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Abstract

For semi/nonparametric conditional moment models containing unknown parametric components

(θ) and unknown functions of endogenous variables (h), Newey and Powell (2003) and Ai and Chen

(2003) propose sieve minimum distance (SMD) estimation of (θ, h) and derive the large sample prop-

erties. This paper greatly extends their results by establishing the followings: (1) The penalized SMD

(PSMD) estimator (θ̂, ĥ) can simultaneously achieve root-n asymptotic normality of θ̂ and nonpara-

metric optimal convergence rate of ĥ, allowing for models with possibly nonsmooth residuals and/or

noncompact infinite dimensional parameter spaces. (2) A simple weighted bootstrap procedure can con-

sistently estimate the limiting distribution of the PSMD θ̂. (3) The semiparametric efficiency bound

results of Ai and Chen (2003) remain valid for conditional models with nonsmooth residuals, and the

optimally weighted PSMD estimator achieves the bounds. (4) The profiled optimally weighted PSMD

criterion is asymptotically Chi-square distributed, which implies an alternative consistent estimation of

confidence region of the efficient PSMD estimator of θ. All the theoretical results are stated in terms of

any consistent nonparametric estimator of conditional mean functions. We illustrate our general the-

ories using a partially linear quantile instrumental variables regression, a Monte Carlo study, and an

empirical estimation of the shape-invariant quantile Engel curves with endogenous total expenditure.
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1 Introduction

Many semi/nonparametric models are special cases of the following conditional moment models containing

unknown functions:

E[ρ(Y,Xz ; θ0, h01(·), ..., h0q(·))|X] = 0, (1.1)

in which Z ≡ (Y ′,X ′)′, Y is a vector of endogenous variables, Xz is a subset of the conditioning variables

X, ρ() is a vector of generalized residual functions whose functional forms are known up to the vector

of unknown finite dimensional parameters (θ0) and the vector of unknown real-valued functions (h0 ≡

(h01(·), ..., h0q(·))), where the arguments of each real-valued function h0ℓ(·) may differ across ℓ = 1, ..., q,

and, in particular, may depend on Y . The conditional distribution, FY |X , of Y given X is not specified;

hence the functional form of the conditional expectation, E[ρ(Z; θ, h)|X], of ρ(Z; θ, h) given X is unknown.

Assuming that the parameters of interest α0 ≡ (θ0, h0) are identified by the general conditional mo-

ment models (1.1), Newey and Powell (2003) and Ai and Chen (2003) propose Sieve Minimum Distance

(hereafter SMD) estimation of (θ0, h0). Under the assumptions that the residual function ρ(Z; θ, h(·)) is

pointwise Hölder continuous in the parameters α ≡ (θ, h) ∈ Θ×H, the parameter space Θ×H is compact,

and the sieve parameter space Θ × Hn is finite dimensional compact, Newey and Powell (2003) obtain

consistency of the SMD estimator of α0, and Ai and Chen (2003) establish root-n asymptotic normality

and efficiency of the SMD estimator of the finite dimensional parameters θ0.

When some of the h0ℓ(·) in the nonparametric conditional moment model E[ρ(Y,Xz ;h01(·), ..., h0q(·))|X] =

0 depends on the endogenous variables Y , it is difficult to establish convergence rate of any estimator of

h0 under the so-called “strong metric” || · ||s, a metric that is not continuous with respect to the quadratic

form E
[
(E[ρ(Z;h(·))|X])′ (E[ρ(Z;h(·))|X])

]
, and the problem becomes a nasty nonlinear ill-posed inverse

problem with an unknown operator. In Chen and Pouzo (2007), we propose a penalized SMD (PSMD)

estimator, and establish its consistency and convergence rates for h0 without assuming || · ||s−compactness

of H and Hn, and allowing for nonsmooth residual function ρ(Z;h(·)) in h.

In this paper, we extend the results of Newey and Powell (2003), Ai and Chen (2003) and Chen and Pouzo

(2007) in several directions. First, we show that the PSMD estimator α̂ ≡ (θ̂, ĥ) can simultaneously
2



achieve root-n asymptotic normality of θ̂ and optimal convergence rate of ĥ (in strong metric || · ||s)

for the general semiparametric model (1.1), allowing for possibly nonsmooth residuals, and/or possibly

noncompact function space (H) and the sieve spaces (Hn) under the strong metric || · ||s. It is previously

known that sieve M-estimation of semiparametric models (without nonparametric endogeneity) can si-

multaneously achieve root-n normality of parametric part and optimal convergence rate of nonparametric

part; see e.g., Chen and Shen (1998) and Newey et al. (2004). We find that the PSMD estimation of the

semiparametric conditional moment model (1.1) (with nonparametric endogeneity) also possesses such a

nice property. Second, we show that a simple weighted bootstrap procedure can consistently estimate

the limiting distribution of the PSMD θ̂. Previously, Ai and Chen (2003) propose a consistent sieve

estimator of the asymptotic variance of θ̂. Their variance estimator hinges on the differentiability of the

residual functions ρ(Z; θ, h(·)) in α = (θ, h), whereas in our paper ρ(Z; θ, h(·)) could be non-smooth with

respect to α = (θ, h). This is why we propose a weighted bootstrap procedure to consistently estimate

the confidence region for any root-n consistent PSMD estimator θ̂. Third, we show that the semiparamet-

ric efficiency bound results of Ai and Chen (2003) remain valid for conditional models with nonsmooth

residuals, and establish efficiency of the optimally weighted PSMD procedure. Finally, we show that the

profiled optimally weighted PSMD criterion is asymptotically Chi-square distributed. This implies an

alternative consistent estimation of confidence region of the efficient PSMD estimator of θ0 by inverting

the profiled optimally weighted criterion function. This alternative confidence region construction avoids

the nonparametric estimation of the asymptomatic variance, and it should be easier to compute then the

weighted bootstrap procedure. All the general theoretical results are stated in terms of any consistent

nonparametric estimator of conditional mean functions E[ρ(Z; θ, h)|X = ·], but we also provide low level

sufficient conditions in terms of series least squares (LS) estimator of E[ρ(Z; θ, h)|X = ·]. We specialize

our theoretical results to an important example of a partially linear quantile instrumental variables (IV)

regression: E[1{Y3 ≤ θ0Y1 + h0(Y2)}|X] = γ ∈ (0, 1). We also present a Monte Carlo study and an

empirical estimation of the shape-invariant quantile Engel curves with endogenous total expenditure.

The rest of the paper is organized as follows. Section 2 presents the PSMD estimator α̂ = (θ̂, ĥ), and
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its consistency and nonparametric convergence rates. In section 3 we first establish the root-n asymptotic

normality of θ̂. We then show that a weighted bootstrap procedure can consistently estimate the limiting

distribution of the θ̂. In section 4 we first show the validity of the semiparametric efficiency bound, and

then the efficiency of the optimally weighted PSMD. In addition, we show that the profile optimally

weighted PSMD criterion is asymptotically Chi-squared distributed. Section 5 specializes our general

results to a partially linear quantile IV regression example. Section 6 presents a Monte Carlo study and

an empirical application. Section 7 briefly concludes. All the proofs and some useful lemmas are gathered

in the appendix.

In this paper, we denote fA|B(a; b) (FA|B(a; b)) as the conditional probability density (cdf) of random

variable A given B evaluated at a and b, and fAB(a, b) (FAB(a, b)) the joint density (cdf) of the random

variables A and B. Denote || · ||E as the Euclidian norm. Let Lp(Ω, dµ) be the space of measurable

functions with ||f ||Lp(Ω,dµ) ≡ {
∫
Ω |f(t)|pdµ(t)}1/p < ∞, where Ω is the support of the sigma-finite positive

measure dµ (sometimes Lp(dµ) and ||f ||Lp(dµ) are used for simplicity). For any sequences {an} and {bn},

an ≍ bn means that there exists two constants 0 < c1 ≤ c2 < ∞ such that c1an ≤ bn ≤ c2an, and

an = OP (bn) means that an is bounded in probability at rate bn, i.e., Pr (an/bn ≥ M) → 0 as n and M

go to infinity.

2 The Penalized SMD estimator

The semiparametric conditional moment model (1.1) can be equivalently expressed as m(X,α0) = 0

a.s. − X, where m(X,α) ≡ E [ρ(Y,Xz;α)|X] =
∫

ρ(Y,Xz ;α)dFY |X(y) and α0 ≡ (θ0, h0) ∈ A ≡ Θ × H.

Following Chen and Pouzo (2007), we propose the penalized SMD (PSMD) estimator

α̂n ≡ (θ̂n, ĥn) = arg inf
α∈An

{
1

n

n∑

i=1

m̂(Xi, α)′[Σ̂(Xi)]
−1m̂(Xi, α) + λnP (h)

}
, (2.1)

where An ≡ Θ × Hn is a sieve for A ≡ Θ × H, m̂(X,α) is any nonparametric consistent estimator

of m(X,α), Σ̂(X) is any consistent estimator of a positive definite weighting matrix Σ(X), λn ≥ 0 is
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a penalization tuning parameter such that λn = o(1), and P (h) ≥ 0 is a penalization function. See

Chen and Pouzo (2007) for a more detailed presentation of the PSMD estimator, and the comparison of

a finite dimensional sieve PSMD procedure vs an infinite dimensional sieve PSMD procedure. Here we

focus on the finite dimensional sieve PSMD method only.

In this paper, we establish consistency and convergence rate of the PSMD estimator α̂n, the root-n

normality, semiparametric efficiency and confidence region of θ̂n under conditions that are satisfied by

any nonparametric estimators m̂(X,α) and Σ̂(X) of m(X,α) and Σ(X) respectively. In addition, we also

provide relatively low level sufficient conditions when m̂(X,α) is a series least squares (LS) estimator, as

defined in (2.2):

m̂(X,α) = pJn(X)′(P ′P )−
n∑

i=1

pJn(Xi)ρ(Zi, α), (2.2)

where {pj()}∞j=1 is a sequence of known basis functions that can approximate any square integrable func-

tions of X well, Jn → ∞ slowly as n → ∞, pJn(X) = (p1(X), ..., pJn (X))′, P = (pJn(X1), ..., p
Jn(Xn))′,

and (P ′P )− is the generalized inverse of the matrix P ′P . To simplify presentation, we let pJn(X) be

a tensor-product linear sieve basis, which is the product of univariate linear sieves. For example, let

{φij : ij = 1, ..., Jj,n} denote a B-spline (wavelet, Fourier series, power series) basis for L2(Xj , leb.), with Xj

a compact interval in R, 1 ≤ j ≤ dx. Then the tensor product {∏dx
j=1 φij (Xj) : ij = 1, ..., Jj,n, j = 1, ..., dx}

is a B-spline (wavelet, Fourier series, power series) basis for L2(X , leb.), with X = X1 × ...×Xdx . Clearly

the number of terms in the tensor-product sieve pJn(X) is given by Jn =
∏dx

j=1 Jj,n. See Newey (1997),

Huang (1998) and Chen (2007) for more details about tensor-product B-splines and other linear sieves.

2.1 Consistency

In this subsection we present some consistency results of the PSMD estimator. We first impose some

regularity conditions.

Assumption 2.1. (i) A ≡ Θ×H, Θ is a compact convex subset of Rdθ , and H ⊆ H, H ≡ H1×· · ·×Hq is

a separable Banach space under the metric ‖h‖c ≡
∑q

ℓ=1 ‖hℓ‖c,ℓ; (ii) E[ρ(Z,α0)|X] = 0, and ‖θ0 − θ‖E +

‖h0 − h‖c = 0 for any α = (θ, h) ∈ A with E[ρ(Z,α)|X] = 0.
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Assumption 2.2. Ak ≡ Θ×Hk, k ≥ 1, are the sieve spaces satisfying Hk ⊆ Hk+1 ⊆ H, and there exists

Πnh0 ∈ Hk(n) such that ||Πk(n)h0 − h0||c = o(1).

Denote ‖α‖c ≡ ‖θ‖E + ‖h‖c on A ≡ Θ ×H, and

Q̂n(α) ≡ 1

n

n∑

i=1

m̂(Xi, α)′{Σ̂(Xi)}−1m̂(Xi, α) + λnP (h).

Assumption 2.3. either (a) or (b) holds: (a) Ak is compact under || · ||c, and for any data {Zi}n
i=1,

Q̂n(α) is lower semicontinuous (in || · ||c) on Ak(n). (b) Ak is a bounded, closed and convex subset of

a reflexive Banach space (Θ × H, || · ||c), and for any data {Zi}n
i=1, Q̂n(α) is weak sequentially lower

semicontinuous on Ak(n).

Assumption 2.4. (i) E[m(X,α)′Σ(X)−1m(X,α)] is continuous at α0 under ‖·‖c; (ii) λnP (·) ≥ 0, and

is continuous at h0, and P (h0) < ∞.

Assumption 2.1(i) defines the parameter space and assumption 2.1(ii) assumes that α0 is identified

(up to an equivalent class under the metric || · ||c). The identification condition is a high level assumption

and has to be verified in each application. Assumption 2.2 is effectively the definition of a sieve space.

Assumption 2.3 provides some sufficient conditions to ensure the PSMD estimator α̂n exists and is well

defined. The following lemma is a minor modification of Lemma B.1 and Remark B.1 in Chen and Pouzo

(2007) hence we omit its proof.

Lemma 2.1. Let α̂n be the PSMD estimator (2.1) with λn ≥ 0, λn = o(1), and {(Yi,Xi)}n
i=1 be a strictly

stationary sample. Suppose that assumptions 2.1, 2.2, 2.3, 2.4 and the following conditions (2.1.1) and

(2.1.2) hold:

(2.1.1) there are a function δ(λ, k) and a nondecreasing function g(ε) ≥ 0 such that for any k ≥ 1,

any λ ≥ 0, and any ε > 0,

inf
α∈Ak :||α−α0||c≥ε

{
E
[
m(X,α)′Σ(X)−1m(X,α)

]
+ λ[P (h) − P (h0)]

}
≥ δ(λ, k)g(ε) > 0.
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(2.1.2) (i) E
[
m(X, θ0,Πk(n)h0)

′Σ(X)−1m(X, θ0,Πk(n)h0)
]
+λn[P (Πk(n)h0)−P (h0)] = o (δ(λn, k(n)));

(ii) sup
α∈Ak(n)

∣∣∣∣∣
1

n

n∑

i=1

m̂(Xi, α)′Σ̂(Xi)
−1m̂(Xi, α) − E

[
m(X,α)′Σ(X)−1m(X,α)

]
∣∣∣∣∣ = oP (δ(λn, k(n))).

Then: ||α̂n − α0||c = oP (1).

Condition (2.1.1) is the so-called “identifiable uniqueness” condition over the sieve space. It allows

for both the “well-posed” case (in which lim infk→∞ δ(λ, k) > 0, i.e., ||α − α0||c is continuous with

respect to E
[
m(X,α)′Σ(X)−1m(X,α)

]
), and the “ill-posed” case (in which lim infk→∞ δ(λ, k) = 0, i.e.,

||α − α0||c is not continuous with respect to E
[
m(X,α)′Σ(X)−1m(X,α)

]
). For the “well-posed” case,

we have δ(λn, k(n)) = O(1), condition (2.1.2)(i) is automatically satisfied under assumption 2.4, and

condition(2.1.2)(ii) becomes the standard assumption of uniform convergence over the sieve space. See

Chen and Pouzo (2007) for low level sufficient conditions for consistency when the problems could be

“well-posed” or “ill-posed”.

2.2 Convergence Rates

In the rest of the paper, we let ‖·‖s denote another metric on the infinite-dimensional function space H

that is weaker than the norm || · ||c (i.e., ||h||s ≤ ||h||c for all h ∈ H). In this section we study convergence

rate under the metric || · ||s. Given the consistency results stated above, we can now restrict our attention

to a shrinking || · ||c−neighborhood around α0. Let Aos ≡ {α ∈ A : ||α − α0||c = o(1), ||h||c ≤ c} and

Aosn ≡ {α ∈ An : ||α − Πnα0||c = o(1), ||h||c ≤ c}. Then, for the purpose of establishing a rate of

convergence under the ||α||s ≡ ‖θ‖E + ||h||s metric, we can treat Aos as the new parameter space and

Aosn as its sieve space.

In order to establish the convergence rate under || · ||s we first establish the rate under a weaker

pseudo-metric || · ||. We define the first pathwise derivative at the direction [h − h0] evaluated at h0 as

dm(X,α0)

dα
[α − α0] ≡ dE[ρ(Z, (1 − τ)α0 + τα)|X]

dτ

∣∣∣∣
τ=0

a.s. X . (2.3)

=
dm(X,α0)

dθ′
(θ − θ0) +

dm(X,α0)

dh
[h − h0]

7



Following Ai and Chen (2003), we define the pseudo-metric ||α1 − α2|| for any α1, α2 ∈ Aos as

||α1 − α2||2 ≡ E

[(
dm(X,α0)

dα
[α1 − α2]

)′
Σ(X)−1

(
dm(X,α0)

dα
[α1 − α2]

)]
. (2.4)

Likewise we define

||h1 − h2||2 ≡ E

[(
dm(X,α0)

dh
[h1 − h2]

)′
Σ(X)−1

(
dm(X,α0)

dh
[h1 − h2]

)]
.

We impose the following additional assumptions.

Assumption 2.5. (i) {(Y ′
i ,X ′

i)}n
i=1 is an i.i.d. sample; (ii) X is a compact connected subset of Rdx with

Lipschitz continuous boundary, and fX is bounded and bounded away from zero over X .

Assumption 2.6. (i) supx∈X
∣∣∣Σ̂(x) − Σ(x)

∣∣∣ = oP (1); (ii) Σ(X) is positive definite, and its smallest and

largest eigenvalues are finite positive uniformly over X . (iii) with probability approaching one, Σ̂(X) is

positive definite, and its smallest and largest eigenvalues are finite positive uniformly over X .

Assumption 2.7. (i) supα∈An

√
E
[
||m̂(X,α) − m(X,α)||2E

]
= Op(δ

∗
m,n) = oP (1); (ii) E

[
||m̂(X,α)||2E

]
≍

n−1
∑n

i=1 ||m̂(Xi, α)||2E uniformly over α ∈ An.

Assumption 2.8. For any α ∈ Aos (i) m(X,α) is continuously pathwise differentiable with respect to α;

(ii) E
[
||m(X,α)||2E

]
≍ ||α−α0||2, and ||α−α0|| ≤ K × ||α−α0||s; (iii) λnP (h) is continuously pathwise

differentiable with respect to h.

Assumption 2.7 is a high level condition imposed on the nonparametric estimator for m(X,α). Never-

theless, it is satisfied when m̂(X,α) is the series LS estimator (2.2); see Chen and Pouzo (2007). It can

be shown to hold for kernel or local linear regression estimator as well. The following lemma is a minor

modification of Theorem 4.1 in Chen and Pouzo (2007) hence we omit its proof.

Lemma 2.2. Let α̂n be the PSMD estimator (2.1) with λn ≥ 0, λn = o(1). Suppose that ||α̂n − α0||s =

8



oP (1), assumptions 2.1, 2.2, 2.4, 2.5, 2.6, 2.7 and 2.8 hold. Then:

||α̂n − Πnα0|| = OP

(
max

{
δ∗m,n, o(

√
λn), ||h0 − Πnh0||

})
= OP (δ∗n) = oP (1),

||α̂n − α0|| ≤ ||α̂n − Πnα0|| + ||h0 − Πnh0|| = OP (δ∗n) .

As pointed out in Ai and Chen (2003), to establish root-n asymptotic normality of θ̂, it suffices to

have the nonparametric convergence rate faster than n−1/4 under the weaker pseudo-metric, ||α̂n −α0|| =

OP (δ∗n) = oP (n−1/4). Nevertheless, in some applications such as the estimation of the system of shape-

invariant Engel curves in Blundell et al. (2007), one would like to have the property that an estimator

α̂n = (θ̂, ĥ) can achieve the optimal rates for both the parametric part and the unknown functions

simultaneously. In the following we shall show that the PSMD estimator possesses such a nice property.

Following Ai and Chen (2003) we define V as the closure of the linear span of A − {α0} under the

metric || · ||. For any v1, v2 ∈ V, we define an inner product corresponding to the metric || · ||:

〈v1, v2〉 = E

[(
dm(X,α0)

dα
[v1]

)′
Σ(X)−1

(
dm(X,α0)

dα
[v2]

)]
,

thus (V, 〈·〉) is a Hilbert space, with V = Rdθ ×W and W ≡ H− {h0}. Let h − h0 = −w(θ − θ0), then

we write dm(X,α0)
dα [α − α0] ≡

(
dm(X,α0)

dθ′ − dm(X,α0)
dh [w]

)
(θ − θ0) ≡ Dw(X)(θ − θ0). For each component θj

(of θ), j = 1, ..., dθ , let w∗
j ∈ W denote the solution to

inf
wj∈W

E

[(
dm(X,α0)

dθj
− dm(X,α0)

dh
[wj ]

)′
Σ(X)−1

(
dm(X,α0)

dθj
− dm(X,α0)

dh
[wj ]

)]
. (2.5)

Define w∗ = (w∗
1 , ..., w

∗
dθ

), dm(X,α0)
dh [w∗] =

(
dm(X,α0)

dh [w∗
1 ], ...,

dm(X,α0)
dh [w∗

dθ
]
)
, and

Dw∗(X) ≡ dm(X,α0)

dθ′
− dm(X,α0)

dh
[w∗].

Assumption 2.9. (i) E[Dw∗(X)′[Σ(X)]−1Dw∗(X)] is positive-definite; (ii) θ0 ∈ int(Θ).

Assumption 2.10. (i) H ⊆ H, (H, || · ||s) is a Hilbert space with 〈·, ·〉s the inner product and {qj}∞j=1 a
9



Riesz basis; (ii) Hn = clsp{q1, ..., qk(n)}.

Assumption 2.10(i) suggests that Hn = clsp{q1, ..., qk(n)} is a natural sieve for H. For example, if H ⊆

W γh
2 ([0, 1]d, leb) (a Sobolev space), then assumption 2.10 is satisfied with (H, || · ||s) = (L2([0, 1]d, leb), || ·

||L2(leb)), and spline or wavelet or power series or Fourier series bases as {qj}∞j=1.

Assumption 2.11. There are finite constants c, C > 0 and a non-increasing positive sequence {bj ≍

ϕ(ν−2
j )}∞j=1 such that: (i) ||h||2 ≥ c

∑∞
j=1 bj |〈h, qj〉s|2 for all h ∈ Hosn; (ii) C

∑
j bj |〈h0 − Πnh0, qj〉s|2 ≥

||h0 − Πnh0||2.

The following lemma is a direct consequence of Theorem 4.2 and Corollary 5.1 of Chen and Pouzo

(2007) and Lemma B.1 of Ai and Chen (2003); hence we omit its proof.

Lemma 2.3. Let α̂n be the PSMD estimator (2.1) with λn ≥ 0, λn = o(1). Suppose that all the assump-

tions of Lemma 2.2 hold. If assumption 2.9 holds, then:

(1) ||θ̂n − θ0||E = OP (||α̂n − α0||) = OP (δ∗n).

(2) If E

[
tr

{(
dm(X,α0)

dh [w∗]
)′ (dm(X,α0)

dh [w∗]
)}]

is finite, then: ||ĥn−h0|| = OP (||α̂n−α0||) = OP (δ∗n)

and ||ĥn − Πnh0|| = OP (δ∗n)

(3) Further, if assumptions 2.10 and 2.11 hold, and max
{
δ∗m,n, o(

√
λn)
}

= δ∗m,n, then: δ∗n ≍ δ∗m,n and

||ĥn − h0||s = OP

(
||h0 − Πnh0||s +

δ∗m,n√
bk(n)

)
, ||α̂n − α0||s = OP

(
||ĥn − h0||s

)
.

2.2.1 Convergence rates when m̂ is a series LS estimator

We now provide some low level sufficient conditions for assumption 2.7 when m̂(X,α) is the series LS

estimator of m(X,α) given in (2.2). In the following we denote ζn ≡ supx ||pJn(x)||E .

Assumption 2.12. (i) The smallest and largest eigenvalues of E[pJn(X)pJn(X)′] are bounded and bounded

away from zero for all Jn; (ii) either Jnζ2
n = o(n) or Jn log(Jn) = o(n) for P-spline sieve pJn(X).

Assumption 2.13. (i) supα∈An
supx V ar[ρ(Z,α)|X = x] ≤ K < ∞; (ii) for any g ∈ {m(·, α) : α ∈ An},

there is pJn(X)′π such that, uniformly over α ∈ An, either (a) or (b) holds: (a) supx |g(x) − pJn(x)′π| =

O(bm,Jn) = o(1); (b) E{[g(X) − pJn(X)′π]2} = O(b2
m,Jn

) for pJn(X) sieve with ζn = O(J
1/2
n ).
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Assumption 2.13(ii) is satisfied by typical smooth function classes of {m(·, α) : α ∈ An}. For example,

if {m(·, α) : α ∈ An} is a subset of Λγm
c (X ), γm > dx/2, (or W γm

2,c (X , leb.)), then assumption 2.13(ii) (a) (or

(b)) holds with bm,Jn = J−rm
n and rm = γm/dx. Denote ||α̂n −α0||s ≡ OP (δ∗s,n) and ||α̂n −α0|| ≡ OP (δ∗n).

The following lemma summaries Lemma B.3 and Corollary 5.1 of Chen and Pouzo (2007); hence we omit

its proof.

Lemma 2.4. (1) Let m̂ be the series LS estimator given in (2.2) with P-splines, cosine/sine or wavelets

as the basis pJn(X). Suppose that assumptions 2.5, 2.12 and 2.13 hold. Then: Assumption 2.7 is satisfied

with δ∗m,n = max{
√

Jn
n , bm,Jn}.

(2) Let α̂n be the PSMD estimator (2.1) with λn ≥ 0, λn = o(1) and m̂ the series LS estimator.

Suppose that all the assumptions of Lemma 2.3(3) hold. Let ||h0 − Πnh0||s = O({νk(n)}−γh) for a finite

γh > 0 and an increasing positive sequence {νj}∞j=1. If δ∗m,n = max{
√

Jn
n , bm,Jn} =

√
Jn
n → 0 and

limn→∞{Jn/k(n)} = c ∈ (1,∞), then:

δ∗s,n = O

(
{νk(n)}−γh +

√
k(n)

n × ϕ(ν−2
k(n))

)
and δ∗n ≍ δ∗m,n ≍

√
k(n)

n
.

(2.i) Mildly ill-posed case: if ϕ(τ) = τa for some a ≥ 0 and νk ≍ k1/d, then: δ∗s,n = O
(
n
− γh

2(γh+a)+d

)

and δ∗n = O

(
n
− γh+a

2(γh+a)+d

)
provided k(n) = O

(
n

d
2(γh+a)+d

)
.

(2.ii) Severely ill-posed case: if ϕ(τ) = exp{−τ−a/2} for some a > 0 and νk ≍ k1/d, then: δ∗s,n =

O
(
[ln(n)]−γh/a

)
and δ∗n = O

(√
[ln(n)]d/a

n

)
provided k(n) = O

(
[ln(n)]d/a

)
.

3 Asymptotic Normality and Weighted Bootstrap

In this section we first establish root-n asymptotic normality of the PSMD estimator θ̂, which extends

the normality result of the SMD estimator of θ0 derived in Ai and Chen (2003) to allow for nonsmooth

generalized residual functions ρ(Z;α), and penalized SMD procedure with any nonparametric estimators

m̂(X,α) and Σ̂(X). We then provide a new weighted bootstrap procedure to consistently approximate

the limiting distribution of θ̂.
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3.1 Root-n normality of θ̂

Under assumption 2.9, for any non-zero λ ∈ Rdθ , there is a v∗ ∈ V such that λ′(θ̂n − θ0) = 〈v∗, α̂n −α0〉,

i.e., v∗ = (v∗θ , v
∗
h) is the Riesz representer of λ′(θ̂n − θ0), with v∗θ ≡ (E[Dw∗(X)′[Σ(X)]−1Dw∗(X)])−1λ

and v∗h = −w∗ × v∗θ . We impose the following extra assumptions to derive root-n asymptotic normality

of λ′(θ̂n − θ0). Denote N0n ≡
{
α ∈ Aosn : ||α − α0|| = O(δ∗n), ||α − α0||s = O(δ∗s,n)

}
.

Assumption 3.1. (i) supα∈N0n
n−1

∑n
i=1 ‖m̂(Xi, α) − m̂(Xi, α0) − m(Xi, α)‖2

E = op(n
−1); (ii) δ∗n =

o(n−1/4), δ∗m,n = o(n−1/4); (iii) n−1/2
∑n

i=1

(
dm(Xi,α0)

dα [v∗]
)′

Σ(Xi)
−1{ρ(Zi, α0) − m̂(Xi, α0)} = oP (1).

Assumption 3.1 is a high level one, but it is satisfied when m(X,α) is estimated by a series LS

estimator m̂(X,α) (see Ai and Chen (2003)) or a kernel estimator (see the 1998 working paper version

of Ai and Chen (2003)). The rates δ∗m,n, δ∗n and δ∗s,n are obviously linked; see Lemmas 2.3 and 2.4. In

particular, under assumption 2.8, we have δ∗n ≍ δ∗m,n and δ∗n = o(δ∗s,n), and how fast the difference of these

two last rates grows depends on the degree of ill-posedness. In the so-called “mildly ill-posed” case, roughly

speaking, the weaker norm is “polynomial order” faster than the strong norm, whereas in the “severely

ill-posed” case the difference is exponential. In the following we denote supx |Σ̂(x) − Σ(x)| ≡ OP (δ∗Σ,n).

Assumption 3.2. (i) δ∗Σ,n × δ∗n = o(n−1/2); (ii) Σ0(X) ≡ V ar[ρ(Z,α0)|X] is positive definite for all

X ∈ X .

Assumption 3.3. There is v∗n ≡ (v∗θ ,−Πnw∗ × v∗θ) ∈ An \ {α0} such that ||v∗n − v∗|| × δ∗n = op(n
−1/2).

Assumption 3.4. (i) The second pathwise derivative of m(X,α) wrt α exist for all α ∈ N0n, and

E

(
supα∈N0n

∣∣∣d
2m(X,α)
dαdα [v∗n, v∗n]

∣∣∣
2
)

< ∞; (ii) E

[∥∥∥dm(X,α)
dα [v∗n] − dm(X,α0)

dα [v∗n]
∥∥∥

2

E

]
= op(n

−1/2) uniformly

over α ∈ N0n; (iii) {dm(·,α)
dα [v∗n] : α ∈ N0n} ⊆ Λ

γ′
m

c (X ) with r′m ≡ γ′
m/dx > 1/2; (iv) {m(·, α) : α ∈ N0} ⊆

Λγm
c (X ) with rm ≡ γm/dx > 1/2.

Assumption 3.5. For all α ∈ N0n, α ∈ N0n,

E

[(
dm(X,α0)

dα
[v∗]
)′

Σ(X)−1

(
dm(X,α)

dα
[α − α0] −

dm(X,α0)

dα
[α − α0]

)]
= op(n

−1/2).
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Various low-level sufficient conditions for assumptions 3.4(ii) and 3.5 can be easily obtained in terms

of the “strong” norm; hence these assumptions will, in general, be difficult to check for “severely” ill-posed

highly nonlinear problems. If m(X,α) is linear in α then these assumptions are redundant.

Assumption 3.6. Either (a) or (b) holds: (a) λn = 0; (b) λn = op(n
−1/2), djP (h)

dhj [v∗n] exists and

E
(
supα∈N0n

∣∣∣d
jP (h)
dhj [v∗n]

∣∣∣
)

< ∞ for j = 1, 2.

Theorem 3.1. Let α̂n be the PSMD estimator (2.1) with λn ≥ 0, λn = o(1). Suppose that all the

assumptions of Lemma 2.2 hold. If assumptions 2.9, and 3.1 - 3.6 hold. Then:
√

n(θ̂n−θ0) ⇒ N(0, V −1),

where

V −1 ≡




(
E
[
Dw∗(X)′ [Σ(X)]−1 Dw∗(X)

])−1
×

(
E
[
Dw∗(X)′ [Σ(X)]−1 Σ0(X) [Σ(X)]−1 Dw∗(X)

])

×
(
E
[
Dw∗(X)′ [Σ(X)]−1 Dw∗(X)

])−1




. (3.1)

3.1.1 Root-n normality when m̂ is a series LS estimator

In this subsection we provide some low level sufficient conditions for assumption 3.1 when m̂(X,α) is the

series LS estimator of m(X,α) given in (2.2). For this case, assumption 3.1(iii) is trivially satisfied (see

corollary C.3(iii) in Ai and Chen (2003)).

Assumption 3.7. (i) There exists a measurable function b(X) with E[|b(X)|] < ∞ and constant κ ∈ (0, 1]

and r ≥ 1 such that for all δ > 0 and α,α′ ∈ N0n

sup
||α−α′||s≤δ

∫
|ρ(z, α) − ρ(z, α′)|rdFY |X=x(y) ≤ b(x)rδrκ;

(ii) exists a measurable C(Z) such that |ρ(Z,α)| ≤ C(Z) and |E[C(Z)2|X]| ≤ M < ∞.

In the following we denote m̃(X,α) = pJn(X)′(P ′P )−
∑n

i=1 pJn(Xi)m(Xi, α) as the LS projection of

m(X,α) onto pJn(X).

Proposition 3.1. Let m̂ be the series LS estimator given in (2.2) with P-splines, cosine/sine or wavelets
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as the basis pJn(X). Suppose that assumptions 2.5, 2.12 and 3.7 hold. Then:

(1) sup
α∈N0n

1

n

n∑

i=1

‖m̂ (Xi, α) − m̂ (Xi, α0) − m̃ (Xi, α)‖2
E = Op

(
Jn

n

(
δ∗s,n
)2κ
)

;

if further, assumption 2.13 and max{Jn
n

(
δ∗s,n
)2κ

, b2
m,Jn

} = o(n−1) hold, then assumption 3.1(i) is satisfied.

(2) Let assumptions of Lemma 2.4 and assumptions 3.2 - 3.6 hold. If max{Jn
n

(
δ∗s,n
)2κ

, b2
m,Jn

} = o(n−1)

and Jn ≍ k(n) = o(n1/2), then:
√

n(θ̂n − θ0) ⇒ N(0, V −1) with V −1 given in (3.1).

Remark 3.1. By Lemma 2.4(2), for both the “mildly ill-posed” case and the “severely ill-posed” case,

the condition Jn
n

(
δ∗s,n
)2κ

= o(n−1) is satisfied provided that γh > d/(2κ). Moreover, the condition Jn ≍

k(n) = o(n1/2) is automatically satisfied by the optimal growth order of Jn ≍ k(n) = O
(
[ln(n)]d/a

)
in

the “severely ill-posed” case, and it is also satisfied in the “mildly ill-posed” case with the optimal growth

order of Jn ≍ k(n) = O

(
n

d
2(γh+a)+d

)
provided that γh + a > d/2.

3.2 Weighted Bootstrap

To conduct statistical inference on the parametric component we need a way to estimate the confidence

region of θ̂. Previously, Ai and Chen (2003) propose a consistent sieve estimator of the asymptotic

variance of θ̂. Their variance estimator hinges on the differentiability of the residual functions ρ(Z; θ, h(·))

in α = (θ, h), whereas in our paper ρ(Z; θ, h(·)) could be non-smooth with respect to α = (θ, h). In this

subsection we propose a weighted bootstrap procedure to consistently estimate the confidence region of

θ̂. We establish the validity of a weighted bootstrap by showing that the asymptotic distribution of the

weighted bootstrap estimator (centered at θ̂n) coincides with the asymptotic distribution of our PSMD

estimator (centered at θ0). In a recent paper Ma and Kosorok (2005) establish a similar result for a

semiparametric M-estimation without nonparametric endogeneity. We extend their results to the PSMD

estimation of the conditional moment model (1.1) with nonparametric endogeneity.

Assumption 3.8. {Wi}n
i=1 is an i.i.d. sample of positive weights satisfying E[Wi] = 1 and V ar(Wi) = w0,

and is independent of {(Y ′
i ,X ′

i)}n
i=1.
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In contrast to the nonparametric bootstrap where the weights are draws from a multinomial (n, n−1, . . . , n−1),

the weight here must be drawn independently. An example is the so-called Bayesian bootstrap where

Wi = Ui/(n
−1
∑n

i=1 Ui) with Ui ∼ Exp(1).

Assumption 3.9. (i) supα∈N0n
n−1

∑n
i=1 Wi ‖m̂(Xi, α) − m̂(Xi, α0) − m(Xi, α)‖2

E = op(n
−1);

(ii) n−1/2
∑n

i=1 Wi

(
dm(Xi,α0)

dα [v∗]
)′

Σ(Xi)
−1{ρ(Zi, α0) − m̂(Xi, α0)} = oP (1).

If supi Wi is bounded, then assumptions 3.9(i) and (ii) are directly implied by assumptions 3.1(i) and

(iii) respectively. If Wi is not bounded, we can re-define ρ(Zi, α) as ρW (Zi, α) ≡ Wi × ρ(Zi, α) and verify

assumption 3.7 when m̂(X,α) is the series LS estimator of m(X,α).

Theorem 3.2. Suppose that all the assumptions of Theorem 3.1, assumptions 3.8 and 3.9 hold. Let

(
θ̂∗n, ĥ∗

n

)
= α̂∗

n ≡ arg inf
α∈N0n

{
1

n

n∑

i=1

Wi

{
m̂(Xi, α)′[Σ̂(Xi)]

−1m̂(Xi, α)
}

+ λnP (h)

}
.

Then: Conditional on the data {(Y ′
i ,X ′

i)}n
i=1,

√
n
w0

(
θ̂∗n − θ̂n

)
has the same limiting distribution as that

of
√

n
(
θ̂n − θ0

)
.

The theorem above allow us to construct an estimator for the confidence region in the following way:

1. Draw any i.i.d. sample {Wi}n
i=1 satisfying assumption 3.8 with V ar(Wi) = 1.

2. Compute α̂∗
n for the given sample of weights.

3. Repeat steps 1 and 2 many times (say N numbers of times) and compute the empirical quantiles of

(θ̂∗n,q)
N
q=1.

4 Semiparametric Efficiency and Chi-square Approximation

In this section we first show that the semiparametric efficiency bound results of Ai and Chen (2003)

remains valid for the models (1.1) with possibly nonsmooth residual functions ρ(Z,α), and that the

optimally weighted PSMD or locally continuously updated PSMD achieves the efficiency bound. We
15



then show that the profiled optimally weighted (or profiled locally continuously updated) PSMD criterion

function is asymptotically Chi-square distributed, which suggests another way to construct confidence

region.

4.1 Semiparametric efficiency bounds and efficient estimation

Recall that Σ0(X) ≡ V ar(ρ(Z,α0)|X). We define V0 as the closure of the linear span of A− {α0} under

the inner product defined using the optimal weighting Σ0(X)−1:

〈v1, v2〉0 = E

[(
dm(X,α0)

dα
[v1]

)′
Σ0(X)−1

(
dm(X,α0)

dα
[v2]

)]
,

thus (V0, 〈·〉0) is a Hilbert space, with V0 = Rdθ ×W0 and W0 = H − {h0}. Let h − h0 = −w(θ − θ0),

dm(X,α0)
dα [α − α0] ≡ Dw(X)(θ − θ0) and Dw(X) ≡ dm(X,α0)

dθ′ − dm(X,α0)
dh [w]. We define

V0 ≡ inf
w

E
{
Dw(X)′[Σ0(X)]−1Dw(X)

}
= E

{
Dw0(X)′[Σ0(X)]−1Dw0(X)

}
,

where w0 = (w01, ..., w0dθ
) and each w0j ∈ W0 is the solution to

inf
wj∈W0

E

[(
dm(X,α0)

dθj
− dm(X,α0)

dh
[wj ]

)′
Σ0(X)−1

(
dm(X,α0)

dθj
− dm(X,α0)

dh
[wj ]

)]
.

When the residual function ρ(Z,α) is pointwise smooth wrt α, Ai and Chen (2003) establish that V0 is

the semiparametric efficiency bound for θ0 in the model (1.1). The following theorem shows that their

result remains valid when ρ(Z,α) is not pointwise smooth wrt α. We denote q0(y, x, α0) as the true joint

density of (Y,X). Since A is convex at α0 by assumption, for any fixed h ∈ H, h0 + ξ(h − h0) ∈ H for

small constant ξ ≥ 0. Let p(y, x, θ, ξ) ≡ q0(y, x, θ, h0 + ξ(h − h0)) denote a parametric submodel passing

through q0(y, x, α0) at the true values θ = θ0 and ξ = 0.

Assumption 4.1. (i) E

[(
dm(X,α0)

dθ′

)′
Σ0(X)−1

(
dm(X,α0)

dθ′

)]
is finite, E[Dw(X)′[Σ0(X)]−1Dw(X)] is fi-

nite for any w = (w1, ..., wdθ
) with wj ∈ W0; (ii) for every fixed h ∈ H, p(y, x, θ, ξ) ≡ q0(y, x, θ, h0 + ξ(h−

h0)) is smooth in the sense of Van der Vaart (1991).
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Theorem 4.1. Let assumptions 2.1, 2.4(i), 2.5, 2.8(i), 2.9(ii), 3.2(ii) and 4.1 hold. Then: (1) V0 is

the semiparametric efficiency bound for θ0 in the model (1.1). (2) The positive definiteness of V0 is the

necessary condition for θ0 to be estimable at
√

n−rate. (3) Suppose that all the assumptions of Theorem

3.1 hold with Σ(X) = Σ0(X), then the corresponding PSMD estimator of θ0 is efficient with asymptotic

variance V −1
0 .

4.2 Chi-square approximation

Previously for sieve MLE, Shen and Shi (2005) provide sufficient conditions to ensure that the sieve

likelihood ratio statistic is asymptotically chi-square distributed. Murphy and Van der Vaart (2000)

present conditions to ensure that the profiled likelihood of semiparametric M-estimation is asymptotically

chi-square distributed. In this subsection we show that the profile optimally weighted PSMD criterion

(Q̂n(θ)) and the profile continuously updated PSMD criterion (Q̂C
n (θ)) also possess such a nice property.

As in Ai and Chen (2003), we propose the following locally continuous updated PSMD estimator α̃n ≡

(θ̃n, h̃n) that solves

min
α∈N0n

{
1

n

n∑

i=1

m̂(Xi, α)′[Σ̂(Xi, α)]−1m̂(Xi, α) + λnP (h)

}
,

where Σ̂ (X,α) is any nonparametric consistent estimator of V ar[ρ(Z,α)|X], and the neighborhood can

be centered around α̂n (the PSMD estimator with Σ̂(Xi, α) = I).

We can also define the locally continuous updated profiled SMD estimator:

Step1 : h̃θ = arg inf
h∈H0n

1

n

n∑

i=1

m̂(Xi, θ, h)′[Σ̂(Xi, θ, h)]−1m̂(Xi, θ, h) + λnP (h),

Step2 : θ̃n = arg inf
θ

1

n

n∑

i=1

m̂(Xi, θ, h̃θ)
′[Σ̂(Xi, θ, h̃θ)]

−1m̂(Xi, θ, h̃θ) + λnP (h̃θ),

and h̃n = h̃θ̃n
.

Define:

Q̂n(θ) ≡ n−1
n∑

i=1

m̂(Xi; θ, h̃θ)
′
[
Σ̂(Xi, α̂n)

]−1
m̂(Xi; θ, h̃θ) + oP (n−1),
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Q̂C
n (θ) ≡ n−1

n∑

i=1

m̂(Xi; θ, h̃θ)
′
[
Σ̂(Xi; θ, h̃θ)

]−1
m̂(Xi; θ, h̃θ) + oP (n−1).

Notice that we are not including the penalty term in the above criterion functions. This is due to the

fact that the penalty term (after appropriate centering) is of order oP (n−1) and thus negligible. Therefore,

for the sake of simplicity we did not include it.

We impose the following additional conditions

Assumption 4.2. (i) Σ̂(X,α) is finite and positive definite with eigenvalues bounded away from zero

uniformly for all X ∈ X and α ∈ N0n; (ii) the same holds for Σ(X,α0).

Assumption 4.3. Uniformly over α1, α2 ∈ N0n,

E

[∥∥∥∥
(

dm(X,α1)

dα
[v∗n]

)′
Σ(X,α2)

−1 −
(

dm(X,α0)

dα
[v∗n]

)′
Σ(X,α0)

−1

∥∥∥∥
2

E

]
= o(n−1/2)

Assumption 4.4. (i) supα∈N0n,x∈X |Σ̂(x, α) − Σ(x, α)| = OP (δ∗Σ,n) with δ∗Σ,n × δ∗n = oP (n−1/2); (ii)

supα∈N0n,x∈X |Σ(x, α) − Σ(x, α0)| = oP (1); (iii) Σ(·, α) ∈ ΛγΣ
c (X ) and rΣ ≡ γΣ/dx > 1/2.

Assumption 4.3 is a version of assumption 4.4 in Ai and Chen (2003) but in our case, as Σ̂(X, α̂) is

estimated in a first stage, we must allow for different arguments in dm(X, ·)/dα and Σ̂(X, ·). Given the

imposed assumptions a sufficient condition for assumption 4.3 to hold is: E
[
‖Σ(X,α) − Σ(X,α0)‖2

E

]
=

op(n
−1/2). We can now establish the following theorem.

Theorem 4.2. Under assumptions 2.5 - 2.8 and 3.1, 2.9- 4.4, it follows that

2n
(
Q̂n(θ0) − Q̂n(θ̃n)

)
⇒ χ2

dθ

Next we present an analogous result for the continuous updating estimator.

Assumption 4.5. (i) supα∈N0n,x∈X
∣∣∣Σ̂(x, α) − Σ(x, α)

∣∣∣×(δ∗n+δ∗m)2 = op(n
−1); (ii) Σ(X,α)−1 is pathwise

twice continuously differentiable with derivatives that are bounded (in the neighborhood Non).
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Theorem 4.3. Under assumptions 2.5 - 2.8 and 3.1, 2.9- 4.3, 4.4(iii) and 4.5, it follows that

2n
(
Q̂C

n (θ0) − Q̂C
n (θ̃n)

)
⇒ χ2

dθ
.

Constructing an estimator for Σ(X,α) that satisfies the required conditions can be a daunting task. In

appendix we present a lemma that provides sufficient conditions for assumption 4.4 when Σ̂ is a series LS

estimator. For alternative nonparametric variance estimators and their properties, see Robinson (1995b),

Andrews (1995), Hall and Marron (1990), Brown and Levine (2007) and references therein.

5 A Partially Linear Quantile IV Example

In this section we apply the above general theoretical results to study a partially linear quantile IV

regression model. The model is:

Y3 = θ0Y1 + h0(Y2) + U, Pr(U ≤ 0|X) = γ, (5.1)

where θ0 is a scalar unknown parameter and h0() is a real-valued unknown function. The conditional

distribution of the error term U given X = (X1,X
′
2)

′ is unspecified, except that FU |X(0) = γ for a known

fixed γ ∈ (0, 1). The support of X is X = [0, 1]dx with dx = 1 + d2, and the support of Y = (Y3, Y1, Y
′
2)′

is Y ⊆ R2+d2 . To map into the general model (1.1), we let Z = (Y ′,X ′)′, α = (θ, h), ρ(Z,α) = 1{Y3 ≤

θY1 + h(Y2)} − γ and m(X,α) = E[FY3|Y1,Y2,X(θY1 + h(Y2))|X] − γ.

We estimate α0 using the PSMD estimator α̂n, with m̂(X,α) being a series LS estimator of m(X,α),

P (h) = ||∇kh||j
Lj(Rd2 ,w)

for a finite k ≥ 0, j = 1, 2 and a positive continuous weighting function w on Rd2 ,

and An = [θ, θ] ×Hn being a finite dimensional (dim(Hn) ≡ k(n) < ∞) linear sieve. It is easy to check

that Σ(X,α0) = γ(1 − γ). Thus we can take Σ̂(X) = γ(1 − γ). Recently Chernozhukov et al. (2007)

and Horowitz and Lee (2007) have studied the nonparametric quantile IV regression model E[1{Y3 ≤

h0(Y2)}|X] = γ. Chen and Pouzo (2007) have illustrated their general convergence rate results using a

nonparametric additive quantile IV regression example E[1{Y3 ≤ h01(Y1)+h02(Y2)}|X] = γ. Chen et al.

19



(2003) have used an example of partially linear quantile IV regression with an exogenous Y2 (i.e., Y2 =

X2), and Lee (2003) has studied the partially linear quantile regression with exogenous Y1 and Y2 (i.e.,

Y1 = X1, Y2 = X2). See Koenker (2005) for excellent review on quantile models.

We impose some low level sufficient conditions:

Condition 5.1. (i) H ⊆ Λγ2(Rd2) with r2 ≡ γ2/d2 > 1 and ||h||2L2 ≤ M ; (ii) ||α||s ≡ |θ| + ||h||L2(Rd2 ,ω)

where ω is a continuous weighting function whose integral is normalized to one and ω(y2) ≍ fY2(y2) as

|y2| → ∞; (iii) if α ∈ A and m(X,α) = 0 then ||α − α0||s = 0.

Condition 5.2. (i) Hn = span{q1, . . . , qk(n)} with (qk)k being wavelets, P-spline, cosine polynomials or

Hermite; (ii) k(n) → ∞ and k(n)/n = o(1).

Condition 5.3. (i) FY3|Y1,Y2,X is twice continuously differentiable on all its arguments with bounded

derivatives; (ii) E[FY3|Y1,Y2,X(θY1 + h(Y2))|X = ·] ∈ Λγm
1 (X ), E

{
fY3|Y1,Y2,X(θY1 + h(Y2))[v

∗
n]|X = ·

}
∈

Λ
γ′

m
c (X ) with rm ≡ γm/dx, r′m ≡ γ′

m/dx > 1/2; (iii) E{(E[|Y1||X])2} ≤ M < ∞.

Condition 5.4. (i) P (h) ≡ ||∇sh||j
Lj with 0 ≤ s < γ2 and j = 1, 2; (ii) λn = o(n−1/2).

Condition 5.5. (i) Assumption 2.11 holds with bj ≍ j−2a/d2 ; (ii) γ2 > a + d2
2 .

Denote w∗ ∈ L2(fY2) as the solution to:

inf
w(y2)

E
[(

E
{
fY3|Y1,Y2,X(θ0Y1 + h0(Y2))[Y1 − w(Y2)]|X

})2]
.

Condition 5.6. (i) E
{
fY3|Y1,Y2,X(θ0Y1 + h0(Y2))[g(Y1, Y2)]|X

}
= 0 implies g(Y1, Y2) ≡ 0 almost surely,

and Y1 is not a measurable function of Y2; (ii) E
[
(E {[Πnw∗(Y2) − w∗(Y2)]|X})2

]
× (δ∗n)2 = op(n

−1)

In Chen and Pouzo (2007) we obtain the nonparametric convergence rate of h0 for this example. Here

we only present the asymptotic normality and efficiency result for the estimation of θ0.

Proposition 5.1. Under assumptions 2.5, 2.12, θ0 ∈ int(Θ) and conditions 5.2 - 5.6, we have:
√

n
(
θ̂n − θ0

)
⇒

N
(
0, V −1

0

)
, with

V0 =
E
[(

E
{
fY3|Y1,Y2,X(θ0Y1 + h0(Y2))[Y1 − w∗(Y2)]|X

})2]

γ (1 − γ)
.
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Moreover, V0 is the semiparametric efficiency bound.

Remark 5.1. (1) Under Yj = Xj for j = 1, 2 (i.e., no endogeneity), V0 becomes

V0 =
E
[(

fU |X (0)
)2

(X1 − w∗ (X2))
2
]

γ(1 − γ)
, w∗ (X2) =

E
[(

fU |X (0)
)2

X1|X2

]

E[
(
fU |X (0)

)2 |X2]
.

(2) Florens et al. (2006) study the root-n asymptotic normality for the partially linear IV mean regression

model: Y3 = Y1θ0 + h0(Y2) + U with E[U |X] = 0. When we apply our asymptotic normality result

of the PSMD estimation to this example, our Proposition 3.1 allows for severely ill-posed case, i.e.,

bj ≍ exp{−ja}. This is due to the fact that the assumptions related to controlling the second order terms

(e.g. assumptions 3.4(ii) and 3.5) are trivially satisfied as m(X,α) = E[Y3 − Y1θ − h(Y2)|X] is linear

in α = (θ, h) in this example. Therefore the rate of convergence under the strong norm is allowed to

decay very slowly such as a logarithmic rate. In particular, this generalizes Robinson (1988) to allow for

endogenous regressors.

In the following we will establish the confidence intervals for θ̂n. Given that Σ̂ = Σ(X,α0) = γ(1 −

γ) the assumptions for theorem 4.2 are greatly simplified and we can omit the proof of the following

proposition.

Proposition 5.2. Under the same conditions of proposition 5.1 it follows that

2

∑n
i=1

{(
m̂(Xi, θ0, ĥθ0)

)2
−
(
m̂(Xi, θ̂n, ĥbθn

)
)2
}

γ(1 − γ)
⇒ χ2

1

The previous result allow us to establish confidence interval estimators for θ̂n by computing

{
θ ∈ [θ, θ] : 2

n∑

i=1

{(
m̂(Xi, θ, ĥθ)

)2
−
(
m̂(Xi, θ̂n, ĥbθn

)
)2
}

≤ γ(1 − γ)cp

}
.

Note that by assumption the penalty term is of order o(n−1) so it will be negligible for large n. The

estimator ĥθ is the profile estimator, obtained by fixing θ and minimizing the criterion function with

respect to h ∈ Hn.
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6 Simulation and Empirical Illustration

6.1 A Monte Carlo Study

We assess the finite sample performance of the penalized SMD estimator in a simulation study. We

simulate the data from the following partially linear quantile IV model:

Y1 = X1θ0 + h0 (Y2) + U,

U =
√

0.075

(
−Φ−1

(
E [h0 (Y2) |X2] − h0 (Y2)

10
+ γ

)
+ ε

)
, ε ∼ N (0, 1) ,

where θ0 = 1, h0 (y2) = Φ
(

y2−µy2
σy2

)
, X1 ∼ U [0, 1] independent of ε and (Y2,X2) ∼ f . Following the way

Blundell et al. (2007) conduct their Monte Carlo study, we generate our Monte Carlo experiment from

the 1995 British Family Expenditure Survey (FES) data set with subsample of families with no kids. In

particular, Y2 is the endogenous regressor (log-total expenditure) and Φ(X2) is its instrument (log-gross

earnings). We consider the following specification for the joint density f as a bivariate Gaussian density

which first and second moments are estimated from the FES data set. We draw an i.i.d. sample of

(X1,Y2,X2, ε) with sample size n = 1000.

We estimate m (X,α) by the series LS estimator m̂ (X,α) given in (2.2) with pJn(X) being the tensor-

product of P-Spline(3,3) and P-Cos(9).1 We use a linear spline sieve P-Spline(2,6) as Hn. We also add a

penalization term for the L2 norm of the first derivative of the function with λn = {0.001, 0.01, 0.1}.2 In

all the cases we performed 500 Monte Carlo repetitions.3

When applying the asymptotic normality theorem to Example 1, we note that it is difficult to verify

assumption 3.4(iii) and assumption 3.5 for the severely ill-posed case. In order to shed some light about

this case, in table 2 we present for the G-DEN case and for γ = 0.750 how the variance changes with

1The notation P-Spline(p,q) denotes a polynomial spline of order p with q number of knots, and P-Cos(p) stands for
cosine series with p number of terms. We have tried other combinations as sieve base for conditional mean function m and
all yield very similar results.

2The penalization parameter λn is chosen to minimize the integrated MSE of bh for a small number of Monte Carlo
repetitions. This choice of λn is adhoc, more complex and appropriate methods, such as Cross Validation, are out of the
scope of this paper.

3We have also performed 250 and 1000 Monte Carlo iterations but as the results remain almost unchanged throughout
the different choices of Monte Carlo repetitions we only report the case of 500 iterations.
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the different sample sizes n = {125, 250, 500, 1000}. This will allow us to see how the parametric part of

our estimator behaves in different sample sizes, in particular we can check (by eye-balling) if the variance

decays at the same order as the sample size. If this is not the case it, then this is evidence that asymptotic

normality does not hold in this case. We note that we adjusted the penalization parameter to vary with

the sample size, by increasing it by the same proportion as the sample size increased. We can see that

the variance decays at approximately the same rate as the sample size decreases, given no evidence that

our
√

n-root results do not hold.

Table 1 summarizes the results for the G-DEN case for different quantiles. Notice that all the statistics

corresponding to the θ0 estimate are approximately the same across different quantiles. This is also the

case for most of the statistics corresponding to the estimation of the unknown function, h0. We note

that integrated bias squared (IBIAS2
MC) is an order of magnitude smaller than the integrated variance

(IV arMC) for all the quantiles and that the quantile integrated mean square error for γ = 0.50 is an order

of magnitude lower than for the rest of the quantiles. This result is driven by the fact that the variance

is much lower for the 0.50 quantile than for any other quantiles. Figure 1 shows the estimated function,

the true function h0 and the 0.95% confidence band, obtained from the Monte Carlo sample. One can see

that for all the cases our estimator performs well.

Overall we can conclude that our estimator performs very well and that there is evidence that the

parametric part of it behaves asymptotically normal.

6.2 An Empirical Illustration

We apply the penalized SMD to nonparametric quantile IV estimation of Engel curves (or consumer

demand functions) using the UK Family Expenditure Survey data. The model is

E[1{Y1il ≤ h0l(Y2i − θ1X1i) + θlX1i}|Xi] = γ ∈ (0, 1), l = 1, ..., 7,

where Y1il is the budget share of household i on good l (in this application, 1 : food-out, 2 : food-in, 3 :

alcohol, 4 : fares, 5 : fuel, 6 : leisure goods, and 7 : travel). Y2i is the log-total expenditure of household
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i that is endogenous, and Xi ≡ (X1i,X2i) with X1i being 0 for without kids sample and 1 for with kids

sample and X2i is the gross earnings of the head of household, which is the instrumental variable. We

work with the whole sample (with and without kids) that consists of 1655 observations. The same data

set has been studied in Blundell et al. (2007).

As illustration, we apply the penalized SMD using a finite-dimensional polynomial spline sieve to con-

struct the sieve space Hn for h, with different types of penalty functions. We have tried ||∇kh||j
Lj(dbµ)

≡

n−1
∑n

i=1 |∇kh(Y2i)|j for k = 1, 2 and j = 1, 2, and Hermite polynomial sieves, cosine sieves and poly-

nomial splines sieves for the series LS estimator m̂. All combinations yielded very similar results; hence

we only present figures for one case. Due to the lack of space, in Figure 2 we report the penalized SMD

estimated Engel curves only for three different quantiles γ = {0.25, 0.50, 0.75} and for four selected goods,

using P-Spline(2,5) as Hn and tensor product of P-Spline(2,5)×P-Spline(5,10) for m̂.

Table 3 shows the corresponding θ1 and (θl)
7
l=1 for the median (γ = 0.50) and penalization equal to:

P̂n(h) = ||∇2h||2L2(dbµ) with λn = 0.001, P̂n(h) = ||∇2h||L1(dbµ) with λn = 0.001, and P̂n(h) = ||∇h||2L2(dbµ)

with λn = 0.003, respectively. The two last columns in table 3 only presents the median (γ = 0.50) for

P̂n(h) = ||∇2h||2L2(dbµ) with λn = 0.0003 and P̂n(h) = ||∇h||2L2(dbµ) with λn = 0.0003, respectively 4. Figure

2 presents the corresponding curves for each of the five cases and in the last two rows we include the

estimator for the partially linear IV mean regression model for comparison.

By inspection we see that the overall estimated function shapes are not very sensitive to the choice of

λn nor the choice of penalization. The parametric values are slightly more sensitive, and thus we observe

some changes in the signs. We note that the columns in table 3 (in particular the last two) yield very

similar results to the ones in Blundell et al. (2007), except for the sign in fares.

7 Conclusion

In this paper, we study asymptotic properties of the penalized SMD estimator for the conditional moment

models containing unknown functions that could depend on endogenous variables. For such models

4The values for the rest of the quantiles are available upon request.
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with possibly non-smooth generalized residual functions, and possibly non-compact infinite dimensional

parameter spaces, we show that the PSMD estimator of the parametric part is root-n asymptotically

normal, and the optimally weighted PSMD reaches the semiparametric efficiency bounds. In addition,

we establish the validity of a weighted bootstrap procedure for confidence region construction of possibly

inefficient but root-n consistent PSMD estimator. For the optimally weighted efficient PSMD estimator,

we show the validity of an alternative confidence region construction method by inverting an efficient

profiled criterion function. We illustrate the general theoretic results by a partially linear quantile IV

regression example, a simulation study, and an empirical estimation of a shape invariant system of quantile

Engel curves with endogenous total expenditure. The weighted bootstrap method could be easily extended

to allow for misspecified semiparametric conditional moment models of Ai and Chen (2007).

All the large sample theories obtained in this paper are first-order asymptotics. There is no re-

sults on higher order refinement for semiparametric conditional moment models containing functions

of endogenous variables yet. There are some second order theories for semiparametric models without

nonparametric endogeneity, such as Robinson (1995), Linton (1995), Nishiyama and Robinson (2000),

Nishiyama and Robinson (2001) and Nishiyama and Robinson (2005), to name a few. We hope to study

the higher order refinement of the weighted bootstrap procedure in another paper.
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A Mathematical Appendix

In the following lemma we establish an upper bound for the convergence rate of |Σ̂(X,α)−Σ(X,α0)| for the

case where Σ̂ is a series LS projection estimator. This provides one kind of sufficient conditions for assump-

tion 4.4 when Σ̂ is a series LS estimator. Let [Σ̂(X,α)]jl ≡
∑n

i=1 ρj(Zi, α)ρl(Zi, α)pJn(Xi)
′ (P ′P )−1 pJn(X).

We will denote Σ(X) ≡ Σ(X,α0) = E[ρ(Z,α0)
2|X] and Σ̂(X) ≡ Σ̂(X, α̂n). Denote ξn ≡ ξ0n ≡

supx∈X ||pJn(x)||E and ξ1n ≡ supx∈X ||dpJn (x)
dx′ ||E .

Assumption A.1. (i) Each element of ρ(X,α)ρ(X,α)′ satisfies assumption 3.7 in Aos ; (ii) Σ(·, α) ≡
E [ρ(X,α)ρ(X,α)′ |X = x] ∈ ΛγΣ

c (X ) with rΣ = γΣ/dx > 1/2; (iii) ∀g ∈ ΛrΣ
c (X ) there exists a pJn(X)′π

such that supx∈X supα∈N0n

∣∣g(X) − pJn(X)′π
∣∣ = O(J−rΣ

n ).

Assumption A.2. (i) δ∗Σ,n ≤ K × n−1/2ξn

∫Kξn

0

√
1 + log(N[]((w/ξn)1/κ,Aosn, || · ||s))dw; (ii) δ∗Σ,n =

O( ξ
3/2
n√
nξ1n

); (iii) δ∗Σ,n = O(J−rΣ
n ).

Lemma A.1. Under assumptions 2.5, A.1 and A.2, it follows that:

(1) sup
x∈X

sup
α∈N0n

|Σ̂(X,α) − Σ(X,α)| = Op(δ
∗
Σ,n),

where δΣ,n = max

{
ξ
3/2
n√
nξ1n

, n−1/2ξn

∫ Kξn

0

√
1 + log

(
N[]((w/ξn)1/κ,Aosn, || · ||s)

)
dw, J−rΣ

n

}
.

(2) sup
x∈X

sup
α∈N0n

|Σ(x, α) − Σ(x, α0)| = K × ||α − α0||κs .

Proof of Lemma A.1: First we will establish the rate supx supα

∣∣∣Σ̂(x, α) − Σ̃(x, α)
∣∣∣ where

Σ̃(x, α) ≡
n∑

i=1

E
[
ρ(Z,α)′ρ(Z,α)|Xi

]
pJn(Xi)

′ (P ′P
)−1

pJn(x).

Define ǫ(Z,α) = ρ(Z,α)′ρ(Z,α) − Σ(x, α). We basically need to study – component by component –

pJn(X)′(P ′P )−1
n∑

j=1

pJn(Xj)ǫ(Zj , α).

By invoking maximal inequality arguments it follows

E


sup

X,α

∣∣∣∣∣∣
n−1

n∑

j=1

pJn(X)′(P ′P/n)−1pJn(Xj)ǫ(Zj , α)

∣∣∣∣∣∣




≤ ξn√
n

∫ W2

0

√
1 + log

(
N[] (w, ⋆, || · ||L2)

)
dw,
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where W2 is bounded by supx,α(P ′P/n)−1pJn(Xj)ǫ(Zj , α) = Op (ξn) and ⋆ stands for the class of functions

of the aforementioned form for (x, α) ∈ X ×N0n. By arguments similar to the ones in Chen et al. (2003)

the term inside the integral is bounded by the entropy of X and N0n with appropriately modified radius.

Given that X is compact ξn

∫ Kξn

0

√
1 + log

(
N[](w,X , || · ||E)

)
dw ≤ Kξn

∫Kξn

0

√
1 − dx log(w)dw ≤ K ×

dx × ξ
3/2
n . Given assumptions over pJn(X) it follows that the appropriate modification of the radius is to

scale it by 1/ξ1n, thus the bound corresponding to this part is of the form O(dx × ξ
3/2
n /(

√
nξ1n)). For the

entropy in N0n, given assumption A.1(i), we need to modify the radius by (w/ξn)1/κ. It then follows

n−1/2ξn

∫ Kξn

0

√
1 + log

(
N[]((w/ξn)1/κ,Aosn, || · ||s)

)
dw.

By assumptions A.1(ii)(iii) we have:

sup
x∈X

sup
α∈N0n

∣∣∣Σ̃(X,α) − Σ(X,α)
∣∣∣ = Op(J

−rΣ
n ).

Result (1) follows.

Result (2) is trivially satisfied by assumption A.1(i), and |Σ(X,α) − Σ(X,α0)| ≤ b(X)||α − α0||κs (=

op(1)). Q.E.D.

Lemma A.1 implies assumption 3.2(i). Suppose that log(N[]((w/ξn)1/κ,Aosn, ||·||s)) ≤ K×k(n) log (k(n)ξn/w),

rΣ = rm, ξqn = J
1/2+q
n and k(n) ≍ Jn ≍ n

1
2rm+1 , and δ∗n = o(n−1/4). Then assumption A.2(i) implies

n−1/2J1/2
n Jn

∫ Kξn

0

√
log (k(n)ξn/w)dw ≤ n−1/2J2+1/2

n

and given that Jn = O(n
1

2rm+1 ) it follows that n
5

4rm+2 ≤ n
3
4 thus 2 ≤ rm will suffice. On the other

hand assumption A.2(ii) is J
3/4
n

J
3/2
n

n−1 = 1

nJ
3/4
n

and this has to be of order, at least n−1/4, which is directly

satisfied. Finally assumption A.2(iii) implies that J−rΣ
n = n− rΣ

2rm+1 ≤ n−1/4 which implies, given that

rΣ = rm, rm ≥ 1/2. Therefore, if Σ(·, α) belongs to a smooth enough class, given that δ∗n = o(n−1/4)

assumption 3.2(i) holds.

Proof of Theorem 3.1: To simplify notation, denote |||A|||2Σ ≡ n−1
∑n

i=1 A′
i [Σ (Xi)]

−1 Ai, and

define |||A|||2bΣ analogously. Note that by assumption 2.6(iii) ||| · |||2bΣ ≤ K||| · |||2I . Therefore by assumption

3.1(i) it follows that

sup
α∈N0n

|||m̂(·, α) − m̂(·, α0) − m(·, α)|||2bΣ = oP (n−1).

We can then show that 1
2 |||m̂(·, α0)+m(·, α)|||2bΣ −Zn ≤ |||m̂(·, α)|||2bΣ ≤ 2|||m̂(·, α0)+m(·, α)|||2bΣ +Zn, with

Zn ≥ 0 and Zn = op(n
−1), or |||m̂(·, α0)+m(·, α)|||bΣ−√

Zn ≤ |||m̂(·, α)|||bΣ ≤ |||m̂(·, α0)+m(·, α)|||bΣ+
√

Zn.
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After some algebra |||m̂(·, α)|||2bΣ = C|||m̂(·, α0) + m(·, α)|||2bΣ + op(n
−1) for a constant C > 0 and for all

α ∈ N0n.5 Since |||m̂(α̂n)|||2bΣ +λnP (α̂n) ≤ |||m̂(α)|||2bΣ +λnP (α) for all α ∈ N0n, we have: for all α ∈ N0n,

C|||m̂(·, α0) + m(·, α̂n)|||2bΣ + λnP (α̂n) ≤ C|||m̂(·, α0) + m(·, α)|||2bΣ + λnP (α) + op(n
−1).

Denote l(·, α) ≡ m̂(·, α0) + m(·, α). Then |||l(·, α)|||2bΣ + C−1λnP (α) is a smooth criterion function with

α̂n as its approximate minimizer.

Given that m is smooth, by assumptions 2.8(i) and 3.4(i), we can now mimic the proof strategy

of Ai and Chen (2003) for asymptotic normality of θ̂n using this new criterion function (|||l(·, α)|||2bΣ +

C−1λnP (α)). The rest of the proof has two discrepancies with that of Ai and Chen (2003). The first one

is that we carry an error term op(n
−1), which turns out to be negligible. The second is that we now have

sharper convergence rates of under the strong norm || · ||s; hence we can relax some of their assumptions.

In what follows we use the fact that, for any vector x of dimension 1 × D (some D ≥ 1) and any

matrix A of D × D, x′Ax = tr(x′Ax) ≤ tr(x′x)
√

tr(A′A) = x′x
√

tr(A′A) (see Newey (1997) equation

A.11).

By assumption 3.4(i) and following Ai and Chen (2003) algebra, setting 0 < ǫn = o(n−1/2) and

u∗
n = ±v∗n we have

0 ≥ |||l(α̂n)|||2bΣ − |||l(α̂n + ǫnu∗
n)|||2bΣ + C−1λn (P (α̂n) − P (α̂n + ǫnu∗

n)) + op(n
−1).

Doing a second order Taylor expansion to the penalization term, and by assumption 3.6, we have:

C−1λn

(
dP (α̂n)

dα
[ǫnu∗

n] +
1

2

d2P (α(s))

dαdα
[ǫnu∗

n, ǫnu∗
n]

)
= λnǫn × OP (1) = op(n

−1)

uniformly over α(s) = α̂n+sǫnu∗
n ∈ N0n. After the second order Taylor expansion to the term |||l(α̂n)|||2bΣ−

|||l(α̂n + ǫnu∗
n)|||2bΣ, we have:

0 ≤ ǫn

n

n∑

i=1

(
dm(Xi, α̂n)

dα
[u∗

n]

)′
Σ̂(Xi)

−1 (m̂(Xi, α0) + m(Xi, α̂n)) + In(α(s)) + IIn(α(s)) + op(n
−1),

with α(s) = α̂n + sǫnu∗
n ∈ N0n for some s ∈ (0, 1), and

In(α(s)) ≡ 2
ǫ2
n

n

n∑

i=1

(
d2m(Xi, α(s))

dαdα
[u∗

n, u∗
n]

)′
Σ̂(Xi)

−1 (m̂(Xi, α0) + m(Xi, α(s))) ,

5In order to show this we can assume that
√

Zn goes faster to zero than ||| bm(α0) + m(α)|||bΣ, otherwise the cross-product
between this two terms if of order op(n

−1) and thus negligible.
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IIn(α(s)) ≡ 2
ǫ2
n

n

n∑

i=1

(
dm(Xi, α(s))

dα
[u∗

n]

)′
Σ̂(Xi)

−1

(
dm(Xi, α(s))

dα
[u∗

n]

)
,

with. Applying Cauchy-Schwarz and assumptions 2.6 and 3.4(i), we have:

sup
α∈N0n

|In(α)| ≤ const.ǫ2n

√√√√ sup
α∈N0n

1

n

n∑

i=1

‖m̂(Xi, α0) + m(Xi, α)‖2
E = ǫ2

n × OP (δ∗m,n + δ∗n),

where the second equality is due to assumptions 2.7(i)(ii) and 2.8(ii), and the fact

‖m̂(Xi, α0) + m(Xi, α)‖E ≤ ‖m̂(Xi, α0) − m(Xi, α0)‖E + ‖m(Xi, α0) − m(Xi, α)‖E ,

thus supα∈N0n
|In(α)| ≤ ǫ2

n×oP (n−1/4) by assumption 3.1(ii). Next, by assumption 2.6, we have: uniformly

over α ∈ N0n,

|IIn(α)| ≤ const.ǫ2nn−1
n∑

i=1

∥∥∥∥
dm(Xi, α(s))

dα
[u∗

n] − dm(Xi, α0)

dα
[u∗

n]

∥∥∥∥
2

E

+const.ǫ2nn−1
n∑

i=1

∥∥∥∥
dm(Xi, α0)

dα
[u∗

n]

∥∥∥∥
2

E

= op(n
−1) + Op(ǫ

2
n),

where the second inequality follows from assumption 3.4(ii)(iii) and corollary C.1(ii) in Ai and Chen

(2003) (for which all the needed assumptions are satisfied). Therefore, we have

0 ≤ ǫn

n

n∑

i=1

(
dm(Xi, α̂n)

dα
[u∗

n]

)′
Σ̂(Xi)

−1 (m̂(Xi, α0) + m(Xi, α̂n)) + Op(ǫ
2
n).

Now performing similar algebra to Ai and Chen (2003) we obtain

1√
n

n∑

i=1

(
dm(Xi, α̂n)

dα
[v∗n]

)′
Σ̂(Xi)

−1 (m̂(Xi, α0) + m(Xi, α̂n)) = op(1). (A.1)
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Note that, by assumption 2.6,

∣∣∣∣∣
1

n

n∑

i=1

(
dm(Xi, α̂n)

dα
[v∗n] − dm(Xi, α0)

dα
[v∗n]

)′
Σ̂(Xi)

−1 (m̂(Xi, α0) + m(Xi, α̂n))

∣∣∣∣∣

≤ const.

√√√√ 1

n

n∑

i=1

∥∥∥∥
dm(Xi, α̂n)

dα
[v∗n] − dm(Xi, α0)

dα
[v∗n]

∥∥∥∥
2

E

×

√√√√ 1

n

n∑

i=1

‖m̂(Xi, α0) + m(Xi, α̂n)‖2
E

= op(n
−1/4) × op(n

−1/4) = op(n
−1/2),

where the first term is of order op(n
−1/4) by applying assumption 3.4(ii)(iii) and corollary C.1(ii) in

Ai and Chen (2003), and we already established that the second term is of the same order op(n
−1/4).

Thus, we obtain:

1√
n

n∑

i=1

(
dm(Xi, α0)

dα
[v∗n]

)′
Σ̂(Xi)

−1 (m̂(Xi, α0) + m(Xi, α̂n)) = op(1).

Note that

1

n

n∑

i=1

∣∣∣∣
(

dm(Xi, α0)

dα
[v∗n]

)′ (
Σ̂(Xi)

−1 − Σ(Xi)
−1
)

(m̂(Xi, α0) + m(Xi, α̂n))

∣∣∣∣

≤ Op(δ
∗
Σ,n) ×

√√√√ 1

n

n∑

i=1

∥∥∥∥
dm(Xi, α0)

dα
[v∗n]

∥∥∥∥
2

E

×

√√√√ 1

n

n∑

i=1

‖m̂(Xi, α0) + m(Xi, α̂n)‖2
E

≤ Op(δ
∗
Σ,n × (δ∗n + δ∗m,n))

where the first inequality is obtained by the fact that, for vectors y, x of 1×D and A of D ×D it follows

that |y′Ax| =
√

tr((y′Ax)2) ≤
√

tr(yy′)
√

tr((Ax)(Ax)′) ≤
√

tr(yy′)
√

tr((A′A))
√

(xx′); and the fact that

tr((Σ̂−1(X) − Σ(X)−1)′(Σ̂−1(X) − Σ(X)−1)) ≤∑dρ

j=1

∑dρ

k=1(supx |Σ̂−1(x)[jk] − Σ(x)−1
[jk]|)2 = Op((δ

∗
Σ,n)2).

The second inequality follows from assumptions 2.7(i)(ii) and 2.8(i). Thereby it follows

1√
n

n∑

i=1

(
dm(Xi, α0)

dα
[v∗n]

)′
Σ(Xi)

−1 (m̂(Xi, α0) + m(Xi, α̂n)) = op(1).
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Notice that

∣∣∣∣∣
1

n

n∑

i=1

(
dm(Xi, α0)

dα
[v∗n − v∗]

)′
Σ(Xi)

−1 (m̂(Xi, α0) + m(Xi, α̂n))

∣∣∣∣∣

≤

√√√√ 1

n

n∑

i=1

∥∥∥∥
dm(Xi, α0)

dα
[v∗n − v∗]

∥∥∥∥
2

E

× OP (δ∗n + δ∗m,n)

= OP (||v∗n − v∗||) × OP (δ∗n + δ∗m,n) = op(n
−1/2),

where the second equality is due to Markov inequality and i.i.d. data, and the last equality is due to

assumptions 3.1(ii) and 3.3. Thus,

1√
n

n∑

i=1

(
dm(Xi, α0)

dα
[v∗]
)′

Σ(Xi)
−1 (m̂(Xi, α0) + m(Xi, α̂n)) = op(1).

Now define
(

dm(Xi,α0)
dα [v∗]

)′
Σ(Xi)

−1 as g(Xi, v
∗). Notice that |g(X, v∗)m(X,α) − g(X, v∗)m(X,α0)| ≤

|g(X, v∗)| × |m(X,α) − m(X,α0)|. Thus given that E[|g(X, v∗)|2] < M by assumption 2.9(i) and the

fact we are in a shrinking neighborhood of α0 it follows that the entropy under the L2(X ) norm of

{g(X, v∗)m(X,α) : α ∈ N0n} is bounded by {m(X,α) : α ∈ N0n} which satisfies Donsker property by

assumption 3.4(iv). Therefore it follows

n−1
n∑

i=1

g(Xi, v
∗)m(Xi, α) = E [g(X, v∗)(m(X,α) − m(X,α0))] + op(n

−1/2).

By applying the mean value theorem to (m(X,α) − m(X,α0)) and assumption 3.5 we obtain:

n−1
n∑

i=1

g(Xi, v
∗)m(Xi, α̂n) = 〈v∗, α̂n − α0〉 + op(n

−1/2),

and
√

n〈v∗, α̂n − α0〉 = − 1√
n

n∑

i=1

(
dm(Xi, α0)

dα
[v∗]
)′

Σ(Xi)
−1m̂(Xi, α0) + op(1)

Finally by assumption 3.1(iii), we obtain

√
n〈v∗, α̂n − α0〉 = − 1√

n

n∑

i=1

(
dm(Xi, α0)

dα
[v∗]
)′

Σ(Xi)
−1ρ(Zi, α0) + op(1) (A.2)

and the result follows by applying a standard central limit theorem argument. Q.E.D

Proof of Proposition 3.1: (1) Let ε(Z,α) ≡ ρ(Z,α)−m(X,α), Λn(X) ≡ E[(ρ (Z,α) − ρ (Z,α0))
2 |X].
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Then

sup
α∈N0n

(
E
[
pJn(Xi)(P

′P )−1P ′(∆ε(α))(∆ε(α))′P (P ′P )−1pJn(Xi)
′])1/2

≤ sup
α∈N0n

(
E
[
pJn(Xi)(P

′P )−1P ′E
[
(∆ε(α))(∆ε(α))′ |X1, . . . ,Xn

]
P (P ′P )−1pJn(Xi)

′])1/2

≤ sup
α∈N0n

(
E
[
Λn × Tr

{
n−1pJn(Xi)

′pJn(Xi)(P
′P/n)−1

}])1/2

≤ K sup
α∈N0n

(
E
[
E
[
(ρ (Zi, α) − ρ (Zi, α0))

2 |X
]]

× Jn

n

)1/2

≤ K sup
α∈N0n

√
Jn

n
‖α − α0‖κ

s ≤ Op

(√
Jn

n

(
δ∗s,n
)κ
)

,

where the above inequalities are due to our assumptions 2.5, 3.7(ii), 2.12, 3.7(i), and the definition of

N0n. Since

sup
α∈N0n

n−1
n∑

i=1

‖m̂(Xi, α) − m̂(Xi, α0) − m(Xi, α)‖2
E

≤ 2 sup
α∈N0n

n−1
n∑

i=1

‖m̂(Xi, α) − m̂(Xi, α0) − m̃(Xi, α)‖2
E + 2 sup

α∈N0n

n−1
n∑

i=1

‖m̃(Xi, α) − m(Xi, α)‖2
E

≤ Op

(
Jn

n

(
δ∗s,n
)2κ
)

+ OP

(
E[ sup

α∈N0n

‖m̃(Xi, α) − m(Xi, α)‖2
E ]

)

= OP

(
max

{
Jn

n

(
δ∗s,n
)2κ

, b2
m,Jn

})
,

where the second inequality is due to Markov inequality and i.i.d. data, and the last equality is due to

assumption 2.13. Therefore, assumption 3.1(i) holds provided that max
{

Jn
n

(
δ∗s,n
)2κ

, b2
m,Jn

}
= op(n

−1).

(2) By Lemma 2.4 we obtain assumptions 3.1(ii) and 2.7, with δ∗n ≍ δ∗m,n = oP (n−1/4) provided that

Jn ≍ k(n) = o(n1/2). Assumption 3.1(iii) is satisfied by applying corollary C.3(iii) in Ai and Chen (2003).

Now the asymptotic normality result follows directly from Theorem 3.1. Q.E.D

Proof of Theorem 3.2: Recall that under our assumption on penalization function, we have

λnP (h) − λnP (ĥn) = oP (n−1) uniformly over α ∈ N0n. Thus we could define α̂∗
n ≡

(
θ̂∗n, ĥ∗

n

)
as

α̂∗
n = arg inf

α∈N0n

{
1

n

n∑

i=1

Wi

{
m̂(Xi, α)′[Σ̂(Xi)]

−1m̂(Xi, α)
}

+ oP (n−1)

}
,

with {Wi}n
i=1 being a random sample of positive weights such that E[Wi] = 1, V ar(Wi) = w0 and are

independent from the sample {(Yi,Xi)}n
i=1. We establish the conclusion in two steps.

Step 1: We first obtain the asymptotic distribution for
√

n(θ̂∗n − θ0). We will derive this in the
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same way as we derive the asymptotic distribution for
√

n(θ̂n − θ0). As in the proof of Theorem

3.1, we first need to establish that α̂∗
n is an “approximate minimizer” of a smooth criterion function:

n−1
∑n

i=1 lW (Xi, α)′[Σ̂(Xi)
−1]lW (Xi, α), with lW (Xi, α) ≡ √

Wi(m(Xi, α) + m̂(Xi, α0)). Define another

norm: ||| · |||2W,I ≡ n−1
∑n

i=1 Wi|| · ||2E . By assumption 2.6(i)(ii), we have: ||| · |||2
W,bΣ ≤ const.||| · |||2W,I , and

by assumption 3.9(i),

sup
α∈N0n

|||m̂(·, α) − m̂(·, α0) − m(·, α)|||2W,I

= sup
α∈N0n

{
1

n

n∑

i=1

Wi ‖m̂(Xi, α) − m̂(Xi, α0) − m(Xi, α)‖2
E

}
= oP (n−1).

Thus, performing analogous algebra to the ones in the proof of Theorem 3.1, we can think of α̂∗
n as the

(approximate) minimizer of

n−1
n∑

i=1

lW (Xi, α)′Σ̂(Xi)
−1lW (Xi, α).

Now using analogous arguments to the ones in the proof of Theorem 3.1, and by assumption 3.8(i) and

Cauchy-Schwarz inequality, we obtain:

2
ǫ2
n

n

n∑

i=1

Wi

(
d2m(Xi, α(s))

dαdα
[u∗

n, u∗
n]

)′
Σ̂(Xi)

−1 (m̂(Xi, α0) + m(Xi, α(s))) = Op(ǫ
2
n),

and

2
ǫ2
n

n

n∑

i=1

Wi

(
dm(Xi, α(s))

dα
[u∗

n]

)′
Σ̂(Xi)

−1

(
dm(Xi, α(s))

dα
[u∗

n]

)
= Op(ǫ

2
n).

Thus it follows

− 1√
n

n∑

i=1

Wi

(
dm(Xi, α̂

∗
n)

dα
[v∗n]

)′
Σ̂(Xi)

−1(m̂(Xi, α0) + m(Xi, α̂
∗
n)) = op(1).

Note that

n−1
n∑

i=1

W 2
i

∥∥∥∥
dm(Xi, α̂

∗
n)

dα
[v∗n] − dm(Xi, α0)

dα
[v∗n]

∥∥∥∥
2

E

= op(n
−1/2)

by assumption 3.4(iii) and the fact that W are independent with finite second moment. This and as-

sumption 2.6, following the same steps as in the proof of Theorem 3.1, imply

1√
n

n∑

i=1

Wi

(
dm(Xi, α0)

dα
[v∗n]

)′
Σ(Xi)

−1(m̂(Xi, α0) + m(Xi, α̂
∗
n)) = op(1).
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By Markov inequality, i.i.d. data and {Wi}n
i=1 is independent of {(Yi,Xi)}n

i=1, we have:

n−1
n∑

i=1

W 2
i

(
dm(Xi, α0)

dα
[v∗n − v∗]

)′
Σ(Xi)

−1

(
dm(Xi, α0)

dα
[v∗n − v∗]

)

≤ OP

(
E

[
W 2

i

(
dm(Xi, α0)

dα
[v∗n − v∗]

)′
Σ(Xi)

−1

(
dm(Xi, α0)

dα
[v∗n − v∗]

)])

= OP

(
E[W 2] × ||v∗n − v∗||2

)
.

Therefore, by repeating the steps in the proof of Theorem 3.1, we obtain

1√
n

n∑

i=1

Wi

(
dm(Xi, α0)

dα
[v∗]
)′

Σ(Xi)
−1(m̂(Xi, α0) + m(Xi, α̂

∗
n)) = op(1).

Defining g(W,X, v∗) = W
(

dm(X,α0)
dα [v∗]

)′
Σ(X)−1 it follows that {g(W,X, v∗)m(X,α) : α ∈ N0} is a

Donsker Class by our assumptions.6 Thus, with m(Xi, α0) = 0, we have uniformly over α ∈ N0,

n−1
n∑

i=1

g(Wi,Xi, v
∗)m(Xi, α)

= E [g(W,X, v∗)m(X,α)] + op(n
−1/2) = E [W ]E [g(X, v∗)m(X,α)] + op(n

−1/2)

= E [g(X, v∗)m(X,α)] + op(n
−1/2) = 〈v∗, α − α0〉 + op(n

−1/2)

where the second equality follows from the fact that W is independent by assumption 3.8 and E[W ] = 1,

and the last equality follows from the same calculations in the proof of Theorem 3.1. Thus

√
n〈v∗, α̂∗

n − α0〉 = − 1√
n

n∑

i=1

Wi

(
dm(X,α0)

dα
[v∗]
)′

Σ(X)−1m̂(Xi, α0) + op(1),

this and assumption 3.9(ii) imply:

√
n〈v∗, α̂∗

n − α0〉 = − 1√
n

n∑

i=1

Wi

(
dm(X,α0)

dα
[v∗]
)′

Σ(X)−1ρ(Zi, α0) + op(1), (A.3)

and hence
√

n(θ̂∗n − θ0) is asymptotically normal with zero mean and variance

V −1
∗ ≡ w0V

−1.

This follows from the fact that W is an independent random variable.

6We already established that {g(X, v∗)m(X,α) : α ∈ N0n} is a Donsker Class. Given that E[W 2] is finite we can use the
same argument as in, say, Ai and Chen (2003) p. 1832.
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Step 2: Subtracting equation (A.2) from (A.3), we obtain:

√
n〈v∗, α̂∗

n − α̂n〉 = − 1√
n

n∑

i=1

(Wi − 1)

(
dm(X,α0)

dα
[v∗]
)′

Σ(X)−1ρ(Zi, α0) + op(1).

Given that V ar(W − 1) = V ar(W ) = w0 and that {Wi}n
i=1 is independent of {(Yi,Xi)}n

i=1, it follows

that, conditional on the data {(Yi,Xi)}n
i=1,

√
n
w0

(
θ̂∗n − θ̂n

)
is asymptotically normal with zero mean and

variance V −1, the same limiting distribution as that of
√

n(θ̂n − θ0). Q.E.D

Proof of Theorem 4.1: We essentially replicate the proof of theorem 6.1 in Ai and Chen (2003),

except that we avoid their use of the differentiability of the generalized residual function ρ(Z,α) with

respect to α in a shrinking neighborhood of α0.

As in their paper first we let u = ρ(Z,α0) and divide Y into (Y1, Y2) with dim(Y1) = dim(u) = dρ.

We will follow Newey (1990) characterizing the tangent set and then defining a projection of the score of

θ onto it. The non-parametric parts that will be approximated by parametric submodels can be divided

into h, f0(u, y2, x) and g0(x) where f0 is the true conditional density of (u, Y2) given X = x, and g0 is the

true marginal density of X. For the h part, we define the parametric submodel as h0 + ξ1(h−h0), for the

g part, we define the parametric submodel as g(x, ξ3) ≡ g0(x)(1 + ξ3 × D1(x)) for a bounded D1(x) with

E[D1(X)] = 0, notice that g(x, ξ3) is a density for a sufficiently small ξ3. For the f(u, y2, x) part, we define

the parametric submodel as f(u, y2, x, ξ2) ≡ f0(u, y2, x)∆f (u, y2, x, ξ2), where ∆f (u, y2, x, ξ2) = 1 + ξ2 ×
D2(u, y2, x) and D2(·) has to be such that (i) E[D2|X] = 0; (ii) D2 is bounded and (iii) E[uD2|X] = 0.

With (i)-(ii) we ensure that f(u, y2, x, ξ2) is a density for sufficiently small values of ξ2, and (iii) imposes

the model restriction. Define ∆(y, x, δ) = ∆f (ρ(z, θ, h0 + ξ1(h − h0)), y2, x, ξ2) × (1 + ξ3 × D1(x)) with

δ ≡ (θ′, ξ1, ξ2, ξ3)
′. Then

q(y, x, δ) ≡ q0(y, x, θ, h0 + ξ1(h − h0))∆(y, x, δ)

is a parametric submodel passing through the true model.

In order to show that these submodels are “smooth” we are going to replace the requirement in

Ai and Chen (2003) p. 1838 with the differentiability notion used in Van der Vaart (1991):

∫ [
∆(y, x, δt)

1/2 − ∆(y, x, δ0)
1/2

t
− 1

2
g∆(y, x, δ0)

1/2

]2

dµ → 0

where δt converges to δ0 ≡ (θ0, 0, 0, 0) and g ∈ L2(q0). In our case we will define g as (q0θ/q0, q0h/q0,D2,D1)

(we leave implicit the dependence of (y, x)), and thus is easy to see that under the assumptions over D1,D2

and q0, g belong to L2(q0).

The projection of the score function corresponding to θj (denoted as Sθj
= q0θj

(·)/q0(·)) onto D1(x)
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is naught, as D1(x) is not informative about θj. For D2, define the tangent space as Λ2 ≡ {D2 :

(i),(ii),(iii) are satisfied}. In order to compute the projection we solve

min
D2∈Λ2

E

[(
Sθj

(z) − q0h(z, α0, [w])

q0(z, α0)
− D2(u, y2, x)

)2
]

.

With the solution to this problem in hand (see Ai and Chen (2003) p. 1839) and defining

E[Sθj
(y, x)u|x] ≡ dE[ρ(Z,α0)|x]

dθj
,

E

[
q0h(y, x, α0, [w])

q0(y, x, α0)
u|x
]

≡ dE[ρ(Z,α0)|x]

dh
[w].

We can now follow the rest of the proof of their theorem 6.1 in Ai and Chen (2003), except replacing

their E{dρ(Z,α0)
dθj

|x} and E{dρ(Z,α0)
dh [w]|x} by ourdE[ρ(Z,α0)|x]

dθj
and dE[ρ(Z,α0)|x]

dh [w] respectively. Q.E.D

Proof of Theorem 4.2: For any λ 6= 0, let ||v0||2 = λ′(E
[
(Dw0(X))′Σ0(X)−1(Dw0(X))

]
)λ (i.e., we

use the optimal weighting Σ0(X) instead of Σ(X)), and α∗ ≡ α̂n − 〈α̂n − α0, v0〉v0/||v0||2 with Πnα∗ ≡
α̂n − 〈α̂n − α0, v0〉Πnv0/||v0||2. Then α̂n − Πnα∗ = 〈α̂n − α0, v0〉Πnv0/||v0||2.

Note that assumption 3.6 implies λn{P (α̂) − P (Πnα∗
n)} = oP (n−1). Note also that by assumption

3.4(i) and second order Taylor expansion,

|||l(α̂n)|||2bΣ − |||l(Πnα∗
n)|||2bΣ =

d|||l(Πnα∗)|||2bΣ
dα

+
1

2

d2|||l(αn)|||2bΣ
dαdα

,

with αn a point in between α̂n and Πnα∗. Note that the second derivative term
d2|||l(αn)|||2bΣ

dαdα = In(αn) +

IIn(αn), with7

In(αn) = n−1
n∑

i=1

(
d2m(Xi, αn)

dαdα
[α̂n − Πnα∗, α̂n − Πnα∗]

)′
Σ̂0(Xi)

−1 (m̂(Xi, α0) + m(Xi, αn)) ,

IIn(αn) = n−1
n∑

i=1

(
dm(Xi, αn)

dα
[α̂n − Πnα∗]

)′
Σ̂0(Xi)

−1

(
dm(Xi, αn)

dα
[α̂n − Πnα∗]

)
.

Following the same calculations in the proof of Theorem 3.1 and by assumption 4.2, we have:

sup
αn∈N0n

|In(αn)| = op(n
−1).

7We abuse notation by denoting bΣ as bΣ(X, eαn), Σ(X) = Σ(X, α) and Σ0(X) = Σ(X, α0).
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Similarly under assumption 4.4(i)(ii), we have:

IIn(αn)

=
〈α̂n − α0, v0〉

||v0||2
E

[(
dm(X,α0)

dα
[v0]

)′
Σ0(X)−1

(
dm(X,α0)

dα
[v0]

)] 〈α̂n − α0, v0〉
||v0||2

+ op(n
−1).

The first derivative term
d|||l(Πnα∗)|||2bΣ

dα is given by

d|||l(Πnα∗)|||2bΣ
dα

= n−1
n∑

i=1

(
dm(Xi,Πnα∗)

dα
[α̂n − Πnα∗]

)′
Σ̂0(Xi)

−1 (m̂(Xi, α0) + m(Xi,Πnα∗)) .

By Cauchy-Schwarz inequality, 〈v0, α̂n − α0〉 = Op(n
−1/2), assumptions 4.3 and 4.4, and using the same

arguments as the ones in the proof of Theorem 3.1, we obtain:

d|||l(Πnα∗)|||2bΣ
dα

= n−1
n∑

i=1

(
dm(Xi, α0)

dα
[α̂n − Πnα∗]

)′
Σ0(Xi)

−1 (m̂(Xi, α0) + m(Xi,Πnα∗)) + op(n
−1).

Now, we study

n−1
n∑

i=1

(
dm(Xi, α0)

dα
[α̂n − Πnα∗]

)′
Σ0(Xi)

−1m(Xi,Πnα∗)

= Op(n
−1/2) ×

(
〈Πnα∗ − α0, v0〉 + op(n

−1/2)
)

= Op(n
−1/2) ×

(
〈α̂n − α0, v0〉 −

〈α̂n − α0, v0〉〈Πnv0, v0〉
||v0||2

+ op(n
−1/2)

)

= Op(n
−1/2) ×

(
〈α̂n − α0, v0〉 − 〈α̂n − α0, v0〉 + op(n

−1/2)
)

= op(n
−1),

where the third equality uses the fact that 〈Πnv0 − v0, v0〉 ≤ K × ||Πnv0 − v0|| = op(1) by assumption
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3.3(i). Therefore

|||l(α̂n)|||2bΣ − |||l(Πnα∗
n)|||2bΣ

= n−1
n∑

i=1

(
dm(Xi, α0)

dα
[α̂n − Πnα∗]

)′
Σ0(Xi)

−1m̂(Xi, α0)

+
1

2

(〈α̂n − α0, v0〉
||v0||2

)2

E

[(
dm(X,α0)

dα
[v0]

)′
Σ0(X)−1

(
dm(X,α0)

dα
[v0]

)]
+ op(n

−1)

= −〈α̂n − α0, v0〉
1

||v0||2
× 〈α̂n − α0, v0〉 +

1

2

(〈α̂n − α0, v0〉
||v0||2

)2

× ||v0||2 + op(n
−1)

= −1

2
〈α̂n − α0, v0〉2

1

||v0||2
+ op(n

−1),

where the first term on the right hand side of the first equality follows from the last result obtained in

the asymptotic normality proof.

Next, let α̃n as the minimizer of |||l(α)|||2bΣ but subject to θ = θ0. Define α∗∗ = α̃n + 〈α̂n −
α0, v0〉v0/||v0||2 and Πnα∗∗ = α̃n + 〈α̂n − α0, v0〉Πnv0/||v0||2. Note that α̃n − Πnα∗∗ = −(α̂n − Πnα∗).

With these definitions, following the same calculations as before, we obtain:

|||l(α̃n)|||2bΣ − |||l(Πnα∗∗)|||2bΣ =
1

2
〈α̂n − α0, v0〉2

1

||v0||2
+ op(n

−1).

Now following the same steps as in Shen and Shi (2005), we obtain:

2n
(
|||l(α̃n)|||2bΣ − |||l(α̂n)|||2bΣ) =

(√
n〈α̂n − α0, v0〉

||v0||

)2

+ op(1).

From the asymptotic normality proof of Theorem 3.1, we have:
√

n〈α̂n − α0, v0〉 ⇒ N(0, ||v0||2). Hence

the conclusion follows. Q.E.D

Proof of Theorem 4.3: We already shown that the criterion n−1
∑n

i=1 m̂(Xi, α)′
[
Σ̂(X,α)

]−1
m̂(Xi, α)

is equivalent to n−1
∑n

i=1 l(Xi, α)′
[
Σ̂(X,α)

]−1
l(Xi, α)+op(n

−1) uniformly over α ∈ N0n. Define another

“smooth criterion function”

L̂C
n (α) ≡ n−1

n∑

i=1

l(Xi, α)′ [Σ(X,α)]−1 l(Xi, α).
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Since

sup
α∈N0n

∣∣∣∣∣n
−1

n∑

i=1

l(Xi, α)′
(
Σ̂(X,α)−1 − Σ(X,α)−1

)
l(Xi, α)

∣∣∣∣∣

≤
{

sup
α,x

∣∣∣Σ̂(x, α)−1 − Σ(x, α)−1
∣∣∣
}
× sup

α∈N0n

n−1
n∑

i=1

||l(Xi, α)||2E

=

{
sup
α,x

∣∣∣Σ̂(x, α)−1 − Σ(x, α)−1
∣∣∣
}
× Op((δ

∗
n + δ∗m)2) = op(n

−1),

where the second equality is due to assumptions 4.2 and 4.5(i). We thus establish that our continuously

updated criterion function is equivalent (up to op(n
−1)) to L̂C

n (α).

Following the steps in the proof of theorem 4.2, we perform a second order Taylor expansion of L̂C
n (α̂n)

around Πnα∗
n. The same arguments hold in this case, but now we need to control extra terms related to

the derivatives of Σ(X,α), which are well-defined by assumption 4.5(ii).

For the first derivative of L̂C
n the only extra term we have (with respect the proof of theorem 4.2) is

n−1
n∑

i=1

l(Xi,Πnα∗)′
(

dΣ(X,Πnα∗)
dα

−1

[α̂n − Πnα∗]

)
l(Xi,Πnα∗). (A.4)

By assumption 4.5(ii) the term in the middle is of Op(n
−1/2) (recall the definition of Πnα∗). Moreover we

know that n−1
∑n

i=1 ||l(Xi, α)||2E = Op((δ
∗
n + δ∗m)2), which by assumption 3.1(ii) it implies that the whole

expression is of order op(n
−1).

Regarding the second derivative of L̂C
n we have two extra terms

n−1
n∑

i=1

dl(Xi, αn)′

dα
[α̂n − Πnα∗]

(
dΣ(X,αn)

dα

−1

[α̂n − Πnα∗]

)
l(Xi, αn)

and

n−1
n∑

i=1

l(Xi, αn)′
(

d2Σ(X,αn)

dαdα

−1

[α̂n − Πnα∗]

)
l(Xi, αn).

Again by our assumptions is it easy to see that both term are of order op(n
−1). Therefore second order

Taylor expansion equals

L̂C
n (α̂n) − L̂C

n (Πnα∗)

= n−1
n∑

i=1

dl(Xi,Πnα∗)′

dα
[α̂n − Πnα∗]

(
Σ(X,Πnα∗)−1

)
l(Xi,Πnα∗)

+
1

2
n−1

n∑

i=1

dl(Xi,Πnα∗)′

dα
[α̂n − Πnα∗]

(
Σ(X,Πnα∗)−1

) dl(Xi,Πnα∗)
dα

[α̂n − Πnα∗].
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By assumptions 4.3, 4.4(iii) we can show by taking analogous steps to the ones in asymptotic normality

proof that the first term equals

n−1
n∑

i=1

dl(Xi, α0)
′

dα
[α̂n − α∗]

(
Σ(X,α0)

−1
)
l(Xi, α0).

On the other hand the second term, using a similar argument to the one above equals

1

2
E

[
dl(Xi, α0)

′

dα
[α̂n − α∗]

(
Σ(X,α0)

−1
) dl(Xi, α0)

dα
[α̂n − α∗]

]
.

We thus arrived to the same result as the one in the proof of theorem 4.2. The desired result now follows.

Q.E.D

Proof of Proposition 5.1: We obtain the result by applying Proposition 3.1. Assumptions 2.1(i)

and (ii) are implied by conditions 5.1(i)(ii) and (iii) respectively. Assumption 2.2 follows from conditions

5.1(i)(ii) and 5.2. Given condition 5.3(i) and the choices of our parameter space H and sieve space Hn,

the PSMD estimator α̂n is well-defined with probability approaching one. Conditions 5.1(i)(ii), 5.3(i) and

5.4(i) imply assumption 2.4. Given that Σ̂ = γ(1 − γ), assumption 2.6 is redundant. We apply Lemma

2.4(1) to verify assumption 2.7. Assumptions 2.5 and 2.12 are directly imposed. Assumption 2.13(i)

is trivially satisfied as 0 ≤ ρ(Z,α) ≤ 1 for all Z and all α. Condition 5.3(ii) implies that assumption

2.13(ii) holds with bm,Jn = (Jn)−rm . Thus Lemma 2.4(1) applies and assumption 2.7 holds with δ∗m,n =

max{
√

Jn
n , J−rm

n }. For this example, m(X,α) = E[FY3|Y1,Y2,X(θY1 +h(Y2))|X]−γ, thus assumption 2.8(i)

is implied by condition 5.3(i). Assumption 2.8(iii) is implied condition 5.4(i). Since

dm(X,α0)

dα
[α − α0] = E

{
fY3|Y1,Y2,X(θ0Y1 + h0(Y2))[Y1(θ − θ0) + h(Y2) − h0(Y2)]|X

}
,

||α − α0||2 =
E
[(

E
{
fY3|Y1,Y2,X(θ0Y1 + h0(Y2))[Y1(θ − θ0) + h(Y2) − h0(Y2)]|X

})2]

γ(1 − γ)
.

Notice that

E
[
(m(X,α) − m(X,α0))

2
]

= E
[(

E[FY3|Y1,Y2,X(θY1 + h(Y2))|X] − E[FY3|Y1,Y2,X(θ0Y1 + h0(Y2))|X]
)2]

= E
[(

E
{
fY3|Y1,Y2,X(θY1 + h(Y2))[Y1(θ − θ0) + h(Y2) − h0(Y2)]|X

})2]
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where θY1 + h(Y2) is in between θY1 + h(Y2) and θ0Y1 + h0(Y2). By condition 5.3(i), we have

E
[
(m(X,α) − m(X,α0))

2
]
≍ ||α − α0||2.

In addition, conditions 5.1(ii) and 5.3(i)(iii) imply ||α − α0|| ≤ const.||α − α0||s. Thus assumption 2.8(ii)

holds. Since

Dw(X) =
dm(X,α0)

dθ
− dm(X,α0)

dh
[w] = E

{
fY3|Y1,Y2,X(θ0Y1 + h0(Y2))[Y1 − w(Y2)]|X

}
,

assumption 2.9(i) is implied by condition 5.6(i), while assumption 2.9(ii) is directly assumed.

Under condition 5.3(i)(iii) and using the same argument as in Chen et al. (2003), we obtain that

assumption 3.7(i) holds with κ = 1/2, while assumption 3.7(ii) trivially holds as ρ(Z,α) ∈ [0, 1].

Next conditions 5.1 and 5.2 implies that ||Πnh0 − h0||s = O(k(n)−r2). Condition 5.5(i) implies

assumption 2.11. Thus Lemma 2.4(1)(2.i) is applicable and we obtain: δ∗s,n = O
(
n
− γ2

2(γ2+a)+d2

)
and

δ∗n ≍ δ∗m,n = O

(
n
− γ2+a

2(γ2+a)+d2

)
provided that Jn ≍ k(n) = O

(
n

d2
2(γ2+a)+d2

)
.

Assumption 3.2 follows from the fact that Σ̂ = Σ = γ(1 − γ).

Regarding assumption 3.3, by condition 5.3(i), we have:

||v∗n − v∗||2 = ||w∗
n − w∗||2 =

E
[(

E
{
fY3|Y1,Y2,X(θ0Y1 + h0(Y2))[w

∗
n(Y2) − w∗(Y2)]|X

})2]

γ(1 − γ)

≤ const × E
[
(E {[w∗

n(Y2) − w∗(Y2)]|X})2
]

Thus assumption 3.3 follows from condition 5.6(ii).

Assumption 3.4(i) is directly implied by condition 5.3(i). Assumptions 3.4(iii)(iv) are implied by

conditions 5.3(ii)(iii). For assumption 3.4(ii), we note that under condition 5.3(i),

dm(X,α)

dα
[v∗n] − dm(X,α0)

dα
[v∗n]

= E
{(

fY3|Y1,Y2,X(θY1 + h(Y2)) − fY3|Y1,Y2,X(θ0Y1 + h0(Y2))
)
[Y1 − w∗

n(Y2)]|X
}

v∗θ

= E

{
dfY3|Y1,Y2,X(θY1 + h(Y2))

dy3
[(θ − θ0)Y1 + h(Y2) − h0(Y2)][Y1 − w∗

n(Y2)]|X
}

v∗θ

where θY1 + h(Y2) is in between θY1 + h(Y2) and θ0Y1 + h0(Y2). Thus

E

[∥∥∥∥
dm(X,α)

dα
[v∗n] − dm(X,α0)

dα
[v∗n]

∥∥∥∥
2

E

]
≤ const. × ||α − α0||2s = O

(
n
− 2γ2

2(γ2+a)+d2

)
,
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and assumption 3.4(ii) is satisfied under condition 5.5(ii). Similarly, assumption 3.5 follows from conditions

5.3(i) and 5.5(ii). Assumption 3.6 holds by condition 5.4(ii). Thus all the assumptions of Proposition 3.1

holds, and the conclusion follows. Q.E.D
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B Figures and Tables

γ 0.125 0.250 0.500 0.750 0.875

EMC

[
θ̂n

]
1.0009 0.9981 1.0009 1.0008 0.9991

V arMC

[
θ̂n

]
0.0023 0.0018 0.0011 0.0017 0.0028

BIAS2
MC

[
θ̂n

]
× 104 0.0083 0.0347 0.0084 0.0067 0.0078

(θ2.5, θ97.5)MC (0.90, 1.10) (0.91, 1.07) (0.93, 1.07) (0.91, 1.08) (0.89, 1.09)
(θ2.5, θ97.5)χ2 (0.89, 1.09) (0.91, 1.06) (0.93, 1.05) (0.91, 1.07) (0.88, 1.08)

I − BIAS2
MC

[
ĥn

]
0.0022 0.0015 0.0030 0.0030 0.0044

I − V arMC

[
ĥn

]
0.0221 0.0287 0.0056 0.0147 0.0173

I − MSE2
MC

[
ĥn

]
0.0244 0.0302 0.0087 0.0177 0.0217

Table 1: Results for G-DEN case of the Monte Carlo experiment.

n 125 250 500 1000

EMC

[
θ̂n

]
1.0364 0.9926 1.0028 1.0008

V arMC

[
θ̂n

]
0.0278 0.0099 0.0039 0.0017

BIAS2
MC

[
θ̂n

]
× 103 0.1740 0.0800 0.0810 0.0006

Table 2: Results for G-DEN case of the Monte Carlo experiment for n = {125, 250, 500, 1000} and
γ = 0.750.
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Figure 1: Estimation of h for the G-DEN case of the Monte Carlo experiment.

P̂n(h) ||∇2h||2L2(dµ̂) ||∇2h||L1(dµ̂) ||∇h||2L2(dµ̂) ||∇2h||2L2(dµ̂) ||∇h||2L2(dµ̂)

λn 0.001 0.001 0.001 0.0003 0.0003

θ̂1 0.4133 0.3895 0.5479 0.43136 0.36348 (0.3698)
food-in 0.0200 0.0267 -0.0056 0.00989 0.01949 (0.0213)
food-out 0.0010 0.0006 0.0019 0.00033 0.00055 (0.0006)
alcohol -0.0195 -0.0123 -0.0171 -0.02002 -0.01241 (-0.0216)
fares 0.0106 -0.0031 -0.0001 -0.00009 -0.00173 (-0.0023)
fuel -0.0027 0.0027 0.0004 -0.00198 -0.00370 (-0.0035)
leisure 0.0208 0.0214 0.0380 0.02582 0.01897 (0.0388)
travel -0.0207 -0.0218 -0.0084 -0.00622 -0.01536 (-0.0384)

Table 3: θl for l = 1, . . . , 7 for the different penalization and γ = 0.50. In the last column in parenthesis
we have the values obtained in Blundell et al. (2007).
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Figure 2: Engel curves for quantiles γ = 0.25 (dash), 0.50 (solid), 0.75 (dot-dash). P̂n(h) = ||∇2h||2L2(dµ̂)

with λn = 0.001 (1st row); P̂n(h) = ||∇2h||L1(dµ̂) with λn = 0.001 (2nd row); P̂n(h) = ||∇h||2L2(dµ̂) with

λn = 0.003 (3rd row); P̂n(h) = ||∇2h||2L2(dµ̂) with λn = 0.0003 and γ = 0.5 (solid) and BCK (dash) (4th

row); P̂n(h) = ||∇h||2L2(dµ̂) with λn = 0.0003 and γ = 0.5 (solid) and BCK (dash) (5th row).
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