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Abstract

This note considers nonparametric identi�cation of a general nonlinear regression
model with a dichotomous regressor subject to misclassi�cation error. The available
sample information consists of a dependent variable and a set of regressors, one of
which is binary and error-ridden with misclassi�cation error that has unknown distrib-
ution. Our identi�cation strategy does not parameterize any regression or distribution
functions, and does not require additional sample information such as instrumental
variables, repeated measurements, or an auxiliary sample. Our main identifying as-
sumption is that the regression model error has zero conditional third moment. The
results include a closed-form solution for the unknown distributions and the regression
function.
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1 Motivation

Dichotomous (binary) variables, such as union status, smoking behavior, and having a college

degree or not, are involved in many economic models. Measurement errors in dichotomous

variables take the form of misclassi�cation errors, i.e., some observations where the variable

is actually a one may be misclassi�ed as a zero, and vice versa. A common source of

misclassi�cation errors is self reporting, where people may have psychological or economic

incentives to misreport dichotomous variables (see Bound, Brown, and Mathiowetz (2001)

for a survey). Misclassi�cation may also arise from ordinary coding or reporting errors, e.g.,

Kane, Rouse, and Staiger (1999) report substantial classi�cation errors in both self reports

and transcript reports of educational attainment. Unlike ordinary mismeasured regressors,

misclassi�ed regressors cannot possess the properties of classically mismeasured variables, in

particular, classi�cation errors are not independent of the underlying true regressor, and are

in general not mean zero.

As with ordinary mismeasured regressors, estimated regressions with a misclassi�ed re-

gressor are inconsistent, and the latent true regression model based just on conditionally

mean zero model errors is generally not identi�ed in the presence of a misclassi�ed regressor.

To identify the latent model, we must either impose additional assumptions or possess addi-

tional sample information. One popular additional assumption is to assume the measurement

error distribution belong to some parametric family; see, e.g., Hsiao (1991), Hausman, Are-

vaya and Scott-Morton (1998), and Hong and Tamer (2003). Additional sample information

often used to obtain identi�cation includes an instrumental variable or a repeated measure-

ment in the same sample (see, e.g., Hausman, Ichimura, Newey and Powell (1991), Li (2002),

Schennach (2004), Carroll, Ruppert, Crainiceanu, Tosteson and Karagas (2004), Mahajan

(2006), Lewbel (2007a), Hu (2006) and Hu and Schennach (2006)), or a secondary sample

(see, e.g., Lee and Sepanski (1995), Chen, Hong, and Tamer (2005), Hu and Ridder (2006),

and Chen and Hu (2006)). See, e.g., Carroll, Ruppert, Stefanski and Crainiceanu (2006),

and Chen, Hong and Nekipelov (2007) for detailed recent reviews on existing approaches to

measurement error problems.

In this note we obtain identi�cation without parameterizing errors and without auxiliary

information like instrumental variables, repeated measurements, or a secondary sample. In

particular we show that, given some mild regularity conditions, a nonparametric mean re-

gression with a misclassi�ed binary regressor is identi�ed (and can be solved in closed form)
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if the latent regression error has zero conditional third moment, as would be the case if the

regression error were symmetric. We also brie�y discuss how simple estimators might be

constructed based on our identi�cation method.

This note is organized as follows. Section 2 provides the identi�cation results with a

closed-form identi�cation of the latent model. Section 3 describes possible estimators and

concludes the note. Proofs are in the appendix.

2 Identi�cation

We are interested in a regression model as follows:

Y = m (X�;W ) + �; E (�jX�;W ) = 0 (2.1)

where Y is the dependent variable, X� 2 X = f0; 1g is the dichotomous regressor subject
to misclassi�cation error, and W is an error-free covariate vector. We are interested in the

nonparametric identi�cation of the regression function m(). The regression error � need not

be independent of the regressors X� and W , so we have conditional density functions

fY jX�;W (yjx�; w) = f�jX�;W (y �m(x�; w)jx�; w) : (2.2)

In a random sample, we observe (X;Y;W ) 2 X�Y�W, whereX is a proxy or a mismeasured
version of X�. We assume

Assumption 2.1 fY jX�;W;X(yjx�; w; x) = fY jX�;W (yjx�; w) for all (x; x�; y; w) 2 X � X �
Y �W :

This assumption implies that the measurement error in X is independent of the dependent

variable Y conditional on the true value X� and the covariateW , and so X is independent of

the regression error � conditional on X� and W . This is analogous to the classical measure-

ment error assumption of having the measurement error independent of the regression model

error. This assumption may be problematic in applications where the same individual who

provides the source of misclassi�cation by supplying X also helps determine the outcome Y ,

however, this is a standard assumption in the literature of mismeasured and misclassi�ed

regressors. See, e.g., Li (2002), Schennach (2004), Mahajan (2006), Lewbel (2007a) and Hu

(2006).
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By construction, the relationship between the observed density and the latent ones are

as follows:

fY jX;W (yjx;w) =
X
x�

fY jX�;W;X(yjx�; w; x)fX�jX;W (x
�jx;w)

=
X
x�

f�jX�;W (y �m(x�; w)jx�; w) fX�jX;W (x
�jx;w) : (2.3)

Using the fact that X and X� are 0-1 dichotomous, de�ne the following simplifying no-

tation: m0 (w) = m (0; w), m1 (w) = m (1; w), �0 (w) = E(Y jX = 0; w), �1 (w) = E(Y jX =

1; w), p (w) = fX�jX;W (1j0; w), and q (w) = fX�jX;W (0j1; w) : Equation (2.3) is then equiva-
lent to�

fY jX;W (yj0; w)
fY jX;W (yj1; w)

�
=

�
1� p (w) p (w)
q (w) 1� q (w)

��
f�jX�;W (y �m0 (w) j0; w)
f�jX�;W (y �m1 (w) j1; w)

�
. (2.4)

Since f�jX�;W has zero mean, we obtain

�0 (w) = (1� p (w))m0 (w) + p (w)m1 (w) and �1 (w) = q (w)m0 (w) + (1� q (w))m1 (w) :

(2.5)

Assume

Assumption 2.2 m1 (w) 6= m0 (w) for all w 2 W :

This assumption means that X� has a nonzero e¤ect on the conditional mean of Y , and so

is a relevant explanatory variable, given W . We may now solve equation (2.5) for p(w) and

q(w), yielding

p (w) =
�0 (w)�m0 (w)

m1 (w)�m0 (w)
and q (w) =

m1 (w)� �1 (w)
m1 (w)�m0 (w)

(2.6)

Without loss of generality, we assume,

Assumption 2.3 for all w 2 W, (i) �1 (w) > �0 (w); (ii) p (w) + q (w) < 1:

Assumption 2.3(i) is not restrictive because one can always rede�ne X as 1 �X if needed.

Assumption 2.3(ii) implies that the ordering of m1 (w) and m0 (w) is the same as that of

�1 (w) and �0 (w) because

1� p (w)� q (w) = �1 (w)� �0 (w)
m1 (w)�m0 (w)

:
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The intuition of assumption 2.3(ii) is that the total misclassi�cation probability is not too

large so that �1 (w) > �0 (w) implies m1 (w) > m0 (w) (see, e.g., Lewbel 2007a) for a further

discussion of this assumption). In summary, we have

m1 (w) � �1 (w) > �0 (w) � m0 (w) :

The condition p (w) + q (w) 6= 1 also guarantees that the matrix
�
1� p (w) p (w)
q (w) 1� q (w)

�
in equation (2.4) is invertible, which implies�
f�jX�;W (y �m0 (w) j0; w)
f�jX�;W (y �m1 (w) j1; w)

�
=

1

1� p (w)� q (w)

�
1� q (w) �p (w)
�q (w) 1� p (w)

��
fY jX;W (yj0; w)
fY jX;W (yj1; w)

�
:

If we then plug in the expressions for p (w) and q (w) in equation (2.6), we obtain for j = 0; 1

f�jX�;W (y �mj (w) jj; w) =
�1 (w)�mj (w)

�1 (w)� �0 (w)
fY jX;W (yj0; w) +

mj (w)� �0 (w)
�1 (w)� �0 (w)

fY jX;W (yj1; w):

(2.7)

Equation (2.7) is our vehicle for identi�cation. Given any information about the distrib-

ution of the regression error �, equation (2.7) provides the link between that information and

the unknowns m0 (w) and m1 (w), along with the observable density fY jX;W and observable

conditional means �0 (w) and �1 (w). The speci�c assumption about � that we use to obtain

identi�cation is this:

Assumption 2.4 E (�3jX�;W ) = 0:

A su¢ cient though much stronger than necessary condition for this assumption to hold is

that f�jX�;W be symmetric for each x� 2 X and w 2 W. Notice that the regression model
error � need not be independent of the regressors X�;W , and in particular our assumptions

permit � to have heteroskedasticity of completely unknown form.

Let � denote the characteristic function and

��jX�=j;w (t) =

Z
eit�f�jX�;W (�jj; w)d�;

�Y jX=j;w(t) =

Z
eityfY jX;W (yjj; w)dy:

Then equation (2.7) implies that for any real t

ln
�
eitmj(w)��jX�=j;w (t)

�
= ln

�
�1 (w)�mj (w)

�1 (w)� �0 (w)
�Y jX=0;w(t) +

mj (w)� �0 (w)
�1 (w)� �0 (w)

�Y jX=1;w(t)

�
:

(2.8)
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Notice that

@3

@t3
ln
�
eitmj(w)��jX�=j;w (t)

�����
t=0

=
@3

@t3
ln��jX�=j;w (t)

����
t=0

= �iE
�
�3jX� = j;W = w

�
:

Assumption 2.4 therefore implies that for j = 0; 1

G (mj (w)) = 0; (2.9)

where

G (z) � i
@3

@t3
ln

�
�1 (w)� z

�1 (w)� �0 (w)
�Y jX=0;w(t) +

z � �0 (w)
�1 (w)� �0 (w)

�Y jX=1;w(t)

�����
t=0

:

This equation shows that the unknownsm0 (w) andm1 (w) are two roots of the cubic function

G (�) in equation (2.9). Suppose the three roots of this equation are ra (w) � rb (w) � rc (w).
In fact, we have

ra (w) � m0 (w) � �0 (w) < �1 (w) � m1 (w) � rc (w) ;

which implies bounds on m0 (w) and m1 (w). To obtain point identi�cation of mj (w), we

need to be able to uniquely de�ne which roots of the cubic function G (�) correspond to
m0 (w) and m1 (w). This is provided by the following assumption.

Assumption 2.5 Assume

E
�
(Y � �0 (w))

3 jX = 0;W = w
�
� 0 � E

�
(Y � �1 (w))

3 jX = 1;W = w
�

and, when an equality with X = j holds, assume dG(z)
dz

���
z=�j(w)

> 0:

It follows from Assumption 2.5 that

ra (w) � �0 (w) < rb (w) < �1 (w) � rc (w) :

Since m0 (w) � �0 (w) < �1 (w) � m1 (w), we then have point identi�cation by m0 (w) =

ra (w) and m1 (w) = rc (w). Note that Assumption 2.5 is directly testable from the data.

Based on the de�nition of skewness of a distribution and �0 (w) > E(Y jW = w) > �1 (w),

assumption 2.5 implies that the distributions fY jX;W (yj1; w) and fY jX;W (yj0; w) are skewed
towards the unconditional mean E(Y jW = w) compared with each conditional mean. It
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should not be surprising that our identi�cation based on a third moment restriction exploits

skewness. An analogous result is Lewbel (1997), who obtains identi�cation in a classical

measurement error context without auxiliary data by assuming no skewness of the measure-

ment error and skewness of the underlying regressor distribution. In contrast, in the present

context it is the regression model error that is assumed to have zero skewness.

Notice that assumption 2.4 implies that E[(Y �m0 (w))
3 jX = 0;W = w] = 0 and

E[(Y �m1 (w))
3 jX = 1;W = w] = 0. Assumption 2.5 then implies

E
�
(Y � �0 (w))

3 jX = 0;W = w
�
� E

�
(Y �m0 (w))

3 jX = 0;W = w
�

and

E
�
(Y � �1 (w))

3 jX = 1;W = w
�
� E

�
(Y �m1 (w))

3 jX = 1;W = w
�
:

The third moments on the left-hand sides are observed from the data and the right-hand sides

contain the latent third moments. We may treat the third moments E[
�
Y � �j (w)

�3 jX =

j;W = w] as a naive estimator of the true moments E[(Y �mj (w))
3 jX = j;W = w].

Assumption 2.4 implies that the latent third moments are known to be zero. Assumption

2.5 implies that the sign of the bias of the naive estimator is di¤erent in two subsamples

corresponding to X = 0 and X = 1.

We leave the detailed proof to the appendix and summarize the result as follows:

Theorem 2.1 Suppose that assumptions 2.1-2.5 hold in equation (2.1). Then, the density

fY;X;W uniquely determines fY jX�;W and fX�;X;W .

Identi�cation of the distributions fY jX�;W and fX�;X;W by Theorem 2.1 immediately im-

plies that the regression function m (X�;W ), the conditional distribution of the regression

error, f�jX�;W , and the conditional distribution of the misclassi�cation error (the di¤erence

between X and X�) are all identi�ed.

3 Conclusions and Possible Estimators

We have shown that a nonparametric regression model containing a dichotomous misclassi-

�ed regressor can be identi�ed without any auxiliary data like instruments, repeated mea-

surements, or a secondary sample (such as validation data), and without any parametric

restrictions. The only identifying assumptions are some regularity conditions and the as-

sumption that the regression model error has zero conditional skewness.
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We have focused on identi�cation, so we conclude by brie�y describing how estimators

might be constructed based on our identi�cation method. One possibility would be to

substitute consistent estimators of the conditional means �j (w) and characteristic functions

�Y jX;w(t) into equation (2.9), and solve the resulting cubic equation for estimates of mj (w).

Another possibility is to observe that, based on the proof of our main theorem, the identifying

equations can be written in terms of conditional mean zero expectations as

E(
�
Y � �j (w)

�
I (X = j) jW = w) = 0;

E(
�
Y 2 � �j (w)

�
I (X = j) jW = w) = 0;

E(
�
Y 3 � �j (w)

�
I (X = j) jW = w) = 0;

E

 
2mj(W )

3 � 3 �1(w)��0(w)
�1(w)��0(w)

mj(W )
2

�3�0(w)�1(w)�3�1(w)�0(w)+�0(w)��1(w)
�1(w)��0(w)

mj(W ) +
�1(w)�0(w)��0(w)�1(w)

�1(w)��0(w)
jW = w

!
= 0:

See the Appendix, particularly equation (A.8). We might then apply Ai and Chen (2003)

to these conditional moments to obtain sieve estimates of mj (w), �j (w), �j (w), and �j (w).

Alternatively, the local GMM estimator of Lewbel (2007b) could be employed. If w is discrete

or empty, or if these functions of w are �nitely parameterized, then these estimators could

be reduced to ordinary GMM.
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4 Appendix

Proof. (Theorem 2.1) Frist, we introduce notations as follows: for j = 0; 1

mj (w) = m (j; w) ;

�j (w) = E(Y jX = j;W = w);

p (w) = fX�jX;W (1j0; w) ; q (w) = fX�jX;W (0j1; w) ;

�j (w) = E(Y
2jX = j;W = w),

and

�j (w) = E(Y
3jX = j;W = w):

We start the proof with equation (2.3), which is equivalent to�
fY jX;W (yj0; w)
fY jX;W (yj1; w)

�
=

�
fX�jX;W (0j0; w) fX�jX;W (1j0; w)
fX�jX;W (0j1; w) fX�jX;W (1j1; w)

��
f�jX�;W (y �m0 (w) j0; w)
f�jX�;W (y �m1 (w) j1; w)

�
:

(A.1)

Using the notations above, we have�
fY jX;W (yj0; w)
fY jX;W (yj1; w)

�
=

�
1� p (w) p (w)
q (w) 1� q (w)

��
f�jX�;W (y �m0 (w) j0; w)
f�jX�;W (y �m1 (w) j1; w)

�
: (A.2)

Assumption 2.4 implies that f�jX�;W has zero mean. Therefore, we have

�0 (w) = (1� p (w))m0 (w) + p (w)m1 (w) ;

�1 (w) = q (w)m0 (w) + (1� q (w))m1 (w) :

By assumption 2.2, we may solve for p (w) and q (w) as follows:

p (w) =
�0 (w)�m0 (w)

m1 (w)�m0 (w)
and q (w) =

m1 (w)� �1 (w)
m1 (w)�m0 (w)

: (A.3)

We also have

1� p (w)� q (w) = �1 (w)� �0 (w)
m1 (w)�m0 (w)

:

As discussed before, assumption 2.3 implies that

m1 (w) � �1 (w) > �0 (w) � m0 (w) :

and�
f�jX�;W (y �m0 (w) j0; w)
f�jX�;W (y �m1 (w) j1; w)

�
=

1

1� p (w)� q (w)

�
1� q (w) �p (w)
�q (w) 1� p (w)

��
fY jX;W (yj0; w)
fY jX;W (yj1; w)

�
:
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Plug-in the expression of p (w) and q (w) in equation (A.3), we have

�p (w)
1� p (w)� q (w) =

m0 (w)� �0 (w)
�1 (w)� �0 (w)

;

�q (w)
1� p (w)� q (w) =

�1 (w)�m1 (w)

�1 (w)� �0 (w)
;

1� p (w)
1� p (w)� q (w) = 1�

�q (w)
1� p (w)� q (w) ;

1� q (w)
1� p (w)� q (w) = 1�

�p (w)
1� p (w)� q (w) ;

and�
f�jX�;W (y �m0 (w) j0; w)
f�jX�;W (y �m1 (w) j1; w)

�
=

 
1� m0(w)��0(w)

�1(w)��0(w)
m0(w)��0(w)
�1(w)��0(w)

�1(w)�m1(w)
�1(w)��0(w)

1� �1(w)�m1(w)
�1(w)��0(w)

!�
fY jX;W (yj0; w)
fY jX;W (yj1; w)

�

=

 
�1(w)�m0(w)
�1(w)��0(w)

m0(w)��0(w)
�1(w)��0(w)

�1(w)�m1(w)
�1(w)��0(w)

m1(w)��0(w)
�1(w)��0(w)

!�
fY jX;W (yj0; w)
fY jX;W (yj1; w)

�
:

In other words, we have

f�jX�;W (y �mj (w) jj; w) =
�1 (w)�mj (w)

�1 (w)� �0 (w)
fY jX;W (yj0; w) +

mj (w)� �0 (w)
�1 (w)� �0 (w)

fY jX;W (yj1; w):

(A.4)

Let � denote the characteristic function and

��jX�=j;w (t) =

Z
eit�f�jX�;W (�jj; w)d�;

�Y jX=j;w(t) =

Z
eityfY jX;W (yjj; w)dy:

Equation (A.4) implies that for any real t

eitmj(w)��jX�=j;w (t) =
�1 (w)�mj (w)

�1 (w)� �0 (w)
�Y jX=0;w(t) +

mj (w)� �0 (w)
�1 (w)� �0 (w)

�Y jX=1;w(t):

We then consider the log transform

ln
�
eitmj(w)��jX�=j;w (t)

�
= ln

�
�1 (w)�mj (w)

�1 (w)� �0 (w)
�Y jX=0;w(t) +

mj (w)� �0 (w)
�1 (w)� �0 (w)

�Y jX=1;w(t)

�
:

(A.5)

Notice that

@3

@t3
ln
�
eitmj(w)��jX�=j;w (t)

�����
t=0

=
@3

@t3
ln��jX�=j;w (t)

����
t=0

= �iE
�
�3jX� = j;W = w

�
:
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Assumption 2.4 implies that for j = 0; 1

0 = i
@3

@t3
ln

�
�1 (w)�mj (w)

�1 (w)� �0 (w)
�Y jX=0;w(t) +

mj (w)� �0 (w)
�1 (w)� �0 (w)

�Y jX=1;w(t)

�����
t=0

: (A.6)

Given that @
@t
ln f (t) = f 0

f
, @2

@t2
ln f (t) = f 00

f
�
�
f 0

f

�2
and

@3

@t3
ln f (t) =

f 000

f
� f

00f 0

f 2
� 2f

0

f

"
f 00

f
�
�
f 0

f

�2#

=
f 000

f
� 3f

00f 0

f 2
+ 2

�
f 0

f

�3
;

we have

0 = i

�1(w)�mj(w)

�1(w)��0(w)
@3

@t3
�Y jX=0;w(t) +

mj(w)��0(w)
�1(w)��0(w)

@3

@t3
�Y jX=1;w(t)

�1(w)�mj(w)

�1(w)��0(w)
�Y jX=0;w(t) +

mj(w)��0(w)
�1(w)��0(w)

�Y jX=1;w(t)
(A.7)

�3i

�
�1(w)�mj(w)

�1(w)��0(w)
@2

@t2
�Y jX=0;w(t) +

mj(w)��0(w)
�1(w)��0(w)

@2

@t2
�Y jX=1;w(t)

�
�
�1(w)�mj(w)

�1(w)��0(w)
�Y jX=0;w(t) +

mj(w)��0(w)
�1(w)��0(w)

�Y jX=1;w(t)
�2 �

�
�
�1 (w)�mj (w)

�1 (w)� �0 (w)
@

@t
�Y jX=0;w(t) +

mj (w)� �0 (w)
�1 (w)� �0 (w)

@

@t
�Y jX=1;w(t)

�

+2i

 �1(w)�mj(w)

�1(w)��0(w)
@
@t
�Y jX=0;w(t) +

mj(w)��0(w)
�1(w)��0(w)

@
@t
�Y jX=1;w(t)

�1(w)�mj(w)

�1(w)��0(w)
�Y jX=0;w(t) +

mj(w)��0(w)
�1(w)��0(w)

�Y jX=1;w(t)

!3
:

When t = 0, we have �Y jX;W (0) = 1,

@

@t
�Y jX=j;w(0) = iE(Y jX = j;W = w) = i�j;

@2

@t2
�Y jX=j;w(0) = �E(Y 2jX = j;W = w) = ��j;

and
@3

@t3
�Y jX=j(0) = �iE(Y 3jX = j) = �i�j:

Furthermore, equation (A.7) becomes with t = 0;

0 = i

�
�1 (w)�mj (w)

�1 (w)� �0 (w)
(�i�0 (w)) +

mj (w)� �0 (w)
�1 (w)� �0 (w)

(�i�1 (w))
�

�3i
�
�1 (w)�mj (w)

�1 (w)� �0 (w)
(��0 (w)) +

mj (w)� �0 (w)
�1 (w)� �0 (w)

(��1 (w))
�
�

�
�
�1 (w)�mj (w)

�1 (w)� �0 (w)
(i�0 (w)) +

mj (w)� �0 (w)
�1 (w)� �0 (w)

(i�1 (w))

�
+2i

�
�1 (w)�mj (w)

�1 (w)� �0 (w)
(i�0 (w)) +

mj (w)� �0 (w)
�1 (w)� �0 (w)

(i�1 (w))

�3
:
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Furthermore, we have

G (mj) = 0;

where

G (z) � 2z3 � 3�1 (w)� �0 (w)
�1 (w)� �0 (w)

z2 (A.8)

�3�0 (w)�1 (w)� 3�1 (w)�0 (w) + �0 (w)� �1 (w)
�1 (w)� �0 (w)

z +
�1 (w)�0 (w)� �0 (w)�1 (w)

�1 (w)� �0 (w)
:

Obviously, this equation has two real roots, i.e., m0 (w) and m1 (w). This means this cubic

equation has three real roots because all the coe¢ cients are real. Suppose the three roots

of this equation are ra (w) � rb (w) � rc (w) for each given w. Since m0 (w) 6= m1 (w),

we will never have ra (w) = rb (w) = rc (w). The unknowns mj (w) corresponds to two of

the three roots. If the second largest of the three roots is between �0 (w) and �1 (w), i.e.,

�0 (w) < rb (w) < �1 (w), then we know the largest root rc (w) equalsm1 (w) and the smallest

root ra (w) equals m0 (w) because m1 (w) � �1 (w) > �0 (w) � m0 (w). Given the shape of

the cubic function, we know

G (z)

8>><>>:
< 0 if z < ra (w)
> 0 if ra (w) < z < rb (w)
< 0 if rb (w) < z < rc (w)
> 0 if rc (w) < z

:

That means the second largest of the three roots rb is between �0 (w) and �1 (w) if

G (�1 (w)) < 0 and G (�0 (w)) > 0:

We next show thatG (�1 (w)) = E
�
(Y � �1 (w))

3 jX = 1;W = w
�
andG (�0 (w)) = E

�
(Y � �0 (w))

3 jX = 0;W = w
�
.

First, we consider G (�1 (w)) :

G (�1 (w)) = 2�31 (w)� 3
�1 (w)� �0 (w)
�1 (w)� �0 (w)

�1 (w)

�3�0 (w)�1 (w)� 3�1 (w)�0 (w) + �0 (w)� �1 (w)
�1 (w)� �0 (w)

�1 (w)

+
�1 (w)�0 (w)� �0 (w)�1 (w)

�1 (w)� �0 (w)
= �1 (w)� 3�1 (w)�1 (w) + 2�31
= E

�
(Y � �1 (w))

3 jX = 1;W = w
�

14



Second, we consider G (�0 (w))

G (�0 (w)) = 2�30 (w)� 3
�1 (w)� �0 (w)
�1 (w)� �0 (w)

�0 (w)

�3�0 (w)�1 (w)� 3�1 (w)�0 (w) + �0 (w)� �1 (w)
�1 (w)� �0 (w)

�0 (w)

+
�1 (w)�0 (w)� �0 (w)�1 (w)

�1 (w)� �0 (w)
= �0 (w)� 3�0 (w)�0 (w) + 2�30
= E

�
(Y � �0 (w))

3 jX = 0;W = w
�

Therefore, assumption 2.5 implies that G (�1 (w)) � 0 and G (�0 (w)) � 0. Given the graph
of the cubic function G (�), if G (�1 (w)) < 0, then �1 (w) < m1 (w) implies that m1 (w)

equals the largest of the three roots. When G (�0 (w)) > 0, then m0 (w) < �0 (w) implies

that m0 (w) equals the smallest of the three roots.

In case E
�
(Y � �1 (w))

3 jX = 1;W = w
�
= 0, i.e., G (�1 (w)) = 0, �1 (w) is a root of

G (�). Given the graph of the cubic function G (�), we know

dG (z)

dz

8<:
� 0 at z = ra (w)
� 0 at z = rb (w)
� 0 at z = rc (w)

:

That means the condition dG(z)
dz

���
z=�1(w)

> 0 guarantees that �1 (w) is the largest root and

equal to m1 (w). If E
�
(Y � �0 (w))

3 jX = 0;W = w
�
= 0, i.e. G (�0 (w)) = 0, �0 (w) is a

root of G (�). The condition dG(z)
dz

���
z=�0(w)

> 0 guarantees that �0 (w) is the smallest root

and equal to m0 (w). In summary, assumption 2.5 guarantees that m0 (w) and m1 (w) can

be identi�ed out of the three directly estimable roots.

After we have identi�ed m0 (w) and m1 (w), p (w) and q (w) (or fX�jX;W ) are identi�ed

from equation (A.3), and the density f�jX�;W (or fY jX�;W ) is also identi�ed from equation

(A.4). Since X and W are observed in the data, identi�cation of fX�jX;W implies that of

fX�;X;W . Thus, we have identi�ed the latent densities fY jX�;W and fX�;X;W from the observed

density fY;X;W under assumptions 2.1-2.5.
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