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TESTING FOR HOMOGENEITY IN MIXTURE MODELS

JIAYING GU, ROGER KOENKER, AND STANISLAV VOLGUSHEV

Abstract. Statistical models of unobserved heterogeneity are typically formalized as mix-
tures of simple parametric models and interest naturally focuses on testing for homogeneity
versus general mixture alternatives. Many tests of this type can be interpreted as C(α)
tests, as in Neyman (1959), and shown to be locally, asymptotically optimal. A unified
approach to analysing the asymptotic behavior of such tests will be described, employing
a variant of the LeCam LAN framework. These C(α) tests will be contrasted with a new
approach to likelihood ratio testing for mixture models. The latter tests are based on esti-
mation of general (nonparametric) mixture models using the Kiefer and Wolfowitz (1956)
maximum likelihood method. Recent developments in convex optimization are shown to
dramatically improve upon earlier EM methods for computation of these estimators, and
new results on the large sample behavior of likelihood ratios involving such estimators yield
a tractable form of asymptotic inference. We compare performance of the two approaches
identifying circumstances in which each is preferred.

1. Introduction

Given a simple parametric density model, f(x, ϑ), for iid observations, X1, · · · , Xn, there
is a natural temptation to complicate the model by allowing the parameter, ϑ, to vary
with i. In the absence of other, e.g. covariate, information that would distinguish the
observations from one another it may be justifiable to view the ϑ’s as drawn at random.
Inference for such mixture models is complicated by a variety of problems, notably their
lack of identifiability. Two dominant approaches exist: Neyman’s C(α) and the likelihood
ratio test. C(α) is particularly attractive for testing homogeneity against general forms of
heterogeneity for the parameter ϑ, such tests have a relatively simple asymptotic theory, and
are generally easy to compute. The LRT, in contrast, is more easily adapted to compound
null hypotheses, but has a much more complicated limiting behavior, and is generally more
difficult to compute.

We will argue that recent developments in convex optimization have dramatically reduced
the computational burden of the LRT approach for general, nonparametric alternatives.
We will present a tractable large-sample theory for the LRT that conforms well to our
simulation evidence, and exhibits both good size and power performance. Comparisons
throughout with C(α), which is asymptotically locally optimal, demonstrate that the LRT
can be a highly effective complementary approach.

Version: February 10, 2013. This research was partially supported by NSF grant SES-11-53548. This
research was conducted while the third author was a visiting scholar at UIUC. He is very grateful to the
Statistics and Economics departments for their hospitality.
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2 Inference for Mixture Models

2. Likelihood Ratio Tests for Mixture Models

Lindsay (1995) offers a comprehensive overview of the vast literature on mixture models.
He traces the idea of maximum likelihood estimation of a nonparametric mixing distribution
F , given random samples from the mixture density,

(1) g(x) =

∫
ϕ(x, ϑ)dF (ϑ),

to Robbins (1950). Kiefer and Wolfowitz (1956) filled in many details of the Robbins
proposal and yet only with Laird (1978) did a viable computational strategy emerge for it.
The EM method proposed by Laird has been employed extensively in subsequent work, e.g.
Heckman and Singer (1984) and Jiang and Zhang (2009), even though it has been widely
criticized for its slow convergence. Recently Koenker and Mizera (2012) have noted that the
Kiefer-Wolfowitz estimator can be formulated as a convex optimization problem and solved
very efficiently by interior point methods. Recent work by Liu and Shao (2003) and Azäıs,
Gassiat, and Mercadier (2009) has clarified the limiting behavior of the LRT for general
classes of alternatives, and taken together these developments offer a fresh opportunity to
explore the LRT for inference on mixtures.

It seems ironic that many of the difficulties inherent in maximum likelihood estimation
of finite parameter mixture models vanish when we consider nonparametric mixtures. The
notorious multimodality of parametric likelihood surfaces is replaced by a much simpler,
strictly convex optimization problem possessing a unique, unimodal solution. It is of obvious
concern that consideration of such a wide class of alternatives may depress the power of
associated tests; we will see that while there is some loss of power when compared to more
restricted parametric LRTs, the loss is typically modest, a small price to pay for power
against a broader class of alternatives. We will see that by comparison with C(α) tests that
are also designed to detect general alternatives, the LRT can be competitive.

2.1. Maximum Likelihood Estimation of General Mixtures. Suppose that we have
iid observations, X1, · · · , Xn from the mixture density (1), the Kiefer-Wolfowitz MLE re-
quires us to solve,

min
F∈F
{−

n∑
i=1

log g(xi)},

where F is the (convex) set of all mixing distributions. The problem is one of minimizing the
sum of convex functions subject to linear equality and inequality constraints. The dual to
this (primal) convex program proves to be somewhat more tractable from a computational
viewpoint, and takes the form,

max
ν∈Rn
{
n∑
i=1

log νi |
n∑
i=1

νiϕ(xi, ϑ) ≤ n, for all ϑ}

See Lindsay (1983) and Koenker and Mizera (2012) for further details. This variational
form of the problem may still seem rather abstract since it appears that we need to check
an infinite number of values of ϑ, for each choice of the vector, ν. However, it suffices in
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applications to consider a fine grid of values {ϑ1, · · · , ϑm} and write the primal problem as

min
f∈Rm,g∈Rn

{−
n∑
i=1

log(gi) | Af = g, f ∈ S}

where A is an n by m matrix with elements ϕ(xi, ϑj) and S = {s ∈ Rm|1>s = 1, s ≥ 0}
is the unit simplex. Thus, f̂j denotes the estimated mixing density evaluated at the grid
point, ϑj and ĝi denotes the estimated mixture density evaluated at xi. The dual problem
in this discrete formulation becomes,

max
ν∈Rn
{
n∑
i=1

log νi | A>ν ≤ n1m, ν ≥ 0}.

Primal and dual solutions are immediately recoverable from the solution to either problem.
Interior point methods such as those provided by PDCO of Saunders (2003) and Mosek of
Andersen (2010), are capable of solving dual formulations of typical problems with n = 200
and m = 300 in less than one second.1

Solutions to the nonparametric MLE problem of Kiefer and Wolfowitz produce estimates
of the mixing distribution, F , that are discrete and possessing only a few mass points. A
theoretical upper bound on the number of these atoms of n was established already by
Lindsay (1983), but in practice the number is actually observed to be far fewer. It may
seem surprising, perhaps even disturbing, that even when the true mixing distribution has
a smooth density, our estimates of that density is discrete with only a handful of atoms.
This may appear less worrying if we consider a more explicit example. Suppose that we
have a location mixture of Gaussians,

g(x) =

∫
φ(x− µ)dF (µ),

so we are firmly in the deconvolution business, a harsh environment notorious for its poor
convergence rates. One interpretation of this is that good approximations of the mixture
density g can be achieved by relatively simple discrete mixtures with only a few atoms. For
many applications estimation of g is known to be sufficient: this is quite explicit for example
for empirical Bayes compound decision problems where Bayes rules depend entirely on the
estimated ĝ. Of course given our discrete formulation of the Kiefer-Wolfowitz problem, we
can only identify the location of atoms up to the scale of the grid spacing, but we believe that
the m ≈ 300 grid points we have been using are probably adequate for most applications.

Given a reliable maximum likelihood estimator for the general nonparametric mixture
model it is of obvious interest to know whether an effective likelihood ratio testing strategy
can be developed. This question has received considerable prior attention, again Lindsay
(1995) provides an authoritative overview of this literature. However, more recently work by
Liu and Shao (2003) and Azäıs, Gassiat, and Mercadier (2009) have revealed new features
of the asymptotic behavior of the likelihood ratio for mixture settings that enable one to
derive asymptotic critical values for the LRT.

1The R empirical Bayes package REBayes, Koenker (2012), is available from the second author on request.
It is based on the RMosek package of Friberg (2012), and was used for all of the computations reported below.



4 Inference for Mixture Models

2.2. Asymptotic Theory of Likelihood Ratios for General Mixtures. Consider the
general problem of testing that observed data come from a family of distributions (Fϑ)ϑ∈Θ1

against the alternative that the distribution is Fϑ for some ϑ ∈ Θ2\Θ1 where we assume
Θ1 ⊂ Θ2. Liu and Shao (2003) provide tools that allow one to derive the limiting distribu-
tion of the likelihood ratio test statistic under very general conditions. In particular, Θ1,Θ2

need not be subsets of Rd but are allowed to be subsets of general metric spaces.

Denote the “true” density of the data by f and start by considering a point null hypothesis,
i.e. H0 : f = f0 for some density f0 (note that we do not assume that there exists a unique
parameter ϑ corresponding to fϑ = f0, although in the setting considered here this will
in fact turn out to be the case). Denote by `ϑ(x) := fϑ(x)/f0(x) the likelihood ratio and
consider the test statistic for H0 against H1 : f = fϑ 6= f0

sup
ϑ∈Θ

Ln(ϑ), Ln(ϑ) :=
n∑
i=1

log `ϑ(Xi).

Adapting Theorem 3.1 of Liu and Shao (2003) yields the following theorem.

Theorem 2.1. Define the classes of functions

FΘ,ε :=
{
Sϑ :=

`ϑ − 1

D(ϑ)

∣∣∣ 0 < D(ϑ) ≤ ε
}

and

FΘ,0 :=
{
S ∈ L2 : ∃(ϑn)n∈N ⊂ Θ s.t. D(ϑn) = o(1),

∥∥∥`ϑn − 1

D(ϑn)
− S

∥∥∥
2

= o(1)
}

with D2(ϑ) := E[(`ϑ − 1)2]. Assume that the following three conditions hold

(1) For sufficiently small ε > 0, the class FΘ,ε is Donsker.
(2) For any sequence (ϑn)n∈N ⊂ Θ with D(ϑn) = o(1) there exists a subsequence

(ϑnk)k∈N ⊂ Θ and a function S ∈ FΘ,0 with ‖Sϑnk − S‖2 = o(1).

(3) For any S ∈ FΘ,0 there exists a path {ϑ(t, S) : 0 < t ≤ ε} ⊂ Θ such that t 7→
`ϑ(t,S) is continuous, with respect to the L2 norm, D(ϑ(t, S)) > 0 for all t > 0 and

limt→0 Sϑ(t,S) = S in L2.

Then

2 sup
ϑ∈Θ

Ln(ϑ)  
(

sup
S∈FΘ,0

WS ∨ 0
)2

where (WS)S∈FΘ,0
denotes a centered Gaussian process with covariance structure Cov(Wf ,Wg) =

E[f(X)g(X)].

Remark 2.2. The condition (2) is called completeness by Liu and Shao. The condition (3)
is slightly different from the assumption called continuous sample paths in Definition 2.4 of
Liu and Shao (2003). However, a closer look at the relevant proofs reveals that condition
(3) is in fact sufficient.
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The asymptotic distribution of likelihood ratio tests with composite null hypothesis, i.e.
the test ϑ ∈ Θ2 versus ϑ ∈ Θ1 is then given by,(

sup
S∈FΘ2

WS ∨ 0
)2
−
(

sup
S∈FΘ1

WS ∨ 0
)2
.

The two main challenges in applying this result thus consist in describing the classes FΘ

and in verifying the technical assumptions. Let us start by considering a classical example
where the limiting distribution is known.

Example 2.3. Assume that all parameters are Rd-valued and identifiable, i.e. ϑ1 = ϑ2 if
and only if fϑ1 = fϑ2 , and that D(ϑn) = o(1) if and only if ϑn → ϑ0. Moreover, let fϑ be
“nice” (sufficiently smooth with respect to ϑ in a uniform sense). For simplicity, assume
that the true parameter is zero and that it is an interior point of Θ. A Taylor expansion
then yields (the first equality holding in an L2-sense)

`ϑn − 1 = ϑ>n `
′
0 + o(‖ϑn‖), D2(ϑn) = ϑ>nE[`′0(`′0)>]ϑn + o(‖ϑn‖2),

and the class of functions FΘ is identified as

FΘ =
{ v>`′0

(v>E[`′0(`′0)>]v)1/2

∣∣∣v ∈ Sd−1
}
.

Identify this class of functions with the sphere Sd−1. The covariance structure of the
Gaussian process W is now given by

Cov(Wv,Ww) =
v>E[`′0(`′0)>]w

(v>E[`′0(`′0)>]v)1/2(w>E[`′0(`′0)>]w)1/2
.

The seemingly formidable “Gaussian process” thus turns out to be merely a collection of
scaled linear combinations of a d−dimensional normal distribution. More precisely, its
distribution coincides with that of (Zv)v∈Sd−1 where

Zv :=
v>Y

Var(v>Y )1/2
, Y ∼ N (0,E[`′0(`′0)>]).

Finally, writing Y = E[`′0(`′0)>]1/2Ỹ with Ỹ ∼ N (0, Id) yields the expected χ2
d distribution(

sup
S∈FΘ

WS ∨ 0
)2
∼ Ỹ 2

1 + ...+ Ỹ 2
d ∼ χ2

d.

Let us now turn to the more specialized case of testing homogeneity against arbitrary
mixtures, i.e.

H0 : f = fµ for some µ ∈M against H1 : f(x) =

∫
M
fµ(x)dG(µ), G ∈ PM\P (1)

M

where PM denotes the set of probability measures on M , and P
(k)
M the set of distribution

functions that have exactly k mass points. Under H0, there exists a µ0 ∈M with f = fµ0 .
The parameter set Θ can now be identified with the set of measures PM , that are identified
with their distribution functions. The symbols fG, `G will be used to denote the mixture
density and likelihood ratio corresponding to the distribution G. Abusing notation, we will
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use the symbol `µ to denote both, the function x 7→ fµ(x)/fµ0(x) and the quantity `δµ , with
δµ denoting the distribution with point mass at µ.

In principle, the results of Liu and Shao (2003) can be applied in this situation un-
der rather general conditions on the mixture and mixing distributions. A closely related
approach was recently taken by Azäıs, Gassiat, and Mercadier (2009), who derive the distri-
bution of the likelihood ratio test for a single distribution against arbitrary mixtures under
fairly general conditions.

Example 2.4. Consider mixtures of N (µ, 1) distributions and assume that M = [L,U ]
with 0 ∈ M . According to theorem 3 in Azäıs, Gassiat, and Mercadier (2009), the asymp-
totic distribution of the log-likelihood ratio test statistic

2
(

sup
G∈PM

n∑
i=1

log `G(Xi)− sup
G∈P (1)

M

n∑
i=1

log `G(Xi)
)

under the null of Xi ∼ N (0, 1) i.i.d. is given by

D =
(

sup
G∈PM

(VG)+

)2
− Y 2

1

where (VG)G∈PM is the Gaussian process given by

VG :=
( ∞∑
k=1

Ykκk(G)

(k!)1/2

)/( ∞∑
k=1

κ2
k(G)

k!

)1/2

with Y1, Y2, ... denoting i.i.d. N (0, 1) distributed random variables, κk(G) :=
∫
M µkdG(µ)

and x+ denoting the positive part of x. As we will show in the appendix, there is a simpler
expression for the distribution of D. More precisely, we will demonstrate that

(2) D
D
= sup

G∈PM

((( ∞∑
k=2

Ykκk(G)

(k!)1/2

)
+

)2/ ∞∑
k=2

κ2
k(G)

k!

)
.

Approximating the distribution function G on M by a discrete distribution function with
masses p1, ..., pN on a fine grid m1, ...,mN leads to the approximation

D ≈ sup
p1,...,pN

((( N∑
j=1

pj

∞∑
k=2

Ykm
k
j

(k!)1/2

)
+

)2/ N∑
i,j=1

pipj

∞∑
k=2

(mjmi)
k

k!

)
.

In particular, maximizing the right-hand side with respect to p1, ..., pN under the constraints
pi ≥ 0,

∑
pi = 1 for fixed grid m1, ...,mN can be formulated as a quadratic optimization

problem of the form
min
p
p>Ap under pi ≥ 0, p>b = 1

where p = (p1, ..., pN ), Aij =
∑∞

k=2
(mjmi)

k

k! , bi =
∑∞

k=2
Ykm

k
i

(k!)1/2 , if max
i
bi > 0. If max

i
bi ≤ 0,

we can set D = 0. This suggests a practical way of simulating critical values after replacing
the infinite sum by a finite approximation and avoiding the grid point 0. The table below
contains simulated critical values in some particular settings. All results are based on 10, 000
simulation runs with the sums for A and b cut off at k = 25 and grids with 200 points equally
spaced points excluding the point 0.
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M 90% 95% 99%
[-1,1] 2.75 3.95 6.93
[-2,2] 3.90 5.37 8.71
[-3,3] 5.34 6.87 10.46
[-4,4] 6.38 8.32 11.91

Table 1. Simulated asymptotic critical values for the asymptotic null dis-
tribution for various sets M .

3. Neyman C(α) Tests for Mixture Models

Neyman’s C(α) tests can be viewed as an expanded class of Rao (score) tests that ac-
commodate general methods of estimation for nuisance parameters. In regular likelihood
settings C(α) tests are constructed from the usual score components. Suppose we have
iid X1, X2, · · · , Xn from the density ϕ(x, ϑ, ξ), and we would like to test the hypothesis,
H0 : ξ = ξ0 on a p dimensional parameter versus the alternative H1 : ξ 6= ξ0. Given a√
n-consistent estimator, ϑ̂n, of the nuisance parameter ϑ, we will denote by

Cξ,n = n−1/2
n∑
i=1

∇ξ logϕ(Xi, ϑ, ξ)

∣∣∣∣∣ ξ=ξ0
ϑ=ϑ̂n

Cϑ,n = n−1/2
n∑
i=1

∇ϑ logϕ(Xi, ϑ, ξ)

∣∣∣∣∣ ξ=ξ0
ϑ=ϑ̂n

the score vectors with respect to ξ and ϑ respectively. Following Akritas (1988) and Chibisov
(1973) the C(α) test of H0 can be viewed (asymptotically) as a conditional test in the
limiting Gaussian experiment. In the limit experiment, (Cξ,n, Cϑ,n) are jointly Gaussian
with Fisher information covariance matrix,

I =

(
Iξξ Iϑξ
Iξϑ Iϑϑ

)
.

The conditional test of H0 based on a single observation from this limit distribution depends
on the vector,

gn = Cξ,n − IξϑI−1
ϑϑCϑ,n,

that has covariance matrix, Iξξ−IξϑI−1
ϑϑ Iϑξ, which is the inverse of the ξξ-block of the inverse,

Iξξ, of the full Fisher information matrix. Thus, the C(α) test statistic, Tn = g>n I
ξξgn, is

asymptotically χ2
p, and is locally optimal for alternatives of the form, ξn = ξ0 + δ/

√
n. The

salient practical advantage of Tn, lies in the option to use any
√
n-consistent estimator for

ϑ̂n. When ϑ̂n is the maximum likelihood estimator of ϑ under the ξ = ξ0 constraint the
C(α) procedure reverts to the Rao score test.

Regularity conditions for the foregoing results were originally given by Neyman (1959)
and extended by Bühler and Puri (1966) as variants of the classical Cramér conditions.
An alternative formulation can be constructed from the differentiability in quadratic mean
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(DQM) condition of LeCam (1970). The latter approach, as discussed in more detail in Gu
(2013), seems to be more appropriate for the consideration of C(α) testing for mixtures.
C(α) tests for heterogeneity in mixture models typically take a simple form although their

theory requires some substantial amendment from the regular cases we have just described.
Suppose we have random variables {X1, · · · , Xn} with Xi ∼ ϕ(x, ϑi) and the ϑi’s are given
by

ϑi = ϑ+ τξUi

where the Ui are iid with distribution function, F , with E(U) = 0 and V(U) = 1. The
parameter τ denotes a known scale parameter, and we are interested in testing the null
hypothesis, H0 : ξ = 0. Under these circumstances it can be easily seen that the usual
score test procedure breaks down, because the first logarithmic derivative of the density
with respect to ξ is identically zero under the null,

∂

∂ξ
log

∫
ϕ(x, ϑ+ τξu)dF (u) |ξ=0 = τ

∫
udF (u) · ϕ′0(x, ϑ)/ϕ0(x, ϑ) = 0,

and consequently the usual Fisher information about ξ is zero. All is not lost, as Neyman
was already aware, we can simply differentiate the log likelihood once again,

∂2

∂ξ2
log

∫
ϕ(x, ϑ+ τξu)dF (u) |ξ=0

= τ2

∫
u2dF (u) · ϕ′′0(x, ϑ)/ϕ0(x, ϑ)−

(
τ

∫
udF (u) · (ϕ′0(x, ϑ)/ϕ0(x, ϑ))

)2

,

= τ2ϕ′′0(x, ϑ)/ϕ0(x, ϑ).

This second-order score function replaces the familiar first-order one and provides an ana-
logue of Fisher information for C(α) parameter heterogeneity inference.

3.1. Asymptotic Theory for C(α) Tests of Parameter Heterogeneity. The locally
asymptotic normal (LAN) apparatus of LeCam can be brought to bear to establish the
large sample behavior of the C(α) test. We will sketch the argument in the simplest scalar
parameter case, referring the reader to Gu (2013) for further details.

Let {X1, · · · , Xn} be a random sample from the density p(x|ξ, ϑ), with respect to the
measure, µ. We would like to test the composite null hypothesis, H0 : ξ = ξ0 ∈ Ξ ⊂ R in
the presence of the nuisance parameter, ϑ ∈ Θ ⊂ Rp, against H1 : ξ ∈ Ξ \ {ξ0}.

Assumption 3.1. The density function p satisfies the following conditions:

(i) ξ0 is an interior point of Ξ
(ii) For all ϑ ∈ Θ and ξ ∈ Ξ, the density is twice continuously differentiable with respect

to ξ and once continuously differentiable with respect to ϑ for all x.
(iii) Denoting the first two derivatives of the density with respect to ξ evaluated under

the null as ∇ξp(x|ξ0, ϑ) and ∇2
ξp(x|ξ0, ϑ), we have P(∇ξp(x|ξ0, ϑ) = 0) = 1 and

P(∇2
ξp(x|ξ0, ϑ) 6= 0) > 0.

(iv) Denoting the derivative of the density with respect to ϑ evaluated under the null as
∇ϑp(x|ξ0, ϑ), for any p-dimensional vector a, P(∇2

ξp(x|ξ0, ϑ) 6= a>∇ϑp(x|ξ0, ϑ)) > 0.
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The crucial additional requirement is that p satisfies the following modified version of
LeCam’s differentiability in quadratic mean (DQM) condition. The LeCam approach has
two salient advantages under the present circumstances: it avoids making superfluous fur-
ther differentiability assumptions, and it removes any need for the symmetry assumption
on the distribution of the heterogeneity that frequently appears in earlier examples of such
tests.

Definition 3.2. The density p(x|ξ, ϑ) satisfies the modified differentiability in quadratic
mean condition at (ξ0, ϑ) if there exists a vector v(x) = (v1(x), v2(x)) ∈ L2(µ) such that as
(ξn, ϑn)→ (ξ0, ϑ),∫

|
√
p(x|ξn, ϑn)−

√
p(x|ξ0, ϑ)− h>n v(x)|2µ(dx) = o(‖hn‖2)

where hn = ((ξn − ξ0)2, (ϑn − ϑ)>)>. Let β(hn) be the mass of the part of p(x|ξn, ϑn) that
is p(x|ξ0, ϑ)-singular, then as (ξn, ϑn)→ (ξ0, ϑ), β(hn)/‖hn‖2 → 0.

The second-order score function with respect to ξ implies that the corresponding term in
hn is quadratic, and this in turn implies the O(n−1/4) rate for the local alternative in the
following theorem.

Theorem 3.3. Suppose (X1, · · · , Xn) are iid with density p satisfying Assumption 3.1 and
the modified DQM condition with,

v(x) = (v1(x), v>2 (x))> =

(
1

4

∇2
ξp(x|ξ0, ϑ)√
p(x|ξ0, ϑ)

I[p(x|ξ0,ϑ)>0],
1

2

∇ϑp(x|ξ0, ϑ)>√
p(x|ξ0, ϑ)

I[p(x|ξ0,ϑ)>0]

)>
,

Denote the joint distribution of the Xi’s by Pn,ξ,ϑ. Then for fixed δ1 and δ2, the log-likelihood
ratio has the following quadratic approximation under the null:

Λn = log
dPn,ξ0+δ1n−1/4,ϑ+δ2n−1/2

dPn,ξ0,ϑ
= t>Sn − 1

2 t
>Jt+ oP (1)

where t = (δ2
1 , δ
>
2 )>,

Sn =

(
S1n

S2n

)
=

 2√
n

∑
i

v1(xi)√
p(xi|ξ0,ϑ)

2√
n

∑
i

v2(xi)√
p(xi|ξ0,ϑ)


and

J = 4

∫
(vv>)µ(dx) =

(
E(S2

1n) cov(S1n, S
>
2n)

cov(S1n, S2n) E(S2nS
>
2n)

)
≡
(
J11 J12

J21 J22

)
.

Given that the conditions for the log likelihood ratio expansion are met local asymptotic
optimality and the distribution of the C(α) test statistic under appropriate local alternatives
follows.
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Theorem 3.4. Let εn be a sequence of experiments based on iid random variables (X1, · · · , Xn)
with joint distribution Pn,ξ0+δ1n−1/4,ϑ+δ2n−1/2 indexed by t = (δ2

1 , δ
>
2 )> ∈ R+×Rp, such that

the log-likelihood ratio satisfies,

log

(
dPn,ξ0+δ1n−1/4,ϑ+δ2n−1/2

dPn,ξ0,ϑ

)
= t>Sn − 1

2 t
>Jt+ oP (1),

with the sequence Sn converging in distribution under the null to N (0, J). Then the sequence
εn converges to the limit experiment based on observing one sample from Y = t + v where
v ∼ N (0, J−1). The locally asymptotically optimal statistic for testing, H0 : δ1 = 0 vs.
H1 : δ1 6= 0 is

Zn = (J11 − J12J
−1
22 J21)−1/2(S1n − J12J

−1
22 S2n).

It has distribution N (0, 1) under H0, and distribution N (δ2
1(J11 − J12J

−1
22 J21)1/2, 1) under

H1. We reject H0 if (0∨Zn)2 > cα with cα, the (1−α) quantile of the 1
2χ

2
0+ 1

2χ
2
1 distribution.

Remark 3.5. The behavior of the test statistic under the specified contiguous alternatives,
follows from LeCam’s third lemma. Under the null, we have

(Zn,Λn)
Pn,ξ0,ϑ
; N

((
0

−1
2 t
>Jt

)
,

(
1 σ12

σ12 t>Jt

))
with σ12 = cov(Zn,Λn) = δ2

1(J11 − J12J
−1
22 J21)1/2. LeCam’s third lemma then implies that

under the local alternative with ξn = ξ0 + δ1n
−1/4 and ϑn = ϑ+ δ2n

−1/2,

Zn
Pn,ξn,ϑ
; N (σ12, 1).

Note that the test statistic Zn is a function of ϑ. All of the results above hold if the true
nuisance parameter ϑ is used in the test statistic, which is infeasible. In practise, we can
plug in a consistent estimator for ϑ, say ϑ̂. In order for the preceding results to be useful,
we need to ensure that Zn(ϑ̂)−Zn(ϑ) = oP (1). There are various ways to obtain this kind
of result. The classical approach by Neyman (1959) was to make additional differentiability
and boundedness assumptions on the function g, which is defined as

g(xi, ϑ) = (J11 − J12J
−1
22 J21)−1/2

( 2v1(xi)√
p(xi; ξ0, ϑ)

− J12J
−1
22

2v2(xi)√
p(xi; ξ0, ϑ)

)
such that Zn(ϑ) = 1√

n

∑
i g(xi, ϑ). Details of these assumptions can be found in Neyman

(1959, Definition 3). The assumptions are rather strong since they require the density to
be three time differentiable with respect to ϑ. Another approach, however, is to view the
difference Zn(ϑ)−Zn(ϑ̂) as an empirical process. More precisely, if the following condition
holds, we can show the difference goes to zero in probability. Details can be found in Gu
(2013).

Assumption 3.6. Assume that for every ϑ ∈ Θ there exists some δ > 0 such that for any
η, η′ ∈ Uδ(ϑ) we have for some γ > 0

|g(x, η)− g(x, η′)| ≤ ‖η − η′‖γH(x)
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for Pn,ξn,ϑ-almost all x (for every n ∈ N) where H is square integrable with respect to
Pn,ξn,ϑ for all n ∈ N, supn EPn,ξn,ϑH

2(X) < ∞ and additionally for some cn = o(1)

n1/2EPn,ξn,ϑ [H(X)I{H(X) > n1/2cn}] = o(1).

Theorem 3.7. Under Assumptions 3.1, 3.6 and the DQM condition, if ϑ̂ is a consistent
estimator for ϑ, then

|Zn(ϑ̂)− Zn(ϑ)| = oP (1)

Example 3.8. Consider testing for homogeneity in the Gaussian location mixture model
with independent observations Xi ∼ N (ϑi, 1), i = 1, · · · , n. Assume that ϑi = ϑ0 + τξUi,
for known τ , and iid Ui ∼ F with EU = 0 and VU = 1. We would like to test H0 :
ξ = 0 with the location parameter ϑ0 treated as a nuisance parameter. The second-
order score for ξ is found to be, ∇2

ξ logϕ(x, ϑ0, ξ = 0) = τ2((x − ϑ0)2 − 1) and the

first-order score for ϑ0 is, ∇ϑ0 log φ(x, ϑ0, ξ = 0) = (x − ϑ0). Note that under the null,
J12 = cov(∇2

ξ logϕ(X, 0, ϑ0),∇ϑ0 logϕ(X, 0, ϑ0)) = 0. Thus, we have the locally asymptot-

ically optimal C(α) test as

Zn =
1√
2n

n∑
i=1

((Xi − ϑ0)2 − 1)

The obvious estimate for the nuisance parameter is the sample mean, and we reject the null
hypothesis when (0 ∨ Zn)2 > cα.

4. Some Simulation Evidence

To explore the finite sample performance of the methods we have discussed we begin with
an experiment to compare the critical values of the LRT of homogeneity in the Gaussian
location model with the simulated asymptotic critical values of Table 1. We consider sample
sizes, n ∈ {100, 500, 1000, 5000, 10000} and four choices of the domain of the MLE of the
mixture is estimated: {[−j, j] : j = 1, · · · , 4}. We maintain a grid spacing of 0.01 for the
mixing distribution on these domains for each of these cases for the Kiefer-Wolfowitz MLE.
Results are reported in Table 2. For the three largest sample sizes we bin the observations
into 300 and 500 equally spaced bins respectively. It will be noted that the empirical
critical values are consistently smaller than those simulated from the asymptotic theory.
There appears to be a tendency for the empirical critical values to increase with n, but this
tendency is rather weak. This finding is perhaps not entirely surprising in view of the slow
rates of convergence established elsewhere in the literature, see e.g. Bickel and Chernoff
(1993) and Hall and Stewart (2005).

To compare power of the C(α) and LRT to detect heterogeneity in the Gaussian location
model we conducted four distinct experiments. Two were based on variants of the Chen
(1995) example with the discrete mixing distribution F (ϑ) = (1−λ)δh/(1−λ)+λδ−h/λ. In the
first experiment we set λ = 1/3, as in the original Chen example, in the second experiment
we set λ = 1/20. We consider four tests: (i) the C(α) as described in Example 3.8, (ii.) a
parametric version of the LRT in which only the value of h is assumed to be unknown and
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n cval(.90) cval(.95) cval(.99)
[-1,1] [-2,2] [-3,3] [-4,4] [-1,1] [-2,2] [-3,3] [-4,4] [-1,1] [-2,2] [-3,3] [-4,4]

100 2.09 2.69 2.80 2.80 3.07 3.70 3.97 4.06 6.43 7.58 8.31 8.55
500 2.22 2.80 2.96 2.98 3.06 3.87 4.41 4.41 5.69 7.07 7.45 7.52

1,000 2.67 3.46 3.72 3.76 3.73 4.95 5.44 5.56 7.26 8.55 9.51 9.76
5,000 2.68 3.56 3.91 3.96 3.79 4.54 4.83 5.09 6.52 8.15 8.32 8.38

10,000 2.41 3.11 3.29 3.46 3.61 4.45 4.72 4.97 6.23 7.51 7.96 8.32
∞ 2.75 3.90 5.34 6.38 3.95 5.37 6.87 8.32 6.93 8.71 10.46 11.91

Table 2. Critical Values for Likelihood Ratio Test of Gaussian Parameter
Homogeneity: The first five rows of the table report empirical critical values
based on 1000 replications of the LRT based on the Kiefer-Wolfowitz esti-
mate of the nonparametric Gaussian location mixture distribution. Results
for sample sizes 5,000 and 10,000 were computed by binning the observations
into 300, 500 equally spaced bins respectively. Restriction of the domain of
the mixing distribution is indicated by the column labels. The last row
reproduces the simulated asymptotic critical values reported in Table 1.

the relative probabilities associated with the two mass points are known; this enables us
to relatively easily find the MLE, ĥ by separately optimizing the likelihood on the positive
and negative half-line and taking the best of the two solutions, (iii.) the Kiefer-Wolfowitz
LRT computed with equally spaced binning on the support of the sample, and finally as
benchmark (iv.) the classical Kolmogorov-Smirnov test of normality. The sample size in
all the power comparisons was taken to be 200, with 10,000 replications. We consider 21
distinct values of h for each of the experiments equally spaced on the respective plotting
regions.

In the left panel of Figure 1 we illustrate the results for the first experiment with λ = 1/3:
C(α) and the parametric LRT are essentially indistinguishable in this experiment, and
both have slightly better performance than the nonparametric LRT. All three of these tests
perform substantially better than the Kolmogorov-Smirnov test. In the right panel of Figure
1 we have results of another version of the Chen example, except that now λ = 1/20, so the
mixing distribution is much more skewed. Still C(α) does well for small values of h, but for
h ≥ 0.07 the two LRT procedures, which are now essentially indistinguishable, dominate.
Again, the KS test performance is poor compared to the other tests explicitly designed for
the mixture setting.

In Figure 2 we illustrate the results of two additional experiments, both of which are
based on mixing distributions with densities with respect to Lebesgue measure. On the left
we consider F (ϑ, h) = I(−h < ϑ < h)/(2h). Again, we can reduce the parametric LRT to

optimizing separately over the positive and negative half-lines to compute the MLE, ĥ. This
would seem to give the parametric LRT a substantial advantage over the Kiefer-Wolfowitz
nonparametric MLE, however as is clear from the figure there is little difference in their
performance. Again, the C(α) test is somewhat better than either of the LRTs, but the
difference is modest. In the right panel of Figure 2 we have a similar setup, except that
now the mixing distribution is Gaussian with scale parameter h, and again the ordering is
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very similar to the uniform mixing case. In both of the latter experiments, the parametric
LRT is somewhat undersized at the null; so we made an empirical size adjustment the two
LRT curves. In all four figures the KW-LRT has been similarly size adjusted according to
its performance under the null in the respective experiments.
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Figure 1. Power Comparison of Several Tests of Parameter Homogeneity:
The left panel illustrates empirical power curves for four tests of parameter
homogeneity for the Chen (1995) mixture with λ = 1/3, in the right panel
we illustrate the power curves for the same four tests for the Chen mixture
with λ = 1/20. Note that in the more extreme (right) setting, the LRTs
outperform the C(α) test.

5. Conclusion

We have seen that the Neyman C(α) test provides a simple, powerful, albeit irregular,
strategy for constructing tests of parameter homogeneity. Many examples of such tests
already appear in the literature, however the LeCam apparatus provides a unified approach
for studying their asymptotic behavior that enables us to relax moment conditions employed
in prior work. In contrast, likelihood ratio testing for mixture models has been somewhat
inhibited by their apparent computational difficulty, as well as the complexity of its as-
ymptotic theory. Recent developments in convex optimization have dramatically reduced
the computational effort of earlier EM methods, and new theoretical developments have
led to practical simulation methods for large sample critical values for the Kiefer-Wolfowitz
nonparametric version of the LRT. Local asymptotic optimality of the C(α) test assures
that it is highly competitive in most circumstances, but we have illustrated at least one case
where the LRT has a slight edge. The two approaches are complementary; clearly there
is little point in testing for heterogeneity if there is no mechanism for estimating models
under the alternative. Since parametric mixture models are notoriously tricky to estimate,



14 Inference for Mixture Models

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

P
ow

er

LRT
C(α)
KW−LRT
KS

Power Comparison −− Uniform F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h

P
ow

er

LRT
C(α)
KW−LRT
KS

Power Comparison −− Normal F

Figure 2. Power Comparison of Several Tests of Parameter Homogeneity:
The left panel illustrates empirical power curves for four tests of parameter
homogeneity for uniform mixtures of Gaussians with ϑ on [−h, h], on the
right panel the same four power curves are depicted for Gaussian mixtures
of Gaussians with standard deviation h.

it is a remarkable fact that the nonparametric formulation of the MLE problem a la Kiefer-
Wolfowitz can be solved quite efficiently – even for large sample sizes by binning – and
effectively used as an alternative testing procedure. We hope that these new developments
will encourage others to explore these methods.
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Appendix A. Technical details

Proof of (2) Given a measure G ∈ PM , G 6= δ0 define V (G) :=
∑∞

k=2
κ2
k(G)
k! . Also,

define for n ∈ N and α ∈ [−N,N ] the probability measure G̃n := pnδcn + (1 − pn)G with

pn := 1− V (G)/n and cn := 1−pn
pn

(α− κ1(G)) [the dependence of pn, cn on G is suppressed

in the notation]. Note that for n sufficiently large we have G̃n ∈ PM for all α ∈ [−N,N ].

Moreover, by construction κ1(G̃n) = α(1− pn) and

κk(G̃n) = κk(G)(1− pn) + (1− pn)
(1− pn

pn

)k−1
(α− κ1(G))k

for n ∈ N. This implies for n sufficiently large we have a.s.∣∣∣αY1+
∞∑
k=2

Ykκk(G)

(k!)1/2
− 1

1− pn

∞∑
k=1

Ykκk(G̃n)

(k!)1/2

∣∣∣ ≤ 1− pn
pn

∞∑
k=2

|Yk|C̃k√
k!

(1− pn
pn

)k−2
≤ 2C̃2V (G)

n

∞∑
k=2

|Yk|√
k!

and ∣∣∣α2 +
∞∑
k=2

κ2
k(G)

k!
− 1

(1− pn)2

∞∑
k=1

κ2
k(G̃n)

k!

∣∣∣ ≤ CV (G)

n

for finite constants C, C̃ depending only on N but not on α and G [note that G ∈ PM has
support contained in [L,U ]]. Thus for every N < ∞, ε > 0 we have with probability at
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least 1− ε [this follows by choosing n sufficiently large]

sup
G∈PM

∑∞
k=1

Ykκk(G)

(k!)1/2(∑∞
k=1

κ2
k(G)

k!

)1/2
≥ sup

α∈[−N,N ]
sup
G∈PM

αY1 +
∑∞

k=2
Ykκk(G)

(k!)1/2(
α2 +

∑∞
k=2

κ2
k(G)

k!

)1/2
− ε.

Next, observe that N can be chosen so large that with probability at least 1− f(ε)

sup
α∈R\[−N,N ]

sup
G∈PM

αY1 +
∑∞

k=2
Ykκk(G)

(k!)1/2(
α2 +

∑∞
k=2

κ2
k(G)

k!

)1/2
≤ |Y1|+ ε

where f(a)→ 0 for a→ 0. Finally, note that

sup
G∈PM

∑∞
k=1

Ykκk(G)

(k!)1/2(∑∞
k=1

κ2
k(G)

k!

)1/2
≥ |Y1| a.s.

[consider the sequence of measures Gn = δsign(Y1)/n ∈ PM ].
Summarizing the findings above, we have shown that for any ε > 0 we have with probability
arbitrarily close to one:

sup
G∈PM

∑∞
k=1

Ykκk(G)

(k!)1/2(∑∞
k=1

κ2
k(G)

k!

)1/2
≥ sup

α∈R
sup
G∈PM

αY1 +
∑∞

k=2
Ykκk(G)

(k!)1/2(
α2 +

∑∞
k=2

κ2
k(G)

k!

)1/2
− ε.

By letting ε → 0 the above can be turned in an almost sure inequality with no ε on the
right-hand side. Finally, setting α = κ1(G) we see that the converse inequality also holds
almost surely. Thus we have shown that

sup
G∈PM

∑∞
k=1

Ykκk(G)

(k!)1/2(∑∞
k=1

κ2
k(G)

k!

)1/2
= sup

α∈R
sup
G∈PM

αY1 +
∑∞

k=2
Ykκk(G)

(k!)1/2(
α2 +

∑∞
k=2

κ2
k(G)

k!

)1/2
a.s.

Define βk := κk(G)

(k!)1/2 . Fix a realization of Y1, Y2, .... First, observe that it suffices to consider

the supremum over G ∈ PM with
∑∞

k=2 Ykβk ≥ 0. Fixing G ∈ PM shows that in the case∑∞
k=2 Ykβk > 0 the supremum with respect to α on the right-hand side above is attained for

α∗ = Y1

∑∞
k=2 β

2
k∑∞

k=2 Ykβk
, and plugging this into the equation above we obtain (after some simple

algebra)

sup
α∈R

αY1 +
∑∞

k=2
Ykκk(G)

(k!)1/2(
α2 +

∑∞
k=2

κ2
k(G)

k!

)1/2
=
(
Y 2

1 +

(∑∞
k=2 Ykβk

)2∑∞
k=2 β

2
k

)1/2

for every G ∈ PM with
∑∞

k=2 Ykβk > 0. In the case
∑∞

k=2 Ykβk = 0 we obtain α∗ = sign(Y1).
Summarizing the above arguments yields

(
sup
G∈PM

( ∑∞
k=1

Ykκk(G)

(k!)1/2(∑∞
k=1

κ2
k(G)

k!

)1/2

)
+

)2
= Y 2

1 + sup
G∈PM

((∑∞
k=2 Ykβk

)
+

)2

∑∞
k=2 β

2
k
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and this directly implies (2) 2


