large as exp(n®) for some ae(0,1). Huang, Horowitz, and Wei (2010)

considered model (2) and showed that a form of adaptive group LASSO provides consistent
model selection in a high-dimensional setting.

Non-LASSO penalization approaches have also been considered. Knight and Fu (2001)
and Huang, Horowitz, and Ma (2008) established model-selection consistency of bridge
estimators. Antoniadis and Fan (2001) proposed the SCAD penalty. Fan and Li (2001); Fan and
Peng (2004) further investigated the properties of least-squares and penalized likelihood
estimators with the SCAD penalty. Zhang (2010) investigated penalized least squares estimation
with the MC penalty. Other penalization methods have been investigated by Fan, Peng, and
Huang (2005); Lv and Fan (2009); and Zou and Zhang (2009).



The foregoing model-selection procedures assume that the large A;’s in model (1) are
non-zero and that the small ;s are exactly zero. In a recent paper, Zhang and Huang (2008)

studied the selection properties of the LASSO under the GSC when p >n. They showed that the

LASSO selects a model that includes all the covariates with large coefficients and has the right
order of dimensionality. However, in general, the LASSO also includes some covariates with
small coefficients. Thus, for example, the LASSO tends to select a model that is too large when

-1/2
).

the large coefficients are larger and the small coefficients are smaller than O(n Zhang

(2009) gave conditions under which the LASSO combined with a thresholding procedure
correctly selects coefficients that are sufficiently far from zero. However, Zhang’s procedure
requires a user-selected threshold, and it is not clear how to choose this threshold in applications.
In this paper, we give conditions under which with probability approaching one as
n — oo, several penalized least-squares procedures correctly distinguish between large and small

coefficients or additive components under the GSC. No user-selected thresholds are needed.

3. The Linear Model

This section describes methods for selecting and estimating the large 3; coefficients in

model (1). Section 3.1 gives conditions under which the adaptive LASSO procedure of Zou

(2006) distinguishes correctly between large and small S;’s as n—o. Section 3.2 gives

conditions under which penalized least-squares estimation with a SCAD, MC, or bridge penalty

function does this.

3.1 The Adaptive LASSO

Define y=(Yy,...Yn)". Let xj=(X;,...X;)" denote the vector of values of the j’th
covariate, and let X =(xj,...,x,) denote the design matrix. Let g=(p,,...5,)", and let g,

denote the true but unknown value of g. Let ||, denote the ¢, norm. The ordinary LASSO

objective function is
P

6) L) =05y- X85+ 4D 151,
j=1

where 4 >0 is the penalty parameter. The LASSO estimator is defined as

Bn () =argmin Ly (B;4) .
The adaptive LASSO objective function is



p
M) L(BA)=05]y—XB[s+ 4> w; | 4],
j=1

where 4, >0 is the penalty parameter. The weights w; are

|7l

W =| /iy
where an is the j’th component of Bn (4). The adaptive LASSO estimator is defined as

ﬁ’n(ﬂz)zargminl, L,(B:A4). We define w; =0 when anzo, and we set Oxowo=0.

Minimization of (7) results in ﬁnj =0 if w;=0. Thus, if a variable is not selected by the
LASSO, it is not selected by the adaptive LASSO. Coefficients that are known to be large a
priori can be omitted from the penalty term.

Under conditions (Al)-(A3) below, the LASSO selects (asymptotically) all coefficients
that exceed a certain threshold. However, the LASSO also tends to select coefficients that are
below the threshold. The adaptive LASSO is a way to correct LASSO’s over-selection problem.

We use the following notation. For any Ac{l.. p}, let X,={x;:jeA} and
Ca=XpXp/n. Define

Crmin(M) = Min MINV'Cav,  Copin (M) = Mmax maxv'C,v,
|Al=m, [v],=L |A=m, [v],=1

where | A| is the number of elements of A. We say that the covariate matrix X satisfies the

sparse Riesz condition (SRC) with rank g and spectrum bounds 0 <c« <c*< o if

B)  Ce<Cpin (@) <Cray (@) <c* V Awith [Al=qand veRY,

Under (8), all the eigenvalues of C, are contained in the interval [c.,c*] when | A|<q.
We make the following assumptions.

(Al) Therandom variables ¢, ¢,,... are independently and identically distributed with mean 0.
There are constants C >0 and K >0 such that P(| ¢ |>2)<K exp(-Cz?) forall z>0
and 1=1,2,...

(A2) There is a finite constant ¢, >0 such that 7, gcl\/aﬂl/n. Moreover, q is fixed, and
|Aol=k<q.

(A3) The SRC holds.

Condition (A1) requires the &;s to have subgaussian tails. Condition (A2) defines the

class of small coefficients and states our assumption that the number of large coefficients is fixed.



Assumption (A3) holds if the restricted eigenvalue assumption RE(s,c,) of Bickel, Ritov, and
Tsybakov (2009) holds for some s>q/2.

Let A={j: an (4) =0} be the set of coefficients estimated to be non-zero by the
LASSO. The following lemma, which is proved in Zhang and Huang (2008), summarizes
important properties of A_L and ,an.

Lemma 1: Let (Al)-(A3) hold, and let 4 :O(\/W). Then there are finite constants M,

and M, such that
(i) | Ai |<M;q with probability approaching1as n—oo.
(i) Al covariates with /g; >M,qA’/(c.c*n®) are selected with probability

approachinglas n—oo.

~ 2
(iii) H/}n —ﬂOHZ =0,(h%), where h, =./(log p)/n .
Lemma 1 shows that with high probability, the number of covariates selected by the
LASSO is a finite multiple of the number of covariates in A, (and, therefore, of the number of

covariates with large coefficients). Moreover, all covariates exceeding the threshold in (ii) are

selected with probability approaching 1 as n— oo . In particular, all of the covariates with large

coefficients are selected with probability approaching 1 if 7, =o(y/(log p)/n) and the large S;’s

are larger than O(4/(log p)/n). In addition, the LASSO estimator is estimation consistent.
However, estimation consistency does not imply model-selection consistency.
We now give conditions under which the adaptive LASSO achieves model-selection

consistency. Denote the smallest and largest eigenvalues of C, =X} X, /n by 7 and 7,

respectively. Make the following additional assumptions.

(A4)  There are constants 0<7; <7, <o such that 7, <7, <7,, <7, for all sufficiently large
n.

(A5)  Let by =minja |foj|. As n—oo, the nonstochastic quantities 7, , h,, 4,, and by

satisfy
/122 (O +a) oy +7)
nbnj_ bnl ﬂ?

In our model, | Ay | is fixed as n — oo, so it is reasonable to assume in (A4) that the eigenvalues

of C, are bounded away from 0 and oo . (AS5) restricts 7,, 4,.and by . It requires by, the



smallest of the large coefficients, to be not too small and the ¢; norm of the small coefficients to
be not too large. In particular, it requires b, >, . In other words, there must be enough

separation between the large and small coefficients for the adaptive LASSO to distinguish

between them.

Now define ﬁnpb ={,@nj tieA} and Sy, ={fj: €A} For any vector
u=(uy,u,,...)", define sgn(u) = (sgn(u,),sgn(u,),...)", where sgn(u;) =-1, 0, or 1 according to
whether u; <0, u; =0, 0r u; >0.

Theorem 1: Let (A1)-(A5) hold. Thenas n—>x,

P(By =0V je A)—>1 and P(sgn(fy ) =5an(fya ) 1.

Thus, with probability approaching 1 as n—o, the adaptive LASSO selects all the
covariates with large coefficients and drops the covariates with small coefficients in the sense that
it sets the coefficients of those covariates equal to zero.

If, as often happens in social science applications, the total number of covariates is less

than the sample size, then we can consider a model in which p is fixed as n— oo, the small
coefficients satisfy 7, = o(n’”z) , and the large coefficients satisfy b, > x+/(logn)/n as n— o

for some constant x>0. It follows from Theorem 1 with 4, oc \/logn that as n—oo, the

adaptive LASSO estimates of the large coefficients are non-zero and the estimates of the small
coefficients are zero. Moreover, a straightforward calculation shows that the mean-square error
(MSE) of the adaptive LASSO estimator of each large coefficient is never larger and, except in
special cases, is strictly smaller than the MSE of the ordinary least squares (OLS) estimator that is
obtained when all covariates are included in (1). Thus, the adaptive LASSO improves the
precision of the estimates of the large coefficients.

If p>n, we can consider a model in which the large coefficients satisfy

b, > x(log p)/nl/2 for some constant x>0, and A, «clogp. Then it follows again from

Theorem 1 that as n— oo, the adaptive LASSO estimates of the large coefficients are non-zero
and the estimates of the small coefficients are zero. Moreover, the MSE of the adaptive LASSO
estimator of each large coefficient is no larger and, except in special cases, is strictly smaller than

MSE of the OLS estimator that is obtained by including in the model any group of upto n—q-1

unimportant covariates or linear combinations of unimportant covariates. In summary, the
adaptive LASSO estimator reduces the MSE of the estimator of any large coefficient if there is

sufficient separation between the magnitudes of the large and small coefficients.



3.2 Penalized Least-Squares Estimation with Other Penalty Functions

We now investigate penalized least-squares estimation of model (1) with a class of
penalty functions that includes the bridge, SCAD, and MC penalties. As in Section 3.1, we

consider a two-step estimation procedure. The first step is the same as that in Section 3.1. It

consists of solving the problem ,Bn (4) =argming, Ly (8;4) , where L, is defined in (6). Under

the assumptions of Lemma 1, the number of non-zero components of £, is fixed as n— oo and

includes all the large S;’s. Let X denote the design submatrix consisting of the columns of X

corresponding to non-zero components of J,. Let [, denote the ¢, norm. The second

estimation step consists of minimizing

L8 ) =|v- X8+ > 0, (55D,
i:B;#0

where p, is a penalty function and 4, is the penalty parameter. Denote the resulting estimator

by f (2)
We assume that the penalty function satisfies the following condition.

(A6) The penalty function has the form p,(v)=Af(v), where f is a bounded, non-
decreasing function that may depend on n and A and satisfies
0) f(0)=0.
(i) One of the following holds:
(@) There are constants C <oo and r that may depend on n and A such that

0< f'(v)<C forall v,and f'(v)=0if v>7. Moreover there are constants
b>0 and 6 >0 suchthat f'(v)>¢ if v<bA/n.

(b) There is a C <o such that 0< f'(v)<C for all v>¢ and some ¢>0.
Moreover 0< f(v)<Cv” for all v>0 and some » such that 0<y<1.
Also, limg,,_o[f(v+S))-f(v)l=c|s| .
In addition, we adopt the following more restrictive definitions of large and small coefficients.
(A7) If (AB)(ii)(a) holds, then the large coefficients satisfy | 5 [>[4; (log p)/n]l’2 > ¢ forall
je Ay, where {1} is a sequence of positive constants such that nY Z/In — o0 and

n?i, —0 for some #>1/2 as n—o. The small coefficients satisfy

szAJﬂj |=0(n"?). If (A6)(ii)(b) holds, then the large coefficients satisfy | 8; |> & for



all je A, and some £>0. The small coefficients satisfy ZjeAsl’Bj ' =o(n™V?) for

the y in (A6)(ii)(b).
The SCAD and MC penalty functions satisfy (A6)(ii)(a). We write the SCAD penalty

function as

’ - (an_l _V)+ -
;. () = Al (v<n lm+ﬁlw>n ),

where | is the indicator function and a > 2 is a constant. The MC penalty function is
v nx
ocr-iffi ) o
" jo N

for some y > 0. The bridge penalty function satisfies (A6)(ii)(b). The bridge penalty function is

p, (V)=Ay VI,
where y is a constant satisfying 0 <y <1. The ordinary LASSO penalty function, p,(v)=|v],
does not satisfy (A6).

Now define =, = XX /n. Assume that
(A8) lim,_ X, =% for some nonsingular matrix .

We now have the following result.

Theorem 2: Let (A1)-(A3) and (A5)-(A7) hold. Let n"¥21 — o andn 91, —0 as n— oo if
(AB)(ii)(a) holds. Let n™" 2, — o and n‘l’z/in — 0 as n—oo if (A6)(ii)(b) holds. Then
P(fByi =0V i€ A)—>1 and P(sgn(Bu ) =50n(Sya ) >1.

Thus, under the conditions of Theorem 2, the second-stage estimator distinguishes correctly

between large and small coefficients with probability approaching 1 as n — .

4. The Nonparametric Additive Model
This section presents a method for selecting and estimating the large additive components

f; in model (2). Horowitz and Mammen (2004) describe a method for estimating the f;’s that

is oracle efficient when the dimension of model (2) remains fixed as n—>o. The estimator of

each f; has the same asymptotic distribution that it would have if the other f;’s were known.
There is no need to distinguish between large and small f;’s. Here, we consider the case in

which the dimension of the model increases and may exceed n as n—>o. We present a two-

10



step procedure for selecting and estimating the large f;’s. The first step of the procedure
consists of penalized least-squares estimation of series approximations to the f;’s using a group
LASSO penalty function. Huang, Horowitz, and Wei (2010) showed that this procedure reduces
the number of f;’s to a fixed value when Esz (j=1...,p) is either zero or bounded away from

zero. We show that asymptotically, the same procedure reduces the number of f;’s to a fixed

value and retains all f;’s for which Esz is large in the sense defined in Section 1. The second
step consists of using the estimator of Horowitz and Mammen (2004) to re-estimate the f; ’s that

are retained in the first step. Horowitz and Mammen (2004) present the properties of the second-
step estimator. Therefore, we treat only the first step here.

Assume that each X_J- takes values in [a,b], where a<b. Let {¢ :k=1,...,m,} denote

a normalized B-spline basis for polynomial splines of degree 1>1 on [a,b], where m, =K, +I

and K, is the number of spline knots in (a,b). Define the centered B-splines

n
vie(Xi) = (X)) =Y A (X)) 5 k=L..my; j=1..,p.
/=1
Define
Zij = ( a(Xig)i ¥, (X35))"-
Let Z] Z(ley-.-yznj)', Z Z(Zl,-..,zp) and Y =(Y1_Y_1"'1Yn _Y_)’ , Whel'e Y_zn—lzlnzlYl . The

first-step estimator of our procedure consists of solving the problem
- i 2 P
frj =argmin Iy —Zby | + 4, Zubj “2 :
j=1

where b; is the m, x1 vector (bjl,...,bjmn)' and A, is the penalty parameter. This is also the

problem solved in the first estimation step of Huang, Horowitz, and Wei (2010).

Now let k be a non-negative integer, and let « €(0,1). Let d=k+a«>0.5. Let F be
the class of functions on [a,b] whose k 'th derivative &) exists and satisfies a Lipschitz
condition of order . That is,

| £ 0 (s)— fOt)|<C|s—t|* for s,te[a,b].

Order the f;’s so that the first g are large and the rest are small or zero.

Make the following assumptions.

11



(A9) The number of large additive components, g, is fixed. Moreover, there is a

constant C¢ >0 such that min,;,

fil,=Cr-
(A10) The random variables ¢, ...,&, are independently and identically distributed with

E(s)=0. Moreover, P(|¢ |>x)<Kexp(-Cx?) (i=1,..,n)forall x>0, where C and K are
finite constants.

(A11) Ef;(X;)=0and f; eF forall j=1,..p.

(A12) The covariate vector (X,,.., X.;) has a continuous probability density function

with respect to Lebesgue measure. Moreover, there exist constants C; and C, such that the
probability density function g; of X ; satisfies 0<C; <g;(x)<C, <o for every xe[a,b] and

every j=1..p.

(A12) Every additive component is either large or small. The small components satisfy
equation (5).

Assumptions (A9)-A(11) are made by Huang, Horowitz, and Wei (2010) and are

explained there. Assumption (A12) defines the small additive components.
Define Ay ={j: |4, HZ #0; j=1,.., p} and

2

> b (X)) - £ (X.;)
k=1

Byj =arg_min

..... I

2

Also define
A=A By, = 03

and

A=A By, =0,
where A is the complement of any set A. Let ,BnAZ and Boa, » respectively, be the vectors

consisting of the an 'sand f,;’s for which je Ay .

We now have the following result, which extends Theorem 1 of Huang, Horowitz, and
Wei (2010) to the case in which some additive components may be small but are not necessarily

Zero.

12



Theorem 3: In model (2), let (A9)-(A12) hold. In addition, let A, >C,/nlog(pm,) for

some sufficiently large but finite constant C and let m, =< n*/(4*D  Then

(i) With probability approaching 1 as n — o | ,&0 |<M;| Ay |=M,q, for some finite

constant M, >1.
iy  If m?log(pm,)/n—>0 and A?m,/n> >0 as n—co, then Hﬁnj Hz #0 with
probability approaching 1 as n — o for every je A;.

(iii)

. 2 mZ log(pm,,) 1 1 4m32 72
HﬂnAz_ﬂnAzHZ:op(7j+op(ﬁj+o£mj+o( =8

m n

Under the conditions of Theorem 3, the group LASSO selects all of the large additive
components of model (2) with probability approaching 1 as n—o. Moreover, the group
LASSO selects only a fixed humber of additive components. Part (iii) of the theorem states the

rate of convergence of the estimated components.

5. Monte Carlo Experiments
This section reports the results of a Monte Carlo investigation of the finite-sample
performance of the LASSO and adaptive LASSO for model (1) when the small coefficients are

not necessarily zero. We write model (1) in the form

d p
Y :Zﬂjxiﬁ Z B Xij +&i; i=1..,n,

j=1 j=d+1

where ..., By are large coefficients and the coefficients fq.,,..., 8, are small or zero. The

random variables &; are independently distributed as N(O,agz). The covariates are fixed in

repeated samples and are centered and scaled so that

n n
N X =0, Nty X =0 i=1..n
i1 i1

The covariates are generated as follows. Define

1/2
§|J:§|J+(l_plle Vi; i=1,...,n;j=1,...,p/2

1/2
5ij:§ij+(%} vi; i=1..n; j=p/2+1..,p,
—F2
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where the ¢j; ’s and v; ’s are independently distributed as N(0,1) and 0< p;, p, <1. Define

E=ntY G s =N (G -8)
i=1 i=1

Then
& -5
Xij Y
Sj
Moreover,
o ifl1<jk<pl/2
corr(Xjj, Xix) =10, ifp/2<jk<p
(opy)'? ifj<pl2<k<p

In the experiments reported here,

1if 1<j<d
B, =10.05if d +1< j<p/2
0 p/2+1<j<p

In addition, n=100, p =50, agz =10, p,=0.5,and p, =0.1. The coefficient of interest is /4.
Experiments are reported with d =2, 4, and 6 and with the LASSO and adaptive LASSO. The

penalization parameter is obtained by minimizing the BIC.

Table 1 shows the mean-square errors of the estimates of £, obtained from applying OLS

to the full model and to the model containing only the variables whose coefficients are large (the
reduced model). These results are obtained analytically using the algebra of least squares. They

show that the mean-square error is smaller when £, is estimated from the reduced model than

when it is estimated from the full model.

Table 2 shows the results of estimation using the LASSO and adaptive LASSO. There are
1000 Monte Carlo replications in each experiment. Both versions of the LASSO reduce the
mean-square estimation error by about a factor of two relative to OLS estimation with the full
model. Not surprisingly, neither version achieves the mean-square error that is achievable when
the variables with large coefficients are known. The model selected by the LASSO has a higher
probability of containing all the important covariates than does the model selected by the adaptive
LASSO.

If g, is the coefficient of interest, it is reasonable to consider versions of the LASSO and
adaptive LASSO in which X;; (i=1,.,n) is always in the chosen model. This can be achieved

by leaving f, out of the penalty function. Table 3 shows the results of LASSO and adaptive

14



LASSO estimation with £, not in the penalty function. Forcing X;; into the model greatly
reduces the mean-square error of the adaptive LASSO estimator of £;. It is essentially the same

as the mean-square error that is obtained by applying OLS to the model with only the covariates

with large coefficients.

6. An Empirical Example

This section presents an empirical example that illustrates the application of the LASSO
and adaptive LASSO in a setting where many coefficients are plausibly small but non-zero. The
application consists of estimating a wage equation for black males aged 40-49 years who reside in
the northeastern U.S. The data are from the National Longitudinal Survey of Youth. There are
62 observations. The dependent variable is the logarithm of the hourly wage. There are 42
covariates, including scores on 10 sections of the armed forces qualification examination,
indicators of education level, a variety of personal characteristics, a binary indicator of marital
status (married or not), and a binary indicator of membership in a labor union. The variables of
interest in this example are marital status and union membership. Their coefficients measure the
fractional change in the wage associated with being married or belonging to a labor union. It is
arguable that all of the covariates affect productivity and, therefore, the hourly wage but that the
effects of many covariates may be small.

Application of the LASSO and adaptive LASSO using the BIC to select the penalty
parameter resulted in selection of 7 and 4 covariates, respectively. An asymptotic chi-square test
does not reject the hypotheses that the coefficients of the variables not selected by the LASSO or

adaptive LASSO are zero ( p>0.6). This implies that the values of these coefficients are small

enough to be within random sampling error of zero. They are not necessarily equal to zero.
Table 4 shows the estimates and asymptotic standard errors of the two coefficients of interest that
are obtained from applying ordinary least squares to the full model (all 42 covariates), the model
selected by the LASSO, and the model selected by the adaptive LASSO. The three point
estimates of the coefficient of labor union membership are similar, but the standard error of the
estimate obtained from the full model is nearly twice as large as the standard errors obtained from
the models selected by the LASSO and adaptive LASSO. The estimates of the coefficient of
marital status obtained from the models selected by the LASSO and adaptive LASSO are nearly 4
times as large as the estimate obtained from the full model, and the standard errors of the
estimates obtained from the selected models are about 55% of the standard error obtained with
the full model.
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7. Conclusions

In applications of mean regression analysis, it is often the case that there are many
covariates whose effects on the conditional mean of the dependent variable are thought to be
small but not necessarily zero and there relatively few covariates that have large effects on the
conditional mean function. In such situations, the precision of estimating the large effects can be
increased by leaving the covariates with small effects out of the model. However, it is rarely
known a priori which covariates have large effects and which have small ones. This paper has
given conditions under which the adaptive LASSO and several penalized least squares methods
correctly distinguish between covariates with large and small effects in a linear model and a
nonparametric additive model. Specifically, we have shown that with probability approaching
one as the sample size increases, the adaptive LASSO and penalized least squares correctly
distinguish between covariates with large and small effects under a generalized sparsity condition

and other mild regularity conditions.

8. Proofs of Theorems

Proof of Theorem 1

Let w(v)=exp(v’)—-1. The y -Orlicz norm ||x||l// of any random variable x is defined as

||x||W =inf{C >0: Ey(|x|/C)<1}. The Orlicz norm is useful for obtaining maximal inequalities

(Van der Vaart and Wellner 1996).

Lemma 2: Suppose that g,..,e are iid random variables with Eg =0 and

Var(s?)=o?. Suppose that P(|; |>z) <K exp(-Cz?) for i=1,...,n and constants C and K .

Then, for all constants a; satisfying zin:laiz =1,

<K[o+@+K)Y2c?,
172

n
Zaié‘i

i=1

(6)

where K is a constant. Consequently

n
@) g,)= sup P(Zaigi >thexp(—t2/M)
at+.+al=1 \jo

for some constant M that depends only on K and C .

Proof of Theorem 1: By the Karush-Kuhn-Tucker conditions, 23, =(,én1:---,,énp)' is the

unique adaptive LASSO estimator if
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X (v = XB,) = 2wy sgn(By) if By #0
®)
| X[y = X 5, 1€ 20y if f =0

and the vectors {x; ,ﬁnj #0) are linearly independent. Let S, ={w;sgn(fo;): = Ay} and

Ba, = (Xa X )N (X0 ¥- 255 )

) = Poa, +NCar(Xp &+ X Xp fon =4S ),
where C, =Xj X /n. If sgn(By ) =sgn(foy, ). then (8) holds for 3, = (5, .0, ), where 0,
is a vector of zeros with length | A |. Let /33 =(fon, 04 )" - To prove the theorem, it suffices to
show that P[sgn(,@AO) =sgn(ﬂopb)]—>1.

Since X,ﬁn = XAOpA’A3 for this ﬁn and {x; : j € Ay} are linearly independent,

sN(By, ) =SAn(Boa,)

(10)  sn(B,) =san(By) if | . _
| x5 (¥ = X Ba ) S AW V] & Ay

Let H, =1, —XAOC;\}X'AO/n be the projection onto the null of X , where 1, is the nxn
identity matrix. From (9), we have

(11)  p—Xp B =Hoe 01X, Calip +Ho X fon -

By (10) and (11), sgn(4,) =sgn(fy) if

) SaN(Bo;)(Boj — Boy) <| Boj | Vie A
| X} (Hye + 074, X a CalSp + Hy X Bon ) IS pW; Vi g Ay,

Thus, by (9) and (12), forany O<x<x+v <1
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P{sgn(/3,) #san(fy)} <
P{ [€,CA X X a Boa |21 By 113 forsomeje A}
+P{n~ | iCA X p £]2] By |13 for some j e A}

+P{n"" 4, | €jC S |21 By /3 forsome je A}

+P{| xjHpe > A,w; /3 for some j e Ay}

+ P{n_llx}XAbC;ong |>w; /3 forsome j e Ag}

+P{l xjH, X s fon 2 AW; /3 for some je A}
=P(B,;) + P(B,,) + P(By3) + P(Bys) + P(Bys) + P(Brg),

where e; is the unit vector in the direction of the j "th coordinate.

Consider B, . Because

N e[CRIX ) X o fon |< ”_1“"3%1)%”2 | Xa o “2

“1/2||~-1/2] L2
<n HC% “2 ™10 < Tl
we have P(B,;) — 0 by (A5).

: 1| -1y ~1/2||~-1/2 -1/2
Now consider B,,. Because n HeJ'C%XAoHZSn HCAb ”zs(nrnl) and

| Boj 2 by for je Ay,

P(Byy) = P(n | €[CAMX 212 By /3] < Ay)

< gy [y (74N)% /3]
with the tail probability g,(t) in Lemma 2. Therefore, P(B,,) >0 by (Al), Lemma 2, (A4)
and (A5).
Now Hg% Hz =0,[g"? /(nby,)]. Therefore, by (A5),
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1 U8 X 244
N4, |ejChsy [<——2 o =0, - . =0, (Bp) -

This gives P(B,3) — 0.
For B4, we have wj =| B, [<|O, (h,)+7, |. Since ijHn“s n'/2 for large C

P(Bys) < P{l x| H e [> (1/3)4, [[Cn" 2 (h, +77,)] Vi & Ay}+0(D)

< 0nGn{(2/3) 2 /ICNY2 (y + 7)1
Therefore, by Lemma 2 and (A5), P(B,,) » 0.
For B,5 we have

|ﬁX%C§$J

nwj H 71 'X CAoH ‘SAO“ |ﬂnj

1/2.1/2
<230, (h,)+m]
710y
Therefore, P(B,5) — 0 by (A5).

Finally, for B,; we have
EILROVZN |£ij”2 'Hxﬂﬂoﬂ”z =My
Therefore,

|x}|'|nxAVBOAs |

j

<nmy, |an |S nnn[op(hn) +77n] :

Therefore, P(B,s) > 0 by (A5). This completes the proof. W

Proof of Theorem 2: The proof takes place in 3 steps.

- 2
Step 1 consists of proving that H,B—,Bouz =0(nt+ ﬂﬂn‘l) with probability approaching

las n—>o. Let r denote the (asymptotically fixed) number of covariates at this estimation

stage. Denote the covariates by {Xij: i=1..,n;j=1..,r}. Set X; =(X;,..., X, ). Define
n 9 r
Sa(®) =D (Y - Xib)?+> p, (15
i=1 j=1

Then Sn(ﬁn)ssn(ﬂo). Therefore,
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D= XiB2 D 0, (B DD (= XiBo)2+ D 0y (o )
j=1 i=1 =1

i=1 j

and

D= XiB) =X (= XiB)2 <D ps (1o -2 0 (5B )
i=1 j=1 j=1

i=
Some algebra shows that this is equivalent to

S IX(B- B —2D e Xi(B—Bo) <D0y (1o D= D ps (1 53]
i=1 i=1 j=1

=

Define 5, =n*'?sY2(3- B,),and D, =n"Y25,; 12X . Then

SIXi(B= L) =2 X (B~ By) = 546 — 2(Dye)' 5,
i=1

i=1

=[5 = Dhel; - [Dfel;

Therefore,

r r R
(13) |6~ Dpelly —IDnely < X U oj D=2 s U1
j=1 j=1

Now use the inequality (b—a)? >0.5b% —a? to get
|67~ Diell, 2055, ; - [Dsel;

Substituting this inequality into (13) and rearranging terms gives
r r
2 2 A
0.5(4 [, <2[Delly + X ps, (1o D=2 pa (155D
=l j=1

Now E||Dr’]g||§ =o?r, where o?=E(¢?). Moreover, E||5n||§ =NE(B-By) = (B-B)-

Therefore,
(14)  E(B-B)Zn(B- o) s4n—1azr+2n—1E§[pAn (1 Boj D -z (155 D]
In particular,

E(B-Bo)Zn(B~ o) < 4n—1ozr+2n—1§ P, (1 Boj )

But p, =Af by (A6), so,
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E(B-Bo)En(B—Fo) <207 o?r + 24,071 £(1 By )
j=1

=o(nt+,nh).

It follows that

el =075

n

In addition, it follows from Markov’s inequality, that for each &>0 there is an M, <o such

o[ J-afsm]=1-e
1/2

Step 2 of the proof consists of refining the result of step 1 to show that ,Bj is N~ -

that

consistent for 4y;. Let A\ ={j:jeA; plim,_,.,|/3;|=0}.
Now
0, (1 Boi D=0 (B D=L F( 5o - T 5 D]
If (A7)(ii)(a) holds and j e Ay, then it follows from step 1 that with probability approaching 1 as

n— oo

102, (1 Boj D=0, (1 B; D=0.
If (A7)(ii)(b) holds and j e A,, then

105 (1 Boj D=0, (B DISCay | B = Boj .
Therefore, if (A7)(ii)(a) holds,
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Z[pz (Boj)—p,, (|ﬂ, D= z [P, (1 Boj )P, (|ﬁj D]
= jeA

< Z P (1 Foj D)
jeA

= Y. T B
jeA

<Chy 2.1 o)
jeA
=0(4,n "),
with probability approaching 1. If (A7)(ii)(b) holds, then

Z[pln(mo,b P, (85 1< 2 Ips (1 oy D= Pa (185 DI+ X [P, (1 oy D= s, (13 D]
ieAy jeA

< 3 0p;, (o D= P, U3 D1+ X B, (1 o D
ieA jeA

Therefore,

Z[ch(lﬂojl) 0, (B DI<CAy D1 B - Bio |+ Chy ZIﬁo,
jeA, Je&

=Cly O 1B - Bjo | +0(An 2
jeA

if (A7)(ii)(b) holds. The Cauchy-Schwarz inequality gives
> 1Bi=Biol. Zlﬂ, Bio <1255 -
ieA

Therefore,

>Ips (1 Bo; D= s (155 D] =0(A4,n ")

=1

with probability approaching 1 if (A7)((ii)(2) holds, and

Do (o D=1y (155 D]
j=1

<Canr2 |8 = foj |, + 0lamn %)
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if (A7)(ii)(b) holds. Substituting these inequalities into (14) yields

E(B-fo)Zn(B - Bo) < 4n~'o’r +0(4yn ™)
for all sufficiently large n if (A7)(ii)(a) holds and

E(B—fo)Zn(B~ o) < 20701+ Cn 202 B = o | +0(2n~"?)

if (A7)(ii)(b) holds. Now EH[}-/}O”Z g(EHﬂ“—ﬁonjﬂz by the Cauchy-Schwarz inequality.
This combined with non-singularity of ¥ implies that
E(B~ 5o Za(Bfo) 2 cE| - o,
for some constant ¢ >0. Therefore,
(153) E Hﬁ - ,Boui <Cntt+o(a,n )
for all sufficiently large n and some C <o if (A7)(ii)(a) holds and

(18b) E[3- 4 “z <Cnt+Cnla,

ﬁA'j —Poj H2 +0(4,n"*'?)
if (A7)(ii)(a) holds. Inequalities (15a) and (15b) imply that
E|3- A =00™"?).
The third step of the proof consists of showing that with probability approaching

1as n—oo, all the large ;s and none of the small ones are selected. Let /3’ = (,31’,/?5)’ , where
[31 is the second-stage estimator of the large coefficients and ,32 is the second stage estimator of

the small ones. We have ”,5’—,80” < n*1’2C€ with probability at least 1—& for any ¢ >0 and all

1 1/

12y, and B,, = By +n 2, , where gy, and S, are

sufficiently large C,. Let B, =Sy +n"
the true values of the large and small coefficients, respectively, and ||u||2 =||ul||2 +||u2||2 <C2.
Define

Vi (U1, Uz) = S, (Bins Ban) = Si (Bo1, 0) -
Then (B, 5,) minimizes V,(uj,u,) over |u]|<C, with probability at least 1-¢. Define

/

Upo =12, . It follows from n~/? consistency of the /3; ’s that all the large 3;'s are chosen

with probability approaching 1 as n — . Therefore, it suffices to show that

Vi (Ug,U,) =V (Ug,0) 20

23



with probability at least 1-¢ if u, #0. Write x=(w,z), where w corresponds to covariates
with large coefficients and z corresponds to covariates with small ones. Then

Vi (U, Up) =V (Ug, 0) =071 [(71U)? = (2iUz0)*T+20 7D (W) 2 (U —Ugo)
i1 i1

n
=202 gz (Uy —Uy) + A
i=1
= Rnl + an + Rn3 +A,
where

p
A= D [Py (1 B2y D=y, ( oz, D]

j=k+1

p
= > [0y, (1 Boaj + 12Uz )= Py ( Bz, DI

j=k+1

Now u,; =0(1), so

R = ”_1Zn:(2iuz)2 +0(1)
i1

n

Raz =2n71) " (Witp)zu, +0(1) ,
i1

and
n
Rua=-2n""2>"&zu, +o(1).
i=1
As in Huang, Horowitz, and Ma (2008), R, +R,,>—-C for some constant C <oo, and

Ru3 =0, (1) . Therefore,

V, (ug,uy) -V, (u,00>2-C+0@1) + A

=—C+O0W+4y D [F (1 Bogj + 1 2Upi )= T Boaj D]
e
Therefore,
(158) Vi (Uy,Up) =V, (Ug,0) = =C +O(D) + CApn 2 3" [uy; |
jeA
for all sufficiently large n under (A6)(ii)(a), and
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(15b)  V, (uy,Up) =V, (Uy,0) = —C +O() + CuA,n 72 > Juy |
jeA

under (A6)(ii)(b), where C,; is a constant. The right-hand sides if (15a) and (15b) increase

without boundas n—>o. R

Proof of Theorem 3:

The proofs of Theorem 3(i) and 3(ii) are identical to the proof of Theorem 1(i) and 1(ii)
in Huang, Horowitz, and Wei (2010). To prove Theorem 3(iii), define 7, to be the nx1 vector

whose i’th component is 7; =Y; —Z;3,, where £, is the pm,x1 vector of stacked A ’s.

Define  foa, (Xi) = ZjeAz F06G), foa, (X)) = ZjeAz Zijf» and - fx (X;) szeﬂz Zii By -
Proceed as in the proof of Theorem 1(iii) of Huang, Horowitz, and Wei (2010) to obtain

=Y —u—fo (X)) =Y = D ZiiBy
jeA,

=&+ pu+[fp (X;)— fon, (Xi)]+ f,&Z (X5).

Now proceed as in Huang, Horowitz, and Wei (2010) to obtain

- 2 m? log(pm,) m m2 A2
HﬁnAz_ﬁnAzuzzop{ - 0 - +Oan+Op *E

n
1 m 2
O —— [+O, | | fz | |
’ (] L)

The last term on the right-hand side is asymptotically negligible if m, = n'/¢*) which gives

part (iii) of the theorem. W
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TABLE 1: Mean Square Errors of OLS Estimates of g, from Full and Reduced Models

Mean-Square Error of Estimate of 5,

d Full Model Reduced Model
2 0.67 0.22
4 0.67 0.19
6 0.67 0.16
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TABLE 2: Results of LASSO and Adaptive LASSO Estimation

Prob. that Selected

[o2 SN )

Average Size of Model Contains
MSE of g Selected Model Large Variables Average 1
LASSO
2 0.31 9.7 0.84 4.57
4 0.34 12.3 0.75 4.52
6 0.29 15.0 0.67 4.48

ADAPTIVE LASSO

0.31 6.5 0.67 3.10
0.30 8.8 0.56 3.29
0.32 10.8 0.39 3.44
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TABLE 3: Results of LASSO and Adaptive LASSO Estimation with £, Not in the Penalty Function

Prob. that Selected

[o2 SN )

[o2 SN \S)

Average Size of Model Contains
MSE of g Selected Model Large Variables Average 1
LASSO
0.27 7.9 0.88 4.66
0.29 10.6 0.81 4.64
0.40 13.3 0.67 4.58

ADAPTIVE LASSO

0.19 5.8 0.67 2.83
0.17 8.0 0.64 3.13
0.19 10.2 0.43 3.23
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TABLE 4: Results of Estimating Effects of Union Membership and Marital Status on Wages

Coefficient (Standard Error) Obtained from

Variable OLS LASSO Adaptive LASSO
Union 0.21 0.21 0.22
Member (0.17) (0.096) (0.094)
Marital 0.051 0.19 0.20

Status (0.19) (0.11) (0.11)
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