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We investigate a nonparametric panel model with heterogeneous regression func-
tions. In a variety of applications, it is natural to impose a group structure on
the regression curves. Specifically, we may suppose that the observed individuals
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1 Introduction

Most of the literature on non- and semiparametric panel models is based on the as-

sumption that the regression function is the same across individuals; see Henderson

et al. (2008), Mammen et al. (2009) and Qian and Wang (2012) among many oth-

ers. This assumption, however, is very unrealistic in many applications. In particular,

when the number of observed individuals is large, it is quite unlikely that all indi-

viduals have the same regression function. In a wide range of cases, it is much more

plausible to suppose that there are groups of individuals who share the same regression

function (or at least have very similar regression curves). As a modelling approach,

we may thus assume that the observed individuals can be grouped into a number of

classes whose members all share the same regression function. The aim of this paper

is to develop a statistical procedure to infer the unknown group structure from the

data.
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Throughout the paper, we work with the following model setup. We observe a

sample of panel data {(Yit, Xit) : 1 ≤ i ≤ n, 1 ≤ t ≤ T}, where i denotes the i-th

individual and t is the time point of observation. The data are supposed to come from

the nonparametric regression model

Yit = mi(Xit) + uit, (1.1)

where mi are unknown nonparametric functions which may differ across individuals

i and uit denotes the error term. We impose the following group structure on the

model: Let G1, . . . , GK0 be a fixed number of disjoint sets which partition the index

set {1, . . . , n}, that is, G1 ∪̇ . . . ∪̇ GK0 = {1, . . . , n}. Moreover, let g1, . . . , gK0 be

functions associated with these sets. We suppose that

mi = gk for all i ∈ Gk and 1 ≤ k ≤ K0. (1.2)

Hence, the observed individuals can be grouped into a finite number of classes Gk

whose members share the same regression curve gk. Our aim is to estimate the groups

G1, . . . , GK0 , their number K0 and the associated functions g1, . . . , gK0 .

A great concern in many panel data applications is the issue of endogeneity, that is,

the issue that the error term may be correlated with the regressors. Such a correlation

may be produced, for example, by unobserved variables that are not controlled for

and thus induce some sort of omitted variable bias. To take into account the issue

of endogeneity in our model, we suppose the error terms uit in (1.1) to have the

structure uit = αi +γt + εit, where εit are idiosyncratic error terms with E[εit|Xit] = 0.

Moreover, αi and γt are unobserved individual and time specific error terms which may

be correlated with the regressors in an arbitrary way. Specifically, defining Xn,T =

{Xit : 1 ≤ i ≤ n, 1 ≤ t ≤ T}, we allow that E[αi|Xn,T ] 6= 0 and E[γt|Xn,T ] 6= 0

in general. In the panel literature, αi and γt are commonly termed individual and

time specific fixed effects, respectively. The time series dimension T of the observed

panel is assumed to be large, or more precisely, to tend to infinity. The cross-section

dimension n, in contrast, may either be fixed or diverging. To identify the functions mi

in (1.1), we normalize them to satisfy E[mi(Xit)] = 0 for all i and t. This normalization

amounts to a harmless rescaling under our technical conditions in Section 3. Finally,

note that the classes Gk = Gk,n depend on the cross-section dimension n in general.

To keep the exposition simple, we however suppress this dependence in the notation

throughout the paper.

The group structure imposed in (1.1)–(1.2) is an attractive working hypothesis in

a wide number of applications. In Section 6, we illustrate this by an example from

finance. Up to 2007, primary European stock exchanges such as the London stock

exchange were essentially the only venues where stocks could be traded in Europe. This

monopoly was ended by the so-called “Markets in Financial Instruments Directive”
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in 2007. Since then, various new trading platforms have emerged and competed for

trading volume. Nowadays, the European equity market is strongly fragmented with

stocks being traded simultaneously at a variety of different venues. This restructuring

of the European stock market has raised the question how competition between trading

venues, that is, trading venue fragmentation affects the quality of the market from the

point of view of the typical trader. Obviously, the effect of fragmentation on market

quality can be expected to differ across stocks. Moreover, it is plausible to suppose

that there are different groups of stocks for which the effect is the same (or at least

quite similar). Our modelling approach thus appears to be a suitable framework to

empirically investigate the effect of fragmentation on market quality. In Section 6, we

apply it to a sample of data for the FTSE 100 and FTSE 250 stocks.

To the best of our knowledge, the problem of classifying nonparametric regression

functions in the fixed effects panel framework (1.1) has not been considered so far

in the literature. Recently, however, there have been some studies on a parametric

version of this problem: Consider the linear panel regression model Yit = βiXit + uit,

where the coefficients βi are allowed to vary across individuals. Similarly as in our

nonparametric model, we may suppose that the coefficients βi can be grouped into

a number of classes. Specifically, we may assume that there are classes G1, . . . , GK0

along with associated coefficients θ1, . . . , θK0 such that βi = θk for all i ∈ Gk and

all 1 ≤ k ≤ K0. The problem of estimating the unknown groups G1, . . . , GK0 in this

parametric framework has been considered, for example, in Sarafidis and Weber (2014)

and Su et al. (2014) who work with penalization techniques, and in Lin and Ng (2012)

who employ thresholding and k-means clustering methods.

Our modelling approach is related to classification problems in functional data

analysis. There, the observed data X1, . . . , Xn are curves, or more specifically, sample

paths of a stochastic process X = {X(t) : t ∈ T }, where T is some index set and

most commonly represents an interval of time. In some cases, the curves X1, . . . , Xn

are observed without noise; in others, they are observed with noise. In the latter case,

they have to be estimated from noisy observations Y1, . . . , Yn which are realizations of

a process Y = {Y (t) = X(t)+ε(t) : t ∈ T } with ε being the noise process. In both the

noiseless and the noisy case, the aim is to cluster the curves X1, . . . , Xn into a number

of groups. There is a vast amount of papers which deal with this problem in different

model setups; see for example Abraham et al. (2003) and Tarpey and Kinateder (2003)

for procedures based on k-means clustering, James and Sugar (2003) and Chiou and

Li (2007) for so-called model-based clustering approaches, Ray and Mallick (2006) for

a Bayesian approach and Jacques and Preda (2014) for a recent survey.

Even though there is a natural link between our estimation problem and the issue

of classifying curves in functional data analysis, these two problems substantially differ

from each other. In functional data analysis, the objects to be clustered are realiza-

tions of random curves that depend on a deterministic index t ∈ T . In our panel model
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in contrast, we aim to cluster deterministic curves that depend on random regressors.

Hence, the objects to be clustered are of a very different nature. Moreover, the error

structure in our model is much more involved than in functional data analysis, where

the noise is most commonly i.i.d. across observations (if there is noise at all). Finally,

whereas the number of observed curves n should diverge to infinity in functional data

models, we provide theory both for fixed and diverging n. For these reasons, substan-

tially different theoretical arguments are required to analyze clustering algorithms in

our panel framework and in functional data analysis.

Our procedure to estimate the classes G1, . . . , GK0 along with the associated func-

tions g1, . . . , gK0 in model (1.1)–(1.2) is presented in Section 2. There, we construct

two algorithms to estimate the classes. In both cases, we compute the pairwise L2-

distances between kernel estimates of the regression curves mi and use the information

contained in these distances to infer the unknown class structure. The first algorithm

exploits a particular pattern in the ordered L2-distances, whereas the second one is a

k-means clustering type of approach applied to the estimated distances. To obtain an

estimation method with good theoretical and practical properties, we combine these

two algorithms to form a two-step procedure: the first algorithm provides us with ini-

tial estimators that are used as starting values for the k-means type algorithm. With

these estimators of the classes Gk at our disposal, it is straightforward to construct

estimators of the functions gk. Specifically, since gk = |Gk|−1
∑

i∈Gk mi with |Gk|
denoting the cardinality of Gk, we may simply estimate gk by averaging the kernel

estimates of the functions mi whose index i belongs to the estimated class Gk.

The asymptotic properties of our estimation approach are investigated in Section

3. There, we show that our estimators of the classes G1, . . . , GK0 are consistent and we

derive the limit distribution of the estimators of the associated functions g1, . . . , gK0 .

Our estimation approach can be used both when the number of classes K0 is known

and when K0 is replaced by a consistent estimator. In Section 4, we describe how

to construct such an estimator of K0 and how to implement it in practice to obtain

a good finite sample performance. We finally complement the theoretical analysis of

the paper by a simulation study in Section 5 and by our empirical investigation of the

effect of fragmentation on market quality in Section 6.

2 Estimation

In this section, we describe how to estimate the groups G1, . . . , GK0 and the corre-

sponding functions g1, . . . , gK0 in model (1.1)–(1.2). For simplicity of exposition, we

restrict attention to real-valued regressors Xit, the theory carrying over to the multi-

variate case in a completely straightforward way. Throughout the section, we assume

that the number K0 of groups is known. In Section 4, we drop this simplifying assump-

tion and replace K0 by an estimator. To set up our estimation method, we proceed
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in several steps: In a first step, we construct kernel-type smoothers of the individual

functions mi. With the help of these smoothers, we then set up estimators of the

classes Gk and finally use these to come up with estimators of the functions gk for

1 ≤ k ≤ K0.

2.1 Estimation of the regression functions mi

To construct an estimator of the regression function mi of the i-th individual, we

proceed as follows: Let Y fe
it = Yit − αi − γt be the Y -observations purged of the

individual and time fixed effects. If the fixed effects were observed, we could directly

work with the model equation Y fe
it = mi(Xit) + εit, from which the function mi can

be estimated by standard nonparametric methods. In particular, we could employ a

Nadaraya-Watson smoother of the form

m̂∗i (w) =

∑T
t=1Kh(Xit − w)Y fe

it∑T
t=1Kh(Xit − w)

,

where h is the bandwidth and K denotes a kernel function with Kh(w) = h−1K(w/h).

To obtain a feasible estimator of mi, we replace the unobserved variables Y fe
it in the

above formula by the approximations Ŷ fe
it = Yit − Y i − Y

(i)

t + Y
(i)

, where

Y i =
1

T

T∑
t=1

Yit, Y
(i)

t =
1

n− 1

∑
j 6=i

Yjt, Y
(i)

=
1

(n− 1)T

∑
j 6=i

T∑
t=1

Yjt

are sample averages of the Y -observations. In the definition of Y
(i)

t and Y
(i)

, we leave

out the i-th observation to avoid some bias terms that are particularly problematic

when n is fixed. With this notation at hand, we define the feasible estimator

m̂i(w) =

∑T
t=1Kh(Xit − w)Ŷ fe

it∑T
t=1Kh(Xit − w)

of the regression function mi. Alternatively to the Nadaraya-Watson smoother m̂i, we

could work with a local linear or more generally with a local polynomial estimator.

Indeed, our procedure to estimate the groups Gk and the corresponding functions gk

for 1 ≤ k ≤ K0 is the same no matter which type of kernel smoother we employ.

2.2 Estimation of the groups G1, . . . , GK0

We now present two methods to estimate the classes G1, . . . , GK0 . The first method

provides us with preliminary estimators of the classes. These serve as starting values

for the second method, which yields improved estimators of G1, . . . , GK0 . To formulate

the two procedures, we introduce some notation: For two functions q1 : R → R and
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q2 : R→ R, let

∆(q1, q2) =

∫ (
q1(w)− q2(w)

)2
π(w)dw (2.1)

be their weighted squared L2-distance, where π is some weight function. To shorten no-

tation, we write ∆ij = ∆(mi,mj) in what follows. Moreover, we let mS = 1
|S|
∑

i∈Smi

be the average of the functions mi in the group S, where |S| is the cardinality of S.

A preliminary estimation algorithm. Our first estimation approach is based on

the following observation: Let S ⊆ {1, . . . , n} be an index set which contains at least

two different classes Gk and Gk′ . For each i ∈ S, the distances {∆ij : j ∈ S} exhibit

a particular pattern when sorted in increasing order: Denoting the ordered distances

by ∆i(1) ≤ ∆i(2) ≤ . . . ≤ ∆i(nS) with nS = |S| being the cardinality of S, there are κ

points j1 < . . . < jκ with 1 ≤ κ < K0 such that

∆i(1) = . . . = ∆i(j1−1) < ∆i(j1) = . . . = ∆i(j2−1)

< ∆i(j2) = . . . = ∆i(j3−1)

...

< ∆i(jκ) = . . . = ∆i(nS).

The indices j1, . . . , jκ mark the positions where the L2-distance jumps to another value.

These jump points are informative on the group structure {Gk : 1 ≤ k ≤ K0}: Two

indices (j) and (j′) can only belong to the same class Gk if ∆i(j) = ∆i(j′).

We now exploit the step structure of the ordered L2-distances to partition the index

set {1, . . . , n} into the classes G1, . . . , GK0 by an iterative procedure. In each iteration

step, we split an index set S (which contains at least two different classes Gk and Gk′)

into two subsets as follows:

(AL1) Pick some index i ∈ S, sort the distances {∆ij : j ∈ S} in increasing order and

denote the ordered distances by ∆i(1) ≤ ∆i(2) ≤ . . . ≤ ∆i(nS).

(AL2) Determine the position of the largest jump,

jmax = arg max
2≤j≤nS

∣∣∆i(j) −∆i(j−1)
∣∣.

(AL3) Partition S into two subgroups as follows: S = S< ∪̇S> with

S< =
{

(1), . . . , (jmax − 1)
}

and S> =
{

(jmax), . . . , (nS)
}
.

The sets S< and S> have the following property: each class Gk ⊂ S is either contained

in S< or in S>. Hence, the algorithm (AL1)–(AL3) separates the classes Gk contained

in S into two groups. We now iterate this algorithm as follows:
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1st Step: Set S = {1, . . . , n} and split it up into two subgroups S1 = S< and S2 = S>

by applying (AL1)–(AL3).

rth Step: Let {S1, . . . , Sr} be the partition of {1, . . . , n} from the previous iteration

step. Pick some group S`∗ from this partition for which maxi,j∈S`∗ ∆ij > 0.

This condition ensures that S`∗ contains at least two different classes Gk and

Gk′ . Now split S`∗ into two subgroups S`∗,< and S`∗,> by applying (AL1)–

(AL3). This yields a refined partition with the (r + 1) elements S`∗,<, S`∗,>

and S` for 1 ≤ ` ≤ r, ` 6= `∗.

Repeating this algorithm (K0 − 1) times partitions the index set {1, . . . , n} into K0

groups. By construction, these groups are identical to the classes G1, . . . , GK0 .

To obtain estimators of the classes G1, . . . , GK0 , we apply the iterative procedure

from above to estimated versions of the distances ∆ij. In particular, we estimate ∆ij

by ∆̂ij = ∆(m̂i, m̂j) and perform the following iterative algorithm:

1st Step: Set S = {1, . . . , n} and split it up into two subgroups S1 = S< and S2 = S>

by applying (AL1)–(AL3) to the estimated distances {∆̂ij : i, j ∈ S}.

rth Step: Let {S1, . . . , Sr} be the partition of {1, . . . , n} from the previous iteration

step. Calculate the maximum L2-distance maxi,j∈S` ∆̂ij for each ` with 1 ≤
` ≤ r. Pick the group S` with the largest maximum distance, say S`∗ , and

split it up into two subgroups S`∗,< and S`∗,> by applying (AL1)–(AL3) to

the estimated distances {∆̂ij : i, j ∈ S`∗}. This yields a refined partition

with the (r + 1) elements S`∗,<, S`∗,> and S` for 1 ≤ ` ≤ r, ` 6= `∗.

Iterating this procedure (K0 − 1) times partitions the index set {1, . . . , n} into K0

groups G̃1, . . . , G̃K0 which serve as our estimators of the classes G1, . . . , GK0 .

When implementing the estimators G̃1, . . . , G̃K0 , there is in principle no restriction

on how to pick the index i ∈ S in the first step (AL1) of the iterative algorithm

(AL1)–(AL3). Indeed, the asymptotic properties of G̃1, . . . , G̃K0 derived in Section 3

hold true no matter how we choose the index i in (AL1). In practice, we suggest to

pick the index i according to the following rule:

(R) For each i ∈ S, let Ĵij = |∆̂i(j+1) − ∆̂i(j)| with 1 ≤ j ≤ nS − 1 be the jumps

between the estimated L2-distances and denote the ordered jumps by Ĵi(1) ≤
Ĵi(2) ≤ . . . ≤ Ĵi(nS−1). Define Σ̂(i) =

∑nS−K0

j=1 Ĵi(j) for i ∈ S and choose i = i∗ with

Σ̂(i∗) = mini∈S Σ̂(i).

The heuristic idea behind this rule is as follows: The algorithm (AL1)–(AL3) exploits

the fact that for any i ∈ S, the ordered L2-distances ∆i(1) ≤ ∆i(2) ≤ . . . ≤ ∆i(nS) have

a step structure. When applied to the estimated distances ∆̂i(1) ≤ ∆̂i(2) ≤ . . . ≤ ∆̂i(nS),

the algorithm can thus be expected to perform well only when the step structure is

captured accurately by the estimates {∆̂i(j) : j ∈ S}. This suggests to choose an index
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i ∈ S for which the step structure is well approximated. The rule (R) is designed to

achieve such a choice: As the total number of classes is K0, there are at most (K0− 1)

non-zero steps in the ordered L2-distances {∆i(j) : j ∈ S}, implying that the jumps

Ĵi(j) must converge to zero for 1 ≤ j ≤ nS − K0. The smaller these jumps are, the

better the step structure is captured by the estimates {∆̂i(j) : j ∈ S} corresponding

to the index i. The expression Σ̂(i) can thus be regarded as a measure of how well

the step structure is approximated for the index i. In particular, the smaller Σ̂(i), the

better the approximation.

As we will see later on, the proposed estimation procedure consistently estimates

the classes G1, . . . , GK0 . Hence, from an asymptotic perspective, it works as desired.

Moreover, from a computational point of view, it is a quite fast algorithm because

roughly speaking, it only requires to determine the maximum of O(n) terms and

to repeat this maximum search for (K0 − 1) times. Its small sample performance,

however, is not fully satisfactory in some situations. The reason is as follows: As

already noted, the algorithm (AL1)–(AL3) can only be expected to perform well when

the step structure is captured in a reasonable way by the estimated L2-distances ∆̂ij.

When the noise level of the error terms in model (1.1) is low, the estimates ∆̂ij are

quite precise and tend to approximate the step structure fairly accurately. In this

case, the algorithm works well and produces estimates G̃1, . . . , G̃K0 with a good small

sample performance. When the noise level is high in contrast, the step structure may

not be captured appropriately by the estimates ∆̂ij any more, which may lead to poor

estimates of the classes G1, . . . , GK0 . For this reason, we use G̃1, . . . , G̃K0 only as

the starting values of a second estimation algorithm which produces more stable and

accurate results.

A k-means estimation algorithm. The second estimation method makes use

of the fact that the classes G1, . . . , GK0 can be characterized as follows: Let P =

{S1, . . . , SK0} be a partition of {1, . . . , n} into K0 sets and let P be the set of all

possible partitions with K0 elements. Then the partition {G1, . . . , GK0} can be char-

acterized as

{G1, . . . , GK0} = argmin
P={S1,...,SK0

}∈P

K0∑
k=1

∑
i∈Sk

∆(mi,mSk). (2.2)

Here, ∆(mi,mSk) measures the squared L2-distance between the function mi and the

mean function or centroid mSk of the cluster Sk. Moreover,
∑

i∈Sk ∆(mi,mSk) specifies

the sum of squared distances within the cluster Sk. The partition {G1, . . . , GK0} thus

minimizes the within-cluster sums of squared distances.

Formula (2.2) suggests to estimate {G1, . . . , GK0} by minimizing a sample ana-

logue of the within-cluster sums of squared distances, in particular by minimizing the

criterion function
∑K0

k=1

∑
i∈Sk ∆(m̂i, m̂Sk), where m̂Sk = |Sk|−1

∑
i∈Sk m̂i. In practice,

this minimizer can be approximated by applying a k-means clustering algorithm to the
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estimated functions {m̂i : 1 ≤ i ≤ n}. This type of algorithm is very popular and has a

long tradition in the classification literature. Since its introduction in Cox (1957) and

Fisher (1958), many people have worked on it; see for example Pollard (1981, 1982) for

consistency and weak convergence results and Garcia-Escudero and Gordaliza (1999),

Tarpey and Kinateder (2003), Sun et al. (2012) and Ieva et al. (2013) for more recent

extensions and applications of the algorithm. Our version of the k-means clustering

algorithm proceeds as follows:

1st Step: Choose starting values m̂
[0]

1 , . . . , m̂
[0]

K0
for the cluster means and calculate

the distances d̂k(i) = ∆(m̂i, m̂
[0]

k ) for each i and k. Define the partition

{S[0]
1 , . . . , S

[0]
K0
} by assigning the index i to the k-th group S

[0]
k if d̂k(i) =

min1≤k′≤K0 d̂k′(i).

rth Step: Let {S[r−1]
1 , . . . , S

[r−1]
K0
} be the partition of {1, . . . , n} from the previous iter-

ation step. Calculate mean functions

m̂
[r]

k =
1

|S[r−1]
k |

∑
i∈S[r−1]

k

m̂i for 1 ≤ k ≤ K0

based on this partition and compute the distances d̂k(i) = ∆(m̂i, m̂
[r]

k ) for

each i and k. Define the new partition {S[r]
1 , . . . , S

[r]
K0
} by assigning the index

i to the k-th group S
[r]
k if d̂k(i) = min1≤k′≤K0 d̂k′(i).

This algorithm is iterated until the computed partition does not change any more.

For a given sample of data, this is guaranteed to happen after finitely many steps.

We thus obtain estimators of the classes {Gk : 1 ≤ k ≤ K0} which are denoted by

{Ĝk : 1 ≤ k ≤ K0} in what follows.

The performance of our k-means clustering procedure obviously depends on the

choice of the starting values m̂
[0]

1 , . . . , m̂
[0]

K0
. In particular, when these are not picked

appropriately, the procedure may not converge to the partition which minimizes the

within-cluster sums of squares but may be stuck in a local minimum. For this reason,

it does not yield a consistent estimator of the partition {Gk : 1 ≤ k ≤ K0} in general.

To ensure consistency, we have to make sure that we start off with appropriate mean

functions m̂
[0]

1 , . . . , m̂
[0]

K0
. To achieve this, we make use of our first estimation method

which provides us with preliminary consistent estimates G̃1, . . . , G̃K0 of the groups

G1, . . . , GK0 . From these, we can calculate starting values

m̂
[0]

k =
1

|G̃k|

∑
i∈G̃k

m̂i for 1 ≤ k ≤ K0. (2.3)

As these converge to the true centroids mk = |Gk|−1
∑

i∈Gk mi, our k-means clustering

algorithm can be proven to consistently estimate the partition {Gk : 1 ≤ k ≤ K0}
when applied with the starting values defined in (2.3). In the sequel, we implicitly

take for granted that the algorithm is always started with these values.
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2.3 Estimation of the functions g1, . . . , gK0

Once we have constructed estimators of the groups Gk, it is straightforward to come

up with good estimators of the functions gk. In particular, we define

ĝk(w) =
1

|Ĝk|

∑
i∈Ĝk

m̂i(w),

where |Ĝk| denotes the cardinality of the set Ĝk. Hence, we simply average the esti-

mators m̂i with indices in the estimated group Ĝk.

3 Asymptotics

In this section, we investigate the asymptotic properties of our estimators. We first list

the assumptions needed for the analysis and then summarize the main results. The

proofs can be found in the Appendix.

3.1 Assumptions

We make the following assumptions.

(C1) The time series Zi = {(Xit, εit) : 1 ≤ t ≤ T} are independent across i. Moreover,

they are strictly stationary and strongly mixing for each i. Let αi(`) for ` =

1, 2, . . . be the mixing coefficients corresponding to the i-th time series Zi. It

holds that αi(`) ≤ α(`) for all 1 ≤ i ≤ n, where the coefficients α(`) decay

exponentially fast to zero as `→∞.

(C2) The functions gk (1 ≤ k ≤ K0) are twice continuously differentiable. The den-

sities fi of the variables Xit exist and have bounded support, which w.l.o.g.

equals [0, 1]. They are uniformly bounded away from zero and infinity, that is,

0 < c ≤ min1≤i≤n infw∈[0,1] fi(w) and max1≤i≤n supw∈[0,1] fi(w) ≤ C <∞ for some

constants 0 < c ≤ C < ∞. Moreover, they are twice continuously differentiable

on [0, 1] with uniformly bounded first and second derivatives. Finally, the joint

densities fi,` of (Xit, Xit+`) exist and are uniformly bounded away from infinity.

(C3) There exist a real number θ > 4 and a natural number `∗ such that

max
1≤i≤n

sup
w∈[0,1]

E
[
|εit|θ

∣∣Xit = w
]
≤ C <∞

max
1≤i≤n

sup
w,w′∈[0,1]

E
[
|εit|
∣∣Xit = w,Xit+` = w′

]
≤ C <∞

max
1≤i≤n

sup
w,w′∈[0,1]

E
[
|εitεit+`|

∣∣Xit = w,Xit+` = w′
]
≤ C <∞

for any ` ≥ `∗ and a fixed constant C <∞.

10



(C4) The time series dimension T tends to infinity, while the cross-section dimension n

may either be fixed or diverging. Their relative growth is such that n/T ≤ C for

some constant C <∞. The bandwidth h converges to zero such that T 1/2h→∞
and T δh→ 0 for some small δ > 0.

(C5) The kernel K is non-negative and bounded. Moreover, it is symmetric about

zero, has compact support (say [−C1, C1]), and fulfills the Lipschitz condition

that there exists a positive constant L with |K(w)−K(w′)| ≤ L|w − w′|.

We finally suppose that the weight function π in the definition of the L2-distance in

(2.1) is bounded and that its support is contained in the support of the regressors,

that is, supp(π) ⊆ [0, 1].

We briefly comment on the above assumptions. First of all, note that we do not

necessarily require exponentially decaying mixing rates as assumed in (C1). These

could alternatively be replaced by sufficiently high polynomial rates. We nevertheless

make the stronger assumption of exponential mixing to keep the notation and structure

of the proofs as clear as possible. (C2) and (C3) are standard-type smoothness and

moment conditions that are needed to derive uniform convergence results for the kernel

estimators on which our methods are based; cp. for example Hansen (2008) for similar

assumptions. (C4) imposes restrictions on the relative growth of the two dimensions

n and T . There is a trade-off between these restrictions and the moment condition

that θ > 4 in (C3). In particular, it is possible to relax (C4) at the cost of a stronger

moment condition. For example, we can weaken (C4) to allow for n/T 3/2 ≤ C, if

we strengthen the moment condition to θ > 5. Importantly, we do not impose any

restrictions on the class sizes nk = |Gk| for 1 ≤ k ≤ K0. They only need to fulfill the

trivial conditions that nk ≤ n for 1 ≤ k ≤ K0 and
∑K0

k=1 nk = n. The sizes nk may

thus be very different across the classes Gk. In particular, they may be fixed for some

classes and grow to infinity at different rates for others.

3.2 Main results

To start with, we examine the asymptotic properties of our estimators of the classes

{Gk : 1 ≤ k ≤ K0}. According to the first theorem, the preliminary estimators

{G̃k : 1 ≤ k ≤ K0} are consistent in the following sense: they coincide with the true

classes {Gk : 1 ≤ k ≤ K0} with probability tending to one as the sample size grows.

Theorem 3.1. Let (C1)–(C5) be satisfied. Then

P
({
G̃k : 1 ≤ k ≤ K0

}
6=
{
Gk : 1 ≤ k ≤ K0

})
= o(1).

The second-step estimators {Ĝk : 1 ≤ k ≤ K0} can be shown to inherit this consistency

property from the preliminary estimators {G̃k : 1 ≤ k ≤ K0}.

11



Theorem 3.2. Let (C1)–(C5) be satisfied. Then

P
({
Ĝk : 1 ≤ k ≤ K0

}
6=
{
Gk : 1 ≤ k ≤ K0

})
= o(1).

Note that the indexing of the estimators G̃1, . . . , G̃K0 and Ĝ1, . . . , ĜK0 is completely

arbitrary. We could, for example, change the indexing according to the rule k 7→
K0−k+ 1. In the sequel, we suppose that the estimated classes are indexed such that

P(G̃k = Gk)→ 1 and P(Ĝk = Gk)→ 1 for all k with 1 ≤ k ≤ K0. Theorems 3.1 and

3.2 imply that this is possible without loss of generality.

We next turn to the asymptotic properties of the estimators ĝk. To formulate

them, we introduce some notation: Let n̂k = |Ĝk| be the cardinality of Ĝk and let the

constant ck be implicitly defined by the formula h/(n̂kT )−1/5
P−→ ck. Noting that the

group size nk depends on the cross-section dimension n in general, i.e., nk = nk(n),

we define the terms

Bk(w) =
c
5/2
k

2

(∫
K(ϕ)ϕ2dϕ

)
lim
n→∞

( 1

nk

∑
i∈Gk

g′′k(w)fi(w) + 2g′k(w)f ′i(w)

fi(w)

)
Vk(w) =

(∫
K2(ϕ)dϕ

)
lim
n→∞

( 1

nk

∑
i∈Gk

σ2
i (w)

fi(w)

)
,

where we implicitly suppose that the limit expressions exist. The terms Bk(w) and

Vk(w) play the role of the asymptotic bias and variance in what follows. The next

theorem specifies the limit distribution of ĝk.

Theorem 3.3. Let (C1)–(C5) be satisfied. Moreover, write n̂k = |Ĝk| and choose the

bandwidth h such that h/(n̂kT )−1/5
P−→ ck for some fixed constant ck > 0. Then√

n̂kTh
(
ĝk(w)− gk(w)

) d−→ N
(
Bk(w), Vk(w)

)
for any fixed w ∈ (0, 1).

Theorem 3.3 implies that the pointwise convergence rate of ĝk is Op(1/
√
nkTh), or

put differently,

ĝk(w)− gk(w) = Op

( 1√
nkTh

)
(3.1)

for any w ∈ (0, 1). This rate depends on the class size nk. Specifically, the faster nk

grows to infinity, the faster the convergence rate of ĝk. The reason for this is simple:

By construction, ĝk essentially is an average of the individual smoothers m̂i. If nk is

bounded, we only average over finitely many smoothers, implying that the convergence

rate of ĝk is identical to that of the individual time series smoothers m̂i. In particular,

the rate equals Op(1/
√
Th) in this case. If nk tends to infinity in contrast, we average

over infinitely many smoothers. As is well known from other nonparametric estimation

12



problems (see e.g. Linton (1997) or Wang and Yang (2007)), the averaging leads to a

variance reduction in this case and thus helps to speed up the rate of ĝk.

In addition to the pointwise rate in (3.1), it is possible to derive results on the

uniform convergence behaviour of ĝk: Lemma B.1 from the Appendix directly implies

that under (C1)–(C5),

sup
w∈[0,1]

∣∣ĝk(w)− gk(w)
∣∣ = op(1).

To derive the exact rate at which ĝk uniformly converges to gk, we essentially have to

compute the uniform rate of an average of kernel smoothers. This can be achieved by

following the usual strategy to derive uniform convergence rates for kernel estimators;

see for example Masry (1996), Bosq (1998) or Hansen (2008). For the case that

nk = O(n) and that the bandwidth h is of the order (nT )−(1/5+δ) for some small δ > 0,

this has been done in Körber et al. (2014b). Their results immediately imply that in

this case,

sup
w∈Ih

∣∣ĝk(w)− gk(w)
∣∣ = Op

(√ log(nkT )

nkTh

)
, (3.2)

where Ih = [C1h, 1 − C1h] is the interior of the support of the regressors. By fairly

straightforward modifications of these results, it is possible to verify (3.2) under more

general conditions on the size of nk.

4 Estimating the Number of Classes K0

So far, we have worked under the simplifying assumption that the number of classes

K0 is known. We now drop this assumption and take into account that K0 is unknown

in many applications. We only suppose that there is some known upper bound K on

the number of classes, i.e., we take for granted that K0 ≤ K. Importantly, our theo-

retical results of Section 3 remain to hold true when K0 gets replaced by a consistent

estimator. We now explain how to construct such an estimator.

Step 1: For each candidate number of classes K with 1 ≤ K ≤ K, construct a par-

tition {Ĝ(K)
k : 1 ≤ k ≤ K} of the index set with K elements as described

below. Moreover, define associated function estimates ĝ
(K)
k by ĝ

(K)
k (w) =

|Ĝ(K)
k |−1

∑
i∈Ĝ(K)

k
m̂i(w).

Step 2: Let ∆(m̂i, ĝ
(K)
k ) be the squared L2-distance between the function m̂i and the

centre ĝ
(K)
k of the k-th cluster. For each K with 1 ≤ K ≤ K, compute the

average L2-distance

Ψ̂(K) =
1

n

K∑
k=1

∑
i∈Ĝ(K)

k

∆(m̂i, ĝ
(K)
k ).

13



Step 3: Estimate K0 by

K̂0 = min
{
K ∈ {1, . . . , K} : Ψ̂(K) ≤ ρn,T

}
,

where ρn,T ↘ 0 at a rate specified in Theorem 4.1 below.

To construct the partitions in Step 1, we may simply run the estimation algorithm

from Subsection 2.2 for each K with 1 ≤ K ≤ K. Computationally, this is however

not very efficient. We thus proceed as follows: To start with, we run the algorithm

for K, which yields a partition {Ĝ(K)
k : 1 ≤ k ≤ K} with K elements. Next, we

calculate the distances ∆(ĝ
(K)
k , ĝ

(K)
k′ ) =

∫
[ĝ

(K)
k (w) − ĝ(K)

k′ (w)]2π(w)dw for each pair of

indices 1 ≤ k < k′ ≤ K and take the pair corresponding to the minimal distance, say

(k1, k2). We then replace the two groups Ĝ
(K)
k1

and Ĝ
(K)
k2

by their union, which yields

a partition {Ĝ(K−1)
k : 1 ≤ k ≤ K − 1} with (K − 1) elements. We thus construct a

partition with (K − 1) elements by taking the union of the two classes whose centres

are closest to each other. Iterating this construction principle, we obtain a partition

{Ĝ(K)
k : 1 ≤ k ≤ K} for each K.

The heuristic idea behind the estimator K̂0 is as follows: When K ≥ K0, the

partition {Ĝ(K)
k : 1 ≤ k ≤ K} can be expected to estimate a refinement of the true

class structure {Gk : 1 ≤ k ≤ K0}. In particular, it should converge to a partition

{G(K)
k : 1 ≤ k ≤ K} with the property that for any ` ∈ {1 . . . , K} there exists

k ∈ {1, . . . , K0} with G
(K)
` ⊆ Gk. This suggests that Ψ̂(K) converges to zero for

K ≥ K0. When K < K0 in contrast, we are not able to consistently estimate the true

class structure. In particular, at least one of the estimates Ĝ
(K)
` should approximate

the union of two or more classes Gk. Hence, Ψ̂(K) can be expected to converge to some

positive number rather than zero for K < K0. Taken together, these considerations

suggest that Ψ̂(K) is bounded away from zero for K < K0 but converges to zero for

K ≥ K0. The estimator K̂0, that is, the smallest K for which Ψ̂(K) is close to zero

should thus give a good approximation to K0. This intuition is confirmed by the next

result which shows that K̂0 consistently estimates the true number of groups K0.

Theorem 4.1. Let (C1)–(C5) be satisfied and suppose that nk/n→ ck for some con-

stants ck > 0 and all 1 ≤ k ≤ K0. Moreover, let ρn,T ↘ 0 with ρn,T ≥ c(nT )−1/(20+η)

for some c > 0 and a small η > 0, and choose the bandwidth h such that h/ρn,T → 0.

Then

P
(
K̂0 6= K0

)
= o(1).

The proof of Theorem 4.1 easily follows with the help of the arguments from the

Appendix. We are thus content with providing a brief outline: As stated in Theorem

4.1, we impose the additional condition that nk/n → ck > 0 for 1 ≤ k ≤ K0, i.e., the

class sizes nk are all of the order O(n) and thus do not differ too much. Under this

condition, it can be shown that for each K < K0, the average distance Ψ̂(K) converges
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in probability to a fixed positive number. As ρn,T ↘ 0, we can thus infer that

P
(
K̂0 < K0

)
= P

(
Ψ̂(K) ≤ ρn,T for some K < K0

)
≤

K0−1∑
k=1

P
(
Ψ̂(K) ≤ ρn,T

)
= o(1) (4.1)

as well as

P
(
K̂0 > K0

)
= P

(
Ψ̂(K) > ρn,T for all K ≤ K0

)
= P

(
Ψ̂(K0) > ρn,T

)
+ o(1). (4.2)

Combining (4.1) and (4.2), we arrive at

P(K̂0 6= K0) = P(K̂0 < K0) + P(K̂0 > K0)

= P
(
Ψ̂(K0) > ρn,T

)
+ o(1). (4.3)

Inspecting the proof of Theorems 3.1 and 3.2, it is not difficult to see that the partition

{Ĝ(K0)
k : 1 ≤ k ≤ K0} consistently estimates the classes {Gk : 1 ≤ k ≤ K0}. This

allows us to infer that Ψ̂(K0) = op(1). More specifically, with the help of the arguments

for Lemma B.1 in the Appendix, we can show that Ψ̂(K0) = Op((nT )−1/(20+δ) + h)

for some arbitrarily small δ > 0. Setting δ = η/2 without loss of generality, we thus

obtain that P(Ψ̂(K0) > ρn,T ) = o(1). Combining this statement with (4.3) completes

the proof of Theorem 4.1.

It goes without saying that the small sample performance of the estimator K̂0

strongly hinges on the choice of the threshold parameter ρn,T . It is thus essential to

pick ρn,T in an appropriate way. In what follows, we provide some heuristic arguments

on how to achieve this. To start with, we replace the average distance Ψ̂(K0) by the

term

Ψ(K0) =
1

n

K0∑
k=1

∑
i∈Gk

∆(m̂i, gk),

thus ignoring the estimation error in Ĝk and ĝk for 1 ≤ k ≤ K0. Letting the bandwidth

h converge to zero slightly faster than T−2/9 and neglecting the time series dependence

in the data, the arguments in Härdle and Mammen (1993) show that

Th1/2∆(m̂i, gk)
d−→ N(Bi,h, Vi) (4.4)

with

Bi,h = h−1/2CB(K)

∫
σ2
i (w)π(w)

fi(w)
dw
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Vi = 2CV (K)

∫
(σ2

i (w))2π2(w)

f 2
i (w)

dw,

where CB(K) =
∫
K2(w)dw, CV (K) =

∫
(
∫
K(v)K(v + w)dv)2dw and σ2

i (w) =

E[ε2it|Xit = w]. Let us now suppose that the fixed effects αi and γt are observed.

In this case, we can replace the estimators m̂i by the infeasible versions m̂∗i defined

in Subsection 2.1, which are independent across i. Moreover, assume that the cross-

section dimension n is fixed. Under these conditions, (4.4) immediately implies that

Th1/2Ψ(K0)
d−→ N(Bh, V ), (4.5)

where Bh = n−1
∑n

i=1Bi,h and V = n−2
∑n

i=1 Vi. Letting qα be the (1 − α)-quantile

of a normal distribution with mean zero and variance V and setting ρn,T = (qα +

Bh)/(Th
1/2), we further obtain that

P
(
Ψ(K0) ≤ ρn,T

)
= P

(
Th1/2Ψ(K0)−Bh ≤ qα

)
→ 1− α (4.6)

by (4.5). With the help of (4.3), we may finally conclude that

P(K̂0 6= K0) ≈ P(Ψ̂(K0) > ρn,T ) ≈ P(Ψ(K0) > ρn,T ) ≈ α. (4.7)

With the choice ρn,T = (qα + Bh)/(Th
1/2), we should thus be able to approximately

control the estimation error in K̂0. In particular, the probability that K̂0 6= K0 should

not be much more than α.

Clearly, (4.7) is not a theoretically rigorous result but is based on heuristic ar-

guments which are subject to a number of simplifications. Nevertheless, it suggests

that our estimator K̂0 should perform reasonably well when implemented with the

choice ρn,T = (qα + Bh)/(Th
1/2). In practice, of course, we cannot take this choice at

face value but have to replace the expressions qα and Bh by estimators. This can be

achieved by replacing the unknown functions σi and fi in the bias and variance terms

Bh and V by standard kernel estimators. Denoting the resulting estimators of qα and

Bh by q̂α and B̂h, respectively, we propose to choose ρn,T = (q̂α + B̂h)/(Th
1/2). The

simulations in the next section suggest that this choice of ρn,T yields an estimator K̂0

with good finite sample properties.

5 Simulations

We now investigate the small sample behaviour of our methods by means of a Monte

Carlo experiment. The simulation design is set up to mimic the situation in the

application of Section 6: We consider the panel model

Yit = mi(Xit) + εit (1 ≤ i ≤ n, 1 ≤ t ≤ T ) (5.1)
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Figure 1: Plot of the functions gk for 1 ≤ k ≤ 5.

with n = 120 and T ∈ {100, 150, 200}, where (n, T ) = (120, 150) approximately

corresponds to the sample size in the application. The individuals i are supposed to

split into the five groups G1 = {1, . . . , 50}, G2 = {51, . . . , 80}, G3 = {81, . . . , 100},
G4 = {101, . . . , 110} and G5 = {111, . . . , 120}. The functions associated with these

groups are g1(w) = 0, g2(w) = 1 − 2w, g3(w) = 0.75 arctan(10(w − 0.75)) + 0.25,

g4(w) = 2ϑ((w − 0.75)/0.75) − 0.75 with ϑ(w) = (1 − w2)41(|w| ≤ 1) and g5(w) =

1.75 arctan(5(u − 0.6)) + 0.75. Figure 1 provides a plot of these functions, which are

chosen to roughly approximate the shapes of the estimates ĝ1, . . . , ĝ5 in the application

later on.

The model errors εit are i.i.d. draws from a normal distribution with mean zero and

standard deviation 1.3, which matches the average standard deviation of the estimated

residuals in the application. Moreover, the regressors Xit are drawn independently

from a uniform distribution with support [0, 1], taking into account that the regressors

in the application are supported on [0, 1] as well. As can be seen, there is no time series

dependence in the error terms and the regressors, and we do not include fixed effects

αi and γt into the error structure. We do not take into account these complications in

our simulation design because their effect on the results is obvious: The stronger the

time series dependence in the model variables and the more noise we add in terms of

the fixed effects, the more difficult it becomes to estimate the curves mi and thus to

infer the unknown group structure from the simulated data.

In our first simulation exercise, we treat the number of classes K0 = 5 as known

and focus on the estimation of the class structure {Gk : 1 ≤ k ≤ K0}. To compute

the estimates m̂i, we work with an Epanechnikov kernel and the bandwidth h = 0.25,

which is used throughout the simulations. As a robustness check, we have repeated

the simulations for various other bandwidths. As this yields very similar results, we

however do not report them here. For each sample size (n, T ) with n = 120 and

T ∈ {100, 150, 200}, we drawn N = 1000 samples from the setting (5.1) and compute

the estimates {Ĝk : 1 ≤ k ≤ K0}. In order to measure how well these estimates fit the

real class structure {Gk : 1 ≤ k ≤ K0}, we calculate the number of wrongly classified
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Figure 2: Simulation results for the estimation of the classes G1, . . . , G5. The three plots
show the distributions of the number #F of wrong classifications for the samples sizes (n, T )
with n = 120 and T ∈ {100, 150, 200}.

indices i, which is denoted by #F in what follows. For each sample size (n, T ), we thus

obtain N = 1000 values for the number #F of wrong classifications. Figure 2 shows

the distribution of these values. In particular, the bars in the plots give the number

of simulations (out of total of 1000) in which a certain number of wrong classifications

is obtained.

Inspecting the plots of Figure 2, our estimators {Ĝk : 1 ≤ k ≤ K0} can be seen to

approximate the group structure quite well, their precision improving quickly as the

sample size grows. At a sample size of T = 200, all indices are correctly classified

in about 80% of the cases and there is only one wrongly classified index in most

other cases. For T = 150, which is approximately equal to the time series length in

the application, our classification procedure also produces accurate results in most

simulations with only a few indices being wrongly classified. Finally, for T = 100, the

procedure yields good results with only a few wrong classifications in about 50–60%

of the cases. There is however a substantial fraction of simulations in which many

classification errors occur. This is not surprising since the time series length T = 100

is comparably small given the noise level of the error terms. The fits m̂i thus tend to

be quite imprecise, which in turn leads to frequent classification errors.

T = 100 T = 150 T = 200

K̂0 = 5 811 881 912

K̂0 = 6 114 80 59

K̂0 = 7 46 28 27

K̂0 = 8 3 9 2

K̂0 = 9 3 0 0

K̂0 = 10 23 2 0

Table 1: Simulation results for the estimation of K0. The entries in the table specify the
number of simulations in which a certain value of K̂0 is obtained.
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Having investigated the performance of our estimators {Ĝk : 1 ≤ k ≤ K0} for

a given number of classes K0, we now examine the finite sample properties of the

estimator K̂0. To do so, we implement the estimator as described in Section 4, where

we set K = 10 and ρn,T = (q̂α + B̂h)/(Th
1/2) with α = 0.05. As before, we drawn

N = 1000 samples for each model specification and calculate the estimate K̂0 for each

simulated sample. The simulation results are presented in Table 1. They suggest that

the estimator K̂0 performs reasonably well in small samples. Already for the smallest

time series length T = 100, it selects the true number of classes K0 = 5 in around 80%

of the simulations. This value can be seen to improve as the sample size increases. For

T = 200, it is around 91% and thus comes close to a level of 95%, which is the level

predicted by our heuristic considerations in Section 4, in particular by (4.7).

6 Application

In 2007, the “Markets in Financial Instruments Directive (MiFID)” ended the monopoly

of primary European stock exchanges. It paved the way for the emergence of various

new trading platforms and brought about a strong fragmentation of the European

stock market. Both policy makers and academic researchers aim to analyze and evalu-

ate the effects of MiFID. A particular interest lies in better understanding how trading

venue fragmentation influences market quality. This question has been investigated

with the help of parametric panel models in O’Hara and Ye (2009) and Degryse et al.

(2014) among others. A semiparametric panel model with a factor structure has been

employed in Körber et al. (2014b).

In what follows, we use our modelling approach to gain further insights into the

effect of fragmentation on market quality. We apply it to a large sample of volume and

price data on the FTSE 100 and FTSE 250 stocks from May 2008 to June 2011. The

volume data is supplied to us by Fidessa. The sample consists of weekly observations

on the volume of all the FTSE stocks traded at a number of different venues in the UK;

see Körber et al. (2014a,b) for a more detailed description of the data set. The price

data is taken from Datastream and comprises the lowest and the highest daily price

of the various FTSE stocks. From these data, we calculate measures of fragmentation

and market quality for all stocks in our sample on a weekly frequency. As a measure

of fragmentation, we use the so-called Herfindahl index. The Herfindahl index of stock

i is defined as the sum of the squared market shares of the venues where the stock

is traded. It thus takes values between 0 and 1, or more exactly, between 1/M and

1 with M being the number of trading venues. A value of 1/M indicates the perfect

competition case where the stock is traded at equal shares at all existing venues. A

value of 1 represents the monopoly case where the stock is traded at only one venue.

As a measure of market quality, we employ volatility, or more specifically, the so-

called high-low range, which is defined as the difference between the highest and the

lowest price of the stock divided by the latter. To obtain volatility levels on a weekly
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Figure 3: Estimates m̂i for the n = 127 stocks in our sample.

frequency, we calculate the weekly median of the daily levels.

Denoting the Herfindahl index of stock i at time t by Xit and the corresponding

logarithmic volatility level by Yit, we model the relationship between Yit and Xit by

the equation

Yit = mi(Xit) + uit, (6.1)

where the error term has the fixed effects structure uit = αi + γt + εit. In this model,

the function mi captures the effect of fragmentation on market quality for stock i.

This effect can be expected to differ across stocks. In particular, it is quite plausible

to suppose that there are different groups of stocks for which the effect is fairly similar.

We thus impose a group structure on the stocks in our sample: We suppose that there

exist K0 classes of stocks G1, . . . , GK0 along with associated functions g1, . . . , gK0 such

that mi = gk for all i ∈ Gk and all 1 ≤ k ≤ K0. The effect of fragmentation on market

quality is thus modelled to be the same within each group of stocks.

To determine the number of classes K0 and to estimate the groups Gk along with

the functions gk for 1 ≤ k ≤ K0, we employ the estimation techniques developed in the

previous sections. As in the simulations, we use an Epanechnikov kernel to compute

the Nadaraya-Watson smoothers m̂i. Prior to estimation, we eliminate stocks i with

a very small empirical support Si of the fragmentation data {Xit : 1 ≤ t ≤ T}. In

particular, we only take into account stocks i for which the support Si contains the

interval [0.275, 0.8]. This leaves us with n = 127 stocks. The time series dimension

amounts to T = 151 weeks. These sizes of n and T are broadly consistent with our

assumptions from Section 3.

We now turn to the estimation results. To start with, we estimate the number

of classes K0 by means of the procedure from Section 4, where we set K = 10 and

ρn,T = (q̂α+B̂h)/(Th
1/2) with α = 0.05 as in the simulations. We compute the estimate

K̂0 for various bandwidths h, in particular for h ∈ {0.2, 0.225, 0.25, 0.275, 0.3}. For all
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Figure 4: Clusters of the curve estimates m̂i. The black lines are the estimates m̂i, the red
lines the estimates ĝk. The latter are once again plotted together in the lower right panel.
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these bandwidths except for h = 0.2, we obtain the estimate K̂0 = 5, whereas K̂0 = 4

for h = 0.2. This indicates that the group structure imposed by our model yields a

good fit of the data when the number of classes equals 4 or 5. In what follows, we

only present the results for 5 classes, those for 4 groups giving a similar picture and

suggesting essentially the same interpretation.

Setting the number of groups to 5, we apply our procedure from Section 2 to cluster

the estimated curves m̂i into groups. Figure 3 depicts the estimates m̂i for the n = 127

stocks in our sample. Figure 4 shows the clusters produced by our procedure. Each

panel of Figure 4 depicts the estimates which belong to a particular class Ĝk. The

corresponding estimates ĝk are indicated by the solid red curves and are once again

plotted together in the lower right panel of the figure. The estimates m̂i in Figures 3

and 4 are computed with the bandwidth h = 0.25. As a robustness check, we have

repeated the estimation with the bandwidths h ∈ {0.2, 0.225, 0.25, 0.275, 0.3}. As this

yields similar clusters as in the case with h = 0.25, we do not report the results.

Inspecting Figure 4, the effect of fragmentation on (logarithmic) volatility appears

to be quite moderate for a large number of stocks i: Most of the curves in Cluster IV

are close to a flat line, which is reflected by the shape of the associated function ĝ4.

The fits of Cluster V slightly slope downwards, indicating that the volatility level is

a bit lower in the monopoly case than under competition. Most of the fits in Cluster

III are moderately increasing, suggesting that the volatility level is a bit lower under

competition. In contrast to the fits in Clusters III, IV and V, those in Clusters I

and II exhibit a more pronounced effect of fragmentation on volatility: most of the

fits substantially slope upwards, the increase being stronger in Cluster I than in II.

Regarding volatility as a bad, the results of Figure 4 can be interpreted as follows: For

the stocks in Clusters I, II and III, fragmentation leads to a decrease of volatility and

thus to an improvement of market quality. For some stocks – specifically for those of

Cluster I – this improvement is quite substantial. For most of the stocks however – in

particular for those in Clusters III, IV and V – the effect of fragmentation on volatility

is fairly moderate and may go into both directions. In particular, fragmentation may

either slightly improve (cp. Cluster III) or deteriorate (cp. Cluster V) market quality.

7 Extensions

Our estimation approach may be extended in various directions. We close the paper

by outlining some of them.

7.1 The fixed design case

So far, we have focused on the case of stochastic covariates Xit. In a variety of

applications, however, we are interested in a design with deterministic regressors. A

particularly important case arises when Xit is (rescaled) time, that is, Xit = t/T . In
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this case, the model equation (1.1) becomes

Yit = mi

( t
T

)
+ uit, (7.1)

where mi are unknown nonparametric time trend functions. In many applications, the

data do not only exhibit a trending but also a seasonal behaviour over time. For this

reason, we enrich (7.1) by a seasonal component, yielding the model

Yit = si(t) +mi

( t
T

)
+ uit. (7.2)

Here, si is the seasonal component of the time series of the i-th individual. In par-

ticular, (si(1), . . . , si(T )) is a periodic sequence with a known integer-valued period p,

that is, si(t) = si(t+ `p) for all ` and t.

As in the random design case, we suppose that there is a finite number of groups

G1, . . . , GK0 such that mi = gk for all i ∈ Gk and 1 ≤ k ≤ K0. The error terms uit

are assumed to split into two components, uit = αi + εit, where εit are idiosyncratic

error terms satisfying E[εit] = 0 and αi are unobserved individual specific fixed effects.

Unlike in the random design, we do not include a time fixed effect in the error structure,

because the trending behaviour of the data over time is now explicitly modelled by the

functions mi. As before, the time series dimension T is assumed to tend to infinity,

whereas the cross-section dimension n may either be fixed or diverging. To identify

the functions mi in (7.2), we normalize them to satisfy
∫ 1

0
mi(w)dw = 0 for all i. This

is sufficient for identification by Lemma A2 in Vogt and Linton (2014).

To estimate the groups Gk and the functions gk for 1 ≤ k ≤ K0, we proceed in the

same way as in the random design case. The only difference is that the estimators of the

trend functions mi are not exactly the same as those of the regression functions in the

random design. To construct estimators of the trend functions, we define Y fe
it = Yit −

νi(t) with νi(t) = si(t) +αi. These variables can be approximated by Ŷ fe
it = Yit− ν̂i(t),

where

ν̂i(t) =
1

Lt

Lt∑
`=1

Yi,tp+(`−1)p

with tp = t − b t−1
p
cp and Lt = 1 + bT−tp

p
c. With this notation at hand, we define

Nadaraya-Watson type estimators of the functions mi by

m̂i(w) =

∑T
t=1Kh(

t
T
− w)Ŷ fe

it∑T
t=1Kh(

t
T
− w)

.

Replacing the smoothers of Subsection 2.1 by those defined above, the groups Gk and

the associated functions gk can be estimated exactly as described in Subsections 2.2

and 2.3. As in the random design case, the resulting estimators are denoted by G̃k,

Ĝk and ĝk.
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To derive asymptotic results analogous to those from Section 3, we impose the

following conditions.

(C’1) The time series Zi = {εit : 1 ≤ t ≤ T} are independent across i. Moreover, they

are strictly stationary and strongly mixing for each i. Let αi(`) for ` = 1, 2, . . .

be the mixing coefficients corresponding to the i-th time series Zi. It holds that

αi(`) ≤ α(`) for all 1 ≤ i ≤ n, where the coefficients α(`) decay exponentially

fast to zero as `→∞.

(C’2) The functions gk (1 ≤ k ≤ K0) are twice continuously differentiable on [0, 1].

(C’3) There exists a real number θ > 4 such that E[|εit|θ] ≤ C <∞.

Under conditions (C’1)–(C’3) along with (C4)–(C5), our estimators of the groups Gk

can be shown to be consistent in the sense that

P
({
G̃k : 1 ≤ k ≤ K0

}
6=
{
Gk : 1 ≤ k ≤ K0

})
= o(1) (7.3)

P
({
Ĝk : 1 ≤ k ≤ K0

}
6=
{
Gk : 1 ≤ k ≤ K0

})
= o(1). (7.4)

The proof of these two results is completely analogous to that of Theorems 3.1 and

3.2 for the random design. It is worth mentioning that (7.3) and (7.4) remain to

hold true when we drop the independence assumption on the time series Zi and allow

them to be dependent across i in an arbitrary way. This is possible because we do not

include a time fixed effect in the error structure. The time fixed effect γt in the random

design is essentially approximated by the cross-sectional average Y
(i)

t = 1
n−1

∑
j 6=i Yjt

in our estimation approach. To control the behaviour of this average asymptotically,

we have to impose some restrictions on the dependence of the time series Zi across i.

When dropping γt from the model, the averages Y
(i)

t are not needed any more and our

technical arguments, in particular those for Lemma B.1 in the Appendix, go through

without any such restrictions on the dependence structure.

We next derive the limit distribution of the estimators ĝk. By arguments analogous

to those for Theorem 3.3, we can prove the following result: Let (C’1)–(C’3) along with

(C4)–(C5) be satisfied and suppose that the bandwidth h is such that h/(n̂kT )−1/5
P−→

ck for some fixed constant ck > 0. Then√
n̂kTh

(
ĝk(w)− gk(w)

) d−→ N
(
Bk(w), Vk(w)

)
for any fixed w ∈ (0, 1), where the asymptotic bias and variance terms are given by

Bk(w) =
c
5/2
k

2

(∫
K(ϕ)ϕ2dϕ

)
g′′k(w)

Vk(w) =
(∫

K2(ϕ)dϕ
)

lim
n→∞

( 1

nk

∑
i∈Gk

∞∑
`=−∞

Cov(εit, εit+`)
)
.
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We finally mention that the number of classes K0 can be estimated by techniques as

discussed in Section 4. For reasons of brevity, we neglect the details.

7.2 Additive models

Our estimation techniques are not only useful in a nonparametric context but easily

carry over to semi- and structured nonparametric settings. As an example, consider

the additive model

Yit =
d∑
j=1

mi,j(Xit,j) + uit, (7.5)

where Xit = (Xit,1, . . . , Xit,d)
>, mi,j are nonparametric functions for 1 ≤ j ≤ d, and

the error terms uit have the fixed effects structure uit = αi+γt+εit with E[εit|Xit] = 0.

Suppose we are mainly interested in the effect of Xit,1 on the response Yit, which is cap-

tured by the functions mi,1. As in our nonparametric framework (1.1), we may model

this effect by imposing a group structure on the curves mi,1 in (7.5). In particular, we

may suppose that there exist classes G1, . . . , GK0 and associated functions g1, . . . , gK0

such that mi,1 = gk for all i ∈ Gk and 1 ≤ k ≤ K0. Our estimation procedures can

be applied almost unchanged in this additive context. We only have to replace the

Nadaraya-Watson smoothers m̂i of Section 2 by more complicated estimators of mi,1

that take into account the additive structure of (7.5).

Appendix A

We now provide the proofs of Theorems 3.1–3.3. Throughout the Appendix, the

symbol C denotes a universal real constant which may take a different value on each

occurrence. For the proofs of the theorems, we require some auxiliary results on the

uniform convergence of kernel estimators which are derived in Appendix B.

Proof of Theorem 3.1

Let S be a subset of {1, . . . , n} with cardinality |S| = nS and suppose that S contains

elements from at least two different classes Gk and Gk′ . For each i ∈ S, let

∆i(1) ≤ . . . ≤ ∆i(nS)

be the ordered distances {∆ij : j ∈ S} and write

∆̂i[1] ≤ . . . ≤ ∆̂i[nS ]

to denote the ordered estimates {∆̂ij : j ∈ S}. We here use the two different symbols

( · ) and [ · ] to distinguish between the orderings of the true and the estimated distances.
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Next, let jmax(i), ĵmax(i) ∈ S be indices with the property that

jmax(i) = arg max
2≤j≤nS

∣∣∆i(j) −∆i(j−1)
∣∣

ĵmax(i) = arg max
2≤j≤nS

∣∣∆̂i[j] − ∆̂i[j−1]
∣∣.

For simplicity, we assume that the index jmax(i) is unique for each i. This helps us

to keep the proof as clear as possible. In particular, it avoids some cumbersome case

distinctions in what follows. Finally, we introduce the sets

S<(i) =
{

(1), . . . , (jmax(i)− 1)
}

and S>(i) =
{

(jmax(i)), . . . , (nS)
}
,

Ŝ<(i) =
{

[1], . . . , [̂jmax(i)− 1]
}

and Ŝ>(i) =
{

[̂jmax(i)], . . . , [nS]
} (A.1)

for any i ∈ S.

When applied to the true distances {∆ij : j ∈ S}, the algorithm (AL1)–(AL3)

partitions S into two subsets S< and S>. When applied to the estimated distances

{∆̂ij : j ∈ S}, it splits S into two subsets which we denote by Ŝ< and Ŝ> to distinguish

them from S< and S>. By construction, the subsets S` and Ŝ` (` ∈ {<,>}) are

closely related to the sets defined in (A.1). In particular, it holds that S` = S`(i) and

Ŝ` = Ŝ`(i) for some i ∈ S. In the sequel, we show that

P
(
Ŝ`(i) = S`(i) for all i ∈ S

)
→ 1 (A.2)

for ` ∈ {<,>}. Hence, with probability tending to one, the algorithm (AL1)–(AL3)

partitions S in the same way when applied to the true and the estimated L2-distances.

As the algorithm (AL1)–(AL3) is repeated only finitely many times in the course of

our estimation procedure, this immediately implies that with probability tending to

one, the two partitions {G̃k : 1 ≤ k ≤ K0} and {Gk : 1 ≤ k ≤ K0} are identical. This

completes the proof of Theorem 3.1.

Proof of (A.2). With the help of Lemma B.1 from Appendix B, we can show that

max
i,j∈S

∣∣∆̂ij −∆ij

∣∣ = op(1), (A.3)

or put differently,

P
(

max
i,j∈S

∣∣∆̂ij −∆ij

∣∣ > δ

4

)
= o(1) (A.4)

for any δ > 0, in particular for δ0 = mini∈S |∆i(jmax(i)) −∆i(jmax(i)−1)|. By definition of

δ0, it holds that ∆i(j) + δ0 ≤ ∆i(jmax(i)) ≤ ∆i(j′) for any pair j, j′ with j < jmax(i) ≤ j′

and any i ∈ S. By applying (A.4) with δ = δ0, we can thus infer that with probability

tending to one, the following holds: If j is an index in S`(i) for some i ∈ S and

` ∈ {<,>}, then it must also be an index in Ŝ`(i). As a result, Ŝ`(i) = S`(i) for any

i ∈ S and ` ∈ {<,>} with probability approaching one.
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Proof of Theorem 3.2

With the help of Lemma B.1 from Appendix B, it is straightforward to see that∫ (
m̂i(w)− m̂[0]

k

)2
π(w)dw =

∫ (
mi(w)− gk(w)

)2
π(w)dw + op(1)

uniformly over i and k, or put differently,

max
1≤k≤K0

max
1≤i≤n

∣∣∆(m̂i, m̂
[0]

k )−∆(mi, gk)
∣∣ = op(1). (A.5)

By construction, the index i is assigned to the group S
[0]
k in the first step of the k-

means algorithm if d̂k(i) = ∆(m̂i, m̂
[0]

k ) is minimal, i.e., if d̂k(i) = min1≤k′≤K0 d̂k′(i).

By (A.5), we know that

d̂k(i) =

rk(i) if i ∈ Gk

∆(mi, gk) + rk(i) if i /∈ Gk,
(A.6)

where the remainder term rk(i) has the property that max1≤k≤K0 max1≤i≤n |rk(i)| =

op(1). Since min1≤k≤K0 mini/∈Gk ∆(mi, gk) ≥ ∆min > 0 for some positive constant ∆min,

(A.6) implies that

P
({
S
[0]
k : 1 ≤ k ≤ K0

}
6=
{
Gk : 1 ≤ k ≤ K0

})
= o(1).

Hence, with probability tending to one, our k-means clustering algorithm converges

already after the first iteration step and produces estimates which coincide with the

classes Gk for 1 ≤ k ≤ K0.

Proof of Theorem 3.3

In a first step, we replace the estimator ĝk by the infeasible version

ĝ∗k(w) =
1

nk

∑
i∈Gk

m̂i(w)

and show that the difference between the two estimators is asymptotically negligible:

For any null sequence {an,T} of positive numbers, it holds that

P
(∣∣ĝk(w)− ĝ∗k(w)

∣∣ > an,T

)
≤ P

(∣∣ĝk(w)− ĝ∗k(w)
∣∣ > an,T , Ĝk = Gk

)
+ P

(
Ĝk 6= Gk

)
= o(1),

since the first probability on the right-hand side is equal to zero by definition of ĝk and

ĝ∗k and the second one is of the order o(1) by Theorem 3.2. Hence, |ĝk(w)− ĝ∗k(w)| =
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Op(an,T ) for any null sequence {an,T} of positive numbers, which in turn implies that√
n̂kTh

(
ĝk(w)− gk(w)

)
=
√
n̂kTh

(
ĝ∗k(w)− gk(w)

)
+ op(1).

The difference between ĝk and ĝ∗k can thus be asymptotically ignored.

To complete the proof of Theorem 3.3, we derive the limit distribution of the

term
√
n̂kTh(ĝ∗k(w)− gk(w)): Since P(n̂k 6= nk) = o(1) by Theorem 3.2, it holds that√

n̂kTh(ĝ∗k(w)− gk(w)) =
√
nkTh(ĝ∗k(w)− gk(w)) + op(1). It thus suffices to compute

the limit distribution of
√
nkTh(ĝ∗k(w)− gk(w)). To do so, write

m̂i(w)−mi(w) =
[
Qi,V (w) +Qi,B(w)−Qi,γ(w)

]/
f̂i(w)−Qi +Qi,

where

Qi,V (w) =
1

T

T∑
t=1

Kh(Xit − w)εit

Qi,B(w) =
1

T

T∑
t=1

Kh(Xit − w)
[
mi(Xit)−mi(w)

]
Qi,γ(w) =

1

T

T∑
t=1

Kh(Xit − w)
( 1

n− 1

∑
j 6=i

[
mj(Xjt) + εjt

])
Qi =

1

T

T∑
t=1

[
mi(Xit) + εit

]
Qi =

1

(n− 1)T

∑
j 6=i

T∑
t=1

[
mj(Xjt) + εjt

]
and f̂i(w) = T−1

∑T
t=1Kh(Xit − w). With this notation at hand, we obtain that√

nkTh
(
ĝ∗k(w)− gk(w)

)
=
√
nkTh

{ 1

nk

∑
i∈Gk

Qi,V (w)

f̂i(w)
+

1

nk

∑
i∈Gk

Qi,B(w)

f̂i(w)
− 1

nk

∑
i∈Gk

Qi,γ(w)

f̂i(w)

− 1

nk

∑
i∈Gk

Qi +
1

nk

∑
i∈Gk

Qi

}
=
√
nkTh

{ 1

nk

∑
i∈Gk

Qi,V (w)

f̂i(w)
+

1

nk

∑
i∈Gk

Qi,B(w)

f̂i(w)
− 1

nk

∑
i∈Gk

Qi,γ(w)

f̂i(w)

}
+ op(1),

the last line following by standard calculations. In the sequel, we show that

1

nk

∑
i∈Gk

Qi,γ(w)

f̂i(w)
= op

( 1√
nkTh

)
(A.7)
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1

nk

∑
i∈Gk

Qi,V (w)

f̂i(w)
=

1

nk

∑
i∈Gk

Qi,V (w)

fi(w)
+ op

( 1√
nkTh

)
(A.8)

1

nk

∑
i∈Gk

Qi,B(w)

f̂i(w)
=

1

nk

∑
i∈Gk

Qi,B(w)

fi(w)
+ op

( 1√
nkTh

)
. (A.9)

(A.7)–(A.9) allow us to conclude that√
nkTh

(
ĝ∗k(w)− gk(w)

)
=
√
nkTh

{ 1

nk

∑
i∈Gk

Qi,V (w)

fi(w)
+

1

nk

∑
i∈Gk

Qi,B(w)

fi(w)

}
+ op

( 1√
nkTh

)
=
√
nkTh

( 1

nkT

∑
i∈Gk

T∑
t=1

Kh(Xit − w)

fi(w)
εit

)
+
√
nkTh

( 1

nkT

∑
i∈Gk

T∑
t=1

Kh(Xit − w)

fi(w)

[
mi(Xit)−mi(w)

])
+ op(1).

With the help of a standard central limit theorem, the first term on the right-hand side

can be shown to weakly converge to a normal distribution with mean zero and variance

Vk(w). Moreover, standard bias calculations yield that the second term converges in

probability to the bias expression Bk(w). This completes the proof.

Proof of (A.7). In a first step, we show that

Rγ :=
1

nk

∑
i∈Gk

Qi,γ(w)

f̂i(w)
− 1

nk

∑
i∈Gk

Qi,γ(w)

E[f̂i(w)]
= op

( 1√
nkTh

)
. (A.10)

To do so, we write Rγ = Rγ,1 +Rγ,2, where

Rγ,1 =
1

nk

∑
i∈Gk

E[f̂i(w)]− f̂i(w)

E[f̂i(w)]2
Qi,γ(w)

Rγ,2 =
1

nk

∑
i∈Gk

(E[f̂i(w)]− f̂i(w))2

E[f̂i(w)]2f̂i(w)
Qi,γ(w).

Defining Zit(w) = E[Kh(Xit−w)]−Kh(Xit−w), the first term Rγ,1 can be expressed

as

Rγ,1 =
1

nk

∑
i∈Gk

1

E[f̂i(w)]2

{ 1

T

T∑
t=1

Zit(w)
}

×
{ 1

T

T∑
t=1

Kh(Xit − w)
( 1

n− 1

∑
j 6=i

[
mj(Xjt) + εjt

])}
.
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We thus obtain that

E[R2
γ,1] =

1

n2
k(n− 1)2

∑
i,i′∈Gk

∑
j 6=i
j′ 6=i′

1

E[f̂i(w)]2

1

E[f̂i′(w)]2

×
( 1

T 4

T∑
t,t′,s,s′=1

Ψi,i′,j,j′,t,t′,s,s′(w)
)
, (A.11)

where we use the shorthand

Ψi,i′,j,j′,t,t′,s,s′(w) = E
[
Zit(w)Kh(Xis − w)

{
mj(Xjs) + εjs

}
× Zi′t′(w)Kh(Xi′s′ − w)

{
mj′(Xj′s′) + εj′s′

}]
.

Importantly, the expressions Ψi,i′,j,j′,t,t′,s,s′(w) in (A.11) have the following property:

Ψi,i′,j,j′,t,t′,s,s′(w) 6= 0 only if (a) i = j′ and i′ = j or (b) j = j′. Exploiting the mixing

conditions of (C1) by means of Davydov’s inequality (see Corollary 1.1 in Bosq (1998)),

we can show that in case (a), |T−4
∑T

t,t′,s,s′=1 ψi,i′,j,j′,t,t′,s,s′(w)| ≤ C(log T )2/(Th)2

and in case (b), |T−4
∑T

t,t′,s,s′=1 ψi,i′,j,j′,t,t′,s,s′(w)| ≤ C(log T )3/(Th)3. Plugging these

bounds into (A.11), we immediately arrive at Rγ,1 = op(1/
√
nkTh). Furthermore, with

the help of Hölder’s inequality and Lemma B.2, we obtain that

Rγ,2 ≤
{

max
1≤i≤n

sup
w∈[0,1]

(E[f̂i(w)]− f̂i(w))2

E[f̂i(w)]2f̂i(w)

}{ 1

nk

∑
i∈Gk

( 1

T

T∑
t=1

K
4/3
h (Xit − w)

)3/4
×
( 1

T

T∑
t=1

( 1

n− 1

∑
j 6=i

[
mj(Xjt) + εjt

])4)1/4}
= Op

((√ log T

Th

)2 1

h1/4(n− 1)1/2

)
= op

( 1√
nkTh

)
,

which completes the proof of (A.10).

In the next step, we show that

1

nk

∑
i∈Gk

Qi,γ(w)

E[f̂i(w)]
= op

( 1√
nkTh

)
. (A.12)

To do so, we derive the convergence rate of the second moment

E

[{ 1

nk

∑
i∈Gk

Qi,γ(w)

E[f̂i(w)]

}2
]

=
1

n2
k(n− 1)2

∑
i,i′∈Gk

∑
j 6=i
j′ 6=i′

1

E[f̂i(w)]

1

E[f̂i′(w)]

×
( 1

T 2

T∑
t,t′=1

Ψi,i′,j,j′,t,t′(w)
)
, (A.13)

where Ψi,i′,j,j′,t,t′(w) = E[Kh(Xit−w){mj(Xjt) + εjt}Kh(Xi′t′ −w){mj′(Xj′t′) + εj′t′}].
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Similarly as above, Ψi,i′,j,j′,t,t′(w) 6= 0 only if (a) i = j′ and i′ = j or (b) j = j′. Apply-

ing Davydov’s inequality once again, we get that in case (a), T−2
∑T

t,t′=1 Ψi,i′,j,j′,t,t′(w) ≤
C log T/T and in case (b),

1

T 2

T∑
t,t′=1

Ψi,i′,j,j′,t,t′(w) ≤

C log T
Th

if i = i′

C log T
T

if i 6= i′.

Plugging these bounds into (A.13), we easily arrive at (A.12). The statement (A.7)

now follows upon combining (A.10) with (A.12).

Proof of (A.8) and (A.9). By arguments similar to those for (A.7),

1

nk

∑
i∈Gk

Qi,`(w)

f̂i(w)
− 1

nk

∑
i∈Gk

Qi,`(w)

E[f̂i(w)]
= op

( 1√
nkTh

)
(A.14)

for ` ∈ {V,B}. With the help of standard bias calculations, we further obtain that

1

nk

∑
i∈Gk

Qi,`(w)

E[f̂i(w)]
− 1

nk

∑
i∈Gk

Qi,`(w)

fi(w)
= op

( 1√
nkTh

)
. (A.15)

Combining (A.14) and (A.15) completes the proof.

Appendix B

In the proof of Theorems 3.1–3.3, we repeatedly make use of the following uniform

convergence result.

Lemma B.1. Under (C1)–(C5), it holds that

max
1≤i≤n

sup
w∈[0,1]

∣∣m̂i(w)−mi(w)
∣∣ = op(1).

To show this lemma, we modify standard arguments to derive uniform convergence

rates for kernel estimators, which can be found e.g. in Masry (1996), Bosq (1998) or

Hansen (2008). These arguments are designed to derive the rate of supw∈[0,1] |m̂i(w)−
mi(w)| for a fixed individual i. They thus yield the rate which is uniform over w but

pointwise in i. In contrast to this, we aim to derive the rate which is uniform both

over w and i. The additional uniformity over i slows down the convergence rate in

general, that is, the term max1≤i≤n supw∈[0,1] |m̂i(w) − mi(w)| converges more slowly

than supw∈[0,1] |m̂i(w)−mi(w)| for a fixed i. Inspecting the proof of Lemma B.1, our

arguments can be seen to imply that the rate is at least Op((nT )−1/(20+δ) +h) for some

small δ > 0, that is, max1≤i≤n supw∈[0,1] |m̂i(w)−mi(w)| = Op((nT )−1/(20+δ) + h).
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Proof of Lemma B.1. To start with, write

m̂i(w)−mi(w) =
[
Qi,V (w) +Qi,B(w)−Qi,γ(w)

]/
f̂i(w)−Qi +Qi,

where Qi,V (w), Qi,B(w), Qi,γ(w) along with Qi, Qi and f̂i(w) are defined as in the

proof of Theorem 3.3. In what follows, we show that

max
1≤i≤n

sup
w∈[0,1]

∣∣Qi,V (w)
∣∣ = op(1) (B.1)

max
1≤i≤n

sup
w∈[0,1]

∣∣Qi,B(w)
∣∣ = op(1) (B.2)

max
1≤i≤n

sup
w∈[0,1]

∣∣Qi,γ(w)
∣∣ = op(1) (B.3)

max
1≤i≤n

sup
w∈[0,1]

∣∣f̂i(w)− fi(w)
∣∣ = op(1). (B.4)

Moreover, a simplified version of the arguments for (B.1) yields that max1≤i≤n |Qi| =
op(1) as well as max1≤i≤n |Qi| = op(1). Lemma B.1 immediately follows upon combin-

ing these statements.

Proof of (B.1). Let {an,T} be a sequence of positive numbers that slowly converges

to zero. In particular, we set an,T = (nT )−ξ for some sufficiently small constant ξ > 0.

In addition, define

ε≤it = εit1
(
|εit| ≤ τn,T

)
ε>it = εit1

(
|εit| > τn,T

)
,

where τn,T = (nT )1/(θ−δ), θ is introduced in (C3) and δ > 0 is a small positive number.

With this notation at hand, we can rewrite the term Qi,V (w) as

Qi,V (w) =
T∑
t=1

Z≤it,T (w) +
T∑
t=1

Z>
it,T (w),

where

Z≤it,T (w) =
(
Kh(Xit − w)ε≤it − E

[
Kh(Xit − w)ε≤it

])/
T

Z>
it,T (w) =

(
Kh(Xit − w)ε>it − E

[
Kh(Xit − w)ε>it

])/
T.

We thus split Qi,V (w) into the “interior part”
∑T

t=1 Z
≤
it,T (w) and the “tail part”∑T

t=1 Z
>
it,T (w). This parallels the standard arguments for deriving the convergence

rate of supw∈[0,1] |Qi,V (w)| for a fixed individual i. As we maximize over i, however,

we have to choose the truncation sequence τn,T to go to infinity much faster than in

the standard case with a fixed i. (When n is bounded, we can of course choose τn,T to

diverge as quickly as in the standard case. When n goes to infinity in contrast, τn,T
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is required to diverge much faster.) This is the main reason why we obtain a slower

convergence rate than in the standard case.

We now proceed in several steps. To start with, we show that

max
1≤i≤n

sup
w∈[0,1]

∣∣∣ T∑
t=1

Z>
it,T (w)

∣∣∣ = op(1). (B.5)

This can be achieved as follows:

P
(

max
1≤i≤n

sup
w∈[0,1]

∣∣∣ T∑
t=1

Z>
it,T (w)

∣∣∣ > an,T

)
≤

n∑
i=1

P
(

sup
w∈[0,1]

∣∣∣ 1

T

T∑
t=1

Kh(Xit − w)ε>it

∣∣∣ > an,T
2

)
+

n∑
i=1

P
(

sup
w∈[0,1]

∣∣∣ 1

T

T∑
t=1

E
[
Kh(Xit − w)ε>it

]∣∣∣ > an,T
2

)
.

With the help of assumption (C3), we obtain that

n∑
i=1

P
(

sup
w∈[0,1]

∣∣∣ 1

T

T∑
t=1

Kh(Xit − w)ε>it

∣∣∣ > an,T
2

)
≤

n∑
i=1

P
(
|εit| > τn,T for some 1 ≤ t ≤ T

)
≤ C(nT )1−

θ
θ−δ = o(1).

Once more applying (C3), it can be seen that

∣∣E[Kh(Xit − w)ε>it
]∣∣ ≤ E

[
Kh(Xit − w)E

[ |εit|θ
τ θ−1n,T

1(|εit| > τn,T )
∣∣∣Xit

]]
≤ C(nT )−

θ−1
θ−δ

with some constant C independent of w. If we choose the exponent ξ > 0 in the

definition of an,T small enough, we get that C(nT )−
θ−1
θ−δ < an,T/2 as the sample size

grows large, implying that

n∑
i=1

P
(

sup
w∈[0,1]

∣∣∣ 1

T

T∑
t=1

E
[
Kh(Xit − w)ε>it

]∣∣∣ > an,T
2

)
= 0

for sufficiently large sample sizes. This yields (B.5).

We next have a closer look at the expression
∑T

t=1 Z
≤
it,T (w). Let 0 = w0 < w1 <

. . . < wL = 1 be an equidistant grid of points covering the unit interval and set

L = Ln,T = τn,T/(an,Th
2). Exploiting the Lipschitz continuity of the kernel K,
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straightforward calculations yield that

max
1≤i≤n

sup
w∈[0,1]

∣∣∣ T∑
t=1

Z≤it,T (w)
∣∣∣ ≤ max

1≤i≤n
max
1≤`≤L

∣∣∣ T∑
t=1

Z≤it,T (w`)
∣∣∣+ Can,T . (B.6)

We can thus replace the supremum over w by a maximum over the grid points w`.

Moreover, it holds that

P
(

max
1≤i≤n

max
1≤`≤L

∣∣∣ T∑
t=1

Z≤it,T (w`)
∣∣∣ > C0an,T

)
≤

n∑
i=1

L∑
`=1

P
(∣∣∣ T∑

t=1

Z≤it,T (w`)
∣∣∣ > C0an,T

)
, (B.7)

where C0 is a sufficiently large constant to be specified later on. In what follows, we

show that for each fixed w`,

P
(∣∣∣ T∑

t=1

Z≤it,T (w`)
∣∣∣ > C0an,T

)
≤ CT−r, (B.8)

where the constants C and r are independent of w` and r > 0 can be chosen arbitrarily

large. Plugging (B.8) into (B.7) and combining the result with (B.6), we arrive at

max
1≤i≤n

sup
w∈[0,1]

∣∣∣ T∑
t=1

Z≤it,T (w)
∣∣∣ = op(1), (B.9)

which completes the proof.

It thus remains to prove (B.8). To do so, we split the term
∑T

t=1 Z
≤
it,T (w`) into

blocks as follows:
T∑
t=1

Z≤it,T (w`) =

qn,T∑
s=1

B2s−1 +

qn,T∑
s=1

B2s

with Bs =
∑srn,T

t=(s−1)rn,T+1 Z
≤
it,T (w`), where 2qn,T is the number of blocks and rn,T =

T/2qn,T is the block length. In particular, we choose the block length such that

rn,T = O(T η) for some small η > 0. With this notation at hand, we get

P
(∣∣∣ T∑

t=1

Z≤it,T (w`)
∣∣∣ > C0an,T

)
≤ P

(∣∣∣ qn,T∑
s=1

B2s−1

∣∣∣ > C0

2
an,T

)
+ P

(∣∣∣ qn,T∑
s=1

B2s

∣∣∣ > C0

2
an,T

)
.

As the two terms on the right-hand side can be treated analogously, we focus attention

to the first one. By Bradley’s lemma (see Lemma 1.2 in Bosq (1998)), we can construct

a sequence of random variablesB∗1 , B
∗
3 , . . . such that (a)B∗1 , B

∗
3 , . . . are independent, (b)
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B2s−1 and B∗2s−1 have the same distribution for each s, and (c) for 0 < µ ≤ ‖B2s−1‖∞,

P(|B∗2s−1 − B2s−1| > µ) ≤ 18(‖B2s−1‖∞/µ)1/2α(rn,T ). With these variables, we obtain

the bound

P
(∣∣∣ qn,T∑

s=1

B2s−1

∣∣∣ > C0

2
an,T

)
≤ P1 + P2,

where

P1 = P
(∣∣∣ qn,T∑

s=1

B∗2s−1

∣∣∣ > C0

4
an,T

)
P2 = P

(∣∣∣ qn,T∑
s=1

(
B2s−1 −B∗2s−1

)∣∣∣ > C0

4
an,T

)
.

Using (c) together with the fact that the mixing coefficients α(·) decay to zero expo-

nentially fast, it is not difficult to see that P2 converges to zero at an arbitrarily fast

polynomial rate. To deal with P1, we make use of the following three facts:

(i) For a random variable B and λ > 0, Markov’s inequality yields that

P
(
±B > δ

)
≤ E exp(±λB)

exp(λδ)
.

(ii) We have that |B2s−1| ≤ CBrn,T τn,T/(Th) for some constant CB > 0. Define

λn,T = Th/(2CBrn,T τn,T ), which implies that λn,T |B2s−1| ≤ 1/2. As exp(x) ≤
1 + x+ x2 for |x| ≤ 1/2, we get that

E
[

exp
(
± λn,TB2s−1

)]
≤ 1 + λ2n,TE

[
(B2s−1)

2
]
≤ exp

(
λ2n,TE

[
(B2s−1)

2
])

along with

E
[

exp
(
± λn,TB∗2s−1

)]
≤ exp

(
λ2n,TE

[
(B∗2s−1)

2
])
.

(iii) Standard calculations for kernel estimators imply that

qn,T∑
s=1

E
[
(B∗2s−1)

2
]
≤ C

Th
.

Using (i)–(iii), we arrive at

P
(∣∣∣ qn,T∑

s=1

B∗2s−1

∣∣∣ > C0

4
an,T

)
≤ P

( qn,T∑
s=1

B∗2s−1 >
C0

4
an,T

)
+ P

(
−

qn,T∑
s=1

B∗2s−1 >
C0

4
an,T

)
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≤ exp
(
− C0

4
λn,Tan,T

){
E
[

exp
(
λn,T

qn,T∑
s=1

B∗2s−1

)]
+ E

[
exp

(
− λn,T

qn,T∑
s=1

B∗2s−1

)]}

≤ exp
(
− C0

4
λn,Tan,T

){qn,T∏
s=1

E
[

exp
(
λn,TB

∗
2s−1

)]
+

qn,T∏
s=1

E
[

exp
(
− λn,TB∗2s−1

)]}

≤ 2 exp
(
− C0

4
λn,Tan,T

) qn,T∏
s=1

exp
(
λ2n,TE

[
(B∗2s−1)

2
])

= 2 exp
(
− C0

4
λn,Tan,T

)
exp

(
λ2n,T

qn,T∑
s=1

E
[
(B∗2s−1)

2
])

≤ 2 exp
(
− C0

4
λn,Tan,T + λ2n,T

C

Th

)
.

Moreover, taking into account that n/T ≤ C and T 1/2h→∞ by assumption, setting θ

to a value slightly larger than 4 and supposing that an,T = (nT )−ξ with ξ ≤ 1/(20 + δ)

for some small δ > 0, it holds that

exp
(
− C0

4
λn,Tan,T + λ2n,T

C

Th

)
≤ T−r

for sufficiently large sample sizes, where the constant r > 0 can be chosen arbitrarily

large. This implies that P1 ≤ CT−r, which in turn completes the proof of (B.8).

Proof of (B.3). Define Zit = (n− 1)−1
∑

j 6=i(mj(Xjt) + εjt) and write

Qi,γ(w) =
1

T

T∑
t=1

Kh(Xit − w)Zit. (B.10)

By construction, the time series processes {Xit : 1 ≤ t ≤ T} and {Zit : 1 ≤ t ≤ T} are

independent of each other. Moreover, by Theorem 5.2 in Bradley (2005), the process

{Zit : 1 ≤ t ≤ T} is strongly mixing with mixing coefficients that are bounded by

nα(k). (B.3) can thus be shown by applying the arguments from the proof of (B.1)

to (B.10).

Proof of (B.2) and (B.4). The two statements follow by the arguments from the

proof of (B.1) together with standard bias calculations.

The proof of Theorem 3.3 makes use of an additional uniform convergence result

which specifies the rate of the kernel density estimator f̂i(w) = T−1
∑T

t=1Kh(Xit−w).

Lemma B.2. Under (C1)–(C5), it holds that

max
1≤i≤n

sup
w∈[0,1]

∣∣f̂i(w)− E
[
f̂i(w)

]∣∣ = Op

(√ log T

Th

)
.
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Proof of Lemma B.2. The overall strategy is the same as that for the proof of (B.1).

There is however one important difference: In the proof of (B.1), we have examined a

kernel average of the form T−1
∑T

t=1Kh(Xit−w)Zit with Zit = εit. As the variables εit

have unbounded support in general, we have introduced the truncation sequence τn,T

and have split εit into the two parts ε≤it and ε>it . Here in contrast, we are concerned with

the case Zit ≡ 1. Importantly, the random variables Zit ≡ 1 are bounded, implying

that we do not have to truncate them at all. Keeping this in mind and going step by

step along the proof of (B.1), we arrive at the statement of Lemma B.2.
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