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Abstract

This paper introduces a bivariate version of the generalized accelerated failure time
model. It allows for simultaneity in the econometric sense that the two realized outcomes
depend structurally on each other. Another feature of the proposed model is that it will
generate equal durations with positive probability. The motivating example is retirement
decisions by married couples. In that example it seems reasonable to allow for the possibility
that each partner’s optimal retirement time depends on the retirement time of the spouse.
Moreover, the data suggest that the wife and the husband retire at the same time for a non-
negligible fraction of couples. Our approach takes as a starting point a stylized economic
model that leads to a univariate generalized accelerated failure time model. The covariates
of that generalized accelerated failure time model act as utility-flow shifters in the economic
model. We introduce simultaneity by allowing the utility flow in retirement to depend on the
retirement status of the spouse. The econometric model is then completed by assuming that
the observed outcome is the Nash bargaining solution in that simple economic model. The
advantage of this approach is that it includes independent realizations from the generalized
accelerated failure time model as a special case, and deviations from this special case can be
given an economic interpretation. We illustrate the model by studying the joint retirement
decisions in married couples using the Health and Retirement Study. We provide a discussion
of relevant identifying variation and estimate our model using indirect inference. The main
empirical finding is that the simultaneity seems economically important. In our preferred
specification the indirect utility associated with being retired increases by approximately 5%
when one’s spouse retires. The estimated model also predicts that the marginal effect of a
change in the husbands’ pension plan on wives’ retirement dates is about 3.3% of the direct
effect on the husbands’.
JEL Codes: J26, C41, C3.
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1 Introduction and Related Literature

This paper introduces a new class of econometric duration models that allow for joint de-

termination of pairs of durations. This joint determination can manifest itself not only in

correlation between the durations, but also in a non-zero probability that they are equal, de-

spite their marginal distributions being continuous. The class has the generalized accelerated

failure time model as a special case.

One easy way to introduce correlation in two durations is to allow for correlation

in unobserved heterogeneity. In addition, it would be easy to allow for concurrent exits

by allowing for common shocks in the spirit of Marshall and Olkin (1967). In contrast to

this, the aim of this paper is to introduce a model in which the dependence is generated

endogenously. This is in many ways similar to introducing the correlation in a pair of linear

regressions through simultaneity as opposed to through correlation in the errors.

Our approach is to think about one individual in a pair making a transition into a

new state, where the utility in the new state depends on whether the other individual in

the pair is in the state. These utility externalities are in the spirit of de Paula (2009) and

Honoré and de Paula (2010). Those papers assume an environment where a non-cooperative

model is natural. However, when the utility-externality is positive and the individuals can

communicate, it may be more reasonable to model the observed transition times as the

outcomes of a Nash bargaining problem. In Section 2 of this paper, we set up a stylized

model that has this flavor. In doing so, we will make a number of admittedly restrictive

assumptions. Those assumptions are all driven by the goal of keeping standard continuous-

time econometric duration models as special cases of our model.

The paper applies the econometric model to joint retirement decisions within mar-

ried couples. A majority of retirees are married and many studies indicate that a significant

proportion of individuals retire within a year of their spouse. Articles documenting the joint

retirement of couples (and the datasets employed) include Hurd (1990) (New Beneficiary

Survey); Blau (1998) (Retirement History Study); Gustman and Steinmeier (2000) (Na-
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tional Longitudinal Survey of Mature Women); Michaud (2003) and Gustman and Stein-

meier (2004) (Health and Retirement Study); and Banks, Blundell, and Casanova Rivas

(2007) (English Longitudinal Study of Ageing). Even though this is especially the case for

couples closer in age, a spike in the distribution of retirement time differences at zero typ-

ically exists for most couples, regardless of the age difference. This is illustrated in Figure

1.

Figure 1: Difference in Retirement Months (Husband-Wife)

The spike in the distribution of the difference in retirement dates for husbands and

wives in Figure 1 suggests that many couples retire simultaneously. This is consistent with

the observation that 55% of respondents in the Health and Retirement Study expected to

retire at the same time as their spouses.1 There are at least two explanations for such a

phenomenon. One is that the husband and wife expect to receive correlated shocks (observ-

able or not), driving them to retirement at similar times. This is similar to a Marshall and

Olkin (1967) model, and it is the approach used by An, Christensen, and Gupta (2004) to

analyze joint retirement in Denmark. The other explanation is that retirement is jointly

1The figure corresponds to those who answer either YES or NO to the question: “Do you expect your
spouse to retire at about the same time that you do?” (R1RETSWP). It excludes those whose spouse was not
working.
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decided, reflecting the taste interactions of both members of the couple. In this paper, we

focus on the second of these explanations because it is this mechanism that corresponds to

our methodological contribution.

The distinction between the two drivers of joint retirement (which are not mutually

exclusive) is similar to the motivation for studying linear simultaneous equation models, and

it parallels the categorization by Manski (1993) (see also de Paula (2016)) of correlated and

endogenous (direct) effects in social interactions. In those literatures, the joint determination

of the outcomes of interest yi for individuals i = 1, 2 is represented by the system of equations

y1 = α1y2 + x′1β1 + ε1

y2 = α2y1 + x′2β2 + ε2,

where xi and εi, i = 1, 2 represent observed and unobserved covariates determining yi. We

want to separate the endogenous (direct) effect (the α’s) from the correlation in the ε’s.

Discerning these two sources of correlation in outcomes is relevant for analytical and policy

reasons. For example, when the estimated model does not allow for joint decision making

within the couple, the estimate of the effect of a retirement-inducing policy shock can be

misleading if the retirement dates are indeed chosen jointly. The spillover effects that result

from joint decisions invalidate, for instance, the commonly employed Stable Unit Treatment

Value Assumption used in the treatment effects literature. This prevents a clear separation

of the direct effects and the indirect effects that occur through feedback to the partner’s

retirement decision (e.g., Burtless (1990)). Furthermore, the multiplier effect induced by the

effect of one person’s retirement on the spouse is a potentially important conduit for policy.

The quantification of its relative importance is therefore paramount for both methodological

and substantive reasons.

The broader literature on retirement is abundant, and a number of papers focus-

ing on retirement decisions in a multi-person household have appeared over the last 20

years. Hurd (1990) presents one of the early documentations of the joint retirement phe-
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nomenon. Later papers confirming the phenomenon and further characterizing the correlates

of joint retirement are Blau (1998); Michaud (2003); Coile (2004a); and Banks, Blundell,

and Casanova Rivas (2007). Gustman and Steinmeier (2000) and Gustman and Steinmeier

(2004) work with a dynamic economic model in which the husband’s and wife’s preferences

are affected by their spouse’s actions, but the couple makes retirement decisions individually.2

These papers focus on Nash equilibria to the joint retirement decision, i.e., each spouse’s

retirement decision is optimal given the other spouse’s timing and vice-versa.3 More recently,

Gustman and Steinmeier (2009) present a richer (non-unitary) economic model with a solu-

tion concept that differs from a Nash equilibrium and is guaranteed to exist and be unique.

Michaud and Vermeulen (2011) estimate a version of the “collective” model introduced by

Chiappori (1992) in which (static) labor force participation decisions by husband and wife

are repeatedly observed from a panel (i.e., the Health and Retirement Study). Casanova Ri-

vas (2010) suggests a detailed unitary dynamic economic model of joint retirement. Coile

(2004b) presents statistical evidence on health shocks and couples’ retirement decisions and

Blau and Gilleskie (2004) present an economic model that also focuses on health outcomes

and couples’ retirement decisions.

In applying our econometric approach to joint retirement, we implicitly assume that

retirement decisions are made through Nash bargaining on the retirement date. This solu-

tion concept is attributed to Nash (1950) (see also Zeuthen (1930)). It chooses retirement

decisions to maximize the product of differences between spouses’ utilities and respective

outside options (i.e., “threat-points”). The Nash solution corresponds to a set of behavioral

axioms on the bargaining outcomes (essentially Pareto efficiency, independence of irrelevant

alternatives and symmetry), and it is widely adopted in the literature on intra-household

2In the family economics terminology, their model is a non-unitary model in which people in the household
make decisions individually. In unitary models, the household is viewed as a single decision-making unit.
A characterization of unitary and non-unitary models can be found in Browning, Chiappori, and Lechene
(2006).

3When more than one solution is possible, they select the Pareto dominant equilibrium, i.e., for all other
equilibria at least one spouse would be worse off. If no equilibrium is Pareto dominant, the equilibrium
where retirement by at least one household member happens earliest is assumed (see, e.g., Gustman and
Steinmeier (2000), pp. 515, 520).
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bargaining. It can be shown that this solution approximates the equilibrium outcome of a

situation in which husband and wife make offers to each other in an alternating order, and

the negotiation breaks down with a certain probability. As this probability goes to zero,

the equilibrium converges to the Nash solution (see Binmore, Rubinstein, and Wolinsky

(1986)). Though this solution also leads to Pareto efficient outcomes, it imposes more struc-

ture than Casanova Rivas (2010) or Michaud and Vermeulen (2011) (see Chiappori (1992)

and Chiappori, Donni, and Komunjer (2012)).

Our econometric model is a variation of a recently developed model (Honoré and

de Paula (2010)) that extends well-known duration models to a (non-cooperative) strate-

gic stopping game, in which endogenous and correlated effects can be disentangled and

interpreted (see also de Paula (2009) for a related analysis). However, our model extends

simultaneous duration models differently from Honoré and de Paula (2010): whereas that

paper suggests a non-cooperative game theoretic framework, the use of a cooperative frame-

work is much more appealing for applications where the utility-externality is positive and

where individuals can cooperate. Like the framework in Honoré and de Paula (2010), the

model proposed here directly corresponds to an economic model of decision-making, and

it can consequently be more easily interpreted in light of such a model. To estimate our

model, we resort to indirect inference (Smith (1993); Gourieroux, Monfort, and Renault

(1993); and Gallant and Tauchen (1996)), using as auxiliary models standard duration mod-

els and ordered discrete choice models, as suggested in Honoré and de Paula (2010) for a

similar framework. (For an earlier application of indirect inference in a duration context, see

Magnac, Robin, and Visser (1995)).

The remainder of this paper proceeds as follows. Section 2 describes our model and

the empirical strategy for its estimation. In Section 3 we briefly describe the data and

subsequently discuss our results in Section 4. We conclude in Section 5.
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2 Model and Empirical Strategy

2.1 Basic Setup

In this section we formulate a simple econometric framework that allows a pair of durations

with continuous marginal distributions to be interdependent and equal with positive proba-

bility. We discuss the model in the context of retirement decisions within a household, but

it can be applied to any context in which the exit times from an initial state to the desti-

nation state are chosen optimally, and in which it may be optimal that the exit times are

coordinated. Our strategy is to model this in the spirit of a discrete choice model in which

the individual compares the utility in the two states. The interdependence is driven by the

possibility that the utility flow in the destination state (retirement) depends on whether the

other person is already in the state. In the case of retirement decisions, this captures the

idea that spouses will want to decide jointly when to retire, and that the optimal decision

can be to retire at the same time if the utility flow from retirement depends on the retire-

ment status of the spouse. As is usual in choice models, the choice of the transition times

depends only on the difference in the discounted future utilities between being in the initial

state and being in the new state. The levels of the utilities do not matter. This implies that

many of the seemingly arbitrary assumptions made below are mere normalizations with no

behavioral implications.

The resulting econometric model is explicitly designed to have the proportional hazard

model as a special case. In this sense, it is a true generalization of a standard econometric

model.

To fix ideas, it is useful to introduce the econometric framework in the context of the

empirical example. However, we emphasize that the setup can be useful in any situation in

which two or more durations are coordinated. In our model, a pair of individuals i and j

each choose when to transition from an initial state (in our case working) to a destination

state (in our case retirement). i and j will take values 1 and 2.

Individual i with observable characteristics, xi, receives a utility flow of Ki > 0 in
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the initial state (in the example, working). In the destination state, the utility flow at time

s is given by the deterministic function, Hi (s,xi)D(s, tj) where tj is the time at which j

transitions. The function D(s, tj) is defined as (δ−1)1(s ≥ tj)+1 with δ ≥ 1 and it captures

the idea that there can be complementarities in the transition decisions; the utility for i in

the destination state is higher once j has made the transition. In the empirical example, the

utility of being retired is higher if the spouse is also retired. The complementarities implied by

D(s, tj) can be ascribed either to taste or to institutional features. In the retirement example

these include tax or Social Security rules that may promote coordination in retirement timing

between husband and wife. Whereas this parameter would not be invariant to changes in such

regulations, it may be taken as fixed with respect to other counterfactuals. The parameter δ

could in principle be less than one. However, this would not generate a positive probability

that the individuals retire at the same time (as observed in the data). In the calculations

and exposition below, we therefore restrict our attention to the case where δ is greater than

or equal to 1. The δ could be made spouse-specific as well, but we focus on homogeneous δ.

The reason for this is simplicity, and the fact that while the probability of joint retirement

will be driven by δ, it is difficult to think of features of the data that would allow us to

separately identify a different δ for husbands and for wives.

The function Hi (s,xi) is assumed to be increasing in s. This is because we are

interested in a single spell econometric model in which each individual makes one transition.

In the application, this makes retirement an absorbing state. In the general discussion below,

the key feature of Hi (s,xi) is that its path is known at the time when the transition decision

is made and that it is increasing.4 In the empirical application, we will assume that it is

separable, but this is not necessary. Moreover, the covariates can be time-varying, in which

case xi denotes the time-path of the explanatory variable, and Hi (s,xi (s)) is then assumed

to be increasing.

As mentioned above, only the difference in utilities matters. This means that in the

4Without the monotonicity, retirement would not be an absorbing state, which would complicate the
analysis.
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retirement example, the monotonicity assumption implies that retirement becomes relatively

more attractive over time. Of course, this does not imply that some absolute measure of

happiness increases with age. The multiplicative structure for Hi (s,xi)D(s, tj) is imposed

because we want the resulting model to have the same structure as the familiar proportional

hazard model. Except for this, the functional form for the utility flow could easily be relaxed.

In principle, it is possible to allow for kinks or discontinuities in Hi(·,xi). In a model without

interdependence, those would correspond to discontinuities in the hazard rate in the case

of kinks in Hi(·,xi) or, in the case of discontinuities in Hi(·,xi), positive probability of

retirement at the discontinuity date.

The vector (K1, K2) is the source of randomness in our econometric model. It is

drawn from a joint distribution and its elements are potentially correlated due to, e.g.,

sorting or other commonalities. It is observed to the agents in the model, but unobserved

to the econometrician. As such, it plays the same role as the error in the random utility

motivation of the multinomial logit model.

With this setup, the discounted utility for individual i, who transitions to the desti-

nation state at ti, is

U i(ti, tj,xi, ki) ≡
∫ ti

0

kie
−ρsds+

∫ ∞
ti

Hi (s,xi)D(s, tj)e
−ρsds

where tj is the time at which the other agent, j, transitions, and (k1, k2) is the realization

of (K1, K2). We implicitly assume that the discount rate ρ and the function H are such

that the expression above is well defined. This structure is essentially the same as in Honoré

and de Paula (2010). There, it is assumed that the observed outcome, (T1, T2), is a Nash

equilibrium. That assumption is in the spirit of much of the recent work in industrial

organization, but it seems inappropriate in the context of retirement decisions. Given a

realization (k1, k2) for the random vector (K1, K2), we therefore assume that retirement

timing is obtained as the solution to the Nash bargaining problem (Nash (1950); see also
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Zeuthen (1930)):

maxt1,t2

(∫ t1
0
k1e
−ρsds +

∫∞
t1
H1(s,xi)D(s, t2)e

−ρsds− A1

)
×(∫ t2

0
k2e
−ρsds+

∫∞
t2
H2(·,xi)D(s, t1)e

−ρsds− A2

) (1)

where A1 and A2 are the threat points for spouses 1 and 2, respectively. In the estimation,

we set Ai equal to a fraction of the maximum utility individual i would obtain without

the increased utility from the externality from the spouse’s retirement. This specification

of the threat points makes economic sense, and it also saves us from having to deal with

the possibility that there are parameter values for which the factors in (1) cannot be made

positive. In a more general setting there may be asymmetric bargaining weights that appear

as exponents in the objective function. Our analysis could be generalized to include that

case, but we ignore this for simplicity and because it is difficult to think about nonparametric

features of the data that would allow us to reliably identify such an asymmetry.

The Nash bargaining solution concept is widely used in economics (see, for example,

Chiappori, Donni, and Komunjer (2012)). It can be derived from a set of behavioral axioms

on the bargaining outcomes (essentially Pareto efficiency, independence of irrelevant alterna-

tives and symmetry) and it is widely adopted in the literature on intra-household bargaining.

While it does not pin down a particular negotiation protocol between the parties involved,

it can be motivated by the observation that it approximates the equilibrium outcome of a

situation where husband and wife make offers to each other in an alternating order and the

negotiation breaks down with a certain probability. As this probability goes to zero, the

equilibrium converges to the Nash solution (see Binmore, Rubinstein, and Wolinsky (1986)).

One alternative to the Nash bargaining framework used here would be a utilitarian

aggregation of the utility functions in the household (i.e., the collective model of Chiappori

(1992)). In that case, the retirement dates, (T1, T2), would solve:

max
t1,t2

cU1(t1, t2; x1, K1) + U2(t2, t1; x2, K2),
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where c stands for the relative weight of agent 1’s utility. This leads to the following first-

order conditions:

c× ∂U1(t1, t2; x1, K1))

∂ti
+
∂U2(t2, t1; x2, K2)

∂ti
= 0, i = 1, 2.

The setting we propose focuses instead on maximizing (U1(t1, t2; x1, K1)−A1)×(U2(t2, t1; x2, K2)−

A2). This leads to the following first-order conditions:

U2(t2, t1; x2, K2)− A2

U1(t1, t2; x1, K1)− A1

× ∂U1(t1, t2; x1, K1))

∂ti
+
∂U2(t2, t1; x2, K2)

∂ti
= 0, i = 1, 2.

Consequently, the two are equivalent only if

c =
U2(t2, t1; x2, K2)− A2

U1(t1, t2; x1, K1)− A1

.

As a result, parameterizing the Nash bargaining approach will impose implicit constraints

on c in the corresponding collective model. By the same token, parameterizing the collective

model will impose constraints on the corresponding Nash bargaining model. See also Chiap-

pori, Donni, and Komunjer (2012). That paper also establishes identification results when a

common set of covariates x affects both the threat points Ai, i = 1, 2 and utilities U i, i = 1, 2.

Point-identification is achieved using spouse-specific covariates that affect the threat points

Ai, i = 1, 2, but are excluded from U i, i = 1, 2. In our empirical investigation we rely instead

on spouse-specific covariates in U i, i = 1, 2 and no excluded variables in the threat point

functions Ai, i = 1, 2. Moreover, Chiappori, Donni, and Komunjer (2012) assume that latent

variables (i.e., ki, i = 1, 2) are additively separable, which is not our case.

In order to estimate a parameterized version of the Nash bargaining model, we will

need to solve it numerically many times. Note that the first term in (1) can be further

simplified to

(
K1ρ

−1 (1− e−ρt1)+ H̃1 (t1,x1) + (δ − 1) H̃1 (max {t1, t2} ,x1)− A1

)
,
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where H̃i (t,xi) =
∫∞
t
Hi(s,xi)e

−ρsds and hence5 H̃ ′i (t,xi) = −Hi (t,xi) e
−ρt. An analogous

simplification applies to the second term. In other words, the objective function is given by

N (t1, t2) =

≡I︷ ︸︸ ︷(
K1ρ

−1 (1− e−ρt1)+ H̃1 (t1,xi) + (δ − 1) H̃1 (max {t1, t2} ,x1)− A1

)
×(

K2ρ
−1 (1− e−ρt2)+ H̃2 (t2,x2) + (δ − 1) H̃2 (max {t1, t2} ,x2)− A2

)
︸ ︷︷ ︸

≡II

.

If the two spouses retire sequentially, say, T1 < T2, the first-order condition with

respect to t1 is

(
K1e

−ρt1 −H1(t1,x1)e
−ρt1
)(∫ T2

0

K2e
−ρsds+

∫ ∞
T2

H2(s,x2)δe
−ρsds− A2

)
= 0.

This implies that either

K1 = H1(T1,x1)

or ∫ T2

0

K2e
−ρsds+

∫ ∞
T2

H2(s,x2)δe
−ρsds = A2.

The second possibility is ruled out since we specify the threat points so that each person gets

a higher utility than his or her threat point at the Nash bargaining solution. The first-order

condition with respect to t2 gives

H1(t2,x1)e
−ρt2 (1− δ)× (II) + (I)×

(
K2e

−ρt2 −H2(t2,x2)δe
−ρt2
)

= 0. (2)

The t2 that solves this equation is smaller than the value obtained in Honoré and de Paula

(2010): H−12 (K2/δ,x2).
6 Intuitively, the reason is that with Nash bargaining, the sec-

ond spouse to retire is willing to forgo some utility if the increase in utility to the other

spouse is sufficiently high. Mathematically, we see this by noting that H1(t2,x1) > 0,

5When the covariates are time-varying, H̃ ′i (t,xi) denotes the total derivative of H̃i (t,xi).
6In Honoré and de Paula (2010), we only consider the case where Hi (t,xi) = Z (t)ϕ (x1).
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e−ρt2 > 0, and 1 − δ < 0. Moreover, II must be positive in equilibrium. This implies that

H1(t2,x1)e
−ρt2 (1− δ)× (II) ≤ 0 at the solution. So for the first-order condition to be zero,

the product (I)× (K2e
−ρt2 −H2(t2,x2)δe

−ρt2) should be positive. Since I and e−ρt2 are both

positive, K2 therefore must be greater thanH2(t2,x2)δ. Or equivalently, T2 < H−12 (K2/δ,x2).

This implies that

T1 = H−11 (K1,x1)

T2 ≤ H−12 (K2/δ,x2),

which gives the same timing choice for the first retiree as in Honoré and de Paula (2010) but

an earlier one for the spouse. A similar set of calculations is obtained for T2 < T1.
7

A third possibility is for the spouses to retire jointly. In this case,

T = arg max
t
N (t, t)

= arg max
t

(
K1ρ

−1 (1− e−ρt)+ δH̃1 (t,x1)− A1

)(
K2ρ

−1 (1− e−ρt)+ δH̃2 (t,x2)− A2

)
.

The derivative of this with respect to t is

e−ρt (K1 − δH1 (t,x1))
(
K2ρ

−1 (1− e−ρt)+ δH̃2 (t,x2)− A2

)
+e−ρt

(
K1ρ

−1 (1− e−ρt)+ δH̃1 (t,x1)− A1

)
(K2 − δH2 (t,x2)) .

When t < H−11 (K1/δ,x1) and t < H−12 (K2/δ,x2) this derivative is positive, and when

t > H−11 (K1/δ,x1) and t > H−12 (K2/δ,x2), it is negative. The optimum is therefore in the

7For computation purposes we also notice that the objective function is unimodal on t2. If we start at
the critical value, increasing t2 reduces the function. This is because, for small ρ, H1(t2,x1)e−ρt2 (1− δ)
becomes more negative and II becomes more positive, so the product becomes more negative. For the
second term, I decreases and k2e

−ρt2 − H2(t2,x2)δe−ρt2 , which is positive, decreases. Their product then
decreases. Consequently, the derivative, which is the sum of these two products, becomes negative, and the
objective function is decreasing. Analogously, we can also determine that the objective function is increasing
for values below the critical value.
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interval

min
{
H−11 (K1/δ,x1) , H

−1
2 (K2/δ,x2)

}
≤ t ≤ max

{
H−11 (K1/δ,x1) , H

−1
2 (K2/δ,x2)

}
.

This is useful in the numerical solution to the optimal solution condition on joint retirement.

Figure 2 illustrates these cases and plots the optimal transition times, T1 and T2, as a

function of K2 as K1 is held fixed. For low values of K2, T1 > T2: in the retirement example,

labor force attachment is higher for spouse 1 than for spouse 2. When K1 is large, on the

other hand, T1 < T2 and spouse 1 retires sooner. For intermediary values of K1, T1 = T2

and the two spouses retire at the same time. This generates probability distributions such

as those in Figure 3. Unconditionally, the probability density function for T1 is smooth.

Conditionally on T2 = t2, though, a point mass at T1 = t2 arises.

Figure 2: T1 (solid line) and T2 (dashed line) as Functions of K2 (For K1 Fixed)

The set of realizations of (K1, K2) for which T = T1 = T2 is an optimum is larger

than the set obtained in the non-cooperative setup from Honoré and de Paula (2010). This is

illustrated in Figure 4, where the area between the dotted lines is the joint retirement region

in Honoré and de Paula (2010) and the area between solid lines is the joint retirement region

in the current paper. Also, in that paper any date within a range [T < T ] was sustained

as an equilibrium for pairs (K1, K2) inducing joint retirement. In contrast, the equilibrium
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Figure 3: Marginal Density for T1 (solid line) and Conditional Given T2 = 45 (dotted line)
and T2 = 75 (dashed line).

joint retirement date for a given realization of (K1, K2) is uniquely pinned down in the

setup here. Because Nash bargaining implies Pareto efficiency and because T is the Pareto

dominant outcome among the possible multiple equilibria in the game analyzed by Honoré

and de Paula (2010), it should be the case that joint retirement in the Nash bargaining

model occurs on or before T . In comparison to the non-cooperative paradigm adopted in

our previous paper, Nash bargaining allows spouses to “negotiate” an earlier retirement date,

which is advantageous to the household.

Finally, we note that whenHi (t,xi) = Zi (t)ϕi (x1) and δ = 1, the optimal retirement

dates will correspond to

logZi(Ti) = − logϕi + logKi, i = 1, 2.

Ki following a unit exponential distribution gives a proportional hazard model. For a general

distribution of Ki, this yields the generalized accelerated failure time model of Ridder (1990).

This is the sense in which the approach discussed in this section can be thought of as a

simultaneous equations version of a generalized accelerated failure time model.
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Figure 4: Joint Retirement Region. This paper (solid line) and Honoré and de Paula (2010)
(dashed line).
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2.2 Parameterization

In the construction of an econometric model for multiple durations that start at different

times, one must decide whether to measure time in terms a common calendar time or in

terms of the individual durations. Since the motivation of this paper is that events sometimes

happen at the same time, it is typically most convenient to measure time in terms of calendar

time. In our empirical analysis, we measure time in terms of “family age,” which is set to

zero when the older partner in the couple reaches age 60. We then keep track of the age of

the other spouse by using the age difference between the husband and the wife as a covariate.

Alternatively, we could have worked with the individuals’ ages, but that would have been

more cumbersome because the economic motivation is that the person may enjoy utility from

being retired at the same time as his or her spouse, and not from being retired at the same

age. Throughout, we use i = 1, 2 to denote the two spouses in a married couple. n is used

to index couples.

In the empirical application, we specify Hi (t,xi) as Zi (t)ϕi (x1), which yields the

link to the generalized accelerated failure time model. If we further parameterize Zi(t) as

Z (t; θ1i) = tθ1i and if δ = 1 then the model developed in the previous section will deliver the

simple Weibull regression model with integrated baseline hazards tθ1i for the two durations

as a special case when Ki ∼ exp (1). Our parameterization therefore takes those as the point

of departure.

The parameterization Z (t; θ1i) = tθ1i will also yield a convenient expression for Z̃i:

Z̃i (t) =

∫ ∞
t

sθ1ie−ρsds =

(
1

ρ

)θ1i+1

Γ (θ1i + 1, ρt) ,

where the upper incomplete gamma function is defined by Γ (θ1i, x) =
∫∞
x
sθ1i−1e−sds.8

As discussed later, the structure of the US Social Security system introduces incen-

8This expression can be further manipulated by noting that if the random variable X is Gamma dis-
tributed with parameters α and β = 1

FΓ(α,1) (x) = P (X > x) =
1

Γ (α)

∫ ∞
x

sα−1e−sds =
Γ (α, x)

Γ (α)
.
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tives to retire at certain ages. This could be accounted for by introducing a time-varying

dummy variable as one of the explanatory variables or by allowing for jumps in Z. Since

the other explanatory variables in the application are time-invariant, we find it notationally

more convenient to incorporate a discontinuity in Zi. In the empirical application below we

therefore introduce a jump in Z at τ , the time (measured in family calendar months) at

which the individual turns 62. One way to do this would be to augment Z as

Z (t; (α, γ) , τ) = Z1 (t;α) + γ1 {t ≥ τ} ,

where γ ≥ 0 is a parameter to be estimated. We choose a slightly different version in which

1 {t ≥ τ} is replaced by a smooth function that increases from 0 to 1 over the interval τ to

τ + 1,

Z (t; (α, γ) , τ) = Z1 (t;α) + Z2 (t; γ, τ) = ta + γF (t; τ)

and

F (t; τ) =



0 for t < τ

2 (t− τ)2 for τ < t < τ + 1/2

1− 2 (t− 1− τ)2 for τ + 1/2 < t < τ + 1

1 for τ + 1 < t

.

As discussed later, the dataset will deliver durations rounded to a month. Our choice of F

is therefore observationally equivalent to the step function, 1 {t ≥ τ}, but it makes it easy

to calculate Z−1 numerically.

Consequently,

Z̃ (t;α) =

(
1

ρ

)α+1

Γ (α+ 1, ρt) =

(
1

ρ

)α+1

Γ (α+ 1)FΓ(α+1,1) (ρt)

which is useful since both Γ (·) and FΓ(·,1) (·) are preprogrammed in many software packages.
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To calculate Z̃2 (t; γ, τ) we note that for t < τ ,

Z̃2 (t; γ, τ) =

∫ τ+1/2

τ

(
2s2 − 4τs+ 2τ 2

)
e−ρsds

+

∫ τ+1

τ+1/2

(
−2s2 + 4 (τ + 1) s+ 1− 2 (1 + τ)2

)
e−ρsds+

∫ ∞
τ+1

e−ρsds

for τ < t < τ + 1/2,

Z̃2 (t; γ, τ) =

∫ τ+1/2

t

(
2s2 − 4τs+ 2τ 2

)
e−ρsds

+

∫ τ+1

τ+1/2

(
−2s2 + 4 (τ + 1) s+ 1− 2 (1 + τ)2

)
e−ρsds+

∫ ∞
τ+1

e−ρsds

for τ + 1/2 < t < τ + 1,

Z̃2 (t; γ, τ) =

∫ τ+1

t

(
−2s2 + 4τs+ 1− 2 (1− τ)2

)
e−ρsds+

∫ ∞
τ+1

e−ρsds

and finally for τ + 1 < t

Z̃2 (t; γ, τ) =

∫ ∞
t

e−ρsds.

All the integrals have the form
∫
sje−ρsds where j is an integer. Hence they can all be

expressed in closed form.

To allow for positive correlation between the unobserved variables K1 and K2 (in-

duced, e.g., by sorting), we use a Clayton-Cuzick copula function (see Clayton and Cuzick

(1985)). More precisely, we model the joint survivor distribution function of K1 and K2 as:

FK1,K2(k1, k2; τ) = K(exp(−k1), exp(−k2); τ),

where

K (u, v; τ) =

 (u−τ + v−τ − 1)
−1/τ

for τ > 0

uv for τ = 0.
(3)

The unobservables are independent when τ = 0. When τ > 0, there is positive dependence
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between variables K1 and K2. Specifically, Kendall’s rank correlation for the Clayton-Cuzick

copula is equal to τ/(2 + τ) (see, for example, Trivedi and Zimmer (2006)). This copula

is commonly used to introduce dependence in the duration literature. Finally, we take

ϕi(xi) = exp(θ>2ixi). This implies that when δ = 1 and τ = 0, the durations follow simple

independent proportional hazard Weibull models (Lancaster (1990), p.44). This is the sense

in which our approach generalizes simple standard econometric duration models. We also

note that, even if δ = 1, the copula used here plays the dual role of introducing correlation

between the unobserved variables K1 and K2 and allowing for unobserved heterogeneity in

the hazard rates to retirement.

Clayton and Cuzick (1985) motivate (3) as the unique copula with a certain constant

odds ratio. However, they also point out that it is consistent with a model in which the

dependence between the two durations is driven by common unobserved heterogeneity (with

a specific distribution). It is therefore tempting to ask whether it is feasible to introduce

additional unobserved heterogeneity. There are two reasons why we do not consider this

possibility in our empirical application. The first is that since our model includes the mixed

Weibull model as a special case, a nonparametric specification of the heterogeneity distri-

bution will make root–n consistent estimation of the model parameters infeasible (see Hahn

(1994)). Since some of the parameters of the model are already imprecisely estimated, this

suggests that a flexible parametric specification of the heterogeneity distribution would not

be fruitful. The second, and related, reason is that we estimate our model using indirect

inference. To estimate a model with unobserved heterogeneity, we would therefore have to

specify an auxiliary model whose parameters are informative about the heterogeneity dis-

tribution. As mentioned earlier, when δ = 1 the optimal retirement dates will correspond

to

logZi(ti) = − logϕi + logKi, i = 1, 2.
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If the jump in the baseline hazard (γ) is zero, then our parameterization yields

log(ti) = −x
′
iθ2i
θ1i

+
logKi

θ1i
, i = 1, 2,

where logKi distributed according to minus an extreme value distribution. On the other

hand, a model with additional unobserved heterogeneity would have

log(ti) = −x
′
iθ2i
θ1i

+
logKi

θ1i
+ vi, i = 1, 2. (4)

In other words, the distribution of the unobserved heterogeneity would be identified from

deviations of the distribution of the error term in (4) from an extreme value distribution.

Given the heavy censoring (more than 50%; see Section 3), this does not seem fruitful.

2.3 Estimation: Indirect Inference

Because the likelihood function for the model developed in the previous section is not easily

computed in closed form, we resort to simulation-assisted methods. One potential strategy

would be to use simulated maximum likelihood (SML), where one non-parametrically esti-

mates the conditional likelihood via kernel methods applied to simulations of T1 and T2 at

particular parameter values and searches for the parameter value that maximizes the (simu-

lated) likelihood. We opt for a different strategy for two main reasons. First, our likelihood

displays some non-standard features. For example, there is a positive probability for the

event {T1 = T2}. Second, consistency of the SML estimator requires a large number of

simulations, which can be computationally expensive.

To estimate our model we therefore employ an indirect inference strategy (see Gourier-

oux, Monfort, and Renault (1993); Smith (1993); and Gallant and Tauchen (1996)). Rather

than estimating the maximum likelihood estimator for the true model characterized by pa-

rameter θ, one estimates an approximate (auxiliary) model with parameter β. Let n =

1, . . . , N index a sample of households (couples). Then, under the usual regularity condi-
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tions,

β̂ = arg max
b

N∑
n=1

logLa (b; zn)
p−→ arg max

b
Eθ0 [logLa (b; zn)] ≡ β0 (θ0) (5)

where La is a pseudo–likelihood function (parameterized by b) for the auxiliary model, zn

is the data for observation n, and the expectation Eθ0 is taken with respect to the true

model. β0 (θ0) is known as the pseudo–true value and the key is that it depends on the true

parameters of the data–generation process (θ0). The basic idea, then, is that if one knew

the pseudo–true value as a function of θ0, it could be used to solve the equation

β̂ = β0

(
θ̂
)

and obtain an estimator for θ0. In our case, we do not know β0(θ), but we can easily

approximate this function using simulations from the structural model. For a particular

value of the parameters of the structural model, θ, we generate R draws

{(z1r (θ) , z2r (θ) , . . . , zNr (θ))}Rr=1

from our structural model. In practice this is done by transforming uniform random vari-

ables. These are then kept fixed as one varies θ. The parameter, θ, enters through the

transformation of these uniform random variables. We can then estimate the function

β0(θ) ≡ arg max
b
Eθ [logLa (b; zn)]

by

β̃R (θ) = arg max
b

1

R

R∑
r=1

1

N

N∑
n=1

(logLa (b; znr (θ))) .

This suggests finding θ̂ such that the generated data set using θ̂ gives the same estimate in

the auxiliary model as we got in the real sample, β̂ = β̃R

(
θ̂
)

. When the dimensionality

of β is greater than the dimension of θ, this is not possible, and one then estimates θ by

a minimum distance approach that makes the difference between β̂ and β̃R (θ) as small as
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possible.

While this approach is conceptually straightforward, it requires one to estimate β for

each potential value of θ. This can be computationally burdensome and we therefore adopt

a slightly different version based on the first-order conditions from estimating the auxiliary

model. The expression (5) implies that

1

N

N∑
n=1

Sa
(
β̂; zn

)
= 0,

and that β̂ converges to the solution to Eθ [Sa (b; zn)] = 0, where Sa is the pseudo–score

associated with La. Of course, the solution Eθ [Sa (b; zn)] = 0 is just β0 (θ0) from equation

(5). As before, we estimate Eθ [Sa (·; zn)] as a function of θ using

1

R

R∑
r=1

1

N

N∑
n=1

Sa (·; znr (θ))

and θ0 is estimated by making it as close to zero as possible. Specifically, if dim (Sa) >

dim (β), we minimize

(
1

R

R∑
r=1

1

N

N∑
n=1

Sa
(
β̂; znr (θ)

))>
W

(
1

R

R∑
r=1

1

N

N∑
n=1

Sa
(
β̂; znr (θ)

))
(6)

over θ. The weighting matrix W is a positive definite matrix playing the usual role in terms

of estimator efficiency. The optimal W can be calculated using the actual data (before

estimating θ) and the asymptotic properties follow from standard GMM arguments (see

Gourieroux and Monfort (1996) for details). This strategy is useful because we only estimate

the auxiliary model once using the real data. After that, we evaluate its first-order condition

using simulated data from the structural model for different values of θ.

The retirement times used in the empirical application are interval censored. When

doing the indirect inference, we mimic this by evaluating (6) at interval censored simulated

durations. Finally, the outcome variable in our empirical analysis is censored. To use
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simulation-based inference we must be able to simulate data that have been censored by

the same process. In practice this means that we must either model the censoring process

parametrically or observe the censoring times even for those observations that are uncensored

in the data. As discussed below, our application falls into the second category.

2.3.1 Auxiliary Model

Our auxiliary model is composed of four reduced-form models that are chosen to capture the

features of the data that are our main concern: the duration until retirement for each of the

two spouses, the idea that some married couples choose to retire jointly, and finally the idea

that the retirement durations may exhibit correlation (conditionally on the covariates) even

when they are not equal. For the first two, we use a standard proportional hazard model

for each spouse with a Weibull baseline hazard and the usual specification for the covariate

function. For the third, we use an ordered logit model as suggested by our paper Honoré

and de Paula (2010). For the fourth feature, we exploit the covariance in the residuals in

regressions of the two retirement durations on all the covariates of the model. We present

the models in detail below.

2.3.2 Weibull Proportional Hazard Model

For each spouse i, the hazard for retirement conditional on xi is assumed to be λi (t|xi) =

αit
αi−1 exp (x′iβi). The (log) density of retirement for spouse i conditional on xi, log fi (t|xi),

is then given by:

log {λi (t) exp (x′iβi) exp (−Zi (t) exp (x′iβi))} = logαi + (αi − 1) log t+ x′iβi − tαi exp (x′iβi)

The (conditional) survivor function can be obtained analogously, and it is given by:

logSi (t|xi) = log {exp (−Zi (t) exp (x′iβi))} = −tαi exp (x′iβi)
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Letting ci,n = 1 if the observed retirement date for spouse i in household n is (right-)censored,

and = 0 otherwise, we obtain the log-likelihood function:

logL =
N∑
n=1

(1− ci,n)
(
logαi + (αi − 1) log (ti,n) + x′i,nβi

)
−

N∑
n=1

tαi
i,n exp

(
x′i,nβi

)
First- and second-order derivatives used in the computation of the MLE for this auxiliary

model are presented in the Appendix.

2.3.3 Ordered Logit Model Pseudo MLE

In the spirit of the estimation strategy suggested in Honoré and de Paula (2010), we also

use an ordered logit model as an auxiliary model. Whereas the Weibull model will convey

information on the timing of retirement, this second auxiliary model will provide information

on the pervasiveness of joint retirement and help identify the taste interactions leading to

this phenomenon (i.e., δ). Define

yn =


1, if t1 > t2 + 1

2, if |t1 − t2| ≤ 1

3, if t2 > t1 + 1

Incorrectly assuming an ordered logit model for yn yields

P (yn = 1 or yn = 2) = Λ (x′nγ1) and P (yn = 2) = Λ (x′nγ1 − γ0)

where Λ (·) is the cumulative distribution function for the logistic distribution.

This allows us to construct the following pseudo-likelihood function:

Q (γ) =
∑
yn=0

log (1− Λ (x′0nγ))+
∑
yn 6=0

log (Λ (x′0nγ))+
∑
yn 6=2

log (1− Λ (x′1nγ))+
∑
yn=2

log (Λ (x′1nγ))
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where

x0n =

(
x′n

...0

)′
x1n =

(
x′n

...1

)′
γ =

(
γ′1

...− γ0
)′

As before, first- and second-order derivatives are presented in the Appendix.

The explanatory variables in the different parts of the auxiliary model need not be

the same, and they need not coincide with the explanatory variables in the model to be

estimated. In the empirical section below, the covariates in the Weibull auxiliary models are

each spouses’s own values of the explanatory variables in the model of interest. We use a

constant only as an explanatory variable in the ordered logit model. This leaves the number

of overidentifying restrictions constant across specifications.

In the data and in the simulations, y is defined using the failure time (i.e., the mini-

mum between censoring and retirement dates). Censored observations do not pose problems

when the other person in the household is uncensored and retires earlier, since in that case we

can determine that retirement happened sequentially. Whereas we can always mark whether

retirement was sequential or simultaneous in the simulations, when censoring happens before

the retirement of the uncensored partner or both are censored, we cannot determine in the

data whether retirement was sequential. Since we use the failure time in both the data and

the simulations, censoring introduces the same degree of “noise” in the definition of y in the

data and in the simulations.

2.3.4 Covariance in Failure Times

To allow for correlation in the unobservable variables K1 and K2, we use copula functions.

We augment our auxiliary models with the covariance in failure times (including censored ob-

servations in both the data and the simulation moments) to perform the estimation. Specif-

ically, we match the covariance between the residuals from a regression of (censored log)

failure time on all covariates for husband and wife. An alternative is to use the residuals

from regressions on spouse-specific variables and/or to define generalized residuals from a

proportional hazard model estimated by maximum likelihood. The reason why we did not
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choose those approaches is that the asymptotic distribution for the covariance would then

depend on nuisance parameters (i.e., the regression coefficients). This is not the case if

we use the same set of covariates for husband and wife and estimate the model by OLS.

Our procedure is therefore asymptotically equivalent to matching the true errors from those

regressions (projections).

In the notation of an objective function for an auxiliary model, we maximize

C (ρ) = −
∑
n

(û1,nû2,n − ρ)2

where ûi,n = ln(ti,n) − x>n (
∑

h xhx
>
h )−1(

∑
h xh ln(ti,h)) for i = 1, 2 with ti,n representing the

failure time (earliest between retirement and censoring time) for partner i in couple n, xn

representing the covariates for couple n and ûi,nr is defined analogously on the simulated

observations.

2.3.5 Failure Probability at Early Retirement Age

In the United States, individuals can claim Social Security benefits as soon as they turn 62

years old. Whereas this implies a penalty vis-à-vis the official retirement age,9 it is noticeable

that many individuals elect to retire as soon as they reach 62 years of age. (In our data, this

is visible from the steep increase in the CDF for the retirement year of husbands in Figure 6.)

To accommodate this possibility, we allow for a discontinuity in Z(·) at the early retirement

age. To capture this feature of the model, we employ the probability of retirement in the

(closed) interval between one month before and six months after turning 62. In the notation

of an objective function for an auxiliary model, we maximize

S (ψ) = −
∑
n

2∑
i=1

(
1
{
age62i,n − 1 ≤ ti,n ≤ age62i,n + 6

}
− ψi

)2
9The official retirement age was 65 years old for individuals born in 1937 or earlier, and for persons born

after that year, it gradually increases to 67 years old, which is the retirement age for those born in 1960 or
after.
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where age62i,n is the age (in months and measured in family-time) at which individual i in

family n turns 62.

2.3.6 Overall Auxiliary Model

The overall auxiliary model objective function is then defined by the pseudo-log-likelihood

function

logLmen (α1, β1) + logLwomen (α2, β2) +Q (γ) + C (ρ) + S (ψ)

and the moment conditions used for estimating the parameters of the structural model are

the first-order conditions for maximizing this.

As indicated above, we choose as our weighting matrix W = Ĵ−10 , where

Ĵ0 = V̂





∂ logLmn

∂(α1,β1)

∂ logLwn

∂(α2,β2)

∂Qn

∂γ

∂Cn
∂ρ

∂Sn
∂ψ




The (asymptotic) standard errors of the structural estimates are calculated using the

formulae in Gourieroux and Monfort (1996).

The computational details are described in the appendix.

3 Data

We estimate the model using eight waves of the Health and Retirement Study (every two

years from 1992 to 2006) and keep households where at least one individual was 60 years

old or more. Retirement is observed at a monthly frequency. In accordance with this

sampling scheme, we aggregate the simulated retirement dates to the month level before

evaluating (6). We use the retirement classification suggested by the Rand Corporation.

This classifies a respondent as retired if she/he is not working and not looking for work or
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there is any mention of retirement through the employment status or the questions that ask

the respondent whether he or she considers him- or herself to be retired.10 To avoid left-

censoring, selected households also had both partners in the labor force at the initial period.

Right-censoring occurs when someone dies or is not retired at his or her last interview before

the end of the survey. We excluded individuals who were part of the military. Finally, we

exclude households with multiple couples and individuals with multiple spouses during the

period of analysis, couples with conflicting information over marital status or other joint

variables, and couples of the same gender. This leaves us with 1,284 couples. Of those,

407 couples have both the husband’s and the wife’s uncensored retirement dates. Among

the uncensored couples, 31 couples (≈ 7.6%) retire jointly.11 Figure 5 plots the retirement

month of the husbands against the retirement month of the wives for those couples whose

retirement month is uncensored for both spouses (January 1931 is month 1). The points

along the 45-degree line are the joint retirements.

We measure covariates in the first “household year”: when the older partner reaches

the age of 60.12 The covariates we use are:

1. the age difference in the couple (husband’s age minus wife’s age in years);

2. dummies for race (non-Hispanic black, Hispanic and other race with non-Hispanic

whites as the omitted category);

3. dummies for education (high school or GED, some college and college or above with

less than high school as the omitted category);

4. indicators of region (NE, SO, and WE with MW or other region as the omitted cate-

gory);

10Specifically, we use the classification provided by the variable RwLBRF.
11There are 451 additional couples with only one censored spouse. If those are presumed to have retired

sequentially, the proportion of joint retirements among couples with at most one censored spouse is 3.6%.
Taking into account the remaining households where both individual retirement dates are censored would
place the proportion of simultaneous retirements somewhere between 2.4% (if all additional households are
assumed to retire sequentially) and 13.8% (if all additional households are assumed to retire simultaneously).

12We take the measurements from the first interview after the older spouse turns 60.
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Figure 5: Retirement Months: Husband vs Wife

5. self-reported health dummies (good health, very good health, with poor health as the

omitted category);

6. an indicator for whether the person has health insurance;

7. the total health expenditure per individual in the previous 12 months for the first two

waves and the previous 2 years for the subsequent years13 (inflation adjusted using the

CPI to Jan/2000 dollars);

8. indicators for whether the person had a defined contribution (DC) or defined benefit

(DB) plan; and

9. financial wealth (inflation adjusted using the CPI to Jan/2000 dollars).14 This measure

13We use the transformation sgn(total health expenditure)×
√

abs(total health expenditure). This trans-
formation is in the spirit of a logarithmic transformation of positive variables and implies that large quantities
have a decreasing effect. In contrast to a log transformation, it allows us to handle zeroes. In the computa-
tions, we also divide the transformed variable by 102 to avoid overflow.

14For financial wealth we use the transformation sgn(financial wealth)×
√

abs(financial wealth). This
transformation is in the spirit of a logarithmic transformation of positive variables and implies that large
quantities have a decreasing effect. In contrast to a log transformation, it allows us to handle negative
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includes the value of checking and savings accounts, stocks, mutual funds, investment

trusts, CDs, government bonds, Treasury bills and all other savings minus the value of

debts such as credit card balances, life insurance policy loans or loans from relatives.

It does not include housing wealth or private pension holdings.

In Section 4, we also examine whether our focus on covariates recorded at the initial

household year might affect the results substantially. We verify that couples who retire

sequentially did not have more volatile realizations of health and financial variables than

those couples who retire simultaneously. This might have been expected if shocks displaced

couples’ plans to retire simultaneously.

Table 1 presents summary statistics for the variables we use. Note that we observe

potential censoring months even for the observations that are uncensored in the data. This

means that even though we assume that the censoring time is independent from retirement

dates (conditional on the covariates), we do not need to model the distribution of censoring

times to simulate the model. When drawing observations from the model to fit the auxiliary

duration models, we are able to censor the simulated observations using the date when

respondents were last interviewed or died as censoring dates even for those who retire earlier

than that in the data (i.e., the “censoring month” in Table 1).

In Table 2, we present an overview of intra-household differences. Most of the couples

marry within their own race but there is substantial variation in terms of education. Many

couples report different health statuses, and accordingly, there is a substantial difference

in health expenditures. There are also differences with respect to insurance and pension

ownership. Figure 6 presents the Kaplan-Meier estimates for the retirement behavior in our

sample (measured in months since the oldest partner turned 60 years old).

numbers. It is concave for positive values and convex for negative ones. In the computations, we also divide
the transformed variable by 103 to avoid overflow.
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Table 1: Summary statistics

All Observations Uncensored Censored
Variable Mean N Mean N Mean N

Gender 0.50 2568 0.56 1265 0.44 1303
Min(Ret. Month, Cens. Month) 52.67 2568 44.43 1265 60.66 1303
Censored 0.51 2568 0.00 1265 1.00 1303
Censoring Montha 85.04 2568 110.15 1265 60.66 1303
Age Diff. 4.11 2454 3.80 1234 4.43 1220
Non-Hisp. White 0.79 2568 0.82 1265 5.07 1303
Non-Hisp. Black 0.11 2568 0.09 1265 0.12 1303
Other Race 0.02 2568 0.02 1265 0.03 1303
Hispanic 0.08 2568 0.06 1265 0.10 1303
< High School 0.16 2568 0.18 1265 0.15 1303
HS or GED 0.36 2568 0.39 1265 0.34 1303
Some College 0.24 2568 0.22 1265 0.26 1303
College or Above 0.23 2568 0.21 1265 0.25 1303
NE 0.18 2568 0.18 1265 0.04 1303
MW 0.26 2568 0.26 1265 0.25 1303
SO 0.40 2568 0.37 1265 0.43 1303
WE 0.16 2568 0.17 1265 0.15 1303
Health Insurance 0.88 2554 0.89 1257 0.86 1297
Very Good Health 0.56 2568 0.57 1265 0.85 1296
Good Health 0.30 2568 0.30 1265 0.30 1303
Poor Health 0.14 2568 0.13 1265 0.14 1303
Pension (DB) 0.26 2568 0.30 1265 0.22 1303
Pension (DC) 0.24 2568 0.21 1265 0.27 1303
Tot. Health Expen.b 8.22 2180 9.48 1220 6.61 960
Financial Wealthc 81.22 2568 88.76 1265 73.90 1303
a. For those uncensored, the censoring month is either the last interview or death date, whichever
is the earlier date. It is used in the simulations for indirect inference.
b. Inflation-adjusted using the CPI to thousands of 2000 US dollars.

Table 2: Intra-Household Differences
Prop. or Diff. N of Couples

Same Race (proportion) 0.9502 1284
Same Education (proportion) 0.4618 1284
Same Self-Reported Health (proportion) 0.4938 1284
Health Insurance (both) (proportion) 0.8386 1270
Health Insurance (neither) (proportion) 0.0882 1270
DB Pension (both) (proportion) 0.0833 1284
DB Pension (neither) (proportion) 0.5600 1284
DC Pension (both) (proportion) 0.0685 1447
DC Pension (neither) (proportion) 0.5927 1284
Health Exp. (difference) (US$1,000) 3.0840 1090
Only couples with no missing variables. Inflation-adjusted health expenditures in Jan/
2000 USD.
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4 Results

We now present our estimation results using monthly data on couples’ retirement. The

discount rate ρ is set to 5% per year (i.e., 0.004 per month) and the threat points are

set at 0.6 times the utility level an individual would have obtained without the retirement

externality.15 The number of simulations in each set of estimates is R = 10. Figure 6, which

displays estimates for the marginal cumulative distribution functions of husbands and wives,

suggests that a kink might be present, at least for men, around month twenty-four since the

oldest household member turned 60. Since the oldest member is usually the husband, this

corresponds to those turning 62 years old and becoming eligible for early retirement. In our

model, we accommodate this time-varying variable by allowing Z to have a jump when the

individual turns 62 years old. Since retirement is recorded in monthly intervals, we aggregate

the retirement date from our simulations at the month level.

As is often the case in structural estimation, it can be difficult to understand what

features of the data identify the parameters of the model. Within the duration literature,

this has led to a sizeable number of papers dealing with semiparametric identification. This

literature is useful in shedding light on the relation between the parameters of the model and

the underlying data. First, note that the functions Zi(·), ϕi(·) and the marginal distribution

for Ki are formally identified (up to scale) if covariates have a support large enough so that

ϕj(xj) can be made arbitrarily close to zero. For such an individual, it is essentially optimal

to have tj =∞. The other spouse will then optimally retire at Ti such that

logZi(Ti) = − logϕi(xi) + logKi

and one can apply the arguments in Ridder (1990) to identify Zi(·), ϕi(·) and the marginal

distribution of Ki (up to scale). We note also that this identification argument operates

irrespective of the values of A1 and A2 (or asymmetries in the bargaining power). Intuitively,

15In our estimations, we experimented with other multiples of this utility level as well. See the discussion
at the end of this section.
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Figure 6: Kaplan-Meier Estimates: Husband and Wife
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this argument would apply if the explanatory variables take values that make one of the

spouses strongly attached to the labor force given his or her covariate values. In our data,

for example, about 5% of the husbands who do not have a defined benefit pension plan retire

after more than 126 months (10.5 years) since the oldest member of the household turned

60. Similarly, for the wives, 5% of those without a defined benefit pension plan retire more

than 140 months (11.7 years) since the oldest member turned 60. (Our data are observed

at the month level. The identification of (continuous-time) duration models under interval

censoring is examined in detail, for instance, in Ridder (1990).)

Having identified Zi(·), ϕi(·) and the marginal distribution of Ki, the probability of

joint retirement is driven by the interaction parameter δ. When δ = 1 there are no retirement

complementarities and joint retirement happens with zero probability. Larger values of δ

will induce larger retirement complementarities, which should make joint retirement more

likely. Even in the event of sequential retirement, whereas the first person to retire always

retires at Z−1i (Ki/ϕi), larger values of δ will lead to earlier retirement of the second person,

providing additional variation to identify δ (see Appendix for details).

To understand why features of the joint distribution of K1 and K2 such as the τ

in the copula are identified, consider a point (k1, k2). If the joint support of covariates is

large enough, then for that point there is a pair (ϕ1, ϕ2) that induces sequential retirement

in a neighborhood of (k1, k2). When there is sequential retirement, the retirement dates t1

and t2 are a one-to-one mapping from k1 and k2. For example, if t1 < t2, then t1 is equal

to Z−11 (k1/ϕ1) and t2 is also uniquely determined (see footnote 7). From the FOC, it is

clear that, given (t1, t2) (and k1 = Z1(t1)ϕ1), one can uniquely retrieve the corresponding k2.

Since we have a one-to-one mapping, the joint distribution of (T1, T2) is therefore informative

about the joint density of (K1, K2). A different distribution of (K1, K2) in the neighborhood

of (k1, k2) changes the probability of (T1, T2) given the covariates corresponding to the initial

choice of (ϕ1, ϕ2) leading to sequential retirement.

Tables 3 and 4 present our estimates. The results are very robust across covariate

specifications. There is positive duration dependence: retirement is more likely as the house-
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hold ages. Age differences tend to increase the retirement hazard for men and decrease it for

women. Since men are typically older and we count “family age” from the 60th year of the

older partner, a larger age difference implies that the wife is younger at time zero and less

likely to retire at any “family age” than an older woman (i.e., a similar wife in a household

with a lower age difference). Both non-white men and women have a lower retirement hazard

than non-Hispanic whites. The hazard for a Hispanic man is between 0.53 (= exp(−0.63))

and 0.63 (= exp(−0.46)) of a white man’s, for example.

Women with a high school diploma or GED tend to retire earlier than those without

a high school degree, whereas women with some college or with a college education or above

seem to retire later, but the coefficients on those categories are not statistically significant.

For men, more educated husbands tend to retire later and the association is statistically

significant for college-educated males. Husbands in the Northeast and West tend to retire

earlier, whereas those in the South retire later than those in the Midwest but the coefficients

are statistically insignificant in some specifications. Geographical region does not seem to

play a statistically significant role for women either. Western and Southern wives do seem

to retire earlier in all covariate specifications, but then again, standard errors are quite

imprecise for most of the specifications.

Self-reported health lowers the hazard, with healthier people retiring later than those

in poor health. Having health insurance increases the hazard for both husbands and wives,

though not in a statistically significant way. Total health expenditures increase the hazard for

female and for males (being statistically significant for the latter). Having a defined benefit

pension plan increases the probability of retirement for both genders, but it is numerically

and statistically much stronger for men. A defined contribution plan negatively affects the

hazard for both, but here female effects are numerically and statistically more pronounced

than those for men. Wealthier men and women tend to retire earlier and the effect is

particularly more pronounced for women.

The interaction parameter ranges from 1.03 to 1.08 across our specifications. In

terms of our model, this means that the utility flow of retirement increases by more than
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Table 3: WIVES’ Simultaneous Duration
Variable Coef. Coef. Coef. Coef. Coef. Coef.

(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

δ 1.07 1.08 1.07 1.03 1.04 1.05
( 0.04 ) ( 0.05 ) ( 0.04 ) ( 0.03 ) ( 0.03 ) ( 0.03 )

θ1 1.24 1.23 1.27 1.29 1.27 1.29
( 0.05 ) ( 0.05 ) ( 0.06 ) ( 0.05 ) ( 0.05 ) ( 0.06 )

Constant -5.75 ∗∗ -5.71 ∗∗ -5.66 ∗∗ -5.93 ∗∗ -5.86 ∗∗ -6.08 ∗∗
( 0.21 ) ( 0.27 ) ( 0.31 ) ( 0.35 ) ( 0.35 ) ( 0.36 )

≥ 62 yrs-old 8.40 † 11.27 12.65 9.98 † 8.24 8.17
( 4.31 ) ( 8.85 ) ( 9.64 ) ( 5.94 ) ( 6.57 ) ( 5.93 )

Age Diff. -0.07 ∗∗ -0.07 ∗∗ -0.08 ∗∗ -0.08 ∗∗ -0.08 ∗∗ -0.08 ∗∗
( 0.02 ) ( 0.02 ) ( 0.02 ) ( 0.02 ) ( 0.02 ) ( 0.02 )

Non-Hisp. Black -0.15 -0.16 -0.1 -0.11 -0.06
( 0.15 ) ( 0.16 ) ( 0.16 ) ( 0.16 ) ( 0.17 )

Other race -0.64 † -0.63 † -0.68 † -0.68 † -0.57 †
( 0.33 ) ( 0.36 ) ( 0.33 ) ( 0.34 ) ( 0.33 )

Hispanic -0.5 ∗∗ -0.54 ∗∗ -0.41 † -0.41 † -0.34
( 0.19 ) ( 0.19 ) ( 0.21 ) ( 0.2 ) ( 0.21 )

High school or GED 0.03 0.08 0.13 0.14 0.13
( 0.16 ) ( 0.16 ) ( 0.16 ) ( 0.16 ) ( 0.16 )

Some college -0.13 -0.12 -0.13 -0.11 -0.17
( 0.17 ) ( 0.17 ) ( 0.17 ) ( 0.18 ) ( 0.18 )

College or above -0.06 -0.01 0.06 0.05 -0.08
( 0.19 ) ( 0.19 ) ( 0.2 ) ( 0.2 ) ( 0.2 )

NE -0.04 -0.01 -0.08 -0.1 -0.1
( 0.14 ) ( 0.15 ) ( 0.15 ) ( 0.16 ) ( 0.16 )

SO 0.04 0.03 0.08 0.08 0.08
( 0.11 ) ( 0.12 ) ( 0.12 ) ( 0.12 ) ( 0.12 )

WE 0.19 0.2 0.17 0.16 0.14
( 0.15 ) ( 0.15 ) ( 0.15 ) ( 0.15 ) ( 0.16 )

V Good Health -0.23 -0.15 -0.16 -0.16
( 0.15 ) ( 0.17 ) ( 0.17 ) ( 0.17 )

Good Health -0.26 -0.2 -0.24 -0.23
( 0.16 ) ( 0.18 ) ( 0.17 ) ( 0.18 )

Health Insurance 0.11 0.15 0.18
( 0.15 ) ( 0.15 ) ( 0.15 )

Tot. Health Exp. 0.13 0.13 0.13
( 0.09 ) ( 0.08 ) ( 0.08 )

Pension (DC) -0.23 † -0.23 †
( 0.13 ) ( 0.13 )

Pension (DB) 0.02 0.05
( 0.11 ) ( 0.11 )

Fin. Wealth 0.75 ∗∗
( 0.21 )

τ 0.42 0.34 0.46 0.62 0.51 0.45
( 0.36 ) ( 0.35 ) ( 0.38 ) ( 0.29 ) ( 0.26 ) ( 0.26 )

Function Value 0.28 0.44 0.55 1.15 1.18 1.07
Number of Obs. 1227 1227 1227 1037 1037 1037

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed for θ1 or δ. Omitted
categories are Non-Hisp. White, Less than high school, Midwest or Other Region, and Poor Health
The threat point scale factor is 0.6, ρ = 0.004 and R = 10.
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Table 4: HUSBANDS’ Simultaneous Duration
Variable Coef. Coef. Coef. Coef. Coef. Coef.

(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

δ 1.07 1.08 1.07 1.03 1.04 1.05
( 0.04 ) ( 0.05 ) ( 0.04 ) ( 0.03 ) ( 0.03 ) ( 0.03 )

θ1 1.21 1.21 1.25 1.25 1.24 1.24
( 0.05 ) ( 0.04 ) ( 0.04 ) ( 0.04 ) ( 0.04 ) ( 0.04 )

Constant -5.75 ∗∗ -5.35 ∗∗ -5.43 ∗∗ -5.71 ∗∗ -5.64 ∗∗ -5.7 ∗∗
( 0.21 ) ( 0.21 ) ( 0.22 ) ( 0.26 ) ( 0.27 ) ( 0.25 )

≥ 62 yrs-old 33.68 ∗∗ 33.27 ∗∗ 39.04 ∗∗ 41.61 ∗∗ 39.04 ∗∗ 38.59 ∗∗
( 8.59 ) ( 7.15 ) ( 8.41 ) ( 9.52 ) ( 9.49 ) ( 7.18 )

Age Diff. 0.02 † 0.03 ∗∗ 0.03 ∗∗ 0.03 ∗∗ 0.03 ∗∗ 0.03 ∗∗
( 0.01 ) ( 0.01 ) ( 0.01 ) ( 0.01 ) ( 0.01 ) ( 0.01 )

Non-Hisp. Black -0.18 -0.2 -0.25 -0.27 † -0.26
( 0.16 ) ( 0.15 ) ( 0.16 ) ( 0.16 ) ( 0.16 )

Other race -0.18 -0.17 -0.09 -0.13 -0.16
( 0.28 ) ( 0.28 ) ( 0.3 ) ( 0.28 ) ( 0.29 )

Hispanic -0.63 ∗∗ -0.63 ∗∗ -0.52 ∗∗ -0.51 ∗∗ -0.46 †
( 0.18 ) ( 0.18 ) ( 0.18 ) ( 0.18 ) ( 0.18 )

High school or GED -0.09 -0.09 -0.05 -0.02 -0.02
( 0.12 ) ( 0.12 ) ( 0.12 ) ( 0.12 ) ( 0.12 )

Some college -0.33 † -0.32 † -0.3 † -0.25 † -0.25 †
( 0.14 ) ( 0.13 ) ( 0.14 ) ( 0.14 ) ( 0.14 )

College or above -0.5 ∗∗ -0.49 ∗∗ -0.47 ∗∗ -0.44 ∗∗ -0.46 ∗∗
( 0.12 ) ( 0.13 ) ( 0.13 ) ( 0.13 ) ( 0.14 )

NE 0.04 0.07 0.09 0.11 0.12
( 0.12 ) ( 0.12 ) ( 0.12 ) ( 0.12 ) ( 0.12 )

SO -0.24 † -0.22 † -0.16 -0.15 -0.15
( 0.11 ) ( 0.11 ) ( 0.11 ) ( 0.11 ) ( 0.11 )

WE 0.06 0.07 0.02 0.01 0.02
( 0.12 ) ( 0.12 ) ( 0.13 ) ( 0.12 ) ( 0.12 )

V Good Health -0.12 -0.08 -0.12 -0.11
( 0.13 ) ( 0.14 ) ( 0.14 ) ( 0.14 )

Good Health -0.09 -0.04 -0.08 -0.08
( 0.14 ) ( 0.14 ) ( 0.15 ) ( 0.14 )

Health Insurance 0.18 0.11 0.12
( 0.13 ) ( 0.13 ) ( 0.13 )

Tot. Health Exp. 0.11 † 0.10 † 0.12 †
( 0.05 ) ( 0.05 ) ( 0.05 )

Pension (DC) -0.1 -0.12
( 0.11 ) ( 0.1 )

Pension (DB) 0.29 ∗∗ 0.28 ∗∗
( 0.1 ) ( 0.1 )

Fin. Wealth 0.24
( 0.19 )

τ 0.42 0.34 0.46 0.62 0.51 0.45
( 0.36 ) ( 0.35 ) ( 0.38 ) ( 0.29 ) ( 0.26 ) ( 0.26 )

Function Value 0.28 0.44 0.55 1.15 1.18 1.07
Number of Obs. 1227 1227 1227 1037 1037 1037

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed for θ1 or δ. Omitted
categories are Non-Hisp. White, Less than high school, Midwest or Other Region, and Poor Health
The threat point scale factor is 0.6, ρ = 0.004 and R = 10.
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3% when one’s partner retires. In terms of the effect on the hazard rate of retirement, this

corresponds to between 9% and 24% of the effect of having a defined benefit plan for men.

We also note that the copula parameter hovers above 0.5 in many of our specifications,

yielding a Kendall’s rank correlation coefficient of about 0.2. As explained previously, this

correlation is potentially due to sorting or other commonalities.

To gauge the quantitative importance of the retirement externality, we also computed

the marginal effect of assigning every man to a defined contribution pension plan compared to

a defined benefit plan, holding everything else fixed.16 This resulted in a 17.2-month change

in the median uncensored retirement date for men. The simulated effect on the women was

a change in the median uncensored retirement date of 0.57 month. In other words, the

indirect effect on the women through the retirement externality is about 3.3% of the direct

effect on the men. Given the large amount of censoring, one might argue that the median

uncensored retirement date is not representative of the data we actually use. We therefore

also compared the effect on the 25th percentile of uncensored retirement dates. Here, the

direct effect on the husbands was 1.9 months, while the effect on the wives corresponded to

about 15.4% of that.

We also added spousal variables as covariates to the last specification. Those variables

were: dummies for “very good health” and “good health” and dummies for defined benefit

and defined contribution pensions. For males, none of the coefficients on the spousal variables

is statistically significant. For females, only the coefficient on a defined benefit pension plan

for the spouse is statistically significant. The coefficient of the husband having a defined

benefit plan on a woman’s duration (0.40) is larger than that of the man himself having a

defined benefit pension plan on his own duration to retirement, which is 0.27 once we include

the spousal covariates. In contrast, the point estimate of the effect of a wife having a defined

benefit pension plan on the man’s duration is also positive but statistically insignificant. The

absence of an effect of spousal health is in line with previous findings in the literature (e.g.,

Coile (2004a)). The effect of switching husbands from a defined contribution to a defined

16We used 100 simulation draws per individual to generate predictions under each of these two scenarios.
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benefit plan is still in line with our previous results: median duration until retirement for

men increases by 16.6 months, whereas median time to retirement for wives increases by 0.8

month, corresponding to 4.7% of the direct effect on husbands’ duration. The corresponding

numbers for the 25th percentile are an effect of 1.6 months for the males and 0.4 months for

the females.

All of the estimation results presented here can be thought of as GMM results. Rather

than working with the same moment conditions for all specifications, we always work with

the moment conditions that come from the scores of the Weibull proportional hazard aux-

iliary model using the same explanatory variables as in the final model, combined with the

scores from the pseudo-likelihood function for the ordered logit using only a constant as an

explanatory variable. This means that the number of overidentifying restrictions is one for

all of the specifications. As a specification test, we should therefore compare our minimized

objective function to a Chi-squared distribution with one degree of freedom (see Proposition

2 and ensuing discussion in Smith (1993)). The p-values associated with this test of overiden-

tifying restrictions range from 28% to 60%. The average p-value across the six specifications

is 40%. This suggests that our specification provides a good fit to the moments implicitly

used in the estimation and have good predictive power on the retirement behavior of cou-

ples. This is confirmed by comparing the Kaplan-Meier estimator of the observed durations

to durations simulated using the sixth specification from Tables 3 and 4. This is reported in

Figure 7. Figure 8 reports the same graphs after breaking the sample into two, depending

on whether the health status is Very Good.

In Figure 9, we verify the robustness of our estimates to different threat point levels.

As mentioned previously, we set Ai, i = 1, 2, equal to 0.6 of the utility spouse i would obtain

without the utility externality from joint retirement. In the graph we plot 95% confidence

intervals and point estimates of δ for various proportions of the utility one would get in case

the partner were not to retire in the third specification from Tables 3 and 4.17 As seen from

17The confidence intervals are asymmetric since lower and upper bounds correspond to symmetric lower
and upper bounds on ln(δ − 1) (which is the parameterization used in our computations for the estimation
of δ).
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Figure 7: Predicted and Actual Distribution of Retirement Durations

Figure 8: Predicted and Actual Distribution of Retirement Durations Conditional of Health
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the figure, point estimates hover around an average of 1.067, which is essentially the estimate

presented in our main tables (i.e., 1.070).

Figure 9: Robustness of δ̂ to Different Threat Point Specifications

Because the differential utility from joint retirement may depend on household char-

acteristics, we also split our estimation into households where husband and wife are within

3 years apart in age and households where their age difference is greater than 3 years. The

results are presented in Table 5 for the covariates used in the third specification from Tables

3 and 4. As expected, the interaction coefficient is higher for households closer in age. In-

terestingly, for households closer in age, Kendall’s rank correlation coefficient (τ/(2 + τ)) is

lower (0.15 versus 0.18). Retirement timing for wives in both types of households responds

more to health conditions than in the baseline specification in Table 3. More educated hus-

bands tend to retire later in households farther apart in age when compared to our baseline

results. The hazard is also comparatively higher for non-Hispanic black wives in couples

farther apart in age than in the baseline specification. For households closer in age, Hispanic

wives retire later than in the baseline specification and college seems to decrease the retire-

ment hazard for wives while it raises it for households farther apart in age. The coefficient

on Other Race is quite different across subsamples. The proportion of individuals of other

race is nonetheless small in both: around 3.2% among couples more than 3 years apart in

age and only 1.8% among those closer in age. For men, there is also heterogeneity for many
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of the coefficients. The indicator for early retirement eligibility carries a stronger coefficient

for men in households closer in age, whereas it is statistically insignificant for wives in those

households. On the other hand, the coefficient on early retirement eligibility for wives is

significant and higher than in our baseline results when households are farther apart in age.

Finally, to evaluate whether joint retirement is likely to be an outcome from a com-

mon shock, as opposed to the interaction between husband and wife, we compare the time

variation of our regressors across couples who retire simultaneously and couples who retire

sequentially. For the survey waves preceding retirement of any member in the household,

we look at the average proportional changes in financial assets and health expenditures and

average changes in self-reported health status, pension plans (defined benefit and defined con-

tribution) and health insurance. For all of these variables, couples retiring simultaneously

displayed at least as much stability (if not more) in the survey waves preceding retirement as

those retiring sequentially. For example, financial assets for those who end up retiring simul-

taneously are much more stable than for couples who retire sequentially: the average relative

change in financial wealth across survey waves preceding retirement is a factor of 4.847 for

those who retire simultaneously versus a factor of 10.850 for those who retire sequentially.

Standard deviations were also lower for those couples retiring simultaneously. The same

pattern arises even when the factor is deflated by the growth in the S&P500 stock market

index. Furthermore, there is no discernible statistical difference between the average change

in financial assets from survey wave to survey wave for these two groups. Consequently, it

is unlikely that shocks to financial wealth (and, for that matter, that shocks to any of the

variables listed above) explain the joint retirement decision in our sample.

5 Concluding Remarks

We have presented a new duration model that nests the usual generalized accelerated failure

time model, but accounts for joint termination of a pair of spells in a way that is consistent

with an economic model of joint decision making. The econometric model is based on a very
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Table 5: Simultaneous Duration by Age Diff.

≤ 3 yrs. > 3 yrs.
Wife Husband Wife Husband

Variable Coef. Coef. Coef. Coef.
(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

δ 1.11 1.07
( 0.08 ) ( 0.05 )

θ1 1.27 1.23 1.29 1.22
( 0.09 ) ( 0.07 ) ( 0.07 ) ( 0.06 )

Constant -5.34 ∗∗ -5.29 ∗∗ -5.74 ∗∗ -5.28 ∗∗
( 0.52 ) ( 0.37 ) ( 0.37 ) ( 0.34 )

≥ 62 yrs-old 2.93 42.43 ∗∗ 18.16 † 30.98 ∗∗
( 8.74 ) ( 15.58 ) ( 9.63 ) ( 9.63 )

Age Diff. -0.14 ∗∗ 0.01 -0.01 0.11 ∗∗
( 0.03 ) ( 0.01 ) ( 0.02 ) ( 0.02 )

Non-Hisp. Black -0.51 † -0.4 † 0.01 0.13
( 0.28 ) ( 0.19 ) ( 0.19 ) ( 0.21 )

Other race 0.32 -0.08 -1.13 ∗∗ -0.33
( 0.42 ) ( 0.3 ) ( 0.43 ) ( 0.58 )

Hispanic -0.63 † -0.49 † -0.43 † -0.7 †
( 0.33 ) ( 0.23 ) ( 0.26 ) ( 0.28 )

High school or GED -0.13 -0.11 0.3 -0.05
( 0.27 ) ( 0.16 ) ( 0.2 ) ( 0.19 )

Some college -0.14 -0.31 † -0.05 -0.13
( 0.28 ) ( 0.17 ) ( 0.22 ) ( 0.21 )

College or above -0.32 -0.5 ∗∗ 0.33 -0.37 †
( 0.33 ) ( 0.18 ) ( 0.22 ) ( 0.2 )

NE -0.07 -0.05 0.04 0.2
( 0.26 ) ( 0.18 ) ( 0.17 ) ( 0.16 )

SO 0.38 † -0.09 -0.02 -0.34 †
( 0.2 ) ( 0.15 ) ( 0.15 ) ( 0.15 )

WE 0.38 0.04 0.18 0.11
( 0.28 ) ( 0.17 ) ( 0.17 ) ( 0.17 )

V Good Health -0.31 -0.11 -0.31 -0.16
( 0.23 ) ( 0.18 ) ( 0.2 ) ( 0.21 )

Good Health -0.49 † 0.04 -0.41 † -0.3
( 0.25 ) ( 0.18 ) ( 0.21 ) ( 0.22 )

τ 0.34 0.43
( 0.47 ) ( 0.47 )

Function Value 0.16 0.07
Number of Obs. 590 637

Significance levels :† : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed
for θ1 or δ. Omitted categories are Non-Hisp. White, Less than high school,
Midwest or Other Region, and Poor Health. The threat point scale factor is 0.6,
ρ = 0.004 and R = 5.
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simple economic model with Nash bargaining and it can generate concurrent termination of

spells with positive probability as well as interdependence between the durations when they

are not concurrent, even when the underlying unobservables are independent.

We then applied the model to the retirement of husband and wife using data from

the Health and Retirement Study. The main empirical finding is that simultaneity seems

economically important. Since the econometric model is based on a simple economic model, it

is possible to interpret the estimates in terms of the underlying preferences. In our preferred

specification, the indirect utility associated with being retired increases by approximately 5%

if one’s spouse is already retired. By comparison, a defined benefit pension plan increases

indirect utility by 32%. The estimated model also predicts that the marginal effect of a

change in the husbands’ pension plan on wives’ retirement dates is about 3-25% of the direct

effect on the husbands’.
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Appendix

Computational Details

The sample moment conditions implied by the auxiliary model used for indirect inference

in this paper are discontinuous functions of the structural parameters. We calculate the

minimizer of the corresponding GMM minimization problem as follows.

1. δ is parameterized as exp
(
δ̃
)

+ 1; θ1, θ2, τ , and the jumps in Z(·) are parameterized

as exp
(
θ̃1

)
, exp

(
θ̃2

)
, exp (τ̃), exp (α1) and exp (α2).

2. Weibull models are estimated separately for husbands and wives as part of the auxiliary

model. The estimates from this are the starting values for the θ’s and β’s. The starting

values for δ and τ are 1.08 and exp (−1). The starting values for the jumps are exp (1)

and exp (3.5) for females and males, respectively. The starting values for the objective

functions for Specifications 1-6 range from 50.6 to 60.2.

3. The parameters are estimated by particle swarm using the built-in Matlab routine.

The objective functions for Specifications 1-6 ranged from 0.27 to 1.64 after this.

4. The following loop of procedures was used until a loop produced a change in the

parameter estimate of less than 10−5. (The number of loops was restricted to be

between 5 and 20.)

(a) particle swarm using the built-in Matlab routine

(b) Powell’s conjugate direction method

(c) downhill simplex using Matlab’s fminsearch routine

(d) pattern search using Matlab’s built-in routine

(e) particle swarm focusing on the jump-parameters using the build-in Matlab routine

5. Estimation of the asymptotic variance of the indirect inference estimator requires esti-

mation of the variance of the element in the moment condition as well as estimation of
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the derivative of its expectation. The latter is calculated by a numeric derivative after

increasing the number of simulation replications by a factor of 20. For the step-size in

the numeric derivative, we choose 0.01, 0.02, . . . , 0.09, 0.1, and report the median of

the implied estimated standard errors. Table 6 reports the reported standard errors for

Specification 3 along with the standard errors associated with the different step-sizes.

Table 6 suggests that the reported standard errors are not too sensitive to the way we

choose the bandwidth. This is an important advantage of increasing the number of

simulation draws in the estimation of the standard errors.

The discount factor is fixed and not estimated.
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Table 6: The Effect of Bandwidth on the Reported Standard Errors

Females

Bandwidth Median 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
δ 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
θ1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06
≥ 62 yrs-old 6.82 5.00 5.55 6.49 6.28 6.78 6.93 7.12 7.22 6.87 7.11
Constant 0.30 0.30 0.28 0.28 0.28 0.29 0.30 0.31 0.31 0.31 0.32
Age Diff. 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.16 0.16 0.16
Non-Hisp. Black 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.15
Other race 0.35 0.31 0.35 0.36 0.37 0.37 0.36 0.34 0.34 0.34 0.34
Hispanic 0.19 0.18 0.18 0.19 0.19 0.19 0.19 0.19 0.19 0.20 0.20
High school or GED 0.16 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
Some college 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
College or above 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19
NE 0.15 0.14 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
SO 0.11 0.11 0.11 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11
WE 0.15 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
V Good Health 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Good Health 0.16 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
τ 0.35 0.31 0.35 0.35 0.35 0.35 0.35 0.34 0.34 0.34 0.35

Males

Bandwidth Median 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
δ 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
θ1 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.04
≥ 62 yrs-old 7.86 5.79 5.99 6.72 7.06 7.80 8.47 8.17 8.52 8.35 7.93
Constant 0.23 0.23 0.24 0.24 0.23 0.23 0.22 0.22 0.23 0.23 0.23
Age Diff. 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07
Non-Hisp. Black 0.15 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15
Other race 0.28 0.29 0.30 0.28 0.28 0.28 0.28 0.28 0.28 0.27 0.28
Hispanic 0.18 0.18 0.18 0.17 0.18 0.18 0.18 0.18 0.18 0.18 0.18
High school or GED 0.12 0.12 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12
Some college 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
College or above 0.13 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.13 0.13
NE 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
SO 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
WE 0.12 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
V Good Health 0.13 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
Good Health 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.14 0.14 0.14 0.14
τ 0.35 0.31 0.35 0.35 0.35 0.35 0.35 0.34 0.34 0.34 0.35

This table presents the estimated standard errors using different step-sizes to calculate the numeric derivative.

The first column (Median) presents the median of the estimated standard error for each parameter.
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Appendix for Referees

AUXILIARY MODELS FOR INDIRECT INFERENCE

Log-likelihood Derivatives: Weibull Model

∂ logLi
∂αi

=
N∑
n=1

(1− ci,n)

(
1

αi
+ log (ti,n)

)
−

N∑
n=1

tαi
i,n log (ti,n) exp

(
x′i,nβi

)

∂ logLi
∂βi

=
N∑
n=1

(1− ci,n)xi,n −
N∑
n=1

tαi
i,n exp

(
x′i,nβi

)
xi,n

∂2 logLi
∂α2

i

= −
N∑
n=1

(1− ci,n)
1

α2
i

−
N∑
n=1

tαi
i,n log (ti,n)2 exp

(
x′i,nβi

)

∂2 logLi
∂αi∂β

′
i

= −
N∑
n=1

tαi
i,n log (ti,n) exp

(
x′i,nβi

)
xi,n

∂2 logLi
∂βi∂β

′
i

= −
N∑
n=1

tαi
i,n exp

(
x′i,nβi

)
xi,nx

′
i,n

To impose αi > 0 in our computations we parameterize αi = exp (θ). Then,

∂ logLi
∂θ

=
∂ logLi
∂αi

∂αi
∂θ

=

(
N∑
n=1

(1− ci,n)

(
1

αi
+ log (ti,n)

)
−

N∑
n=1

tαi
i,n log (ti,n) exp

(
x′i,nβi

))
αi

∂ logLi
∂βi

=
N∑
n=1

(1− ci,n)xi,n −
N∑
n=1

tαi
i,n exp

(
x′i,nβi

)
xi,n
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∂2 logLi
∂θ2

=
∂

∂θ

(
∂ logLi
∂αi

∂αi
∂θ

)
=

∂2 logLi
∂α2

i

(
∂αi
∂θ

)2

+
∂ logL
∂αi

∂2αi

∂θ2

=

(
−

N∑
n=1

(1− ci,n)
1

α2
i

−
N∑
n=1

tαi
i,n log (ti,n)2 exp

(
x′i,nβi

))
α2
i

−

(
N∑
n=1

(1− ci,n)

(
1

αi
+ log (ti,n)

)
−

N∑
n=1

tαi
i,n log (ti,n) exp

(
x′i,nβi

))
αi

∂2 logLi
∂θ∂β′i

=
∂2 logLi
∂αi∂β

′
i

∂αi
∂θ

=

(
−

N∑
n=1

tαi
i,n log (ti,n) exp

(
x′i,nβi

)
xi,n

)
αi

∂2 logLi
∂βi∂β

′
i

= −
N∑
n=1

tαi
i,n exp

(
x′i,nβi

)
xi,nx

′
i,n

Pseudo-likelihood Derivatives: Ordered Model

∂Q
∂γ

=
∑
n

[(1 {yn 6= 0} − Λ (x′0nγ))x0n + (1 {yn = 2} − Λ (x′1nγ))x1n]

∂2Q
∂γ∂γ>

= −
∑
n

[((1− Λ (x′0nγ)) Λ (x′0nγ))x0nx
′
0n + ((1− Λ (x′1nγ)) Λ (x′1nγ))x1nx

′
1n]

ADDITIONAL DERIVATIONS FOR IDENTIFICATION DISCUSSION

Here we provide details for the effect of δ on the retirement date of the second spouse

to retire when there is sequential retirement. First, note that when t1 ≈ 0, applying the

Implicit Function Theorem to the FOC for t2 (see equation (2)) gives

dt2
dδ

= −

[
∂2I
∂t2∂δ

× (II) + ∂II
∂δ
× ∂I

∂t2
+ ∂2II

∂t2∂δ
× (I) + ∂I

∂δ
× ∂II

∂t2
∂2I
∂2t2
× (II) + ∂II

∂t2
× ∂I

∂t2
+ ∂2II

∂2t2
× (I) + ∂I

∂t2
× ∂II

∂t2

]
, (7)

where (I) and (II) are defined as in equation (2). The various terms can be signed as shown
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below:

∂I
∂δ

= ϕ1Z̃1(t2) > 0 ∂II
∂δ

= ϕ2Z̃2(t2) > 0

∂I
∂t2

= Z1(t2)e
−ρt2ϕ1(1− δ) < 0 ∂II

∂t2
= k2e

−ρt2 − Z2(t2)ϕ2δe
−ρt2 > 0

∂2I
∂t2∂δ

= −Z1(t2)e
−ρt2ϕ1 < 0 ∂2II

∂t2∂δ
= k2e

−ρt2 − Z2(t2)ϕ2δe
−ρt2 > 0

∂2I
∂t22

= Z ′1(t2)e
−ρt2ϕ1(1− δ) < 0 ∂2II

∂t22
= −ρe−ρt2(k2 − Z2(t2)ϕ2δ)− Z ′2(t2)e−ρt2 < 0.

These and the fact that (I) ≥ 0 and (II) ≥ 0 imply that the denominator in expression (7)

is strictly negative. To see that the numerator is also negative notice that

lim
δ→1

[
∂II

∂δ
× ∂I

∂t2
+
∂I

∂δ
× ∂II

∂t2

]
= ϕ1Z̃1(t2)[k2 − Z2(t2)ϕ2] = 0,

where the last equality follows because k2 = Z2(t2)ϕ2 at the optimally chosen t2 when δ = 1.

Since

∂

∂δ

[
∂II

∂δ
× ∂I

∂t2
+
∂I

∂δ
× ∂II

∂t2

]
= −ϕ1ϕ2

(
Z1(t2)Z̃2(t2) + Z2(t2)Z̃1(t2)

)
e−ρt2 < 0,

it follows that

∂II

∂δ
× ∂I

∂t2
+
∂I

∂δ
× ∂II

∂t2
< 0.

The other two remaining terms in the numerator are negative, which then implies that

the numerator is negative. Consequently, (7) is negative: larger values of δ lead to earlier

retirement by the second agent (i.e., lower t2). Because t1 ≈ 0, I (and, consequently, t2) will

not depend on k1. Having identified Zi(·), ϕi(·) and the marginal distribution of K2, this

allows one to identify δ.
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