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Abstract

We propose an alternative Ratio Statistic for measuring predictability of stock prices. Our statistic is

based on actual returns rather than logarithmic returns and is therefore better suited to capturing price

predictability. It captures not only linear dependence in the same way as the variance ratio statistics of

Lo and MacKinlay (1988) but also some nonlinear dependencies. We derive the asymptotic distribution of

the statistics under the null hypothesis that simple gross returns are unpredictable after a constant mean

adjustment. This represents a test of the weak form of the E�cient Market Hypothesis. We also consider the

multivariate extension, in particular, we derive the restrictions implied by the EMH on multiperiod portfolio

gross returns. We apply our methodology to test the gross return predictability of various �nancial series.

JEL classi�cation: C10, C22, G10, G14

Keywords: Variance Ratio Tests, Martingale, Predictability

1 Introduction

Variance ratio tests (Cochrane ,1988; Lo and MacKinlay, 1988; Poterba and Summers, 1988)
are widely used to test the (weak form of) E�cient Market Hypothesis (EMH) of no pre-
dictability of asset returns. One particular advantage of the variance ratio test over the alter-
natives, such as the standard Box-Pierce statistic1, is that the direction of the ratio depends
on all the �rst k autocorrelations and their relative magnitudes, thus providing the direc-
tion of the predictability. The original Variance Ratio test, developed by Lo and MacKinlay
(1988) and all other modi�cations thereof focus on the log return predictability, where the
log return is de�ned to be the �rst di�erence of the log prices, i.e., rt := logPt − logPt−1.
Although very convenient, log returns are just an approximation of the actual return de�ned

*We thank Dario Bonciani and Steve Thiele for helpful comments and suggestions and the Cambridge INET Institute for

�nancial support.
�Faculty of Economics, University of Cambridge, Sidgwick Avenue, Cambridge CB3 9DD, United Kingdom, email:

obl20@cam.ac.uk.
�Faculty of Economics, University of Cambridge, Sidgwick Avenue, Cambridge CB3 9DD, United Kingdom, email:

es599@cam.ac.uk.
1Recall that the Box-Pierce Q statistic involves just the squared autocorrelations, i.e. Q = T

∑P
j=1 ρ̂

2
j .
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by Rt := Pt
Pt−1
− 1, which is much harder to work with. Due to its convenience, most tests

of the EMH were developed for the log returns. Here we focus directly on the simple gross
return Rt:=

Pt
Pt−1

and derive an alternative ratio statistics to test the hypothesis that risk
adjusted gross returns are a martingale di�erence sequence.

Throughout the paper "=⇒" denotes convergence in distribution.

2 Test Statistic

Suppose that stock prices Pt obey the martingale hypothesis (after a constant risk adjustment

which we take to be represented by µ), or more precisely suppose that the gross return series

satis�es

E [Rt+1 |Ft ] = E

[
Pt+1

Pt
|Ft
]

= (1 + µ) (1)

for each t, where Ft = σ(Pk, k ≤ t) is a sigma-algebra, containing current and past prices

and µ is a constant. The gross return over the most recent j periods can be written as

Rt+j(j) =
Pt+j
Pt

=
Pt+j
Pt+j−1

× Pt+j−1
Pt+j−2

× · · · × Pt+1

Pt
= Rt+1 ×Rt+2 × . . .×Rt+j, (2)

and by the law of iterated expectations it follows that

E [Rt+j(j) |Ft ] = (1 + µ)j ≡ µj (3)

for all j, i ∈ Z and all t. For motivation we are comparing the mean of K period gross returns

with the mean of one period gross returns.

τK =
E [Rt+K(K)]

EK [Rt+1]
= 1 (4)

This ratio is the basis of our testing strategy. Alternative statistic τK,L,α,β can be written as

τK,L,α,β ≡
(E [Rt+K(K)])α

(E [Rt+L(L)])β
= 1, (5)

where β/α = K/L. Unlike the usual variance ratio statistics, this quantity only depends

on the �rst moments of gross returns, but we show below how this quantity captures linear

dependence under the alternative hypothesis.

Forming the sample analogue of τK,L,α,β and approximating it with the �rst order Taylor
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expansion we get:

τ̂K,L,α,β − 1 ≈ αµα−1K (µ̂K − µK)

µβL
− βµαK (µ̂L − µL)

µβ+1
L

=
α (µ̂K − µK)

µK1
− β (µ̂L − µL)

µL1
.

Suppose that we observe a sample of prices on an unequally spaced grid {t1, . . . , tT}, Pti ,
i = 1, . . . , T. De�ne the spacing of the observations δi = ti+1 − ti ∈ Z+, for i = 2, . . . , T ;

regular sampling would have δi = 1 for all i, but other structures are encountered in practice.

Then de�ne for j = 1, 2, . . .

µ̂j =
1

Tj

∑
{i:δi=j}

Pti+1

Pti
=

1

Tj

∑
{i:δi=j}

Pti+j
Pti

, (6)

where Tj =
∑T−1

i=1 1 {δi = j} is the number of observations available to compute the j period

return. In the special case that the observations are equally spaced, the spacing is δi =

ti+1 − ti = 1. Then de�ne for j = 1, 2, . . .

µ̂j =
1

T − j

T−j∑
t=1

Pt+j
Pt

and we might take L = 12 and

τ̂K =
µ̂K

(µ̂1)
K
. (7)

Although we focus here on this particular statistic, alternative statistics and their limiting
distributions are discussed in the Appendix 2.

3 Distribution Theory

We now turn to the distribution theory of τ̂K under the null hypothesis. We shall assume
that the observations are recorded at equally spaced intervals.

De�ne the sequence

ut:t+K ≡
Pt+K
Pt
− (1 + µ)K = Rt+K(K)− (1 + µ)K , (8)

which determines the estimation error in µ̂K . We consider two di�erent cases, namely the
"M -dependent" case where we take ut:t+K to be the 2(K − 1)- dependent sequence, and the

2Note that we could analagously to CLM 2.4.22 calculate µ̂j using non-overlapping observations so that µ̂noj =

1
M

∑M
k=1

Pjk+1

Pjk+1−j
, where Mj + 1 = T.
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mixing case, where we allow ut:t+K to be an α−mixing process.3

3.1 M(T )-dependent Case

Let Zt,K be the following 2× 1 vector

Zt,K =

(
ut:t+K

ut:t+1

)
=

(
Rt+K(K)− (1 + µ)K

Rt+1 − (1 + µ)

)
(9)

Under the null hypothesis, the autocorrelation function of Zt,K is zero for all lags bigger
than K − 1. Furthermore, if Rt+1 are independent then Zt,K is a 2(K − 1)-dependent sequence,
i.e., Zt,K , Zs,K are independent when |t − s| > K − 1. We will not assume that underlying
returns are independent over time, but allow them to be "M-dependent" where the order,
say L(T ),may increase with T . In fact, we will make the high level assumption that Zt,K is
M(T ) dependent sequence, which is consistent with the underlying return series being L(T )
dependent for some L(T ). In this case we can apply Berk's (1973) CLT for �nitely dependent
triangular array of random variables. Su�cient conditions (which we call MD to denote M -
dependence) are as follows.

Assumption MD

MD1. For some δ > 0, for all t, l E
[
|Zlt,K |2+δ

]
≤ C < ∞ where l = 1, . . . , L with L being

the row rank of Zt,K and C is a constant.

MD2. For all i, j, var
(∑j

t=i+1 Zlt,K

)
≤ (j − i)C.

MD3. The limit below exists and is positive and �nite

lim
T→∞

1

T
var

(
T−K∑
t=1

Zt,K

)
≡ Ω.

MD4. As T →∞, M(T )2+2/δ/T → 0.

For a stationary process, condition MD2 obviously holds; for nonstationary process maybe

a further explanation is required. The moment condition MD1 seems natural. A su�cient

condition would be: for some δ > 0, for all t,

E
[
Rt+K(K)2+δ

]
+ E

[
R2+δ
t

]
≤ C <∞

We can apply this to the case where Rt+1 is an independent sequence, in which case

3The special case of Rt+1 being an i.i.d. sequence is considered in the Appendix 1.
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M(T ) = K − 1, where K is �xed so MD4 is automatically satis�ed. However, we allow
the gross one period returns to be L(T ) dependent, where M(T ) = (K − 1)L(T ) satis�es
condition MD4.

4 Mixing case

We next allow Zt,K , de�ned by eq. (9), to be the α− mixing sequence. Let Ft be the natural
�ltration {Rt,Rt−1, . . .}. For this case the su�cient conditions (which we denote by M to
denote mixing) for applying the CLT are as follows

Assumption M

M1. For all t, Zt,K satis�es E[Zt,K |Ft] = 0, and the following limit exists

lim
T→∞

1

T
var

(
T−K∑
t=1

Zt,K

)
.

Denote the above limit by Ω.

M2. Zt,K is α-mixing with coe�cient α(m) of size r/(r − 1), where r > 1, such that for all
t and for any j ≥ 0, there exists some δ > 0 for which E|ZitZl,t−j|(r+δ) < ∆ < ∞ for
all i, l = 1, 2.

Under Assumptions M1 and M2 the result in eq. (10) holds. Note that one can replace
the mixing condition on Zt,K by the same condition on Rt. These conditions do not require
stationarity but do require some uniform bound on moments and mixing.

4.1 Central Limit Theorem

De�ne

AK =

(
1

(1 + µ)K
,
−K

(1 + µ)

)ᵀ

.

Theorem 1. Suppose that Assumptions MD1-MD4 or Assumptions M1-M2 are satis�ed.

Then
√
T (τ̂K − 1) =

1√
T

T−K∑
t=1

A
ᵀ

KZt,K + op(1) =⇒ N(0,WK), (10)

where WK ≡ AKΩA
ᵀ

K and Ω is de�ned by eq. (11).

The proof of Theorem 1 is provided in the Appendix 1. In our case, Zt,K and Zt+j,K are
uncorreltated for |j| ≥ K, and the form of the asymptotic variance is simpler

5



Ω = lim
T→∞

1

T

T−K∑
t=1

EZt,KZᵀ

t,K +

±(K−1)∑
j=±1

(
1− j

T −K

)
EZt,KZ

ᵀ

(t+j),K

 . (11)

5 Standard errors and bias correction

This secton is aimed at providing empirical implementation of the Mean Ratio statistics τ̂K ,

including the bias correction, and inference based on the asymptotic result stated in the

Theorem 1. First note that there is a simple expression for the asymptotic variance, namely

WK ≡ A
ᵀ

KΩAK =
1

(1 + µ)2K
ΥK +

K2

(1 + µ)2
Υ1 −

2K

(1 + µ)K+1
ΥK1, (12)

where Υ1 and ΥK are given by:

Υ1 ≡ lim
T→∞

1

T

∑
t

E [(Rt+1 − (1 + µ)) (Rt+1 − (1 + µ))] = γ1(0)

ΥK ≡ lim
T→∞

1

T

∑
t

∑
s

E
[(
Rt+K(K)− (1 + µ)K

) (
Rs+K(K)− (1 + µ)K

)]
= γK(0)+

±(K−1)∑
j=±1

γK(j)

ΥK,1 ≡ lim
T→∞

1

T

∑
t

∑
s

E
[(
Rt+K(K)− (1 + µ)K

)
(Rs+1 − (1 + µ))

]
= γK,1(0) +

K−1∑
j=1

γK,1(j).

The detailed derivation of this result is provided in the proof of Theorem 1 in the Appendix

1. Empirically, we should estimate WK as follows

ŴK =
1

(1 + µ̂)2K
Υ̂K +

K2 − 2K

(1 + µ̂)2
Υ̂1 −

2K

(1 + µ)K+1
Υ̂K1 (13)

Υ̂1 ≡ γ̂1(0) and Υ̂K ≡ γ̂K(0) +

±(K−1)∑
j=±1

γ̂K(j) (14)

with

γ̂K(j) =
1

T − j −K

T−j−K∑
t=j+1

ût:t+K ût+j:t+j+K , (15)

where ût:t+K = Rt+K(K) − (1 + µ̂)K and µ̂ = µ̂1 − 1. Then, ŴK → WK with probability

one. The standard errors can be then easily derived from eq. (12) as the square root of the

corresponding variance ŴK .
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Recall, however, that τ̂K is formed as a ratio of two estimated means:

τ̂K =
µ̂K

(µ̂1)K
,

which may result in the need of the �nite sample bias correction. And indeed, forming the
second-order Taylor expansion of τ̂K we have

τ̂K − 1 ' µ̂K − µK
(µ1)

K
−K µK

(µ1)
K+1

(µ̂1 − µ1) +
K(K + 1)µK

2 (µ1)
K+2

(µ̂1 − µ1)
2

' µ̂K − µK
(1 + µ)K

− K

(1 + µ)
(µ̂1 − µ1) +

K(K + 1)

2 (1 + µ)2
(µ̂1 − µ1)

2 .

Taking expectations of the above expression we can deduce that the bias corrected estimator

of τ̂ bcK is given by

τ̂ bcK = τ̂K −
K(K + 1)V̂1

2 (µ̂1)
2 (T − 1)

, (16)

where V̂1 estimates consistently the asymptotic variance of
√
T (µ̂1 − µ1) , speci�cally,

V̂1 =
1

T − 1

T−1∑
t=1

(
Rt+1 −R

)2
, R =

1

T − 1

T−1∑
t=1

Rt+1.

De�ne:

seK ≡
√
WK

T
and ŝeK ≡

√
ŴK

T −K
. (17)

Accounting for the bias correction and estimated standard errors, we obtain the following.

Theorem 2. Suppose that Assumptions MD1-MD4 or Assumptions M1-M2 are satis�ed.

Then
τ̂ bcK − 1

ŝeK
=⇒ N(0, 1) (18)

where τ̂ bcK and ŝeK are de�ned by eq. (17) and (16).

This version of the CLT for our Mean Ratio statistic is particularly convenient for empirical
implementations.

Remark 1. Note that the expression (12) invokes 2(K − 1) autocovariances of Rt+K

and K − 1 covariances between Rt+K and Rt+1, thus WK may or may not be a positive

number. This is a well-known problem in long-run variance estimation and di�erent methods

exist to ensure that the limiting variance is positive-de�nite (see Andrews (1991), Newey
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and West (1987) among others). Majority of the methods are based on the proper scaling

of the autocovariances such that the variance terms doniminate, which, however, may come

at the price of the distorted empirical size of the test statistic. An existing alternative to

deal with this issue is to use the subsampling procedure to directly approximate the limiting

distribution, see Politis et al. (1999).

6 Subsampling

With some abuse of notation, the centered and properly scaled test statistic, call it TK , can

be re-written as a function of the data {Rt : t = 1, . . . , T} :

TK =
√
T [τ̂K(R1, . . . ,RT )− 1] .

Let

GT (x) = Pr
(√

T [τ̂K(R1, . . . ,RT )− 1] ≤ x
)

(19)

denote the distribution function of WK . Let τ̂K,b,t be equal to the statistic τ̂K but evaluated

at the subsample {Rt, . . . ,Rt+b−1} of size b, i.e.,

τ̂K,b,t = τ̂K(Rt,Rt+1, . . . ,Rt+b−1) for t = 1, . . . , T − b+ 1.

We note that each subsample of size b (taken without replacement from the original data) is

indeed a sample of size b from the true sampling distribution of the original data. Hence,

it is clear that one can approximate the sampling distribution of TK using the distribution

of the values of τ̂K,b,t computed over T − b + 1 di�erent subsamples of size b. That is, we

approximate the sampling distribution GT of TK by

ĜT,b(x) =
1

T − b+ 1

T−b+1∑
t=1

1
(√

b (τ̂K,b,t − τ̂K) ≤ x
)
.

Let gT,b(1− α) denote the (1− α)-th sample quantile of ĜT,b(·), i.e.,

gT,b(1− α) = inf{w : ĜT,b(w) ≥ 1− α}.

We call it the subsample critical value of signi�cance level α. Thus, we reject the null hypoth-

esis at the signi�cance level α if TK > gT,b(1 − α). The computation of this critical value is

not particularly onerous, although it depends on how big b is. The subsampling method has

been proposed in Politis and Romano (1994) and is thoroughly reviewed in Politis, Romano

and Wolf (1999). It works in many cases where the standard bootstrap fails: in heavy tailed
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distributions, in unit root cases, in cases where the parameter is on the boundary of its space,

etc.

We now show that our subsampling procedure works under a very weak condition on b.

In many practical situations, the choice of b will be data-dependent, see Linton, Maasoumi

and Whang (2005, Section 5.2) for some methodology for choosing b. To accommodate such

possibilities, we assume that b = b̂T is a data-dependent sequence satisfying

Assumption C: Pr[lT ≤ b̂T ≤ uT ]→ 1 where lT and uT are integers satisfying 1 ≤ lT ≤
uT ≤ T, lT →∞ and uT/T → 0 as T →∞.

The following theorem shows that our test based on the subsample critical value has

asymptotically correct size:

Theorem 3: Suppose Assumptions A, B, and C hold. Then, under the null hypothesis

H0,

lim
T→∞

Pr[WK > gT,b̂T (1− α)] ≤ α.

Theorem 3 shows that our test based on the subsampling critical values has asymptotically

valid size under the null hypothesis. Under additional regularity conditions, we can extend

this pointwise result to establish that our test has asymptotically correct size uniformly over

the distributions under the null hypothesis, using the arguments of Andrews and Shi (2013)

and Linton, Song and Whang (2010). For brevity, we do not discuss the details of this issue

in this paper.

We next establish that the test ST based on the subsampling critical values is consistent

against the �xed alternative H1.

Theorem 4: Suppose that Assumptions A, B, and C hold. Then, under the alternative

hypothesis H1,

lim
T→∞

Pr[WK > gT,b̂T (1− α)] = 1.
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7 Interpretation under the alternative

In this section we discuss the behaviour of the population statistics under the generic sta-

tionary alternative to (1). For illustration consider the special case K = 2, when

E
[
Pt+2

Pt

]
E2
[
Pt+1

Pt

] =
E [(1 + µ+R1 − (1 + µ)) (1 + µ+R2 − µ)]

(1 + µ)2

=
(1 + µ)2 + cov(R1,R2)

(1 + µ)2

= 1 +
γ1(0)

(1 + µ)2
.

The second term captures the linear autocovariances and follows the same direction as the

usual variance ratio statistics applied to log returns. This shows that our ratio will be one

if and only if γ1(0) = 0, where γ1(0) is the �rst order autocovariance of the net/gross return

series. In general, the following formula holds

E [Rt+K(K)]

EK [Rt+1]
= 1 +

K

(1 + µ)2

K−1∑
j=1

(
1− j

K

)
γ(j)

+
(K − 2)E[(Rt+1 − ERt+1) (Rt+2 − ERt+2) (ERt+3 − ERt+3)]

(1 + µ)3

+
(K − 3)E[(Rt+1 − ERt+1) (Rt+2 − ERt+2) (ERt+4 − ERt+4)]

(1 + µ)3

+ . . .+
E[(Rt+1 − ERt+1) (Rt+2 − ERt+2) . . . (ERt+K − ERt+K)]

(1 + µ)K
.

We should associate values of the ratio greater than one with positive dependence/momentum

in stock prices and likewise a value of the ratio less than one is associated with negative de-

pendence/contrarian movements in stock prices. In the high frequency situation we might

take µ ' 0 and all the higher order terms are of smaller order and the ratio is approximately

E [Rt+K ]

E [Rt+1]
K
' 1 +K

K−1∑
j=1

(
1− j

K

)
γR(j),

which is similar to the usual variance ratio and is likewise depending on all the autocovariances

(and their relative magnitudes) in a linear fashion. The above ratio shares a similar advantage

of providing the direction of the predictability (in comparison to Box-Pierce Q statistic) and
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provides an additional advantage of dealing directly with gross returns rather than with log

returns.

8 Fads

Suppose that the true e�cient price obeys

P ∗t+1

P ∗t
= (1 + µ)Zt+1,

where Zt > 0 is iid with mean one. Suppose however that observed price is

Pt = P ∗t ηt,

where ηt > 0 is an iid (or more generally stationary) misspricing error that has mean one.

Then
Pt+1

Pt
= (1 + µ)Zt+1

ηt+1

ηt
.

It follows that under the iid assumptions

E

[
Pt+1

Pt
|Ft
]

= (1 + µ)
1

ηt
,

so that the martingale structure is not present. In terms of the unconditional means we have

E

[
Pt+1

Pt

]
= (1 + µ)E

[
1

ηt

]
,

where by Cauchy-Schwarz inequality

(1 + δη) = E

[
1

ηt

]
≥ 1.

Furthermore, we have

Pt+K
Pt

= (1 + µ)K Zt+1 × . . .× Zt+K
ηt+K
ηt

,

since we obtain cancellations of the misspricing errors. It follows that

E

[
Pt+K
Pt

]
= (1 + µ)K E

[
1

ηt

]

11



and so
E
[
Pt+K
Pt

]
(
E
[
Pt+1

Pt

]K) = (1 + δη)
1−K ,

which tends to zero as K →∞. Instead we have(
E
[
Pt+K
Pt

])1/K
E
[
Pt+1

Pt

] = (1 + δη)
1/K−1 → 1

1 + δη
< 1.

In this case the long run value has an interpretation as representing the magnitude of depar-

ture from the martingale hypothesis.

9 Multivariate case

In the multivariate case, we consider directly portfolios. Similarly to the univariate case, for

assets j = 1, . . . , J de�ne

E

[
Pj,t+K
Pj,t

|Ft
]

= E [Rj,t+K(K) |Ft ] = (1 + µj)
K ≡ µj,K .

where Ft = σ(Rj,k : k ≤ t, for all j ∈ J). Let portfolio p be constructed from the assets

with weights {wj, j = 1, . . . J} such that
∑J

j=1wj = 1. It follows that for K = 1, 2, . . . the

expected gross return on the portfolio is

µp,K = E

[
J∑
j=1

wjRj,t+K(K)

]
=

J∑
j=1

wj (1 + µj)
K =

J∑
j=1

wjµj,K .

By the binomial theorem, we have

µp,K =
J∑
j=1

wj

K∑
l=0

(
K

l

)
µlj = 1 +Kµp +

K∑
l=2

(
K

l

) J∑
j=1

wjµ
l
j,

where µp =
∑J

j=1wjµj. De�ne the portfolio ratio statistic

τp,K =
E
[∑J

j=1wjRj,t+K(K)
]

(
E
[∑J

j=1wjRj,t+1

])K =
µp,K

(1 + µp)K
=

1 +Kµp +
∑K

l=2

(
K
l

)∑J
j=1wjµ

l
j

1 +Kµp +
∑K

l=2

(
K
l

)
µlp

. (20)
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If µ1 = · · · = µJ = µ, then τp,K = 1. If µj = µ+ cj/J
α for some cj with |cj| ≤ c <∞, α > 0,

and J is large, then τp,K ' 1. However, in general this is not the case, and τp,K doesn't have a

simple limit under the martingale hypothesis. We give a further interpretation of τp,K . In the

case where wj ≥ 0, we may think of µp,K as an expectation, speci�cally E∗XK , where X is

the random variable with outcome 1 + µj with probability wj. Then τp,K = E∗XK/(E∗X)K .

By Liapunov's inequality, τp,K ≥ 1 for all K. For K = 2, we have explicitly

τp,K =
E∗X2

(E∗X)2
= 1 +

var∗(X)

(E∗X)2
≥ 1.

Perhaps we might work with assets that have similar means, i.e., sets of assets within which

the cross-sectional variability of one period gross expected return is small.

We now turn to estimation of τp,K . We can form the sample analogue of µj,K , ∀ j ∈ J
and ∀ K = 1, 2, . . . < T

µ̂j,K =
1

T −K

T−K∑
t=1

Rj,t+K(K).

Then the sample analogue of τp,K is given by:

τ̂p,K =

∑J
j=1wjµ̂j,K(∑J
j=1wjµ̂j,1

)K . (21)

De�ne uj,t:t+K ≡ Rj,t+K(K)− µj,K . Making use of the �rst order Taylor expansion we get:

τ̂p,K − τp,K ≈
∑J

j=1wj (µ̂j,K − µj,K)(∑J
j=1wjµj,1

)K −K

(∑J
j=1wjµj,K(µ̂j,1 − µj,1)

)
(∑J

j=1wjµj,1

)K+1
=

=
1(∑J

j=1wjµj,1

)K
[

J∑
j=1

wj
1

T −K

T−K∑
t=1

(
uj,t:t+K −K

µj,Kuj,t:t+1∑J
j=1wjµj,1

)]
(22)

Since eq.(21) is just a linear combination of martingales adapted to the same �ltration Ft,
we still have asymptotic normality by the CLT for stationary ergodic martingale di�erence

sequences. De�ne:

ΓK(j, i) ≡ γK (j, i) (0) +

±(K−1)∑
l=±1

γK (j, i) (l) (23)

Γ1(j, i) ≡ γ1 (j, i) (0) (24)
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to be the longish-run variances of uj,t:t+K and uj,t:t+1 respectively, where:

γK(j, i)(l) = E [Rj,t+K(K)Ri,t−l+K(K)]− µj,Kµi,K for l = 0, 1, 2, . . . (25)

γ1(j, i)(l) = E [Rj,t+1Ri,t−l+1]− µj,1µi,1 for l = 0, 1, 2, . . . (26)

De�ne also

ΓK,1(j, i) ≡ γK,1(j, i)(0) +

(K−1)∑
l=1

γK,1(j, i)(l), (27)

where

γK,1(j, i)(l) = E [Rj,t+K(K)Ri,t−l+1]− µj,Kµi,1 for l = 0, 1, 2, . . . (28)

Theorem 3. Suppose that the gross return process is stationary, ergodic and square-integrable

∀ j ∈ J , and E [Rj,t+1 |Ft ] = (1 + µj) = µj,1 ∀ j ∈ J, where Ft = σ(Rj,k : k ≤ t, for all j ∈
J). Then √

T (τ̂p,K − τp,K) =⇒ N(0,MVK)

with variance MVK given by

MVK =
J∑
j=1

J∑
i=1

wjwi

(
ΓK(j, i)− 2Kµj,K

µp
ΓK,1(j, i) +

K2µj,Kµi,K
µ2
p

Γ1(j, i)

)
,

where ΓK(j, i) ,Γ1(j, i) and ΓK,1(j, i) are de�ned by eq. (23)-(27) and µp ≡
∑J

j=1wj(1 + µj).

The proof of Theorem 3 can be found in the Appendix 1.

10 Numerical Results

10.1 Applications

We next employ our methodology on di�erent datasets: stock market index, high and low-

cap stocks, and exchange rate data. We �rst present the graphs for the shape of the test

statistics calculated for daily S&P500 and Dow Jones stocks prices.
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Figure 1: The above �gure shows the shape of the ratio statistics τ̂K for S&P500 daily prices separately for each

decade starting from 1954.

Figure 2: The above �gure shows the shape of the ratio statistics τ̂K for several Dow Jones stocks.
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Figure 3: The �gure plots ratio τ̂K for S&P500 daily prices. The dotted lines represent 95% con�dence bands
obtained with subsampling.

In fact, empirically we �nd that it is not possible to reject the null (of martingale hy-

pothesis) for S&P500 prices for small K. The rejection occurs only at K = 90 days, i.e.

approximately 3 months horizon. Similar picture can be seen for the high-cap stock, which

we choose to be IBM. The prices are spanned from January, 1962 till August, 2014.
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Figure 4: The �gure plots ratio τ̂K for IBM daily prices. The dotted lines represent 95% con�dence bands
obtained with subsampling.
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Similar to S&P500 prices, the null of mean predictability is not rejected at short horizons,

the rejection occurs only at K ≈ 100. We next employ out test statistics for the exchange

rate data, namely GBP/US daily prices, spanned from April, 1971 till August, 2014.
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Figure 5: The �gure plots ratio τ̂K for GBP/US exchange rate daily prices. The dotted lines represent 95%
con�dence bands obtained with subsampling.

For daily GBP/US prices we do not reject the null for short horizons, but do so for

K ≈ 175. In comparison to S&P500 it takes almost double the time (i.e. horizon) for the

null to be rejected, providing an evidence that there is even less predictability for exchange

rate data even at long horizons such as half a year.

And �nally we apply the methodology on the low cap stocks, which sometimes exhibit

di�erent (from high-cap stocks) behavior. We choose INFN (Informational Technology) to

represent the low-cap stock. It turns out, that although, τK decreases more rapidly compared

to the high-cap stocks, the overall picture is very similar.
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Figure 6: The �gure plots ratio τ̂K for INFN daily prices. The dotted lines represent 95% con�dence bands
obtained with subsampling.

10.2 Simulation Study

In this section we present Monte Carlo simulations to investigate a power and a size of the

univariate and multivariate versions of the Mean Ratio statistic. The calculations below show

the results for the theoretical ratio in Theorem 1, when asymptotic variance is calculated

according to eq. (12), however in practical applications whenever subsampling is used to

calculate the standard errors the correct size is guaranteed by construction.

10.2.1 Size

To investigate the size of the test statistics we simulate the data under the H0 as follows

H0 : Pt+1 = (1 + µ)Ptut+1

where ut ∼ U(0, 2) such that E[ut] = 1, µ = 0.3 and P1 = 1. Then under H0 it holds that

E

[
Pt+K
Pt

]
= E[Rt+K ] = (1 + µ)K

Multivariate version uses the same H0 for each of j = 1, . . . , J assets and portfolio is formed

with equal weights wj = 1/J ∀ j ∈ J .
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Table 1: Empirical size of the nominal 5% Univariate Mean Ratio statistics.

T = 5000 T = 10000

# of lags α = 5% α = 10% α = 5% α = 10%

K=2 0.0522 0.1047 0.0520 0.1051

K=4 0.0569 0.1054 0.0495 0.1018

K=8 0.0605 0.1117 0.0591 0.1099

K=10 0.0749 0.1262 0.0679 0.1191

K=12 0.0938 0.1584 0.0869 0.1321

K=16 0.1603 0.2184 0.1337 0.1855

Note: Number of replications N = 10000.

For large number of lags, i.e., K ≤ 10 the Univariate test has a proper size, however

simulations show that for K > 10 the test statistic has severe size distortions that do not

recover even when the sample size T becomes relatively large. In fact, this will hold not only

for the univariate version but for the multivariate test statistics as well.

Table 2: Empirical size of the nominal 5% Multivariate Mean Ratio statistics.

# of lags/assets J=2 J=4 J=8 J=16 J=24

K=2 0.0521 0.0527 0.0489 0.0528 0.0510

K=4 0.0525 0.0467 0.0530 0.0590 0.0610

K=8 0.0609 0.0544 0.0538 0.0470 0.0480

K=10 0.0741 0.648 0.0593 0.0554 0.0550

K=16 0.1272 0.1023 0.0921 0.0828 0.0760

Note: Simulations are based on N = 10000 replications, T = 5000.

As in Table 1 for the univariate test statistics the Multivariate analogue has a proper

empirical size for K < 10. This result does not depend on the number of assets, rather the

number of lags is what matters. For large values of K the test, similar to the univariate case,

has severe size distortions. This problem can not be resolved by simply increasing the sample

size T as shown in the Table 3 below, unless the number of assets is very small, e.g. J = 2.
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Table 3: Empirical size of the nominal 5% Multivariate Mean Ratio statistics.

# of lags/assets J=2 J=4 J=8 J=16 J=24

K=16 0.0590 0.0870 0.0610 0.0610 0.0600

K=20 0.0490 0.1030 0.0900 0.0860 0.0790

Note: The table presents the empirical size of 5% nominal Multivariate statistics for large (i.e.

K > 10) lags. Simulations are based on N = 1000 replications, T = 15000. The reduced number

of replications is due to dimensionality problem.

10.2.2 Power

In order to investigate how powerful is our Mean Ratio Statistic against di�erent alternatives,

we consider two alternatives: H
(1)
1 , representing slowly varying mean and thus being close

to H0; and H
(2)
1 under which prices follow stationary AR(2) process - an alternative quite

di�erent to H0. Consider �rst the �st alternative:

H
(1)
1 : Pt+1 =

(
1 + µt + εt

)
Pt

where εt ∼ N (0, 0.5)4. Once again we have E[εt] = 0 and

E

[
Pt+K
Pt

]
= E[Rt+K ] = (1 + µt)

K

In order to simulate µt we simulate returns rt according to the GARCH(1,1) model and de�ne

µt = ert − 1,

where

rt = σtzt

σ2
t = α + βσ2

t−1 + γr2t−1

with zt ∼ N (0, 1) and [α, β, γ] = [0.01, 0.95, 0.03] and σ2
1 = 0.

The other alternative we consider is that prices follow a stationary AR(2) process.

H
(2)
1 : Pt+1 = α0 + α1Pt + α2Pt−1 + ηt,

4In this case we chose σ2
ε = 0.5 such that prices stay positive. This approach is easier than imposing an indicator function

which will depend on µt
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where ηt ∼ N (0, 1) and α0 = 0.1; α1 = 0.9; and α2 = 0.8.

As before for the multivariate version we simulate prices according to the same H
(1)
1 and H

(2)
1

for each of j = 1, . . . , J assets and portfolio is formed with equal weights wj = 1/J ∀ j ∈ J .

Table 4: Power of the Univariate Test against H1
1 and H2

1 .

K H1
1 H2

1

2 0.0890 1

4 0.0770 0.9998

8 0.0630 0.5196

16 0.0611 1

Note: Simulations are based on N = 5000 replications, T = 5000. Nom-

inal test size is 5%.

For the Multivariate Mean Ratio test the power against H1
1 , similarly to the univariate

test, is quite low and doesnt exceed 9% no matter how big J is. This result is quite expected

since H1
1 was speci�cally designed to be as close to H0 as possible. More interesting question

is how the Multivariate test statistic peforms when the alternative is quite di�erent from the

null. The table below answers this question.

Table 5: Power of the Multivariate Test Statistics against H2
1

# of lags/assets J=2 J=4 J=8 J=16 J=24

K=2 1.0000 1.0000 1.0000 1.0000 1.0000

K=4 1.0000 1.0000 1.0000 1.0000 1.0000

K=6 0.2656 0.8522 0.9998 1.0000 1.0000

K=10 0 0.9990 1.0000 1.0000 1.0000

K=12 1.0000 1.0000 1.0000 1.0000 1.0000

K=16 1.0000 1.0000 1.0000 1.0000 1.0000

K=20 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Simulations are based on N = 5000 replications, T = 5000. Nominal test size is 5%.
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11 Conclusion

We propose an alternative Ratio Statistic for measuring mean predictability, which represents

the test of the weak form of the EMH. We propose di�erent versions the statistics can be

stated and derive their limiting distributions. Applying our methodology to di�erent �nancial

series we conclude that there is no mean predictability at short horizons, however the null of

the mean predictability is rejected at longer (K > 80 days) horizons.
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Appendix 1

Proof of Theorem 1.

First observe that

VT,K ≡ Var
{√

T
(
µ̂K − (1 + µ)K

)}
= Var

{
(T −K)0.5

(
1

T −K

T−K∑
t=1

Rt+K(K)− (1 + µ)K
)}

Var

{
(T −K)−0.5

T−K∑
t=1

[
Rt+K(K)− (1 + µ)K

]}
= Var

(
(T −K)−0.5

T−K∑
t=1

ut:t+K

)
=

=
T−K∑
t=1

T−K∑
s=1

(
1

T −K

)
cov (ut:t+K , us:s+K) =

T−K∑
t=1

T−K∑
s=1

(
1

T −K

)
E (ut:t+K · us:s+K) =

1

T −K

T−K∑
t=1

T−K∑
s=1

γt−s = γ0 + 2
T−K−1∑
j=1

(
T −K − j
T −K

)
γj = γ0 + 2

T−K−1∑
j=1

(
1− j

T −K

)
γj

VK ≡ lim
T→∞

VT,K = γ0 +
∞∑

j=−∞

γj = γ0 +

±(K−1)∑
j=±1

γj

We have for K = 1, 2, . . . and j = 0, 1, 2, . . . , K − 1

γK(j) = cov (Rt+K(K),Rt+j+K(K))

= E [Rt+K(K)Rt+j+K(K)]− (1 + µ)2K

=

{
(1 + µ)j E

[
R2
t+KR2

t+K−1 · · ·R2
t+jRt+j−1 . . .Rt+1

]
− (1 + µ)2K if j > 0

(1 + µ)−j E
[
R2
t+j+KR2

t+j+K−1 · · ·R2
tRt−1 . . .Rt+j

]
− (1 + µ)2K if j < 0

Furthermore

γ1(0) = var

(
1

T

∑
t

Rt+1

)
=

1

T 2

∑
t

var (Rt+1)

because Rt+1 − E[Rt+1] is a martingale di�erence sequence.

We start by performing the �rst-order Taylor expansion of τ̂K − 1 around the point (µK , µ1)
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is given by:

τ̂K − 1 ' µ̂K − µK
(µ1)

K
−K µK

(µ1)
K+1

(µ̂1 − µ1)

=
µ̂K − (1 + µ)K

(1 + µ)K
− K

(1 + µ)
(µ̂1 − (1 + µ))

=
1

(1 + µ)K
1

T −K

T−K∑
t=1

{[
Rt+K(K)− (1 + µ)K

]
−K (1 + µ)K−1 [Rt+1 − (1 + µ)]

}
=

1

(1 + µ)K
1

T −K

T−K∑
t=1

{
ut:t+K −K (1 + µ)K−1 ut:t+1

}

De�ne

Υ1 ≡ lim
T→∞

1

T

∑
t

∑
s

E [(Rt+1 − (1 + µ)) (Rs+1 − (1 + µ))] = γ1(0)

and

ΥK ≡ lim
T→∞

1

T

∑
t

∑
s

E
[(
Rt+K(K)− (1 + µ)K

) (
Rs+K(K)− (1 + µ)K

)]
= γK(0)+

±(K−1)∑
j=±1

γK(j)

to be the "long-runish" variances of ut:t+1 and ut:t+K respectively, where γK(j) are de�ned

above

De�ne also

ΥK,1 ≡ lim
T→∞

1

T

∑
t

∑
s

E
[(
Rt+K(K)− (1 + µ)K

)
(Rs+1 − (1 + µ))

]
= γK,1(0) +

K−1∑
j=1

γK,1(j)

Since E
[√

T (τ̂K − 1)
]

= 0, then the asymptotic variance of
√
T (τ̂K − 1) is given by
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WT,K ≡ Var
{√

T (τ̂K − 1)
}

=
1

(1 + µ)2K
1

(T −K)
Var

{
T−K∑
t=1

[
ut:t+K −K (1 + µ)K−1 ut:t+1

]}
=

1

(1 + µ)2K
1

(T −K)

{
Var

[
T−K∑
t=1

ut:t+K

]}
+

1

T −K
K2 (1 + µ)2(K−1)

(1 + µ)2K

{
Var

[
T−K∑
t=1

ut:t+1

]}
−

− 1

T −K
2K (1 + µ)K−1

(1 + µ)2K

{
Cov

(
T−K∑
t=1

ut:t+K ,
T−K∑
t=1

ut:t+1

)}
=

1

(1 + µ)2K (T −K)

T−K∑
t=1

T−K∑
s=1

E (ut:t+K · us:s+K)+
K2

(1 + µ)2 (T −K)

T−K∑
t=1

T−K∑
s=1

E (ut:t+1 · us:s+1)−

− 2K

(1 + µ)K+1 (T −K)
E

[
T−K∑
t=1

ut:t+K ·
T−K∑
t=1

ut:t+1

]
=

1

(1 + µ)2K

T−K∑
t=1

T−K∑
s=1

1

T −K
E (ut:t+K · us:s+K) +

K2

(1 + µ)2

T−K∑
t=1

T−K∑
s=1

1

T −K
E (ut:t+1 · us:s+1)−

− 2K

(1 + µ)K+1

1

T −K
E

[
T−K∑
t=1

ut:t+K ·
T−K∑
t=1

ut:t+1

]
=

1

(1 + µ)2K

[
γK (0) + 2

T−K−1∑
j=1

(
1− j

T −K

)
γK (j)

]
+

K2

(1 + µ)2

[
γ1 (0) + 2

T−K−1∑
j=1

(
1− j

T −K

)
γ1 (j)

]

− 2K

(1 + µ)K+1

[
γK,1(0) + 2

T−K−1∑
j=1

(
1− j

T −K

)
γK,1(j)

]

Taking the limit, we get the asymptotic variance:

WK ≡ lim
T→∞

WT,K =
1

(1 + µ)2K

γK (0) +

±(K−1)∑
j=±1

γK (j)

+
K2

(1 + µ)2

γ1 (0) +

±(K−1)∑
j=±1

γ1 (j)

−
− 2K

(1 + µ)K+1

γK(K − 1) +

±(K−1)∑
j=±1

γK(K − 1 + j)


Making use of Υ1, ΥK and ΥK,1, the asymptotic variance WK can be expressed as

WK =
1

(1 + µ)2K
ΥK +

K2

(1 + µ)2
Υ1 −

2K

(1 + µ)K+1
ΥK,1
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This completes the proof.

Remark 2. If we assume that Rt+1 is i.i.d. sequence, then the asymptotic variance of the

statistics τ̂K is given by the following simpli�ed formula

var(τ̂K) =
1

(1 + µ)2K
var(µ̂K) +

K2

(1 + µ)2
var(µ̂1)−

2K

(1 + µ)K+1
cov(µ̂K , µ̂1),

where

var(µ̂1) = E

( 1

T

T−1∑
t=1

Rt+1 − (1 + µ)

)2
 =

1

T
var(Rt+1).

and

var(µ̂K) =
1

T

([(
var(Rt+1) + (1 + µ)2

)K
− (1 + µ)2K

]
+

+ 2
K−1∑
j=1

[
(1 + µ)2(K−j)

(
var(Rt+1) + (1 + µ)2

)j
− (1 + µ)2K

])

Finally,

cov(µ̂K , µ̂1) =
1

T
K
(

(1 + µ)K−1
[
var(Rt+1) + (1 + µ)2

]
− (1 + µ)K+1

)
Proof of Theorem 2.

The �rst-order Taylor expansion of τ̂p,K is given by:

τ̂p,K −
∑J

j=1wjµj,K(∑J
j=1wjµj,1

)K ≈
∑J

j=1wj (µ̂j,K − µj,K)(∑J
j=1wjµj,1

)K −K
∑J

j=1wjµj,K (µ̂j,1 − µj,1)(∑J
j=1wjµj,1

)K+1
=

=
1(∑J

j=1wjµj,1

)K
[

J∑
j=1

wj
1

T −K

T−K∑
t=1

uj,t:t+K −K
∑J

j=1wjµj,K
1

T−K
∑T−K

t=1 uj,t:t+1∑J
j=1wjµj,1

]
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MVT,K = V ar

√T
τ̂p,K − ∑J

j=1wjµj,K(∑J
j=1wjµj,1

)K

 =

= V ar

 √
T(∑J

j=1wjµj,1

)K
(

J∑
j=1

wj
1

T −K

T−K∑
t=1

uj,t:t+K −K
∑J

j=1wjµj,K
1

T−K
∑T−K

t=1 uj,t:t+1∑J
j=1wjµj,1

) =

T(∑J
j=1wjµj,1

)2KVar
{(

J∑
j=1

wj
T −K

T−K∑
t=1

[
uj,t:t+K −K

µj,Kuj,t:t+1∑J
l=1wlµl,1

])}
=

=
T(∑J

j=1wjµj,1

)2KVar
{

1

T −K

[
J∑
j=1

wj

T−K∑
t=1

(
uj,t:t+K −K

µj,Kuj,t:t+1∑J
l=1wlµl,1

)]}
=

=
1(∑J

j=1wjµj,1

)2K ( 1

T −K

)[ J∑
j=1

J∑
i=1

wjwi

T−K∑
t=1

T−K∑
s=1

E

(
uj,t:t+K −K

µj,Kuj,t:t+1∑J
l=1wlµl,1

)
×

×

(
ui,s:s+K −K

µi,Kui,s:s+1∑J
l=1wlµl,1

)]
=

=
1(∑J

j=1wjµj,1

)2K ( 1

T −K

)[ J∑
j=1

J∑
i=1

wjwi

T−K∑
t=1

T−K∑
s=1

E

(
uj,t:t+Kui,s:s+K −K

µj,Kuj,t:t+K∑J
l=1wlµl,1

ui,s:s+1 −

− K
µi,Kui,s:s+1∑J

l=1wlµl,1
uj,t:t+K +K2µj,Kµi,Kuj,t:t+1ui,s:s+1(∑J

l=1wlµl,1

)2

 =

=
1(∑J

j=1wjµj,1

)2K
{

J∑
j=1

J∑
i=1

wjwi

(γK(j, i)(0) +

±(T−K−1)∑
l=±1

(
T −K − l
T −K

)
γK(j, i)(l)

−
− 2K

µj,K∑J
r=1wrµr,1

γK,1(j, i)(0) +

±(T−K−l)∑
l=±1

(
T −K − l
T −K

)
γK,1(j, i)(l)

+

+K2 µj,Kµi,K∑J
r=1wrµr,1

γ1(j, i)(0)

)}
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Taking the limit as T →∞ the multivariate asymptotic variance becomes:

MVK ≡ lim
T→∞

MVT,K =
1(∑J

j=1wjµj,1

)2K
{

J∑
j=1

J∑
i=1

wjwi

(γK(j, i)(0) +

±(K−1)∑
l=±1

γK(j, i)(l)

−
−2K

µj,K∑J
r=1wrµr,1

γK,1(j, i)(0) +

±(K−1)∑
l=±1

γK,1(j, i)(l)

+K2 µj,Kµi,K∑J
r=1wrµr,1

γ1(j, i)(0)

)}

De�ne

ΓK(i, j) ≡ γK (j, i) (0) +

±(K−1)∑
l=±1

γK (j, i) (l)

and

Γ1(i, j) ≡ γ1 (j, i) (0)

to be the longish-run variances of uj,t:t+K and uj,t:t+1 respectively, where

γK(j, i)(l) ≡ lim
T→∞

1

T

∑
t

∑
s

E [Rj,t+K(K)Ri,s−l+K(K)]− µj,Kµi,K for l = 0, 1, 2, . . .

and

γ1(j, i)(l) ≡ lim
T→∞

1

T

∑
t

∑
s

E [Rj,t+1Ri,s−l+1]− µj,1µi,1 for l = 0, 1, 2, . . .

De�ne also

ΓK,1(i, j) ≡ γK,1(j, i)(0) +

(K−1)∑
l=1

γK,1(j, i)(l),

where

γK,1(j, i)(l) ≡ lim
T→∞

1

T

∑
t

∑
s

E [Rj,t+K(K)Ri,s−l+1]− µj,Kµi,1 for l = 0, 1, 2, . . .

Making use of the notation above, MVK can be expressed as

MVK =
1(∑J

j=1wjµj,1

)2K J∑
j=1

J∑
i=1

wjwi

(
ΓK(i, j)− 2K (µj,K)∑J

l=1wlµl,1
ΓK,1(i, j)+

K2µj,Kµi,K(∑J
l=1wlµl,1

)2Γ1(i, j)

)

This completes the proof.
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Appendix 2

Alternatively statistic τK can be written as

τ ′K ≡
E1/K [Rt+K(K)]

E [Rt+1]
= 1 (29)

or taking logs of the above equation we get

τ ′′K ≡ lnE [Rt+K(K)]−K lnE [Rt+1] = 0. (30)

First, consider statistics τ ′K :

τ ′K =
E1/K [Rt+K(K)]

E [Rt+1]
= 1

Forming the sample analogue of τ ′K and approximating it with the �rst order Taylor expansion

we get:

τ̂ ′K − 1 ≈ 1

K

µ
(1−K)/K
K (µ̂K − µK)

µ1

− µ
1/K
K (µ̂1 − µ1)

µ2
1

+ oP
(
T−1/2

)
=

=
1

K

µ̂K − (1 + µ)K

(1 + µ)K
− (1 + µ) [µ̂1 − (1 + µ)]

(1 + µ)2
+ oP

(
T−1/2

)
=

=
1

K

µ̂K − (1 + µ)K

(1 + µ)K
− [µ̂1 − (1 + µ)]

1 + µ
+ oP

(
T−1/2

)
=

1

K
(τ̂K − 1) + oP

(
T−1/2

)
Thus, by the CLT we have:

√
T
(
τ̂ ′K − 1

)
=⇒ N(0,

1

K2
WK)

whereWK is given in the Theorem 1. The standard errors for τ̂ ′K will be di�erent from those

of τ̂K by the factor of 1/K. However, due to the slightly di�erent Taylor expansion, the bias

correction term will be di�erent. More precisely, the second-order Taylor expansion is given
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by

τ̂ ′K−1 ≈ 1

K

µ
(1/K−1)
K (µ̂K − µK)

µ1

−µ
1/K
K (µ̂1 − µ1)

µ2
1

+
1

2

1

K

(
1

K
− 1

)
(µK)1/K−2

µ1

(µ̂K − µK)2 +

+
µ
1/K
K

µ3
1

(µ̂1 − µ1)
2 + oP

(
T−1/2

)
=

+ =
1

K

µ̂K − (1 + µ)K

(1 + µ)K
−(1 + µ) [µ̂1 − (1 + µ)]

(1 + µ)2
+

(1−K)

2K2(1 + µ)2K
(µ̂K − µK)2+

(µ̂1 − µ1)
2

(1 + µ)2
+oP

(
T−1/2

)
Taking expectations of the above expression we can deduce that the bias corrected estimator

of τ̂ ′
bc

K is given by

τ̂ ′
bc

K = τ̂ ′K −
(1−K)V̂K

2K2 (µ̂1)
2K (T −K)

+
V̂1

(µ̂1)
2 (T − 1)

, (31)

where V̂ K estimates consistently the asymptotic variance of
√
T (µ̂K − µK) , speci�cally,

V̂ K =
1

T −K

T−K∑
t=1

(
Rt+K(K)−RK

)2
, RK =

1

T −K

T−K∑
t=1

Rt+K(K).

and

V̂ 1 =
1

T − 1

T−1∑
t=1

(
Rt+1 −R1

)2
, R1 =

1

T − 1

T−1∑
t=1

Rt+1.

For the third alternative ratio statistic, which we denote τ ′′K we have:

τ ′′K = lnE [Rt+K(K)]−K lnE [Rt+1] = 0.

Forming the sample analogue and making use of the �rst order Taylor expansion we have:

τ̂ ′′K ≈
µ̂K − µK
µK

−K µ̂1 − µ1

µ1

=
µ̂K − (1 + µ)K

(1 + µ)K
−K [µ̂1 − (1 + µ)]

1 + µ
= τ̂K − 1

This means that τ̂ ′′K has the same Taylor expansion as τ̂K , and thus resulting in the same

limiting distribution: √
T τ̂ ′′K =⇒ N(0,WK)

where WK is given in the Theorem 1. Since τ̂ ′′K has the same asymptotic distribution, the

standard errors and the bias correction coincide with those of τ̂K .
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