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Abstract

The goal of this paper is to develop formal tests to evaluate the relative in-sample per-

formance of two competing, misspeci�ed non-nested models in the presence of possible data

instability. Compared to previous approaches to model selection, which are based on measures

of global performance, we focus on the local relative performance of the models. We propose

three tests that are based on di¤erent measures of local performance and that correspond to

di¤erent null and alternative hypotheses. The empirical application provides insights into the

time variation in the performance of a representative DSGE model of the European economy

relative to that of VARs.
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1 Introduction

The problem of detecting time-variation in the parameters of econometric models has been widely

investigated for several decades, and empirical applications have documented that structural insta-

bility is widespread.

In this paper, we depart from the literature by focusing on investigating instability in the

performance of models, rather than focusing solely on instability in their parameters. The idea

is simple: in the presence of structural change, it is plausible that the performance of a model

may itself be changing over time, even if the model�s parameters remain constant. In particular,

when the problem is that of comparing the performance of competing models, it would be useful

to understand which model performed better at which point in time.

The goal of this paper is therefore to develop formal techniques for conducting inference about

the relative performance of two models over time, and to propose tests that can detect time variation

in relative performance even when the parameters are constant. Existing model selection tests such

as Rivers and Vuong (2002) are inadequate for answering this question, since they work under the

assumption that there exists a globally best model. The central idea of our method is instead

to propose a measure of the models� local relative performance: the "local relative Kullback-

Leibler Information Criterion" (local relative KLIC), which represents the relative distance of the

two (misspeci�ed) likelihoods from the true likelihood at a particular point in time. We then

investigate ways to conduct inference about the local relative KLIC and construct tests of the joint

null hypothesis that the relative performance and the parameters of the models are constant over

time.

We propose three tests, which correspond to di¤erent assumptions about the parameters and

the relative performance under the null and alternative hypotheses: 1) a "one-time reversal" test

against a one-time change in models�performance and parameters; 2) a "nonparametric test" and

3) a "�uctuation test" against smooth changes in both performance and parameters. The �rst

test is based on estimating the parameters and the relative performance before and after potential

change dates, whereas the latter two are based on nonparametric estimates of local performance

and local parameters. While the second and third tests consider the same test statistic, they di¤er

in the asymptotic approximation that we use to derive its distribution under the null hypothesis

(which also has a di¤erent formulation). The nonparametric test adopts the standard shrinking-

bandwidth approximation of Wu and Zhao (2007), whereas the �uctuation test is based on a novel

�xed-bandwidth approximation which we show delivers a better �nite-sample performance.

For all three tests, we show that the dependence of the local performance on unobserved para-

meters does not a¤ect the asymptotic distribution of the test statistic, as long as the parameters

are also estimated locally. This can be viewed as an extension of a similar �nding in Rivers and
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Vuong (2002) to our local setting, given that the parameters are estimated by maximizing the same

criterion on which the performance measure is based.

Our research is related to several papers in the literature, in particular Rossi (2005) and, more

distantly, to Muller and Petalas (2009), Elliott and Muller (2005), Andrews and Ploberger (1994)

and Andrews (1993). Rossi (2005) proposes a test that is similar to our one-time reversal test but

focuses on the case of nested and correctly speci�ed models. Here we consider the more general case

of non-nested and misspeci�ed models and propose two additional tests. In a companion paper,

Giacomini and Rossi (2010) investigate the problem of estimating and testing the time variation in

the relative performance of models in an out-of-sample forecasting context. Even though some of

the techniques are similar, the additional complication in the in-sample context considered in this

paper is that the measure of relative performance depends on estimated parameters, which need

to be taken into account when performing inference. The dependence on parameter estimates can

instead be ignored in an out-of-sample context, provided one adopts the asymptotic approximation

with �nite estimation window considered by Giacomini and Rossi (2010).

Our approach in this paper is also related to the literature on parameter instability testing

(e.g., Brown, Durbin and Evans, 1975; Ploberger and Kramer, 1992; Andrews, 1993; Andrews and

Ploberger, 1994; Elliott and Muller, 2005; Muller and Petalas, 2009) in that we adapt the tools

developed in that literature to our di¤erent context of testing the joint hypothesis that the relative

performance of the models is equal at each point in time and that the parameters are constant.

One important limitation of our approach is that our methods are not applicable when the

competing models are nested, which is common in the literature on model selection testing based

on Kullback-Leibler-type of measures. See Rivers and Vuong (2002) for an in-depth discussion of

this issue.

The paper is structured as follows. The next section discusses a motivating example that

illustrates the procedures proposed in this paper. Section 3 de�nes the tests. Section 4 evaluates

the small sample properties of our proposed procedures in a Monte Carlo experiment, and Section

5 presents the empirical results. Section 6 concludes. The proofs are collected in the appendix.

2 Motivating Example

Let yt = �0txt + 0t zt + ut; with ut � i:i:d:N(0; 1); xt; zt independent N(0; �2x;t) and N(0; �
2
z;t),

respectively, independent of each other and of ut for t = 1; :::; T , so that the true conditional density

of yt is ht : N(�0txt+
0
t zt; 1). Suppose the researcher�s goal is to compare two misspeci�ed models:

model 1, which speci�es a density ft : N(�0txt; 1) and model 2, with density gt : N(
0
t zt; 1). To

measure the relative distance of ft and gt from ht at time t we propose using the relative Kullback-

Leibler Information Criterion at time t, �KLICt, (henceforth the �local relative KLIC�), de�ned
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as:

Local relative KLIC : �KLICt(�0t ) = E [ln (ht=gt)]� E [ln (ht=ft)] = E [ln ft � ln gt] ; (1)

where �0t = (�
00
t ; 

00
t )
0 and the expectation is taken with respect to the true density ht. If�KLICt(�0t ) >

0; model 1 performs better than model 2 at time t: In our example, it can be easily shown that1:

�KLICt(�
0
t ) =

1

2

h�
�0t
�2
�2x;t �

�
0t
�2
�2z;t

i
: (2)

Intuitively, �KLICt(�0t ) measures the relative degree of mis-speci�cation of the two models at

time t. For model 2, the contribution of its mis-speci�cation is re�ected in the contribution of

the omitted variable xt to the variance of the error term, which equals
�
�0t
�2
�2x;t. Similarly, the

mis-speci�cation of model 1 is measured by
�
0t
�2
�2z;t. Thus, model 2 performs better than model

1 if the contribution of its mis-speci�cation to the variance of the error is smaller than for model 1.

Importantly, equation (2) shows that the time variation in the relative KLIC re�ects the time

variation in the relative mis-speci�cation of the two models. In particular, the time variation in

relative performance might be due to the fact that �0t ; 
0
t change in ways that a¤ect �KLICt

di¤erently over time, but it might also be caused by �2x;t and �
2
z;t changing in di¤erent ways over

time while the parameters remain constant.

As can be seen from expression (2), the main challenge in estimating the local relative KLIC

is its dependence on the unknown parameters at time t: Our goal is to construct tests of equal

performance over time that take into account such dependence. We propose three di¤erent tests,

which correspond to di¤erent assumptions about the behavior of the parameters and of the relative

performance under the alternative hypothesis.

The �rst test (�one-time reversal test�) assumes that under the alternative hypothesis there is

a one-time change in relative performance as well as (at most) a one-time change in parameters at

the same time. This corresponds to the following null and alternative hypotheses:

HOT
0 : f�KLICt (�t) = 0g \ f�t = �g for t = 1; :::; T (3)

where

� = (�0; 0)0 with � = argmax
b
E

"
1

T

TX
t=1

ln ft(b)

#
(4)

(and similarly for ), and

HOT
1 : [�2� f�KLICt (�t) = �1 (�) 1 (t � [T�]) + �2 (�) 1 (t > [T�])g

\f�t = �1 (�) 1 (t � [T�]) + �2 (�) 1 (t > [T�])g (5)

1�KLICt =
1
2
E
h�
ut � �0txt

�2 � �ut � 0t zt�2i = 1
2
E
h�
�0t
�2
x2t �

�
0t
�2
z2t

i
= 1

2
(
�
�0t
�2
�2x;t �

�
0t
�2
�2z;t)

4



for some (�1 (�) ; �2 (�)) 6= (0; 0); some � 2 � � (0; 1); t = 1; :::; T and �t = (�t; t)
0; where

�t = �1 (�) 1 (t � [T�]) + �2 (�) 1 (t > [T�]) ; with

�1 (�) = argmax
b
E

24 1

[T�]

[T�]X
t=1

ln ft(b)

35 ; (6)

�2 (�) = argmax
b
E

24 1

[T (1� �)]

TX
t=[T�]+1

ln ft(b)

35 ; (7)

(and similarly for t). Thus, �t and t are the local maximum likelihood "pseudo-true" parameters

computed in the sub-samples before and after the reversal, which happens at the unknown fraction

of the total sample �.

The fact that the local parameter is maintained constant under the null hypothesis is not

in principle necessary, but it makes the assumptions that underlie the validity of our test more

plausible. We will further discuss this issue in Section 3.1 below. The approach focuses on the

models�local relative performance by measuring it separately before and after the reversal. In case

the null hypothesis is rejected, the time of the change �T can be estimated and the path of relative

performance equals �1 (�) before the change and �2 (�) after the change.

The second and third tests (�nonparametric test� and ��uctuation test�) involve estimating

both the measure of relative performance �KLICt(�t) and the parameters �t nonparametrically.

The two tests are based on the same test statistic but consider two alternative asymptotic approxi-

mations and, as a result, correspond to di¤erent null and alternative hypotheses. The nonparametric

test is based on the standard shrinking-bandwidth approximation adopted in the literature, where

�KLICt(�t) can be consistently estimated by kernel smoothing techniques. The test corresponds

to the following null and alternative hypotheses:

HSB
0 : f�KLICt(�t) = 0g \ f�t = �g for t = 1; :::; T (8)

with � as in (4) and

HSB
1 : �KLICt(�t) = �(t=T; � (t=T )) 6= 0 at some 1 � t � T;

for some smooth functions � (�) and � (�) :
A possible concern with the standard shrinking-bandwidth approximation is that it might per-

form poorly in small samples, such as those available to macroeconomists. We thus derive the

�uctuation test using a novel asymptotic approximation where the bandwidth is �xed. In this

approximation, consistent estimation of the local relative performance is not possible, but what

can be consistently estimated is a di¤erent measure of relative performance, which is a smoothed
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version of the local relative KLIC:

Smoothed local relative KLIC : �KLIC�t (�t) = E

24 1

Th

TX
j=1

K

�
t� j
Th

�
(ln fj(�t)� ln gj (t))

35 ;
(9)

where K (�) is a kernel function, and h is the bandwidth.
The �uctuation test corresponds to di¤erent null and alternative hypotheses:

HFB
0 : f�KLIC�t (�t) = 0g \ f�t = �g for t = m=2; :::; T �m=2; (10)

with � as in (4) and

HFB
1 : �KLIC�t (�t) 6= 0 at some m=2 � t � T �m=2;

where �t = (�t; t)
0 and

�t = argmax
b
E

24 1

Th

TX
j=1

K

�
t� j
Th

�
ln fj(�)

35 ; (11)

(and similarly for t). In particular, when using a rectangular kernel we have, under the alternative

hypothesis:

�KLIC�t (�t) = E

24 1
m

t+m=2X
j=t�m=2+1

(ln fj(�t)� ln gj (t))

35 , (12)

and �t and t are the local maximum likelihood pseudo-true parameters computed over the esti-

mation window of length m; so that, e.g.,2

�t = argmax
b
E

24 1
m

t+m=2X
j=t�m=2+1

ln fj(b)

35 : (13)

As in the case of the null hypothesis (8) the constancy of pseudo-true parameters under the

null hypothesis is a stronger requirement than necessary, but it makes the assumptions underlying

our test more plausible. In the example, the smoothed local relative KLIC is

�KLIC�t (�t) =
1

2

24 1
m

Pt+m=2
j=t�m=2+1

�
�0j
�2
�2x;j � 1

m

Pt+m=2
j=t�m=2+1

�
0j

�2
�2z;j

+ 1
m

Pt+m=2
j=t�m=2+1

�
0j � t

�2
�2z;j � 1

m

Pt+m=2
j=t�m=2+1

�
�0j � �t

�2
�2x;j

35 ; (14)

which is a di¤erent object than �KLIC(�0t ) in (2); since it can be shown that, even in this simple

example, �t 6= �0t (in particular, here we have �t =
�
1
m

Pt+m=2
j=t�m=2+1 �

0
j

�
=
�
1
m

Pt+m=2
j=t�m=2+1 �

2
x;j

�
):

2We use the terminology "local" MLE because these are MLE estimators obtained using a sub-sample of the

available data.
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The di¤erence between the various alternative hypotheses as well as the di¤erence between the

relative and the smoothed relative KLIC is clari�ed by Figure 1, which shows an example of two

di¤erent types of time variation in relative performance that could arise in the context of the simple

example considered in this section. In the �rst scenario (left panels of Figure 1) the time variation

in relative performance is due to �0t varying smoothly as a random walk whereas 0t ; �
2
x;t; �

2
z;t are

constant, t = 1; :::; 100. In the second scenario (right panels of Figure 1), �0t ; 
0
t ; �

2
z;t are constant

but the relative performance is time-varying because �2x;t has a break at T=2.

INSERT FIGURE 1 HERE

Figures 1(a) and 1(b) report the local relative KLIC in equation (1) in the two scenarios, which

is the object of interest in the shrinking-bandwidth approximation. Figures 1(c) and 1(d) show

the local relative KLIC as well as the smoothed local relative KLIC computed using a bandwidth

m=T = 1=5; which is the measure of relative performance in the �xed-bandwidth approximation.

Note that Figures 1(a-d) report population quantities (that is, they assume that the parameters

and variances are known). Finally, Figures 1(e) and 1(f) show the measure of relative performance

that arises as a result of testing (10) and (3). One can see that all three measures of relative

performance that we propose capture the time variation in the relative performance of the models

over time.

In contrast, the large dot reported in panels (a-d) of Figure 1 shows the global relative KLIC

(T�1
PT

t=1�KLICt), which compares the average performance of the models over the whole sample

and which is the object of interest of existing tests in the literature (e.g., Rivers and Vuong (2002)).

One can see that the global relative KLIC is very close to zero, which means that the Rivers and

Vuong�s (2002) test would not reject the null hypothesis that the models perform equally well. This

occurs because in our example there are reversals in the relative performance of the models during

the time period considered. Since model 1 is better than model 2 in the �rst part of the sample,

but model 2 is better than model 1 in the second part of the sample by a similar magnitude, on

average over the full sample the two models have similar performance. However, the �gure shows

that the relative performance did change over time, and that the existing approaches would miss

this important feature of the data, whereas our approach would be able to reveal which model

performed best at di¤erent points in time.

In the following section, we develop the theory for the three statistical tests. The one-time

reversal test of hypothesis (3) can be intuitively viewed as performing a Rivers and Vuong�s (2002)

test of equal performance allowing for one structural break under the alternative. The nonparamet-

ric test of hypothesis (8) relies on constructing simultaneous con�dence bands for the local relative

KLIC in (1) under the null hypothesis by adapting the shrinking-bandwidth approximation of Wu

and Zhao (2007) to our di¤erent context. Finally, the �uctuation test of hypothesis (10) relies
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on constructing simultaneous con�dence bands for a di¤erent object - the smoothed local relative

KLIC in (9) - under the null hypothesis by using an alternative �xed-bandwidth approximation.

We refer to this test as the �uctuation test in analogy with the literature on parameter stability

testing (Brown et al. 1975 and Ploberger and Kramer 1992). Even though one can see that our

tests draw on the existing literature on parameter instability testing, we face additional challenges

in particular due to the fact that we are testing joint hypotheses of equal performance and stability

and that the measure of performance depends on unknown local parameters.

The three tests involve trade-o¤s, some of which are highlighted by Figure 1. The �rst con-

sideration is what type of alternative hypothesis seems more appropriate in a given situation. If

the type of variation under the alternative hypothesis is a one-time change, the nonparametric test

based on the local relative of Figure 1(b) and the one-time reversal test (Figure 1(f)) will accurately

capture it, whereas the �uctuation test (which relies on the smoothed local relative KLIC of Figure

1(d)) will smooth out the time variation and thus make it more di¢ cult to detect, implying a power

loss for the test. This is also the case when one postulates a smooth change under the alternative

hypothesis, in which case the �uctuation test (Figure 1(c)) should have lower power than the other

tests because of its smoothing out of the time variation. The one-time reversal test would also be

suboptimal in this context because it is based on an approximate measure of time variation, as can

be seen in Figure 1(e). The previous discussion may lead one to think that the nonparametric test

dominates the other two. All these considerations are however based on the asymptotic power of

the test. In �nite samples, instead, there is a concern that the asymptotic approximation which

underlies the nonparametric test may perform poorly in �nite samples. We investigate this pos-

sibility in the Monte Carlo section below and conclude that this concern is indeed a real one and

thus end up not recommending the nonparametric test, at least for samples of the sizes typically

available in macroeconomic applications.

How would the tests that we propose be implemented in practice? We provide an example in

Figures 1(e-h). For the �uctuation test we provide boundary lines that would contain the time path

of the smoothed local relative KLIC with a pre-speci�ed probability level under the null hypothesis

that the relative performance of the models is equal. Figures 1(e,f) depict such boundary lines.

Clearly, the test rejects the hypothesis that the relative performance is the same. When this

happens, researchers can rely on visual inspection of the (estimated) smoothed local relative KLIC

to ascertain which model performed best at any point in time.

Figures 1(g,h) illustrate the one-time reversal test3 for the two cases. The procedure estimates

the time of the largest change in the relative performance, and then �ts measures of average perfor-

mance separately before and after the reversal. Figure 1(h) shows that when the true underlying

relative performance has a sharp reversal, such as in the second scenario, then the procedure will

3The One-time Reversal test is implemented as a Sup-type test. See Section 3.1 for more details.
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accurately estimate its time path. However, when the true underlying relative performance evolves

smoothly over time, then the procedure will approximate it with a sharp reversal, as depicted in

Figure 1(g). In both cases, the one-time reversal test strongly rejects the null hypothesis of equal

performance.

3 Tests of Stability in the Relative Performance of Models

In this section, we consider the problem of conducting inference about the local relative performance

of two models. In particular, we will propose three types of statistical tests of the hypothesis that

the models have equal performance at each point in time. The tests di¤er in the measure of relative

performance (e.g., the local relative KLIC for the nonparametric and one-time reversal tests vs.

the smoothed local relative KLIC for the �uctuation test), the null and alternative hypotheses

considered (e.g., smooth time variation under the alternative for the nonparametric and �uctuation

tests vs. one-time change for the one-time reversal test), and the asymptotic approximation adopted

in deriving the distribution of the test (shrinking-bandwidth for the nonparametric test vs. �xed-

bandwidth for the �uctuation test).

In all the following sections, we assume that the user has available two possibly misspeci�ed

parametric models for the variable of interest yt: The models can be multivariate, dynamic and

nonlinear. In line with the literature (e.g., Vuong (1989) and Rivers and Vuong (2002)), an im-

portant restriction is that the models must be non-nested, which loosely speaking means that the

models�likelihoods cannot be obtained from each other by imposing parameter restrictions.

3.1 The One-time Reversal Test

The object of interest for the one-time reversal test is the local relative KLIC, which measures

relative performance as the relative distance of the two models from the true, unknown, data-

generating process at time t :

�KLICt(�t) = E[�Lt(�t)] = E[ln ft(�t)� ln gt(t)]; (15)

for t = 1; :::; T;

where ft and gt are the likelihoods for the two models and �t = (�0t; 
0
t)
0 are such that:

�t = argmax
�2B

E[ln ft(�)];

B a compact parameter space. A similar de�nition holds for t, which depends on gt () :

This section derives tests that are designed for a speci�c form of time variation in the relative

performance of the models under the alternative hypothesis, namely a one-time reversal in the
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relative performance and in the parameters, which occur at the same time. Let us de�ne the time

path of the relative performance under time variation as follows:

�KLICt(�t) = �1 (�) � 1 (t � [T�]) + �2 (�) � 1 (t > [T�]) ; t = 1; 2; ::; T;

where �t = �(�) = �1 (�) � 1 (t � [T�]) + �2 (�) � 1 (t > [T�]) ; � denotes the time of the reversal as a
fraction of the sample size, �1 (�) = (�1 (�)

0 ; 1 (�)
0)0 ; �2 (�) = (�2 (�)

0 ; 2 (�)
0)0 with

�1 (�) = argmax
�

E

240@ 1

[T�]

[T�]X
t=1

ln ft (�)

1A35 ;
�2 (�) = argmax

�
E

240@ 1

[T (1� �)]

TX
t=[T�]+1

ln ft (�)

1A35 ;
(and similarly for 1 (�) and 2(�)).

Consider the problem of testing

HOT
0 : f�KLICt (�t) = 0g \ f�t = �g for t = 1; :::; T (16)

i:e:; HOT
0 : �t (�) � �KLICt (�) = 0 for t = 1; :::; T; (17)

where � =
�
�0; 0

�0, versus the alternative
HOT
1 : [�2� f�KLICt (�t) = �1 (�) 1 (t � [T�]) + �2 (�) 1 (t > [T�])g(18)

\ f�t = �1 (�) 1 (t � [T�]) + �2 (�) 1 (t > [T�])g

for some (�1 (�) ; �2 (�)) 6= (0; 0); some � 2 � � (0; 1); t = 1; :::; T:

Note that the null hypothesis of interest is a possibly non-linear restriction on the parameters.

Given �, the local maximum likelihood estimator b� (�) � [b�1 (�) ; b�2 (�)] is given by
b�1 (�) = 1

[T�]

[T�]P
t=1
�Lt

�b�1 (�)� ; b�2 (�) = 1

[T (1� �)]
TP

t=[T�]+1

�Lt

�b�2 (�)� (19)

where b�1 (�) = (b�1 (�)0 ; b1 (�)0)0 ; b�2 (�) = (b�2 (�)0 ; b2 (�)0)0 with
b�1 (�) = argmax

�

 
1

[T�]

TX
t=1

ln ft (�) � 1 (t � [T�])
!

b�2 (�) = argmax
�

 
1

[T (1� �)]

TX
t=1

ln ft (�) � 1 (t > [T�])
!
;

(and similarly for b (�)). Also, let b�T (�) = argmax� � 1T PT
t=1 ln ft (�)

�
(and similarly for bT (�)),

and b�T (�) � hb�T (�)0 ; bT (�)0i0 :
10



Let �Lt (� (�)) be distributed according to a parametric density whose likelihood be denoted by

�T (�t (�) ; �) (the latter is a function of the data, although we do not make the dependence explicit

to simplify notation). Also, let Q� (:) denote a weight function that, for each �, gives the same

weight to ellipses associated with Wald-type tests of the null hypothesis (16) for the case in which

� is �xed and known. Let J (�) be an integrable weight function on the values of �. The Likelihood

Ratio (LR) statistic for testing the null hypothesis (16), which implies �T (0) � �T (0; 0) ; against a

local alternative of the form �T
�
��T�1=2; �

�
for some �� � [��1; ��2]

0 is:

LRT =

R
�T
�
��T�1=2; �

�
dQ� (�

�) dJ (�)R
�T (0) dQ� (�

�) dJ (�)
; (20)

By the Neyman-Pearson Lemma, a test based on LRT is a best test for a given signi�cance level

for testing the simple null hypothesis that �T (0) is the true density versus the simple alternative

that
R
�T
�
��T�1=2; �

�
dQ� (�

�) dJ (�) is true, and has the best weighted average power for testing

the simple null that �T (0) is the true density versus the alternative that �T
�
��T�1=2; �

�
is the true

density for some �� 2 R2; � 2 �:4 Note that the weighted average power is constructed against
the alternatives for �KLICt, not in terms of the actual parameters, since the researchers�main

interest is on �KLICt.

Theorem 1 shows that the LRT test statistic is asymptotically equivalent to an exponential-

Wald test derived as follows. Let I0;� � �E
h
T�1 @2

@�@�0 �T (�; �)
i
, H �

 
1 �1
1 0

!
; and IT;� be a

consistent estimator for I0;�.
Assumptions OT: 1

n
T�1=2

P[�T ]
j=1 �Lj (�)

o
obeys a Functional Central Limit Theorem (FCLT),

�t 2 �; � compact; (2) there exists a positive de�nite matrix V� such that V �1=2�

p
T
�b� (�)� �� d!

N(0; I); as T ! 1 (and similarly for b (�), b�T (�), bT (�)), and �;  are interior to the para-

meter space; (3) T�1
P[T�]

t=1 r ln ft (�) satis�es a Uniform Law of Large Numbers 8� 2 � and

T�1
PT

t=1r ln ft (�) satis�es the Law of Large Numbers (and similarly for r ln gt ()); (4) Under
H 0 , E (�Lt (�; )) = 0 and the distribution of �Lt (�; ) does not depend on � 8� and �Lt (�; )
satisfying the null hypothesis; (5) Q� (:) = N

�
0; cI�10;�

�
for every � 2 � and for some constant

c > 0 and J (:) is the uniform distribution; (6) sup�2�jjb� (�) jj !
p
0 and sup�2�jjb� (�)� � (�) jj !

p
0

under H0.5

Assumption OT(1) assumes a FCLT for partial sum processes. Assumptions OT(2,3) are stan-

dard ML assumptions that guarantee that the estimated parameters in our object of interest as well

as the score functions obey regularity conditions ensuring their convergence. Assumption OT(4)

speci�es the null hypothesis. Assumption OT(5) speci�es the weight function over the local alter-

natives; in practice, we will let � = f0:15; :::; 0:85g. Assumption OT(6) assumes that the model is
4Note that

R
�T (0) dQ� (�

�) dJ (�) = �T (0) :
5See Andrews (1993, Lemma A-1) for primitive conditions ensuring Assumption OT(6).
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su¢ ciently regular so that the estimators are consistent under the null hypothesis uniformly over

� 2 �. Under these Assumptions we derive the following theorem:

Theorem 1 (One-Time Test) De�ne the Exponential Wald test, ExpW �
T , as:

WT (�) = Tb� (�)0 H 0
�
HI�1T;�H

0
��1

Hb� (�)
ExpW �

T = (1 + c)�1=2
Z
exp

�
1

2

c

1 + c
WT (�)

�
dJ (�) (21)

Under Assumption OT: (i) Under H0 described by (16), LRT � ExpW �
T !p 0: (ii) Under the local

alternatives in (20), (21) is the test with the greatest weighted average power for the weight functions

described in Assumption OT(5).

Note that Assumption OT(1) implies that
n
T�1=2

P[�T ]
t=1 �Lt (�)

o
!
d
N (0; �	) and

n
T�1=2

PT
t=[�T ]�Lt (�)

o
!
d
N (0; (1� �)	) for any given �, where 	 � lim

T!1
V ar

�
T�1=2

PT
t=1�Lt (�)

�
. Thus, asymptoti-

cally, a consistent estimate of I0;� both under HOT
0 and under HOT

1 is IT;�, where:

IT;� = �
 
�b�1 0

0 (1� �) b�2
!
; (22)

b�1 =

q(T )�1X
i=�q(T )+1

(1� ji=q(T )j) 1

[T�]

[T�]X
j=1

h
�Ld1;j

�b�1 (�)�i2 ; (23)

b�2 =

q(T )�1X
i=�q(T )+1

(1� ji=q(T )j) 1

[T (1� �)]
TP

j=[T�]+1

h
�Ld2;j

�b�2 (�)�i2 (24)

b�2 � HI�1T;�H
0 (25)

�Ld1;j

�b�1 (�)� = �Lj

�b�1 (�)�� 1

[T�]

[T�]P
t=1
�Lt

�b�1 (�)� (26)

�Ld2;j

�b�2 (�)� = �Lj

�b�2 (�)�� 1

T � [T�]
TP

t=[T�]+1

�Lt

�b�2 (�)� : (27)

The results of Theorem 1 hold in the presence of serial correlation as well as a one-time break in

the variance at time [�T ] provided a heteroskedasticity and autocorrelation consistent estimator for

the variance is used: cfr. Andrews and Ploberger (1994). The power properties of the test depend

on c. Corollary 2 focuses on the limiting case where c = 0 and c =1, and their power properties
will be evaluated in Section 4.
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Corollary 2 Suppose Assumption OT holds. Consider the test statistics

ExpW �
1;T = ln

1

1� 2�0

Z 1��0

�0

exp

�
1

2
WT (�)

�
d�;

MeanW �
T =

1

1� 2�0

Z 1��0

�0

WT (�) d�, where

WT (�) = Tb� (�)0 H 0
�
HI�1T;�H

��1
Hb� (�) ;

where �0 = 0:15, b� (�) is de�ned as in (19), IT;� is as in (22). Under the null hypothesis (17);
ExpW �

1;T =) ln
1

1� 2�0

Z 1��0

�0

exp

 
1

2

BB (�)2

� (1� �) +
1

2
B (1)2

!
d�; (28)

MeanW �
T =) 1

1� 2�0

Z 1��0

�0

 
1

2

BB (�)2

� (1� �) +
1

2
B (1)2

!
d�, (29)

where t = [�T ] and B (�) and BB (�) are, respectively, a standard univariate Brownian motion and a
Brownian bridge, where BB (�) � B (�)� �B (1). The null hypothesis is rejected when ExpW �

1;T >

�� and MeanW �
T > ��. Simulated values of (�;��; v�) are: (0:05; 3:13; 5:36) and (0:10; 2:44; 4:26).

We also provide Sup-type tests for the one-time reversal in the following proposition:6

Proposition 3 (Sup-type Test) Suppose Assumption OT holds. Let QLR�T = sup�2��T (�) ;

�T (�) = LM1 + LM2 (�) ; where

LM1 = �̂�2T�1=2

"
TX
t=1

�Lt

�b�T�#2

LM2 (�) = �̂�2
1

� (1� �)T
�1=2

24(1� �) [T�]X
t=1

�Lt

�b�1 (�)�� � TX
t=[T�]+1

�Lt

�b�2 (�)�
352 ;

b�2 a consistent estimator of the asymptotic variance �2 = var
�
T�1=2

PT
t=1�Lt (�t)

�
; for example

(25). Under the null hypothesis (17); we have: QLR�T =) sup
�2�

h
BB(�)2
�(1��) + B (1)

2
i
; where t = [�T ],

and B (�) and BB (�) � B (�)� �B (�) are, respectively, a standard univariate Brownian motion and
Brownian bridge. The null hypothesis is thus rejected when QLR�T > k�: The critical values (�; k�)

are: (0:05; 9:8257) ; (0:10; 8:1379) :

Among the advantages of this approach, we have that: (i) when the null hypothesis is rejected,

it is possible to evaluate whether the rejection is due to instabilities in the relative performance or

to a model being constantly better than its competitor; (ii) if such instability is found, it is possible

6Sup-type tests have been used in the parameter instability literature since Andrews (1993).
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to estimate the time of the switch in the relative performance; (iii) the test is optimal against one

time breaks in the relative performance. Here below is a step by step procedure to implement the

approach suggested in Proposition 3 with an overall signi�cance level �:

(i) test the hypothesis of equal performance at each time by using the statistic QLR�T from

Proposition 3 at � signi�cance level;

(ii) if the null is rejected, compare LM1 and sup�2� LM2 (�) ; with the following critical values:

(3:84; 8:85) for � = 0:05; (2:71; 7:17) for � = 0:10, and (6:63; 12:35) for a = 0:01: If only LM1

rejects then there is evidence in favor of the hypothesis that one model is constantly better than

its competitor. If only sup�2� LM2 (�) rejects, then there is evidence that there are instabilities in

the relative performance of the two models but neither is constantly better over the full sample.

Note that the latter corresponds to Andrews�(1993) Sup-test for structural break. If both reject

then it is not possible to attribute the rejection to a unique source.7

(iii) estimate the time of the reversal by t� = T � arg sup�2f[0:15];:::[0:85]g LM2 (�) and let �� �
[t�=T ].

(iv) to extract information on which model to choose, we suggest to plot the time path of the

underlying relative performance as:8<:
1
t�
Pt�

t=1

�
ln ft(b�1 (��))� ln gt (b1 (��))� for t � t�

1
(T�t�)

PT
t=t�+1

�
ln ft(b�2 (��))� ln gt (b2 (��))� for t > t�

3.2 The Nonparametric Test

The object of interest is again the local relative KLIC in equation (15). We consider the following

null and alternative hypotheses:

HSB
0 : f�KLICt(�t) = 0g \ f�t = �g for t = 1; :::; T; (30)

HSB
1 : �KLICt(�t) = �(t=T; � (t=T )) 6= 0 at some 1 � t � T; where �(�) and � (�) 2 C3 [0; 1] :

The test relies on �rst constructing a nonparametric estimate of the local relative KLIC:

\�KLICt =
1

Th

TX
t=1

K

�
� � t=T

h

�
�Lt

�b� (�)� (31)

where K (�) is a kernel with
R
K (u) du = 1, h is the bandwidth, �Lt(�) = ln ft(�) � ln gt() and

� 2 [0; 1] is such that t = [�T ]. We assume that the parameters of the models are also estimated
7This procedure is justi�ed by the fact that the two components LM1 and LM2 are asymptotically independent

� see Rossi (2005). Performing two separate tests does not result in an optimal test, but it is nevertheless useful

to heuristically disentangle the causes of rejection of equal performance. The critical values for LM1 are from a �21
whereas those for LM2 are from Andrews (1993).
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locally. E.g., the estimator b� (�) for the �rst model is the solution to
1

Th

TX
t=1

K

�
� � t=T

h

�
r ln ft

�b� (�)� = 0; (32)

where r ln ft (:) denotes the �rst derivative of the log-likelihood at time t. Note that, in the case
of the rectangular kernel considered in Corollary 5 below, this in practice amounts to estimating

the parameters of the models by local maximum likelihood over rolling windows of length Th:

A test of (30) can be obtained by deriving simultaneous con�dence bands for the local relative

KLIC by building on the framework of Wu and Zhao (2007). The test relies on the following

assumptions:

Assumption SB: (1) �Lt(�t) = �(t=T; � (t=T )) + "t; t = 1; :::; T; with "t such that max t�T jSt �
�B (t) j = oAS

�
T 1=4 ln (T )

	
; where St =

Pt
i=1 "i; �

2 =
P1

t=�1E ["0"t] > 0 and B (:) is a standard
Brownian motion; (2) K (�) is a symmetric kernel with support [�w;w] which belongs to the class
H(�) as in De�nition 1 of Wu and Zhao (2007); (3) The bandwidth h satis�es the condition Th!
1, h! 0; ln(T )

3

h
p
T
+Th7 ln (T )! 0 and

p
Th

ln(T )3
!1; (4) 1

Th

PT
t=1K

�
��t=T
h

�
[�st (� (�))� E (�st (� (�)))] =

Oas (1) uniformly in � (�) and � , where �st (�) � @�Lt (�) =@�; (5) there exists a bias-adjusted

local maximum likelihood estimator, e� (�), such that, for every � ,
p
Th
�e� (�)� � (�)� = Oas (1)

and � 2 �; � compact.
Assumption SB is similar to the assumptions in Wu and Zhao (2007). The di¤erence between

our framework and theirs is that �Lt(�t) is unknown in our case and thus needs to be estimated.

Assumption SB(1), in particular, deserves further discussion. Even though it is possible to �nd

primitive conditions for this strong invariance principle allowing for the error process "t to be

dependent and stationary (as in Wu and Zhao, 2007), the assumption of stationarity for "t may

be problematic in our context because of the dependence of the likelihood di¤erences �Lt(�t) on

�t: it essentially amounts to assuming that the possible time variation in the parameters only

a¤ects the mean of the likelihood di¤erences but not their higher moments. The assumption is

however satis�ed under the joint null hypothesis that the models have equal performance and

that the parameters are constant, which is the reason why we impose constant parameters under

the null hypothesis. The assumption that � > 0 rules out the possibility that the models are

nested (see the related discussion in Rivers and Vuong, 2002). Assumption SB(3) is the standard

shrinking-bandwidth assumption made in the nonparametric literature, which guarantees that the

local performance and the local parameters can be consistently estimated. Primitive conditions for

Assumptions SB(4)-(5) can be derived in the context of speci�c examples.

Going back to the example in Section 2, we can see that the assumptions are satis�ed since

we have "t = �Lt � E[�Lt] =
1
2 [�

2
t

�
x2t � 1

�
� 2t

�
z2t � 1

�
] + (�txt � tzt)ut, which has variance

�2t =
1
2 [�

4
t + 4t ] + �2t + 2t : Under the null hypothesis, �t = � and t =  and thus "t is i.i.d. and

�2t is constant, which imply that assumption SB is satis�ed.
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The following proposition gives the con�dence bands which are the basis for the nonparametric

test.

Proposition 4 Under Assumption SB, asymptotic 100(1��)% simultaneous con�dence bands for

� are given by

b� (�)� h2	b� (�)00 � � b�p
Th

24BK � ln
h
ln (1� �)�1=2

i
q
2 ln

�
1
h

�
35 ; (33)

	 =

Z
K(u)u2du=2; �2 =

Z
K2 (u) du (34)

BK =

s
2 ln

�
1

h

�
+

1q
2 ln

�
1
h

�
"
2�  
2 

ln(ln
�
h�1

�
) + ln

 
C
1= 
K h 2

1= 

2
p
�

!#
; (35)

CK = DK=2�
2; DK = lim

�!0

�
j�j� 

Z
fK (x+�)�K (x)g2 dx

�
; (36)

where

b�(�) =
1

Th

TX
t=1

K

�
� � t=T

h

�
�Lt

�e� (�)� ; (37)

e� (�) = b� (�)� h2	b� (�)00 ; (38)b� (�) =
hb� (�)0 ; b (�)0i0 ; (39)

0 =
1

Th

TX
t=1

K

�
� � t=T

h

�
r ln ft

�b� (�)� (and similarly for b (�) ), (40)

b� (�)00 is an estimate of the second derivative of � (�) ; b� is a consistent estimator of � (as e.g. eq.
25 of Wu and Zhao, 2009), b� (�)00 is an estimate of the second derivative of � (�) ; 1 �  � 2 and
h is as in Theorem A1 of Bickel and Rosenblatt (1973) (e.g.,  = 1 and h = 1 for the rectangular

kernel and  = 2 and h = ��1=2 for the triangle, quartic, Epanechnikov and Parzen kernels).

Corollary 5 For the rectangular kernel, let m = Th be an even integer. The estimator of the local

relative KLIC becomes

b� (�) = 1

m

[�T ]+m=2X
j=[�T ]�m=2+1

�Lj(e� (�)); (41)

[�T ] = m=2; :::; T �m=2; where e� (�) is the bias-adjusted local maximum likelihood estimator (38)

for b� (�) = hb� (�)0 ; b (�)0i0 de�ned by
0 =

1

m

[�T ]+m=2X
j=[�T ]�m=2+1

r ln fj
�b� (�)� ; (42)
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(and similarly for b (�)). The asymptotic 100(1 � �)% simultaneous con�dence bands for � are

given by

e�h (�)� b�p1=2p
m

24s2 ln�1
h

�
+

1q
2 ln

�
1
h

�
"
ln
�
ln
�
1
h

��
2

+ ln
1

2
p
�

#
�
ln
h
ln (1� �)�1=2

i
q
2 ln

�
1
h

�
35 ;

where e�h (�) is a bias-corrected version of b� (�) and b� is a consistent estimator of �. For example,
Wu and Zhao (2007) suggest a jackknife-type bias correction scheme where e�h (�) = 2b� (�) �b�p2h (�) and b�p2h (�) is the estimator (41) using the bandwidth p2h = p2m=T (and similarly for
the parameters �; ; e.g. e� (�) = 2b� (�) � b�p2h (�)) and the long-run variance b� can be estimated
as

b� = n1=6
�
2n2=3 � 2

��1=20@n2=3�1X
i=1

������n�1=3
n1=3X
j=1

�Lj+in1=3(
e� (�))� n�1=3 n1=3X

j=1

�Lj+(i�1)n1=3(
e� (�))

������
21A1=2 :
(43)

Note that we need to correct the parameter estimate for the small sample bias typical in

nonparametric estimation, and we do so by following Wu and Zhao (2009) in eq. (38). A test of

the hypothesis that the models have equal performance at each point in time can be obtained by

rejecting the null if the horizontal axis is not fully contained within the con�dence bands obtained

above.

3.3 The Fluctuation Test

In this sub-section, we consider a di¤erent measure of relative performance, which will correspond

to di¤erent null and alternative hypotheses than in the previous sections. The test is based on the

same nonparametric estimator of the local relative performance (31), but the di¤erence is that we

now consider an alternative asymptotic approximation in which the bandwidth is �xed instead of

shrinking as the sample grows. When the bandwidth is �xed, consistent estimation of the local

relativeKLICt in (15) is not possible, but what can be consistently estimated is a smoothed version

of KLICt; which we call the smoothed local relative KLIC:

�KLIC�t (�
�
t ) = m�1

t+m=2X
j=t�m=2+1

E[�Lj(�
�
t )]; t = m=2; :::; T �m=2; (44)

where ��t = (�
�0
t ; 

�0
t )
0;�Lt(�

�
t ) = ln ft(�

�
t )� ln gt(�t ) and, e.g.,

��t = argmax
�

m�1
t+m=2X

j=t�m=2+1
E[fj(�)]; (45)
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and where m = Th.8

The null and alternative hypotheses of interest of our proposed test are:

HFB
0 : f�KLIC�t = 0g \ f��t = �g for t = m=2; :::; T �m=2 (46)

HFB
1 : �KLIC�t 6= 0 at some m=2 � t � T �m=2:

and a test of equal relative performance over time, which we call the �uctuation test, can be derived

under the following assumptions:9

Assumption FB: Let � be s.t. t = [�T ] and � 2 [0; 1] : (1) ��1
n
T�1=2

P[�T ]
j=1 [�Lj (�)� E (�Lj (�))]

o
obeys a Functional Central Limit Theorem (FCLT) for all � 2 �; � compact, where � is de�ned in
(4) below; (2) for b�t = �b�0t; b0t�0, b�t = argmax�m�1Pt+m=2

j=t�m=2+1 fj(�), bt = argmaxm�1Pt+m=2
j=t�m=2+1 gj();

there exists a �nite and positive de�nite matrix Vt such that V
�1=2
t

p
m
�b�t � ��t� d! N(0; I); as

m ! 1 uniformly in t > 0, and ��t is interior to � for every t; (3) m�1Pt+m=2
j=t�m=2+1r ln fj (�)

satisfy a Uniform Law of Large Numbers for m!1 for all t, where r ln fj (�) is a row vector (and
similarly for r ln gj ()); (4) under H0 in (46), �2 =limm!1E(m�1=2Pt+m=2

j=t�m=2+1�Lj(�
�
t ))

2 > 0;

(5) m=T = h; with h 2 (0;1) and T !1.

Assumption FB(4) imposes global covariance stationarity for the sequence of local likelihood

di¤erences under the null hypothesis, and it thus limits the amount of heterogeneity permitted

under the null hypothesis. This assumption is in principle stronger than necessary, but it facilitates

the statement of the FCLT (see Wooldridge and White, 1988 for a general FCLT for heterogeneous

mixing sequences). Note that global covariance stationarity allows the variance to change over

time, but in a way that ensures that, as the sample size grows, the sequence of variances converges

to a �nite and positive limit. For the case considered in Section 2, Assumption FB is satis�ed if, for

example, the parameters �t, t and the regressor variances are constant under the null hypothesis,

implying that �2 is also constant under the null hypothesis.10

One can verify that Assumption FB is satis�ed in the example of Section 2, where "t = �Lt �
E[�Lt] =

1
2 [�

2
t

�
x2t � 1

�
� 2t

�
z2t � 1

�
] + (�txt � tzt)ut, with variance �2t = 1

2 [�
4
t + 

4
t ] + �

2
t + 

2
t :

Under the null hypothesis, �t = � and t =  and thus "t is i.i.d. and �2t is constant, which satis�es

the assumptions of Donsker�s FCLT theorem.

The following proposition provides a justi�cation for the �uctuation test that we propose.

8For simplicity we focus here on the case of a rectangular kernel, but the de�nition of �KLIC�t can be extended

to a general kernel.
9See Brown et al. (1975) and Ploberger and Kramer (1992) for �uctuation tests in the context of parameter

instability.
10As pointed out by a referee, Assumption FB(4) can be weakened by assuming that

limt!1E
Pt+m=2

j=T�m=2+1 [�Lj(�
�
t )]

2 = �2t < 1; i.e by allowing �2t to vary across t. In this case, an estimator

of �2t can be obtained as in (48) with b�t instead of b�T , q (t) instead of q (T ), and j ranging from t �m=2 + q (t) to
t+m=2 + 1� q (t), respectively.

18



Theorem 6 (Fluctuation Test) Suppose Assumption FB holds. Consider the test statistic

sup
t=m=2;:::;T�m=2

Ft = sup
t=m=2;:::;T�m=2

b��1m�1=2
t+m=2X

j=t�m=2+1
�Lj(b�t); (47)

where b�2 is a HAC estimator of �2; given by, e.g.,
b�2 = q(T )�1X

i=�q(T )+1
(1� ji=q(T )j)T�1

T+1�q(T )X
j=q(T )

�Lj

�b�T��Lj�i �b�T� ; (48)

q(T ) is a bandwidth that grows with T (e.g., Newey and West, 1987) and b�T is the maximum

likelihood estimator computed over the full sample. Under the null hypothesis (46)

Ft =) [B (� + h=2)� B (� � h=2)] =
p
h; (49)

where t = [�T ] and B (�) is a standard univariate Brownian motion. The critical values for a
signi�cance level � are � k�, where k� solves

Pr

�
sup
�

���[B (� + h=2)� B (� � h=2)] =ph��� > k�

�
= �: (50)

The null hypothesis is rejected when maxt jFtj > k�: Simulated values of (�; k�) are reported in

Table 1 for various choices of h.

INSERT TABLE 1 HERE

4 A Small Monte Carlo Analysis

This section investigates the �nite-sample size and power properties of the tests for equal per-

formance introduced in the previous section. We consider two designs for the Data Generating

Processes (DGPs), which are representative of the features discussed in the main example in Sec-

tion 2. In particular, as mentioned before, the time variation in the relative KLIC might be due

to the fact that the parameters change in ways that a¤ect the local relative KLIC di¤erently over

time; design 1 focuses on this situation. However, time variation in the relative KLIC might also

occur when the parameters are constant but some other aspects of the distribution of the data

change in di¤erent ways over time, which will be described by design 2.

More in details, the true DGP is:

yt = �txt + tzt + "t; "t � i:i:d:N (0; 1) ;

where xt � N
�
0; �2x;t

�
; zt � N

�
0; �2z;t

�
; t = 1; 2; :::; T; T = 200. The two competing models are:

Model 1: yt = �txt + "1;t and Model 2: yt = tzt + "2;t: We consider the following designs:
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Design 1. �2x;t = �2z;t = 1, t = 1; �t = 1 + �A � 1 (t � 0:5T )� �A � 1 (t > 0:5T ) : In this design,
we let the parameter � change over time, and this a¤ects the relative performance of the models

over time.

Design 2. �2x;t = 1+�
2
A �1 (t > 0:75T ), �2z;t = 1, �t = 1, t = 1: In this design, the parameters in

the conditional mean are constant but one of the variances (�2x;t) changes over time, thus resulting

in a change in the relative performance over time.

Tables 2 and 3 show the empirical rejection frequencies of the various tests for a nominal size

of 5%. For the nonparametric test, we utilize a Gaussian kernel with a bandwidth equal to 0.005,

which performs very well in design 1 relative to other bandwidths. Size properties are obtained by

setting �A = 0 and �A = 0: Table 2 demonstrates that all tests have good size properties. It also

shows that the tests with highest power against a one-time reversal are the ExpW �
1;T and QLR

�
T

tests; the MeanW �
T test has slightly lower power than the former. The �uctuation test has worse

power properties relative to them, and the nonparametric test has considerably less power relative

to all the other tests. Note that a standard full-sample likelihood ratio test would have power equal

to size in design 1. Regarding design 2, Table 3 shows that, again, the nonparametric test has

considerably less power than the other tests. The ExpW �
1;T and QLR

�
T tests have quite similar

performance in terms of power, although the Sup-type test has slightly better power properties

than the other tests, and the �uctuation test has slightly worse power properties.

INSERT TABLES 2, AND 3 HERE

Finally, Table 4 explore the robustness of our results for the nonparametric test for di¤er-

ent bandwidth. The Monte Carlo design is the same as design 1 above. We consider a variety

of bandwidths, ranging from very small (h = 0:0005) to quite large (h = 0:7). Note that the

power properties do change signi�cantly depending on the bandwidth, and that the bandwidth

that performs the best is h = 0:005.11

INSERT TABLE 4 HERE

5 Empirical Application: Time-variation in the Performance of

DSGE vs. BVAR Models

In a highly in�uential paper, Smets and Wouters (2003) (henceforth SW) show that a DSGE

model of the European economy - estimated using Bayesian techniques over the period 1970:2-

1999:4 - �ts the data as well as atheoretical Bayesian VARs (BVARs). Furthermore, they �nd

11Unreported Monte Carlo simulations show that, however, a bandwidth that works well in one design does not

necessarily work well for other designs. For example, h=0.005 is not the best choice for design 3. However, we decided

to keep the bandwidth �xed across Monte Carlo designs, as the researcher does not know the DGP in practice.
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that the parameter estimates from the DSGE model have the expected sign. Perhaps for these

reasons, this new generation of DSGE models has attracted a lot of interest from forecasters and

central banks. SW�s model features include sticky prices and wages, habit formation, adjustment

costs in capital accumulation and variable capacity utilization, and the model is estimated using

seven variables: GDP, consumption, investment, prices, real wages, employment, and the nominal

interest rate. Their conclusion that the DSGE �ts the data as well as BVARs is based on the

fact that the marginal data densities for the two models are of comparable magnitudes over the

full sample. However, given the changes that have characterized the European economy over the

sample analyzed by SW - for example, the creation of the European Union in 1993, changes in

productivity and in the labor market, to name a few - it is plausible that the relative performance

of theoretical and atheoretical models may itself have varied over time. In this section, we apply the

techniques proposed in this paper to assess whether the relative performance of the DSGE model

and of BVARs was stable over time. We extend the sample considered by SW to include data up

to 2004:4, for a total sample of size T = 145:

In order to compute the local measure of relative performance, we estimate both models re-

cursively over a moving window of size m = 70 using Bayesian methods: As in SW, the �rst 40

data points in each sample are used to initialize the estimates of the DSGE model and as train-

ing samples for the BVAR priors. We consider a BVAR(1) and a BVAR(2), both of which use a

variant of the Minnesota prior, as suggested by Sims (2003).12 We present results for two di¤erent

transformations of the data. The �rst applies the same detrending of the data used by SW, which

is based on a linear trend �tted on the whole sample (we refer to this as �full-sample detrending�).

As cautioned by Sims (2003), this type of pre-processing of the data may unduly favour the DSGE,

and thus we further consider a second transformation of the data, where detrending is performed

on each rolling estimation window (�rolling-sample detrending�).

Figure 2 displays the evolution of the posterior mode of some representative parameters. Figure

2(a) shows parameters that describe the evolution of the persistence of some representative shocks

(productivity, investment, government spending, and labor supply); Figure 2(b) shows the estimates

of the standard deviation of the same shocks; and Figure 2(c) plots monetary policy parameters.

Overall, Figure 2 reveals evidence of parameter variation. In particular, the �gures show some

decrease in the persistence of the productivity shock, whereas both the persistence and the standard

deviation of the investment shock seem to increase over time. The monetary policy parameters

appear to be overall stable over time.

FIGURE 2 HERE
12The BVAR�s were estimated using software provided by Chris Sims at www.princeton.edu/~sims. As in Sims

(2003), for the Minnesota prior we set the decay parameter to 1 and the overall tightness to .3. We also included

sum-of-coe¢ cients (with weight � = 1) and co-persistence (with weight � = 5) prior components:

21



We then apply our �uctuation test to test the hypothesis that the DSGE model and the BVAR

have equal performance at every point in time over the historical sample.

Figure 3 shows the implementation of the �uctuation test for the DSGE vs. a BVAR(1) and

BVAR(2), using full-sample detrending of the data. The estimate of the local relative KLIC is

evaluated at the posterior modes b�t and bt of the models�parameters, using the fact that b�t and bt
are consistent estimates of the pseudo-true parameters ��t and 

�
t (see, e.g., Fernandez-Villaverde

and Rubio-Ramirez, 2004).

FIGURE 3 HERE

Figure 3 suggests that the DSGE has comparable performance to both a BVAR(1) and BVAR(2)

up until the early 1990s, at which point the performance of the DSGE dramatically improves relative

to that of the reduced-form models.

To assess whether this result is sensitive to the data �ltering, we implement the �uctuation test

for the DSGE vs. a BVAR(1) and BVAR(2), this time using rolling-window detrended data.

FIGURE 4 HERE

The results con�rm the suspicion expressed by Sims (2003) that the pre-processing of the data

utilized by SW penalizes the reduced-form models in favour of the DSGE. As we see from Figure

4, once the detrending is performed on each rolling window, the advantage of the DSGE at the end

of the sample disappears, and the DSGE performs as well as a BVAR(1) on most of the sample,

whereas it is outperformed by a BVAR(2) for all but the last few dates in the sample (when the

two models perform equally well).

6 Conclusions

This paper developed statistical testing procedures for evaluating models�relative performance in

unstable environments. We proposed three tests: 1) a one-time reversal test; 2) a nonparametric

test; and 3) a �uctuation test. We investigated the advantages and limitations of the di¤erent

approaches and compared the quality of the approximation that they deliver in �nite samples. Based

on the results of the latter, we do not recommend the nonparametric test for typical macroeconomic

applications, whereas the choice between the one-time reversal and the �uctuation test should

be driven by the type of alternative hypothesis of interest in a given application. Finally, an

empirical application to the European economy points to the presence of instabilities in the models�

parameters, and suggests that a VAR �tted the last two decades of data better than a standard

DSGE model, a conclusion that is however sensitive to the detrending method utilized.

22



References

[1] Andrews, D.W.K. (1991), �Heteroskedasticity and Autocorrelation Consistent Covariance Ma-

trix Estimation�, Econometrica 59, 817-858.

[2] Andrews, D.W.K. (1993), �Tests for Parameter Instability and Structural Change with Un-

known Change Point�, Econometrica 61, 821�856.

[3] Andrews, D.W.K., and W. Ploberger (1994), �Optimal Tests When a Nuisance Parameter is

Present only under the Alternative�, Econometrica 62(6), 1383-1414.

[4] Bickel, P.J. and M. Rosenblatt (1973), �On Some Global Measures of the Deviations of Density

Function Estimates�, Annals of Statistics 1, 1071-1095.

[5] Brown, R.L., J. Durbin and J.M. Evans (1975), �Techniques for Testing the Constancy of

Regression Relationships over Time with Comments�, Journal of the Royal Statistical Society,

Series B, 37, 149-192.

[6] Cavaliere, G. and R. Taylor (2005), �Stationarity Tests Under Time-Varying Second Mo-

ments�, Econometric Theory 21, 1112-1129.

[7] Domowitz, I. and H. White (1982), �Mis-speci�ed Models with Dependent Observations,�

Journal of Econometrics 20(1), 35-58.

[8] Elliott, G. and U. Muller (2006), �E¢ cient Tests for General Persistent Time Variation in

Regression Coe¢ cients�, The Review of Economic Studies 73, 907-940.

[9] Fernández-Villaverde, J. and J. Rubio-Ramírez (2004), �Comparing Dynamic Equilibrium.

Models to Data: A Bayesian Approach.�, Journal of Econometrics 123.

[10] Giacomini, R. and B. Rossi (2010), �Forecast Comparisons in Unstable Environments�, Journal

of Applied Econometrics, in press.

[11] Muller, U., �E¢ cient Tests under a Weak Convergence Assumption�, mimeo, Princeton Uni-

versity.

[12] Muller, U. and P. Petalas (2009), �E¢ cient Estimation of the Parameter Path in Unstable

Time Series Models�, The Review of Economic Studies, forthcoming.

[13] Newey, W., and K. West (1987), �A Simple, Positive Semi-De�nite, Heteroskedasticity and

Autocorrelation Consistent Covariance Matrix�, Econometrica 55, 703-708.

[14] Ploberger, W. and W. Kramer (1992), �The Cusum Test with Ols Residuals�, Econometrica

60(2), 271-285.

23



[15] Qu, Z. and P. Perron (2007), �Estimating and Testing Structural Changes in Multivariate

Regressions,�Econometrica 75(2), 459-502.

[16] Rivers, D. and Q. Vuong (2002), �Model Selection Tests for Nonlinear Dynamic Models�,

Econometrics Journal, 5, 1-39.

[17] Rossi, B. (2005), �Optimal Tests for Nested Model Selection with Underlying Parameter In-

stabilities�, Econometric Theory 21(5), 962-990.

[18] Sims, C. (2003), �Comment on Smets and Wouters�, mimeo, available at:

https://sims.princeton.edu/yftp/Ottawa/SWcommentSlides.pdf

[19] Smets, F. and R. Wouters (2003), �An Estimated Stochastic Dynamic General Equilibrium

Model of the Euro Area�, Journal of the European Economic Association, 1, 1123-1175.

[20] Stock, J.H., and M.W. Watson (2003), �Forecasting Output and In�ation: The Role of Asset

Prices�, Journal of Economic Literature.

[21] Van der Vaart, A. and J.A. Wellner (1996), Weak Convergence and Empirical Processes with

Applications to Statistics, Springer-Verlag: New York.

[22] Vuong, Q. H. (1989), �Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses�,

Econometrica, 57, 307-333.

[23] Wooldridge, J.M. and H. White (1988), �Some Invariance Principles and Central Limit The-

orems for Dependent Heterogeneous Processes,�Econometric Theory 4, 210-230.

[24] Wu, W.B., and Z. Zhao (2007), �Inference of Trends in Time Series�, Journal of the Royal

Statistical Society B69, 391-410.

24



7 Appendix A - Proofs

Lemma 7 Let the approximate ML estimators be

�1 (�) � T�1=2
[T�]X
t=1

�Lt (�1; 1) (51)

and

�2 (�) � T�1=2
TX

t=[T�]+1

�Lt (�2; 2) : (52)

Under Assumption OT, sup�2�
hp

Tb�1 (�)� �1 (�)i!p 0 and sup�2�[pTb�2 (�)��2 (�)]!p 0 under
H0:

Proof of Lemma (7). For every � 2 �, let:

b�1 (�) =
1

[T�]

[T�]X
t=1

�Lt

�b�1 (�) ; b1 (�)� (53)

b�2 (�) =
1

T � [�T ]

TX
t=[T�]+1

�Lt

�b�2 (�) ; b2 (�)� : (54)

From a mean value expansion of (53):

p
Tb�1 (�)� �1 (�) =

p
T

24T�1 [T�]X
t=1

�Lt

�b�1 (�) ; b1 (�)�� T�1 [T�]X
t=1

�Lt (�1; 1)

35
= T�1=2

[T�]X
t=1

E

�
@

@�1 (�)
�Lt (�1)

�0 �b�1 (�)� �1�

+T�1=2
[T�]X
t=1

E

�
@

@1 (�)
�Lt (�1)

�0
(b1 (�)� 1)

+T�1=2
[T�]X
t=1

�
@

@�1 (�)
�Lt

� ::
�1 (�) ; 1

�
� E

�
@

@�1 (�)
�Lt (�1; 1)

��0 �b�1 (�)� �1�

+T�1=2
[T�]X
t=1

�
@

@1 (�)
�Lt

�
�1;

::
1 (�)

�
� E

�
@

@1 (�)
�Lt (�1; 1)

��0
(b1 (�)� 1) ;

where
::
�1 (�) is an intermediate point between b�1 (�) and �1; and similarly for ::

1 (�). The last

two terms are op (1) by Assumptions OT(3) and OT(4). The �rst two terms in the equality are

op (1) because
�b�1 (�)� �1�T 1=2 is Op (1) by Assumption OT(4) and E � @

@�1(�)
�Lt (�1)

�
= 0 (and

similarly for @
@1
�Lt (:)). The result follows similarly for (54).
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Proof of Theorem 1. De�ne the approximate ExpWT for testing HOT
0 : E [�Lt (�)] = 0 as:

ExpW c;T = (1 + c)�1=2
Z
exp

�
1

2

c

1 + c
W c;T (�)

�
dJ (�) ;

where W c;T (�) = � (�)
0
H 0
�
HI�10;�H

0
��1

H� (�) :

and de�ne the approximate LR statistic for testing HOT
0 as:

LRT =

Z
exp

�
1

2
[H� (�)]

0
�
HI�10;�H

0
��1

[H� (�)]

�
� (55)Z

exp

�
�1
2
[H (� (�)� ��)]

0
�
HI�10;�H

��1
[H (� (�)� ��)]

�
dQ� (�

�) dJ (�) :

To prove Part (i) in the Theorem, we will show: (a) LRT � LRT !
p
0; (b) LRT = ExpW c;T ;

(c)ExpW c;T � ExpW �
T !p 0:

(a) Follows from Andrews and Ploberger�s (1994) Lemma A2 under Assumptions OT(2), OT(3),

OT(4) and OT(5).

(b) Let b� (�) � �b�1 (�)0 ; b�2 (�)0�0 ; where
b�1 (�) = 1

[T�]

[T�]P
t=1
�Lt

�b�1 (�)� ; b�2 (�) = 1

[T (1� �)]
TP

t=[T�]+1

�Lt

�b�2 (�)� : (56)

Let approximate estimators be de�ned as (51) and (52). Lemma 7 shows that the approximate

estimators �1 (�) ; �2 (�) are asymptotically equivalent to b�1 (�) ; b�2 (�).
From (55) and Assumption OT(5), which implies Q� (H��) = N

�
0; cHI�10;�H 0

�
, we have:

LRT =

Z
exp

�
1

2
[H� (�)]

0
�
HI�10;�H

0
��1

[H� (�)]

�
�Z

exp

�
�1
2
[H (� (�)� ��)]

0
�
HI�10;�H

0
��1

[H (� (�)� ��)]
�

1p
2�
det

�
c�1=2

�
HI�10;�H

0
��1=2�

� exp
�
�1
2
��

0
H 0
�
cHI�10;�H

0
��1

H��
�
d��dJ (�)

=

Z Z
exp

 
1

2

�
1 +

1

c

�"
���0H 0

�
HI�10;�H

0
��1

H�� + 2

�
1 +

1

c

��1
� (�)0H 0

�
HI�10;�H

0
��1

H��

#!

� 1p
2�
det

�
c�1=2

�
HI�10;�H

0
��1=2�

d��dJ (�)

=

Z Z
exp

0@�1
2

�
1 +

1

c

�8<:
"
�� �

�
1 +

1

c

��1
� (�)

#0
H 0
�
HI�10;�H

0
��1

H

"
�� �

�
1 +

1

c

��1
� (�)

#

�
�
1 +

1

c

��2
� (�)

0
H
�
HI�10;�H

0
��1

H 0� (�)

)!
d��

1p
2�
det

�
c�1=2

�
HI�10;�H

0
��1=2�

dJ (�)
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Z 24Z 1q
2�
�
1 + 1
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��1 det
��

HI�10;�H
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1
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�H
�
HI�10;�H

0
��1

H

"
�� �

�
1 +

1

c

��1
� (�)

#)
d��]

#

� exp
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1

2

�
1 +

1

c

��
1 +

1

c

��2
� (�)

0
H 0
�
HI�10;�H

0
��1

H� (�)

)s�
1 +

1

c

��1 1p
c
dJ (�)
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exp

(
1

2

�
1 +

1

c

��1
� (�)

0
H 0
�
HI�10;�H

0
��1

H� (�)

)
1p
1 + c

dJ (�)

(c) From Lemma 7 we have sup�2�
hp

Tb�1 (�)� �1 (�)i!p 0. Also, note that 2 h� �b� (�) ; ��� � (0)i =�b� (�)� ��0 @2�(0)
@�@�0

�b� (�)� �� + op (1) = �
�b� (�)�0M�10 @2�(0)

@�@�0
M�1�

�b� (�)� + op (1) ; where M =

@�(�)
@�@�0

:

Part (ii) follows from Lemma A4 in Andrews and Ploberger (1994), which guarantees that for

the local alternatives in (20), the density lt
�
��T�1=2; �

�
is contiguous to the density lt (0; �).

Proof of Corollary 2. Follows from Theorem 1, where (28), (29) follow from Assumption

OT(1).

Proof of Proposition 3. First we show that: (i) LM1 = ��2T�1=2
hPT

t=1 (ln ft(�t)� ln gt (t))
i2
+

op (1) and (ii)

LM2 (�) = ��2 ([�T ] =T )�1 (1� [�T ] =T )�1

[T�1=2
[�T ]X
t=1

(ln ft(�t)� ln gt (t)) +

� ([�T ] =T )T�1=2
TX
t=1

(ln ft(�t)� ln gt (t)) ]2 + op (1)

To prove (i), consider

LM1 = ��2T�1=2
TX
t=1

�
ln ft(b�T (�))� ln gt (bT (�))� (57)
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Consider the �rst summand in (57). By applying a Taylor expansion around � =
h
�0; 

0
i0
:

��2T�1=2
TX
t=1

�
ln ft(b�T (�))� ln gt (bT (�))�

= ��2T�1=2
[T�]X
t=1

(ln ft(� (�))� ln gt ( (�))) +
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1
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��2T�1=2

[T�]X
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�T (�))� E
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(b1 (�)�  (�))

= ��2T�1=2
[T�]X
t=1

(ln ft(� (�))� ln gt ( (�))) + op (1) + op (1)

where
::
�T (�) is an intermediate point between b�T (�) and � (�) (similarly for ::T (�)). Assumption

OT(3) ensures that T�1
PT

t=1

h
r ln ft(

::
�T (�))� E

�
r ln ft(

::
�T (�) (�))

�i
!
p
0 under the null hy-

pothesis (and similarly for the component in ) and, by Assumption OT(2), T�1=2
�b�T (�)� � (�)� =

O (1) which proves the �rst op (1). The second op (1) is justi�ed by the fact that E
�
r ln ft(

::
�T (�))

�
�

E (r ln ft(� (�))) !
p
0, where E (r ln ft(� (�))) = 0, and that T�1=2

�b�T (�)� � (�)� = O (1). A

similar argument proves that this results holds for the second summand as well as for (ii).

By Assumption OT(1), under the null hypothesis:

��1T�1=2
TX
t=1

(ln ft(�t)� ln gt (t)) =) B (1) (58)

��1 ([�T ] =T )�1=2 (1� [�T ] =T )�1=2 [T�1=2
[�T ]X
t=1

(ln ft(�t)� ln gt (t))

� ([�T ] =T )T�1=2
TX
t=1

(ln ft(�t)� ln gt (t)) ]

=) ��1=2 (1� �)�1=2 [B (�)� �B (1) ] = ��1=2 (1� �)�1=2 BB (�) (59)

28



where (58) and (59) are asymptotically independent. Then:

LM1 + LM2 (�) = ��2T�1=2

"
TX
t=1

(ln ft(�t)� ln gt (t))
#2

+��2
�
[T�]

T

��1�
1� [T�]

T

��1
[T�1=2

[T�]X
t=1

(ln ft(�t)� ln gt (t))

�
�
t

T

�
T�1=2

TX
t=1

(ln ft(�t)� ln gt (t)) ]2 + op (1)

=) B (1)2 + ��1 (1� �)�1 BB (�)2

and the result follows by the Continuous Mapping Theorem.

Proof of Proposition 4. In this proof, let b�(�) in (37) be denoted by b��� ;e� (�)� to
emphasize its dependence on the estimated parameters, e� (�). The con�dence bands in (33) are
obtained by showing that for every u 2 R and for T !1;

Pr

(p
Th

�
sup

�2[wh;1�wh]

hb��� ;e� (�)�� � (� ; � (�))� h2	�00 (� ; � (�))�BKi � up
2 ln (1=h)

)
! exp (�2 exp (�u)) :

(60)

We have

b��� ;e� (�)�� � (� ; � (�))� h2	�00 (� ; � (�))
= b��� ;e� (�)�� E [b� (� ; � (�))]| {z }

A

+ E [b� (� ; � (�))]� �� (� ; � (�))� h2��00 (� ; � (�))�| {z }
B

:

From Lemma 3 of Wu and Zhao (2007), the term B is O
�
h3 + T�1h�1

�
uniformly over � 2

[!h; 1� !h] by Assumption SB3, which implies that the term is asymptotically negligible, and

thus one need only to focus on term A and show that

Pr

(p
Th

�
sup

�2[wh;1�wh]

hb��� ;e� (�)�� E [b� (� ; � (�))]�BKi � up
2 ln (1=h)

)
! exp (�2 exp (�u)) :

To prove this, de�ne

bUT (�) �
p
Th��1

hb��� ;e� (�)�� �ti (61)

= ��1

(
1p
Th

TX
t=1

K

�
� � t=T

h

�h
�Lt

�e� (�)�� �ti
)

= ��1

(
1p
Th

TX
t=1

K

�
� � t=T

h

�h
�Lt

�e� (�)���Lt (� (�))i)+ UT (�)
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where UT (�) � 1p
Th
��1

nPT
t=1K

�
��t=T
h

�
"t

o
. By a Mean Value expansion of �Lt

�e� (�)� around
�Lt (� (�)), we have:

b��� ;e� (�)� � 1p
Th

TX
t=1

K

�
� � t=T

h

�
�Lt

�e� (�)� = (62)

=
1p
Th

TX
t=1

K

�
� � t=T

h

�
�Lt (� (�))

+

"
1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0 �e� (�)� � (�)�

= b� (� ; � (�)) + " 1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0 �e� (�)� � (�)�
where � (�) lies between e� (�) and � (�) :
By substituting (62) in (61), we have:

bUT (�) = UT (�) +

"
1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0 �e� (�)� � (�)�
Let WT (�) � 1p

Th

PT
t=1K

�
��t=T
h

�
�B (t). Note that

ln1=2 (T ) jbUT (�)�WT (�) j

� ln1=2 (T ) jUT (�)�WT (�) j+ ln1=2 (T )

������
"

1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0 �e� (�)� � (�)�
������

= op (1) + ln
1=2 (T )

������
"

1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0 �e� (�)� � (�)�
������ = op (1) (63)

where the �rst inequality follows from the triangle inequality, the �rst op (1) in the second equality

follows from Wu and Zhao (2007, Lemma 2, eq. 29), and the last op (1) in (63) follows from the

fact that

ln1=2 (T )

������
"

1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0 �e� (�)� � (�)�
������

�

������
"

1p
Th

TX
t=1

K

�
� � t=T

h

�
�st

�
� (�)

�#0������ �
���pTh�e� (�)� � (�)���� �r ln (T )

Th

and

����h 1p
Th

PT
t=1K

�
��t=T
h

�
�st

�
� (�)

�i0���� = Op (1) by Assumption SB(5), E [�st (� (�))] = 0 and

consistency of e� (�) for � (�); ���pTh�e� (�)� � (�)���� = Oas (1) by Assumption SB(7); and
q

ln(T )
Th =
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o (1) by Assumption SB(3). In practice, the bias-corrected estimator e� (�) can be obtained with a
jackknife-type bias correction scheme where e� (�) = 2b� (�)�b�p2h (�), where, again, the estimation
uncertainty on e� (�) is irrelevant, as above. The consistency of the proposed estimator b� follows
from the discussion of eq. (25) of Wu and Zhao (2007) and the consistency of the estimated

parameters, e� (�), using arguments similar to the above.
Proof of Theorem 6. Let

P
j �

Pt+m=2
j=t�m=2+1 for t = m=2; :::; T � m=2: We �rst show

that ��1m�1=2P
j �Lj(

b�t) = ��1m�1=2P
j �Lj(�

�) + op (1) : Applying a mean value expansion,

we have:

��1m�1=2
X
j

�Lj(b�t) (64)

= ��1m�1=2
X
j

�Lj(�
�)

+��1
1

2

8<:
8<:m�1

X
j

r ln fj(
::
�t)� E

24m�1
X
j

r ln fj(
::
�t)

359=;pm�b�t � ���

�

8<:m�1
X
j

r ln fj(
::
t)� E

24m�1
X
j

r ln gj(
::
t)

359=;pm (bt � �)
9=;

+��1
1

2

8<:E
24m�1

X
j

r ln fj(
::
�t)

35pm�b�t � ���

�E

24m�1
X
j

r ln gj(
::
t)

35pm (bt � �)
9=;

= ��1m�1=2
X
j

�Lj(�
�) + op (1) + op (1) ;

where
::
�t is an intermediate point between b�t and �� (and similarly for ::t):By Assumption FB(3)

we have that m�1P
j r ln fj(

::
�t)�E

h
m�1P

j r ln fj(
::
�t)
i
is op (1) and, by Assumption FB(2) and

under H0,
p
m
�b�t � ��� is Op (1) (and similarly for the second model); which proves the �rst op (1)

in equation (64). The second op (1) follows from the fact that
p
m
�b�t � ��� is Op (1) by FB(2) and

that E
h
m�1P

j r ln fj(
::
�t)
i
�E

h
m�1P

j r ln fj(��)
i
!
p
0 asm!1 by Theorem 2.3 of Domowitz

and White (1982) given Assumptions FB(2) and FB(3), where E
h
m�1P

j r ln fj(��)
i
= 0 by

de�nition. Now write

��1m�1=2
X
j

�Lj(�
�)

= (m=T )�1=2

0@��1T�1=2 t+m=2X
j=1

�Lj(�
�)� ��1T�1=2

t�m=2X
j=1

�Lj(�
�)

1A :

31



By Assumptions FB(1), FB(4) and FB(5), we have

��1m�1=2
X
j

�Lj(�
�) =) [B (� + h=2)� B (� � h=2)] =

p
h;

where t = [�T ] : The statement in the proposition then follows from the fact that, under H0, b� in
(48) is a consistent estimator of �.
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8 Tables and Figures

Table 1. Critical values for the

�uctuation test (k�)

�

h 0.05 0.10

0.1 3.393 3.170

0.2 3.179 2.948

0.3 3.012 2.766

0.4 2.890 2.626

0.5 2.779 2.500

0.6 2.634 2.356

0.7 2.560 2.252

0.8 2.433 2.130

0.9 2.248 1.950

Notes to Table 1. The table reports critical values for the �uctuation test in Proposition 6.

Values of k� in Table 1 are obtained by Monte Carlo simulations (based on 8,000 Monte Carlo

replications and by approximating the Brownian motion with 400 observations)
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Table 2. Monte Carlo: Design 1
�A Nonparametric Fluctuation QLR�T Break ExpW�

1;T MeanW�
T

0 0.06 0.04 0.04 0.05 0.04 0.05

0.1 0.05 0.06 0.09 0.10 0.09 0.08

0.2 0.06 0.15 0.20 0.24 0.19 0.16

0.3 0.08 0.32 0.44 0.51 0.42 0.34

0.4 0.11 0.53 0.69 0.75 0.66 0.56

0.5 014 0.72 0.86 0.90 0.84 0.76

0.6 0.19 0.87 0.96 0.97 0.95 0.90

0.7 0.27 0.94 0.99 0.99 0.99 0.96

0.8 0.34 0.98 1 1 1 0.98

0.9 0.42 0.99 1 1 1 1

1.0 0.50 1 1 1 1 1

1.1 0.58 1 1 1 1 1

1.2 0.68 1 1 1 1 1

1.3 0.74 1 1 1 1 1

1.4 0.78 1 1 1 1 1

1.5 0.86 1 1 1 1 1

1.6 0.90 1 1 1 1 1

1.7 0.94 1 1 1 1 1

1.8 0.96 1 1 1 1 1

1.9 0.98 1 1 1 1 1

2 0.99 1 1 1 1 1
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Table 3. Monte Carlo: Design 2
�2A Nonparametric Fluctuation QLR�T Break ExpW�

1;T MeanW�
T

0 0.05 0.04 0.05 0.05 0.05 0.05

0.1 0.05 0.05 0.06 0.06 0.06 0.06

0.2 0.06 0.06 0.10 0.10 0.10 0.09

0.3 0.08 0.08 0.18 0.16 0.16 0.14

0.4 0.10 0.10 0.27 0.25 0.25 0.22

0.5 0.15 0.18 0.40 0.37 0.38 0.34

0.6 0.21 0.25 0.53 0.49 0.50 0.45

0.7 0.28 0.34 0.69 0.64 0.66 0.60

0.8 0.31 0.46 0.78 0.73 0.76 0.71

0.9 0.41 0.55 0.85 0.81 0.83 0.80

1.0 0.49 0.64 0.90 0.87 0.89 0.86

1.1 0.57 0.74 0.95 0.93 0.94 0.92

1.2 0.65 0.81 0.97 0.96 0.97 0.95

1.3 0.73 0.88 0.98 0.98 0.98 0.97

1.4 0.80 0.92 0.99 0.99 0.99 0.98

1.5 0.86 0.95 1 1 1 0.99

1.6 0.90 0.97 1 1 1 1

1.7 0.93 0.98 1 1 1 1

1.8 0.96 0.99 1 1 1 1

1.9 0.97 0.99 1 1 1 1

2.0 0.99 1 1 1 1 1

Note to Tables 2-4. The tables report empirical rejection probabilities for the nonparametric ("Nonpara-

metric"), �uctuation ("�uctuation"), one-time reversal Sup-type ("QLR�T "), the ExpW
�
1;T andMeanW �

T

tests. The table also reports empirical rejection probabilities for a standard QLR test for breaks ("Break").

Table 2 reports results for design 1 and Table 3 for design 2 �see Section 4 for details.
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Table 4. Bandwidth Selection Comparisons
h

�A 0.0005 0.005 0.05 0.1 0.5 0.7

0 0.04 0.04 0.04 0.05 0.05 0.06

0.2 0.06 0.06 0.06 0.06 0.06 0.06

0.4 0.11 0.12 0.08 0.08 0.08 0.06

0.6 0.17 0.19 0.13 0.12 0.07 0.07

0.8 0.31 0.31 0.23 0.19 0.10 0.08

1.0 0.46 0.51 0.35 0.28 0.13 0.10

1.2 0.64 0.66 0.42 0.37 0.15 0.10

1.4 0.75 0.79 0.54 0.43 0.19 0.13

1.6 0.87 0.91 0.64 0.53 0.21 0.14

1.8 0.94 0.96 0.72 0.61 0.22 0.17

2.0 0.97 0.98 0.80 0.69 0.25 0.19

Note to Table 4. The table shows empirical rejection probabilities of the nonparametric test for the

Monte Carlo design 1 discussed in Section 4, using di¤erent bandwidth sizes (h).
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Figure 1(a) Figure 1(b)
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Figure 1(e) Figure 1(f)
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Figure 2(a). Rolling estimates of DSGE parameters (persistence of the shocks).
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Notes to Figure 2(a). The �gure plots rolling estimates of some parameters in Smets and Wouter�s (2002)

model. See Smets and Wouter�s Table 1, p. 1142 for a description.
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Figure 2(b). Rolling estimates of DSGE parameters ( standard deviation of the shocks).
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Notes to Figure 2(b). The �gure plots rolling estimates of some parameters in Smets and Wouter�s

(2002) model using full-sample detrended data. See Smets and Wouter�s Table 1, p. 1142 for a description.
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Figure 2(c). Rolling estimates of DSGE parameters (monetary policy parameters).

1978 1982 1986 1990 1994 1998
1

1.5

2
Inflation coeff.

1978 1982 1986 1990 1994 1998
0.5

0

0.5
d(inflation) coeff.

1978 1982 1986 1990 1994 1998

0.6

0.8

1
Lagged interest rate coeff.

1978 1982 1986 1990 1994 1998
0

0.5
Output gap coeff.

1978 1982 1986 1990 1994 1998
0

0.5
d(output gap) coeff.

1978 1982 1986 1990 1994 1998
0

0.5
Interest rate shock st. dev.

Notes to Figure 2(c). The �gure plots rolling estimates of the parameters in the monetary policy reaction

function described in Smets and Wouters� (2002) eq. (36), given by: bRt= � bRt�1
+(1� �)

n
�t + r� (b�t�1 � �t) + rY �bYt�1 � bY p

t

�o
+r�� (b�t � b�t�1) +r�Y ��bYt � bY p

t

�
�
�bYt�1 � bY p

t�1

��
+�Rt ; �t = ���t�1 + ��t . The �gure plots: in�ation coe¢ cient (r�), d(in�ation) coe¢ cient (r��), lagged

interest rate coe¢ cient (�), output gap coe¢ cient (rY ), d(output gap) coe¢ cient (r�Y ), and standard

deviation of the interest rate shock (
p
var (��t )).
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Figure 3. Fluctuation test DSGE vs. BVARs. Full-sample detrending
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Notes to Figure 3. The �gure plots the Fluctuation test statistic for testing equal performance of the

DSGE and BVARs, using a rolling window of size m = 70 (the horizontal axis reports the central point of

each rolling window): The 10% boundary lines are derived under the hypothesis that the local �KLIC

equals zero at each point in time.The data is detrended by a linear trend computed over the full sample:The

top panel compares the DSGE to a BVAR(1) and the lower panel compares the DSGE to a BVAR(2).
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Figure 4. Fluctuation test DSGE vs. BVARs. Rolling sample detrending
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Notes to Figure 4. The �gure plots the Fluctuation test statistic for testing equal performance of

the DSGE and BVARs, using a rolling window of size m = 70 (the horizontal axis reports the central

point of each rolling window): The 10% boundary lines are derived under the hypothesis that the local

�KLIC equals zero at each point in time.The data is detrended by a linear trend computed over each

rolling window:The top panel compares the DSGE to a BVAR(1) and the lower panel compares the DSGE

to a BVAR(2).
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