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Abstract

This paper develops a new method for estimatingemahd function and the welfare
consequences of price changes. The method isedpidi gasoline demand in the U.S. and is
applicable to other goods. The method uses shegtections derived from economic theory to
improve the precision of a nonparametric estimdtin® demand function. Using data from the
U.S. National Household Travel Survey, we show thatrestrictions are consistent with the data
on gasoline demand and remove the anomalous behaEviostandard nonparametric estimator.
Our approach provides new insights about the pasponsiveness of gasoline demand and the
way responses vary across the income distributitvie find that price responses vary non-
monotonically with income. In particular, we finkdat low- and high-income consumers are less
responsive to changes in gasoline prices than adlerincome consumers. We find similar
results using comparable data from Canada.
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1. Introduction

This paper develops a new method for estimatimtermand function and the welfare
consequences of price changes. The method isedpidi gasoline demand in the U.S. and is
applicable to other goods. In the U.S., as in matier countries, the price of gasoline rose
rapidly from 1998 until mid 2008. Figure 1 showsahthe average price of gasoline in the U.S.
has varied over the last three decades. Pricesnbegjng steeply in about 1998 following a
period of price stability that began in about 1988etween March 2007 and March 2008, the
average gasoline price increased by 25.7 percerdritinal terms. In real terms, gasoline prices
reached levels similar to those seen during thergkoil crisis of 1979-1981. Although prices
have decreased since mid 2008, due at least intpatte global economic downturn, many
observers expect prices to rise again in the fuagreconomic activity increases.

The measurement of the welfare consequencescad ghanges begins with estimating
the demand function for the good in question. Tiki®ften done by using a linear model in
which the dependent variable is the log of demamntithe explanatory variables are the logs of
price and income. This model is easy to interpestause it gives constant income and price
elasticities. However, economic theory providegyanmance on the specific form of the gasoline
demand function. This motivates us to use nonpetidenestimation methods. We build on
Hausman and Newey (1995) who also used nonparame#thods to estimate gasoline demand.
We also draw on earlier work on imposing restricsidrom consumer theory in a nonparametric
setting including Varian (1982, 1983). In a stadait setting, Epstein and Yatchew (1985) and
Yatchew and Bos (1997) develop procedures for pmmating and testing additional restrictions,
including constraints on derivatives or homotheici

Deviations from the constant-elasticity model aot simply a technical concern. It is
likely to matter greatly how peoples’ responseptices vary according to the price level and
over the income distribution. Therefore, a flegilbhodeling approach such as nonparametric
regression seems attractive. However, nonparanmefression can yield implausible and erratic
estimates. One way of dealing with this probleroigmpose a parametric form such as log-log
linearity on the demand function. But any paraimdorm is essentially arbitrary and, as will be
discussed further in Section 4, may be misspecifiedays that produce seriously erroneous
results. As a compromise between the desire éxildility and the need for structure, one may
use a semiparametric model, such as a partialgatiror single-index model. These impose
parametric restrictions on some aspects of thetifumcof interest but leave other parts

! Own calculation based on EIA (2008, Table 9.4).



unrestricted. In this paper, we take a differgmpraach and impose structure through shape
restrictions based on economic theory. Specificalle impose the Slutsky restriction of
consumer theory on an otherwise nonparametric atiwf the demand function. We show that
this approach yields well-behaved estimates ofdémand function and price responsiveness
across the income distribution while avoiding thee wf arbitrary and possibly misspecified
parametric models. We implement our approach biimgause of a kernel-type estimator in
which observations are weighted in a way that erssgatisfaction of the Slutsky restrictions.
This maintains the flexibility of nonparametric regsion while using restrictions of economic
theory to avoid implausible estimation results. eT¢onstrained nonparametric estimates are
consistent with observed behavior and provide tintliy plausible, well-behaved descriptions of
price responsiveness across the income distribution

One important use of demand function estimatde ompute deadweight loss (DWL)
measures of tax policy interventions. We show hber different estimates of the demand
function translate into important differences in D\&stimates.

We find that there is substantial variation incprisensitivity across both price and
income. In particular, we find that price resp@aee non-monotonic in income. Our estimates
indicate that households at the median of the imcdistribution respond more strongly to an
increase in prices than do households at the lowepper income group. We do not speculate
on why this is the case, but we show that it ingtleat our DWL measure is typically higher at
the median of the income distribution than in thedr or upper income group.

Section 2 explains our approach to nonparamettienation of demand functions and
DWL subject to the Slutsky shape restrictions. ti®ac3 describes our data, which are taken
from the U.S. National Household Travel Survey (NB)TSection 4 presents the estimates of the
demand function and shows how price responsivemasgss across the income distribution.
Section 4 also presents the DWLs associated witie phanges and shows how they vary across
the income distribution. We also derive comparakgults from the Canadian Private Vehicle
Use Survey. Section 5 presents results from aaranpetric test for endogeneity in the gasoline
price variable. Section 6 concludes.

2. Shape Restrictions and the Estimation of DenasadDeadweight Loss

We begin this section by describing our approactedtimating the demand function
subject to the Slutsky shape restriction. Thendescribe how we estimate the DWL of a tax-
induced price increase.



The Slutsky condition is an inequality constraintthe demand function. Our method
for estimating the demand function nonparametrcallbject to this constraint is adapted from
Hall and Huang (2001), who present a nonparamé&tioel estimator of a conditional mean
function subject to a monotonicity constraint. Véplace their monotonicity constraint with the
Slutsky condition. To describe our estimator,@et P, andY , respectively, denote the quantity
of gasoline demanded by an individual, the pricel,pand the individual's income. We assume
that these variables are related by
1) Q=g(PY)+U,
where g is a function that satisfies smoothness conditiand the Slutsky restriction but is
otherwise unknown, and is an unobserved random variable satisfyl@y |P=p,Y =y)=0
for all p and y. Our aim is to estimatey(p,y) nonparametrically subject to the Slutsky

constraint

@ 90y, o0y o

op oy
The data are observatiof®, B, Y;:i=1,...,n} for n randomly sampled individuals. A fully
nonparametric estimate a that does not impose the Slutsky restriction carobtained by

using the Nadaraya-Watson kernel estimator (Nadai®4, Watson 1964). The properties of
this estimator are summarized in Hardle (1990). &&k it the unconstrained nonparametric

estimator, denoted bg, , because it is not constrained by (2). The estima

3) @U(p,y)=;ZQ.K[pf]K[y;YiJ,
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where
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K is a bounded, differentiable probability densitydtion that is supported dr-1,1] and is

symmetrical about 0, and, and h, are bandwidth parameters.

Owing to the effects of random sampling errajg, does not necessarily satisfy (2) even
if g does satisfy this condition. Following Hall andidthg (2001), we solve this problem by
replacing g, with the weighted estimator
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where {w:i=1,...,n} are non-negative weights satisfyinEin:lwI =1 and the subscripC

indicates that the estimator is constrained byStusky condition. The weights are obtained by

solving the optimization problem

(5) minimize :D (W, ,...w, )

Wi W,
subject to
= G (py) <0, =1,
op oy

n
2 =1,
i=1
and
w=20;i=1..n,
where{p;, y;: j =1...,J} is a grid of points in thép,y) plane. The objective function is the

following measure of the “distance” of the weigfrtsm the valuesn =1/n corresponding to the

Nadaraya-Watson estimator:

D(Wy.. ) =n-3" (g 2.

i=1
Whenw =1/n for all i =1,...n, §c(p;,Y;) =08y (p;,y;) forall j=1,..3. Thus, the weights
minimize the distance of the constrained estimftton the unconstrained one. The constraint is

not binding at point{p;,y;) that satisfy (2). In the empirical applicatiorsdgbed in Section

4, we solve (5) by using the nonlinear programmaigprithm E04UC from the NAG Library.
The bandwidths are selected using a method tltssribed in Section 4. In some applications,
it may be desirable to impose the restriction thatgood in question is normal. This can be done

by adding the constrainti;jc(pj ,Yj)/0y =0 to (5), but we do not take this step here.

The literature on transport demand has documettitedmportance of accounting for
household characteristics in estimating gasolinmael, including urbanization, population
density and transit availability, as well as denapiric characteristics such as household size.
Since the curse of dimensionality prevents us festimating a fully nonparametric model in all
of these dimensions, we account for these covarigtea partially-linear framework. For this
purpose, we estimate the effects of the covarimtes a double-residual regression (Robinson,
1988), and then estimate the nonparametric demaradidén of interest after removing the effect

of the covariates.



We now describe our method for estimating the D@fla tax. LetE(p) denote the

expenditure function at price and some reference utility level. The DWL of & that changes
the price fromp® to p* is

® L% pY=E(pY)-E(p)-(p*-pglp E(pI].

We estimate this by

(7 L% pH=E(pY)-E(p) - (p*-pYalp E(pI],

where E is an estimator of the expenditure function @nanay be eitherg, or §.. We obtain

E by solving the differential equation

dp(t)

dE(t) _
dt

(8) q - alp(). B

where [p(t),é(t)] (0<t<l) is a price-(estimated) expenditure path. We esghis equation

along a grid of points by using Euler's method (Wescand Petzold 1998). We have found this
method to be quite accurate in numerical experiment

Inference with the constrained estimatgg is difficult because the estimator's

asymptotic distribution is very complicated in m@gs where (2) is a binding constraint (strict
equality). However, if we assume that (2) is &stnequality in the population, then violation of

the Slutsky condition byg, is a finite-sample phenomenon, and we can ggeto carry out

asymptotically valid inference. We use the boefstto obtain asymptotic joint confidence

intervals for g(p,y) on a grid of(p,y) points and to obtain confidence intervals for The
bootstrap procedure is as follows.

1. Generate a bootstrap samp@, P, Y, : i =1,...,n} by sampling the data randomly
with replacement.

2. Use this sample to estimatép, y) on a grid of(p,y) points without imposing the
Slutsky constraint. Also, estimate Denote the bootstrap estimates@é}/ andL .

3. Form percentile confidence intervals forby repeating steps 1-2 many times. Also,

use the bootstrap samples to form joint percentdenfidence intervals foy on the grid of
points{ p;, y;: j =1,...,d}. The joint confidence intervals at a level ofestst1-a are

) Au (P;Y;) =2, (Py,Y))a(P; Y )= 9Py Y )< Gu (P) .Y )+ 22 (P Y 0 (Pj Y5 ),

where
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with B, = [K?dv andU; =Q -Gy (R,¥) .
is a consistent estimate War[g, (p, y)]. The critical valuez, (p;,y;) is chosen following the

approach in Hardle and Marron (1991) for compujaigt confidence intervals. For this purpose,

we partition the grid into intervals dth, . Within each of thesé/ neighborhoodsz, (p;,y;)

is the solution to

|gU(p] yj) gU(pJ y])l
g (p;.y;)

<7, (pj.Y;) |=1-8,

where P” is the probability measure induced by bootstrappiag, andd” (p, y) is the version

of d(p,y) that is obtained by replaciri@i , B, andY, in (10) by their bootstrap analogs, afd

is a parameter. We then chog8esuch that the simultaneous size in each neighbdriequals
1—%. As Hardle and Marron (1991) show using the Bawfar inequality, the resulting

intervals over the full grid form simultaneous ddehce intervals at a level of at ledsta .
Hall (1992) shows that the bootstrap consistenstyneates the asymptotic distribution of the

Studentized form of§, . It is necessary to undersmoafy and g, (that is, use smaller than

asymptotically optimal bandwidths) in (9) and s@mf the bootstrap procedure to obtain a

confidence interval that is centeredgat We discuss bandwidth selection in Section 4.

3. Data

Our analysis is based on the 2001 National Houdehiavel Survey. The NHTS was
sponsored by the Bureau of Transportation Statistitd the Federal Highway Administration.
The data were collected through a telephone sunfeyhe civilian, non-institutionalized
population of the U.S. The survey was conductad/dren March 2001 and May 2002 (ORNL
2004, Ch. 3). The telephone interviews were complged with written travel diaries and
odometer readings.

The key variables used in our study are annualliggsconsumption, the gasoline price,
and household income. Gasoline consumption ivelérdrom odometer readings and estimates
of the fuel efficiencies of vehicles. Details bietcomputations are described in ORNL (2004,

Appendices J and K). The gasoline price for amgiveusehold is the average price in dollars per



gallon, including taxes, in the county where thaidehold is located. This price variable is a
county average, rather than the price actually pgié household. It precludes an intra-county
analysis (see Schmalensee and Stoker 1999) butcdpégre variation in prices consumers face
in different regions. Price differences across llaoarkets reflect proximity of supply, short-run

shocks to supply, competition in the local markahd local differences in taxes and

environmental programs (EIA 2010a). We returnhig tn Section 5, where we investigate the
role of proximity of supply as a cost shifter apdttfor endogeneity of prices.

Household income in dollars is available in 18ugp® In our analysis, we assign each
household an income equal to the midpoint of itsugr The highest group, consisting of
incomes above $100,000, is assigned an income 20,800 To investigate how price
responsiveness of gasoline demand varies acrosst¢bene distribution, we focus on three
income levels of interest: a middle income group$a?,500, which corresponds to median
income in our sample, a low income group ($42,50Bich corresponds to the first quartile and
a high income group ($72,500)To obtain gasoline demand at the household,leiehggregate
vehicle gasoline expenditure in dollars and gasolionsumption in gallons over multi-car
households. We divide the household gasoline aliher by the quantity of gasoline consumed
to obtain the household’'s gasoline price. We dbingestigate the errors-in-variables issues
raised by the use of county-average prices orrttevial censoring issues raised by the grouping
of household incomes in the data. These poteptialortant issues are left for future research.

Previous research on determinants of gasoline deénhas shown the importance of
accounting for demographic characteristics of thesehold. In our analysis, we include the age
of the household respondent, household size, amddimber of drivers in the household (all
measured in logs). We also include the number qfi@yed household members.

We measure population density in 8 categoriesahlt is measured in five categories
(rural, small town, sub-urban, second city, urbanyj public transit availability is an indicator fo
whether the household is located in a Metropoliatistical Area (MSA) or a Consolidated
Metropolitan Area (CMSA) of one million or more Witail. In one specification, we also include
region fixed effects, corresponding to the nine.d&hsus divisions.

2 Assuming log-normality of income, we have estimateel corresponding mean and variance by using a
simple tobit model, right-censored at $100,000. l&kag households with very high incomes above
$150,000, the median income in the upper groupesponds to about $120,000.

® The income point $72,500 occupies the 59.6-63tttentile. This point was chosen to avoid the
problems created by the interval nature of the imewariable which becomes especially importantian t
upper quartile of the income distribution: inconradkets are relatively narrow (with widths of $3)p@ip

to $80,000, but substantially wider for higher im=s. However, estimates using higher quantildsigie
similar results and did not change our conclusmmgrice responsiveness across the income distribut



We exclude from our analysis households wherentlmaber of drivers is zero or whose
variables of interest are not reported, and weiregasoline consumption of at least one gallon.
Due to its special geographic circumstances, we alclude households that are located in
Hawaii. In addition, we restrict our sample to belolds with a white respondent, two or more
adults, and at least one child under 16 years ef alje take vehicle ownership as given and do
not investigate how changes in prices affect vehitirchases or how vehicle ownership varies
across the income distribution (Poterba 1991; VZ66#; Bento, Goulder, Henry, Jacobsen, and
von Haefen 2005; Bento, Goulder, Jacobsen, andHamien 2009). The results of Bento, et al.
(2005) indicate that over 95 percent of the reducin gasoline demand in response to price
changes is due to changes in miles traveled raltlaer fleet composition. We limit attention to
vehicles that use gasoline as fuel, rather thasetlimatural gas, or electricity. The resulting
sample consists of 5,254 observations (4,812 obh8ens when we condition on regions as well).

Table 2 shows summary statistics.

4. Estimates of Demand Responses

a. The constant elasticity model

We begin by using ordinary least squares to estintee following log-log linear demand
model:
(11)  logQ=p, +BilogP+p,logY +U EU [P=pY=y)=C
This constant elasticity model is one of the mosgdiently estimated (e.g., Dahl 1979; Hughes,
Knittel, and Sperling 2008). It has been criticizm many grounds (e.g., Deaton and Muellbauer
1980) but its simplicity and frequent use make itsaful parametric reference model. Later in
this section, we compare the estimates obtained frmdel (11) with those obtained from the
nonparametric analysis.

The estimates of the coefficients of (11) are shawTable 1. The estimates in column
(1), where we include no further covariates beypride and income, imply a price-elasticity of
demand of -0.92 and an income elasticity of 0.Z8ese estimates are similar to those reported
by others. Hausman and Newey (1995) report estgnait-0.81 and 0.37, respectively, for price
and income elasticities based on U.S. data colldottween 1979 and 1988. Schmalensee and
Stoker (1999) report price elasticities betwee20and -1.13 and income elasticities between
0.12 and 0.33, depending on the survey year anglatamriables, in their specifications without

regional fixed effects. Yatchew and No (2001)reate a partially-linear model using Canadian



data for 1994-1996 and find an income elasticitp.@8 and an average price elasticity of -#.89.
West (2004) reports a mean price elasticity of9Q8ing 1997 data. In columns (2)-(5), we add
further covariates. Although the number of drivensd the number of workers are highly
significant, the effect on the estimated price teddg is relatively limited. Adding public
transport availability (column (3)) has only a shedfect on the estimated elasticities. In column
(4), we add indicators for urbanity and populataemsity. While the income elasticity changes
little, the price elasticity goes down to -0.50. the last column, we also add regional fixed
effects. The main effect of including regional filkeffects is that the standard error of the price
elasticity increases sharply, and we see a modestef reduction in the price elasticity. As
reported in the bottom panel of the table, we camgject that the price and income elasticities
are the same between specification (4) and (S)hénfollowing analysis, we include the set of
covariates corresponding to column (4).

Although the estimates we obtain from model (I&)samilar to those reported by others,
it is possible that (11) is misspecified. For exéampVest (2004) found evidence for dependence
of the price elasticity on income. One possibiligould be to add the interaction term

(logP)(logY) to model (11). However, if the structure impodgdsuch an augmented linear

model remains misspecified, this may lead to inistest estimators whose properties are

unknown. Nonparametric estimators, by contrastcansistent.

b. Unconstrained semi-nonparametric estimates
Our unconstrained semi-nonparametric estimateshef demand function,§,, are
displayed in Figure 2 (shown as open dots). Thesewobtained by using the Nadaraya-Watson

kernel estimator with a biweight kernel (Silverm®86). In principle, the bandwidths, and
h, can be chosen by applying least-squares crossatiain (Hardle 1990) to the entire data set,

but this yields bandwidths that are strongly infloed by low-density regions. To avoid this

problem, we used the following method to chobgeand h,. We are interested ig(p,y) for

y values corresponding to our three income groupkspaite levels between the 5th and 95th

percentiles of the observed prices. We definegetiprice-income rectangles consisting of prices
between the 5th and 95th percentiles and incomdsnw®.5 of each income level of interest
(measured in logs). We then applied least-squaress-validation to each price-income
rectangle separately to obtain bandwidth estimapgsopriate to each rectangle. This procedure
yielded (hy,h ) =(0.0431,0.2142 for the lower income group, (0.0431, 0.2061) foe tmiddle

* The dependent variable is log of distance tradelze Yatchew and No (2001, Figure 2) for details.



income group, and (0.0210, 0.2878) for the uppeorime group. The estimation results are not

sensitive to modest variations in the dimensiornthefprice-income rectangles. As was discussed
in Section 2, §, and @a must be undersmoothed to obtain properly cente@didence

intervals. To this end we multiplied each of tieeefjoing bandwidths by 0.8 when computing
confidence intervals.

Figure 2 shows the unconstrained semi-nonparasmettimates of gasoline demand as a
function of price at three points across the incatigtribution (open dots in the figure). The
figure gives some overall indication of downwardpshg demand curves with slopes that differ
across the income distribution but there are pErtbe estimated demand curves that are upward
sloping and, therefore, implausible. We interpinetimplausible shapes of the curves in Figure 2
as indicating that fully nonparametric methods taxe imprecise to provide useful estimates of
gasoline demand functions with our data. Figush@ws several instances in which the semi-
nonparametric estimate of the (Marshallian) denfandtion is upward sloping. This anomaly is
also present in the results of Hausman and New@§5)1 The theory of the consumer requires
the compensated demand function to be downwardngjopCombined with a positive income
derivative, an upward-sloping Marshallian demandcfion implies an upward-sloping
compensated demand function and, therefore, isgist@nt with the theory of the consumer. At

the median income, our semi-nonparametric estirofitég/dy is positive over the range of

prices of interest. Therefore, the semi-nonparémestimates are inconsistent with consumer
theory. As is discussed in more detail in Secddnwe believe this result to be an artifact of
random sampling errors and the consequent impoecai the unconstrained semi-nonparametric
estimates. This motivates the use of the congaiestimation procedure, which increases

estimation precision by imposing the Slutsky candit
c. Comparison to the Canadian National Privatkeisle Use Survey

One of the advantages of the Canadian gasoline iitbrdata used in the analysis of
Yatchew and No (2001) is that price informatiorb&sed on fuel purchase diaries rather than
local averages. Here we briefly provide comparigmtimates obtained from the Canadian
National Private Vehicle Use Survey (NPVUS). Thesga were collected between 1994 and
1996. The dependent variable is log of total mgongiasoline consumption. Apart from price and
income effects, we control for household size, neindd drivers, and age (all measured in logs),
an indicator for whether the age variable is cezd@t 65, an urbanity indicator, and month and

1C



year effects.With regards to the grade of gasoline, we resthietanalysis here to regular §ds.

a parametric reference model, we obtain a pricstielyy of -0.99 and an income elasticity of
0.19. Figure 3 shows the semi-nonparametric estisrat the quartiles of the income distribution.
The figure suggests that the Canadian data yiettb#mar demand functions than the U.S. data do
but exhibit evidence of differences in price eldsti across the income groups. The estimated
differences across the three income groups alstenfat the resulting DWL estimates, which we
return to below. For the purposes of the analysthis paper, a limitation of the Canadian data is
that income is reported in only nine brackets, carag to 18 in the NHTS, and the main focus of
this paper is therefore on the NHTS data.

d. Semi-nonparametric estimates under the Slutshgition
Figure 2 also shows the constrained semi-nonpdramestimates of the demand

function, g, at each of the three income levels of interesliqsdots). These estimates are

constrained to satisfy the Slutsky condition andenmebtained using the methods described in
Section 2. The solid lines in Figure 2 connectehdpoints of joint 90% confidence intervals for

g(p,y). These were obtained using the bootstrap proeedlescribed in Section 2. Table Al in

the Appendix reports the estimates from the partisear component.

In contrast to the unconstrained estimates, thestcmined estimates are downward
sloping everywhere and similar in appearance teehabtained with the Canadian data. The
constrained estimates are also less wiggly tharutfe®nstrained ones. In contrast to ad hoc

“ironing procedures” for producing monotonic estte®g g is consistent with the theory of the

consumer and everywhere differentiable. This ipartant for estimation of DWL. Except for
one instance for the upper income group, the 90Bdidence bands shown in Figure 2 contain
both the constrained and unconstrained estimafidss is consistent with our view that the
anomalous behavior of the unconstrained estimateki¢ to imprecision of the unconstrained
estimator. It also indicates that the Slutsky tm@st is consistent with the data.

The results in Figure 2 indicate that the middieome group is more sensitive to price

changes than are the other two groups. In paatictiie slope of the constrained estimateg as

noticeably larger for the middle group than for ttleer groups.

® This set of covariates is similar to the one Lsedatchew and No (2001). Reflecting the differémtus

of their study one difference is that their spegifion allows for more general age effects thardwéere.

® Since the NPVUS collects gasoline consumptiorafoepresentative vehicle in the household (rattesn t
for all vehicles), we multiply the consumption @sponding to the representative vehicle by the reurab
vehicles. The resulting sample size is 5,001, winardnave restricted age to be greater or equad tard

the price of gasoline (measured in Canadian doflarditer) to be at least 0.4.
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A possible way of summarizing the nonparametriclence in a parsimonious parametric
specification, an approach suggested in Schmalemsd&toker (1999), would be to interact the
price and income effects of the log-log specifimatdescribed in (11) with indicators for three
income groups. The resulting estimates correspgntt such a specification are presented in
Table 4.

The differential responsiveness to price changessadhe income distribution described
in the semi-nonparametric estimates suggests ieaDWL of a tax increase is larger for the

middle income group than for the others. We inges¢ this further in Section 4e.

e. Estimates of deadweight loss

We now investigate the DWLs associated with arreiase in gasoline taxes. The
increases considered in the literature typically guite large and often out of the support of the
data. We take an intervention that moves prices) fthe 5th to the 95th percentile of the price
distribution in our sample (from $1.215 to $1.43%Je compute DWL as follows. Over the
range of the intervention, we evaluate the Mari@rallemand estimates presented in the previous
section for the three estimators (parametric, usitained semi-nonparametric, and constrained
semi-nonparametric) on a grid of 61 poihtsWe then use this demand estimate and the
corresponding derivatives to compute the expergitunction and DWL by following the
methods described in Section 2.

We study DWL relative to tax paid, which we intepras a “price” for raising tax
revenue. We refer to this measure as relative DVResults are shown in Panel A of Tablg 3.
The differences in the demand estimates betweeditfegent estimation methods translate into
differences in relative DWLs. Comparing acrossoine levels, the log-log linear model
estimates relative DWL to be almost identical foe three income groups and indicates that the
cost of taxation is about 4.1% of revenue raisgdspective of income level. In contrast, the
constrained semi-nonparametric estimates indidaa¢ the cost of taxation is higher for the
middle income group than for the other two grougshis result is consistent with our earlier
finding that the middle income group is more resdam to price changes than are the other

groups. We note that the Canadian NPVUS data yae&imilar patterd. These results also

" For consistency we use the same grid for the ctamipn of the DWL measures as we do when we
impose the Slutsky constraint. Using a finer gid €¢omputing DWL would lead to slightly different
deadweight loss estimates, but not affect the patte find or our conclusions.

8 Confidence intervals for the unconstrained ando#irametric model are reported in Table A2.

° For the NPVUS data, the relative DWL from the rasiies shown in Figure 3 follow the same pattern
across income groups as in the NHTS, but at ovaighier levels: DWL relative to tax paid amounts to
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illustrate how the functional form assumptions bé tparametric model affect estimates of
consumer behavior and the effects of taxation.

Although not the case for the intervention we gthére, the DWL obtained from the
unconstrained semi-nonparametric estimate of demeydbe negative for specific interventions.
This anomalous result can occur because, due womarsampling errors, the unconstrained
estimate of the demand function does not decreamsotonically and does not satisfy the
integrability conditions of consumer theory. Thenstrained semi-nonparametric model yields
DWL estimates that are positive and, for the mididieome group, more than double those
obtained from the parametric model.

One can also study DWL relative to income so aefiect the household's utility loss
relative to available resources. The resultsHix analysis are shown in Panel B of Table 3. The
estimates from the parametric model and constrageeai-nonparametric model give different
indications of the effects of the tax increase s&rimcome groups. The parametric estimates
indicate that the relative utility loss increasesircome decreases. However, the constrained
semi-nonparametric estimates indicate that thetivelautility loss is greater for the middle

income group than for the other groups.

5. Testing for Endogeneity of Prices

A long-standing concern in demand estimation & plotential endogeneity of prices
(Working 1927). This aspect has also been empdhsiz the literature on discrete choice with
differentiated products in the market for automebil(Berry, Levinsohn, and Pakes 1995).
Throughout the analysis so far we have maintaihednean independence assumption on the
error term. A natural way to proceed is to testédndogeneity of gasoline price. One possible
approach would be to estimate the demand functsiimgunonparametric IV methods (see Hall
and Horowitz 2005, and Blundell, Chen, and Kris&an2007) and then to test by comparing the
IV estimate with the estimate under the exogerassumption. Such a test is likely to have low
power, though, because of the low rate of convergeassociated with the nonparametric IV
regression estimates. We therefore take a diffeqgoroach to testing for endogeneity, and apply
the nonparametric test developed in Blundell andoidz (2007). An important benefit of this
test is that it is likely to have better power edes because it avoids the difficulties assodiate

with the ill-posed inverse problem.

5.8% for the high-income group, 11.1% for the midiicome group, and 9.4% for the low-income group.
These estimates correspond to moving the priceérNiPVUS sample from the 5th to the 95th percentile
that is, from CAD$0.486 to CAD$0.653 per liter.

13



To identify the demand function, we use the follmyvcost shifter as instrumental
variable: Due to transportation cost, an importdeterminant of interregional differences in
gasoline prices faced by consumers is the distiooethe source of supply. The U.S. Gulf Coast
Region (PADD 3) accounts for 56% of total U.S. mefiy net production of finished motor
gasoliné® it accounts for about 56% of U.S. field produntiaf crude oil, and about 64% of U.S.
imports of crude oil enter the U.S. through thigioe in the year of our survéy.This region is
also the starting point for most major gasolinespifes. Thus, we expect prices to increase with
distance from the U.S. Gulf Coast. We construcistadce measure (in 1,000 miles) from the
source of supply in the Gulf of Mexico to the capibf the state in which the household is
located. To implement this, we take as startingnpaimajor oil platform located in the ‘Green
Canyon’ area, an area of the Gulf of Mexico wheenynof the major oil fields are located. We
compute distance to the state capitals using thveildene formula.

Figure 4 documents the relationship between logepand distance in our data. The
correlation coefficient between log price and oustahce measure is 0.78 and highly
significant™ In the following, we assume that our cost shiftariable satisfies the required
independence assumption relating to the error {@rnTo account for the role of covariates, we
take the same approach as in the nonparametrimat&in above, and remove the estimated
partially linear component in a first step. Tablshows the results from this exogeneity test. The
test statistic (see panel (a) of Table 5) is sulbistily below the critical value, so we fail to ee
the null hypothesis of price exogeneity in this laggpion. We have experimented with varying
the bandwidth parameters in this test. Panel lows that modifications to the bandwidth

parameters do not affect the conclusions fromtdss

6. Conclusions

Simple parametric models of demand functions datd ymisleading estimates of price
sensitivity and welfare measures such as DWL, owinmisspecification. Fully nonparametric
or semi-nonparametric estimation of demand redtleesisk of misspecification but, because of
the effects of random sampling errors, can yielgrauise estimates with anomalous properties
such as non-monotonicity. This paper has shown ttese problems can be overcome by

constraining semi-nonparametric estimates to gatief Slutsky condition of economic theory.

9Source: EIA (2010b), data for 2005 (earlier datawailable).

Hsource: EIA (2010b), data for 2001.

2 This analysis is based on the 34 biggest statésrins of population; smaller states are not ségigra
identified in the data for confidentiality reasons.
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This stabilizes the semi-nonparametric estimatelont the need for fully parametric or other
restrictions that have no basis in economic theory.

We have implemented this approach by using a nemtifiernel estimator that weights
the observations so as to satisfy the Slutskyictisti. To illustrate the method, we have
estimated a gasoline demand function for a clagoo$eholds in the U.S. We find that a semi-
nonparametric estimate of the demand function is-monotonic. The estimate that is
constrained to satisfy the Slutsky condition is Iveelhaved. Moreover, the constrained semi-
nonparametric estimates show patterns of pricdtsetysthat are very different from those of the
simple parametric model. We find price responsey veon-monotonically with income. In
particular, we find that low- and high-income comsus are less responsive to changes in
gasoline prices than are middle-income consumadrsile® results are found for comparable
Canadian data.

We have also computed the DWL of an increasedrmptite of gasoline. The constrained
semi-nonparametric estimates of DWL are quite ckffié from those obtained with the parametric
model. Mirroring the results on price responsivendise DWL estimates are highest for middle
income groups. These results illustrate the usefglrof nonparametrically estimating demand
functions subject to the Slutsky condition.
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FIGURES

Figure 1: Retail Motor Gasoline Price 1976-2009 (Ueaded Regular)
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Source: EIA (2010c, Table 5.24). Note: U.S. cityei@ge gasoline prices. Real values are in
chained (2005) dollars based on GDP implicit pde#lators. See source for details.
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Table 1: OLS regression

1) (2) 3 4) )
Log price -0.925 -0.879 -0.830 -0.495 -0.358
[0.155]** [0.149]** [0.148]** [0.247]** [0.272]
Log income 0.289 0.246 0.269 0.298 0.297
[0.0145]** [0.0143]** [0.0146]** [0.0147]** [0.0153]**
Log age of household
respondent -0.0520 -0.0343 -0.0265 -0.0182
[0.0366] [0.0365] [0.0356] [0.0372]
Log household size 0.0586 0.0662 0.0539 0.0634
[0.0395] [0.0393] [0.0383] [0.0399]
Log number of drivers 0.601 0.582 0.542 0.510
[0.0454]** [0.0453]** [0.0442]** [0.0463]**
Number of workers in
household 0.0877 0.0857 0.0893 0.0928
[0.0137]** [0.0136]** [0.0133]** [0.0139]**
Public transit indicator -0.152 -0.0458 -0.0286
[0.0212]**  [0.0219]* [0.0249]
Small town -0.0464 -0.0359
[0.0296] [0.0313]
Sub-urban -0.165 -0.146
[0.0368]** [0.0386]**
Second city -0.184 -0.164
[0.0382]** [0.0404]**
Urban -0.178 -0.149
[0.0523]** [0.0541]**
Constant 4.264 4.200 3.914 3.722 3.642
[0.163]** [0.194]** [0.198]** [0.196]** [0.223]**
Population density (8
categories) No No No Yes Yes
Regions (9 categories) No No No No Yes
Test of equality of coefficients on price and income (compared to previous specification)
X test statistic 51.20 44.68 90.72 0.35
p-value 0.000 0.000 0.000 0.841
Observations 5254 5254 5254 5254 4812
R-squared 0.0741 0.154 0.163 0.207 0.209

Note: Dependent variable is log of annual houselgalgsoline demand in gallons. * indicates
significance at 5%, ** indicates significance at 1&el. See text for detalils.

17



Table 2: Sample descriptives

Log gasoline demand 7.170 [0.670]
Log price 0.287 [0.057]
Log income 10.955 [0.613]

Log age of household respondent 3.628 [0.240]
Log household size 1.385 [0.234]
Log number of drivers 0.781 [0.240]
Number of workers in household 1.868 [0.745]

Public transit indicator 0.216  [0.411]
Rural 0.252 [0.434]
Small town 0.285 [0.452]
Sub-urban 0.256  [0.436]
Second city 0.144 [0.352]
Urban 0.062 [0.241]
Population density 8 categories
Observations 5,254

Note: Table shows means and standard deviations.

Table 3: Deadweight Loss estimates

Semi-nonparametric Parametric
unconstrained  constrained log-log
Income (1) 2) 3)

Panel A: DWL (as % of tax paid)

$72,500 1.71% 427 % 4.13 %
$57,500 6.06 % 9.19% 412 %
$42,500 3.86 % 3.91 % 4.10 %

Panel B: DWL (relative to income) * 10*

$72,500 0.75 1.83 1.69
$57,500 2.98 4.39 1.98
$42,500 2.26 2.28 2.44

Note: Table shows Deadweight Loss estimates cayrebpg to moving prices from the 5th to
the 95th percentile in the data ($1.215 to $1.4B&pdweight Loss is shown as percentage of tax
paid after the (compensated) intervention (Panelaf}l relative to baseline income (Panel B).
See text for details.
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Figure 2: Demand estimates and simultaneous confidee intervals
at different points in the income distribution
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Note: Income groups correspond to $72,500, $57,800,$42,500. Confidence intervals shown
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Figure 3. Canadian NPVUS data — gasoline demand éwsiate
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Note: Based on the Canadian NPVUS data as in Yatemel No (2001). Dependent variable is
log of total monthly gasoline consumption. The skngize in this analysis is 5,001, where we
have restricted age to be greater or equal to 12@legof gasoline to be regular, and the price of
gasoline (measured in Canadian dollars per literpe at least 0.4. Taking midpoints of the
income brackets (measured in Canadian dollars),qtletiles of the income variable in the

sample are $27,500, $37,500, and $55,000. We falh@ensame procedure for bandwidth choice
as for the NHTS.
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Table 4: Log-log model interacted with income group

log price * upper-income group -0.225
[0.240]
(p=0.348)

log price * middle-income group -1.316
[0.423]**
(p=0.002)

log price * lower-income group -0.441
[0.283]
(p=0.119)

log income * upper-income group 0.233
[0.0345]**
(p=0.000)

log income * middle-income group 0.260
[0.0376]**
(p=0.000)

log income * lower-income group 0.229
[0.0378]**
(p=0.000)

Test on equality of price effects: upper vs middle income group

F-statistic 5.09
p-value 0.0241
Test on equality of price effects: middle vs lower income group
F-statistic 2.98
p-value 0.0842
Set of covariates Yes
Observations 4,902

Note: Table shows estimates of a log-log specificainteracted with income group. For the
purpose of this regression, three income groupsdafmed as below $50,000 (lower-income
group), $50,000 to $65,000 (middle-income groupy above $65,000 (upper-income group).
Households with income of below $15,000 are exdluife this exercise, and log prices are
restricted to the range of 0.18 to 0.38. Set ofaciates is the same as in Table 1, column (4), i.e.
age of household respondent, household size, nuaflgkivers (all in logs), number of workers
in the household, public transit availability, uniig indicators and population density indicators.
Numbers in square brackets are standard errorshensnmn round brackets are corresponging
values. * indicates significance at 5%, ** indicat@gnificance at 1% level.
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Figure 4: Price of gasoline and distance to the Gubf Mexico
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Note: Distance to the respective state capitaldasared in 1,000 miles. See text for details.

Table 5: Exogeneity test

Teststat.  Crit. Value (5%) p-value Rejection

1) (@) ®3) (4)

(a) Main estimate 0.066 0.174 0.692 no

(b) Sensitivity to bandwidth choice: All bandwidths multiplied by:

factor 0.80 0.084 0.197 0.621 no
factor 1.25 0.050 0.155 0.751 no
factor 1.50 0.042 0.149 0.781 no

Note: Table shows results from the exogeneityftesh Blundell and Horowitz (2007). In a first
step, we remove the partially linear component afore, using the bandwidth choice
corresponding to the middle income group. In treosd step, we implement the exogeneity test.
For this we restrict the sample to incomes aboe(RD and log prices to the range between 0.18
and 0.38 (resulting in 4,520 observations). Wealesprice, income, and distance into the [0;1]
range and adjust bandwidths accordingly. For tlséadce dimension, we set the bandwidth to
0.15 (panel (a), after transforming this variall® ithe unit interval).
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APPENDIX

Table Al: Estimates of the partially linear componet

$42,500 $57,500 $72,500
1) (2) 3)

Log age of household respondent -0.024 -0.024 -0.015
[-0.103; 0.057] [-0.101; 0.054] [-0.089; 0.062]

Log household size 0.055 0.055 0.070
[-0.022; 0.133] [-0.022; 0.133] [-0.006; 0.148]

Log number of drivers 0.522 0.522 0.500
[0.417; 0.617] [0.418; 0.618] [0.396; 0.595]

Number of workers in household 0.091 0.091 0.096
[0.065; 0.12] [0.066; 0.119] [0.071; 0.125]

Public transit indicator -0.042 -0.042 -0.037

[-0.082; 0.002]

[-0.083; 0.003]

[-0.078; 0.011]

Small town
Sub-urban
Second city

Urban

-0.045
[-0.106; 0.016]
-0.165
[-0.242; -0.09]
-0.175
[-0.257; -0.093]
-0.169
[-0.277; -0.059]

-0.045
[-0.108; 0.017]
-0.165
[-0.242; -0.09]
-0.175
[-0.257; -0.092]
-0.169
[-0.277; -0.058]

-0.049
[-0.108; 0.014]
-0.168
[-0.242; -0.089]
-0.175
[-0.252; -0.091]
-0.162
[-0.265; -0.052]

Population density (8)
Observations

Yes
5,254

Yes
5,254

Yes
5,254

Note: Bootstrapped standard errors based on Sdpi@ations.
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Table A2: Confidence intervals for DWL measures

Semi-nonparametric Parametric (log-log)
lower upper lower upper
Income D) (2) 3) 4)
Panel A: DWL (as % of tax paid)
$72,500 -7.52% 10.63 % 1.60 % 6.62 %
$57,500 -4.97 % 13.00 % 1.77 % 6.49 %
$42,500 -7.53 % 12.96 % 1.65 % 6.48 %

Panel B: DWL (relative to income) * 10*

$72,500 -2.90 4.87 0.72 2.69
$57,500 -1.94 6.61 0.91 3.11
$42,500 -3.63 7.93 1.08 3.83

Note: Table shows confidence intervals correspandio estimates reported in Table 3.

Confidence intervals are computed with an undersheab bandwidth, based on 5,000
replications. See text for details.
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