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1 Introduction

A general aim in estimation problems is to obtain estimators that converge to the target

of estimation as fast as possible, in this sense making maximal or rate efficient use of the

data. The econometric literature has primarily emphasized efficiency in terms of min-

imal asymptotic variance-covariance matrices among estimators of a given convergence

rate. This has notably been the case in the context of regular parametric,
√

n convergent

estimators, where the Cramér-Rao lower bound is the gold-standard for efficiency. Con-

vergence rate efficiency is a paramount concern in non-parametric estimation problems

(e.g. Stone (1980, 1982)), but has received comparatively little attention in parametric

problems. This is a reflection of the fact that a very broad class of parametric problems

that are sufficiently well-behaved have a best rate of
√

n, independently of the dimension

of the parameter space or the degree of smoothness of the probability law. However, even

in textbook parametric models there are exceptions, such as the scale parameter θ > 0 in

the uniform distribution on [0, θ]. This paper provides a gold-standard for rate-efficiency

in general, non-regular parametric estimation problems, i.e. an upper bound on the rates

of convergence of parametric estimators.

The analysis in this paper builds on the Hellinger metric on the space of parametric

densities.1 This metric is distinguished by a number of useful properties, especially for

product measures in the case of i.i.d. samples. It has been used in related work by Ibragi-

mov and Has’minskii (1981). Provided the Hellinger distance for any two parametrizations

in a given parametric family has a Hölder continuity property, their main result yields an

upper bound on the uniform L1 convergence rate of parametric estimators. This result

is unsatisfactory for at least four reasons. First, it makes assumptions on the Hellinger

distance on the space of densities belonging to a parametric family, rather than directly on

the underlying parametric family. In particular, this assumption does not illuminate under

what conditions on the parametric family the resulting rate does or does not depend on

the parameter value to be estimated. Second, the notion of L1 convergence requires para-

metric estimators to be integrable. This is a limitation as it does not cover a large class

of estimators. Notably, estimators in locally asymptotically quadratic (LAQ) problems

can typically only be shown to be stochastically bounded, when scaled appropriately (see,

e.g., LeCam (1986), LeCam and Yang (2000), Hajék (1970)). Third, as a consequence

of the Lipschitz assumption on the Hellinger distance, upper bounds on L1 convergence

rates turn out to be powers of n. This excludes cases in which rate-efficient estimators are

1Essentially all the derivations hold for more general probability measures.
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known to converge at logarithmic rates (see, e.g., LeCam and Yang (2000), Prakasa Rao

(1968)). Fourth, the statement of the result is tacit about identification requirements.

Hellinger distance as a metric for convergence has been considered in the context of

maximum likelihood (ML) estimation. Van de Geer (1993, 2000) establishes rates of

Hellinger consistency of ML estimators under entropy conditions, drawing on the theory

of empirical processes (Pollard (1984, 1989)). Entropy-based rates of Hellinger consis-

tency are not guaranteed to be optimal, however, since entropy, as a measure of the

complexity of the set of densities to which the target density belongs, provides an upper

bound on squared Hellinger distance and, hence, not a sharp bound on the best possible

rate.2 Moreover, the invoked entropy conditions embed a uniform envelope or dominance

condition on the set of densities. This precludes non-regular cases from the analysis.

A result closely related to this paper is due to Akahira (1991) and Akahira and Takeuchi

(1995). These authors show for the case of location parameters in general non-regular

models that a maximum bound on the convergence rate of parametric estimators can be

deduced from the absolute variation metric, which in turn can be bounded by functions

of the Hellinger metric. Their result can be viewed as a special case of the main result of

this paper which covers a wider class of parametric estimation problems.

Non-regular estimation problems have received increasing interest as they arise in the

applied literature on auctions (Paarsch (1992)) and the literature on threshold regression

models (Chan (1993), Chan and Tsay (1998), Hansen (2000), Seo and Linton (2005)).

Hirano and Porter (2003) consider efficient estimation in a class of non-regular models -

in the sense of their limit experiments (LeCam (1986)) not being locally asymptotically

normal - which can be approximated by simpler limit models for which there exists an

estimator which has the same distribution as the estimator in the original non-regular

model. In the limit models considered, the data come from a distribution known up to an

additive shift, an idea due to LeCam (1972). Hirano and Porter (2003) employ this idea

to examine locally shifted ML estimators to achieve asymptotic efficiency.

The analysis in this paper employs arguments based on the Hellinger distance. The

rate at which the distance between two parameter values converges to zero such that the

Hellinger distance converges to an interior limit, henceforth referred to as the Hellinger

rate, plays an central role in this analysis. The paper gives necessary and sufficient

conditions under which the Hellinger rate does not depend on the parameter value to be

estimated. And, under such conditions, it is shown that the Hellinger rate is an upper

bound on uniform convergence rates of estimators which are stochastically bounded.

2See, for example, Van de Geer (2000), example 7.4.6., and Birgé and Massart (1993).
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2 The Hellinger Metric

Let Y denote the real-valued Euclidean sample space of random variables y, and σ(y)

the Borel σ-field generated by y. Denote by {F (y; θ), θ ∈ Θ} the parametric family of

probability measures on σ(y), where Θ is a compact parameter space. In what follows,

the scalar case Θ ⊂ R will be considered.3 Suppose further that (Y, σ(y)) is a σ-finite

measurable space, F (y; θ) is absolutely continuous with respect to Lebesgue measure, and

f(y; θ) is the Radon-Nikodym derivative of F (y; θ).

Let h2(θ, θ′) = 1
2

∫
y

(√
f(y; θ)−

√
f(y; θ′)

)2
dy denote the squared Hellinger distance

of the parametric densities f(y; θ) and f(y; θ′), θ, θ′ ∈ Θ. Let H2
n(θ, θ′) denote the squared

Hellinger distance of the densities, evaluated at θ and θ′, respectively, of the i.i.d. sample

{yi, i = 1, . . . , n}.
The Hellinger metric is of interest because it enjoys a number of convenient properties.

1. Let ρ(θ, θ′) =
∫
y

√
f(y; θ)f(y; θ′)dy denote the affinity between the densities f(y; θ)

and f(y; θ′) (see also Matusita (1955)). Then,

ρ(θ, θ′) =
∫

y
f(y; θ) exp

(
1
2

ln
(

f(y; θ′)
f(y; θ)

))
dy

= Eθ

[
exp

(
1
2

ln
(

f(y; θ′)
f(y; θ)

))]
,

where Eθ[·] denotes expectation with respect to f(y; θ), and it follows that

h2(θ, θ′) = 1− ρ(θ, θ′).

For i.i.d. data,

H2
n(θ, θ′) = 1− Eθ

[
exp

(
1
2

n∑

i=1

ln
(

f(yi; θ′)
f(yi; θ)

))]

= 1−
(

Eθ

[
exp

(
1
2

ln
(

f(y; θ′)
f(y; θ)

))])n

= 1− ρ(θ, θ′)n.

Hence, H2
n(θ, θ′) ∈ [0, 1] for any θ, θ′ and any n, and the squared Hellinger distance for

i.i.d. data involves a factorization of affinities.4

3The vector case can be thought of in analogous terms, provided all parameters converge at the same rate.

In the vector case with different rates for each vector component, the analysis in this manuscript essentially

covers the case of θ being a linear combination of these, and rates determined by the least rapidly converging

subcomponent.
4Akahira and Takeuchi (1991) define an information measure based on Hellinger affinity, In(θ, θ′) =

−8 ln ρ(θ, θ′)n. This measure is interpreted as the information between the product measures of the i.i.d.

sample, parameterized by θ and θ′, respectively.
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Notice that θ 6= θ′ implies that limn H2
n(θ, θ′) = 1. Strictly speaking, this requires a

notion of identification of θ. In this setup, this can be formulated as follows: θ0 ∈ Θ is

identified if, for any θ ∈ Θ, ρ(θ0, θ) = 1 is equivalent to θ = θ0.

With this notion of identification, it is clear that the Hellinger distance has all the

properties of a metric on the space of root densities.5

2. Among the most frequently used measures on the space of densities is the Kullback-

Leibler divergence,

KL(θ, θ′) = Eθ

[
ln

(
f(y; θ)
f(y; θ′)

)]
,

and KLn(θ, θ′) for an i.i.d. sample obtained as a sum of such divergence measures.6

Hellinger distance and Kullback-Leibler divergence are related by

H2
n(θ, θ′) ≤ 1− exp

(
−1

2
KLn(θ, θ′)

)
.

Therefore, convergence of the Kullback-Leibler divergence implies convergence of the

Hellinger distance, but not vice versa. Note that the Hellinger distance is always well-

defined, while the Kullback-Leibler divergence may not exist. Hence, the Hellinger metric

is more general and widely applicable than the Kullback-Leibler divergence.

3. Hellinger distance and convergence of estimators can also be related. Suppose

that, for an estimator θ̂n of θ, lim infn supθ∈Θ Pr(|θ̂n − θ| > ε) > 0, where ε > 0. Then,

lim supn supθ∈Θ Pr(H2
n(θ, θ̂n) < 1) < 1. Conversely, lim infn supθ∈Θ Pr(H2

n(θ, θ̂n) < 1) = 1

implies that lim supn supθ∈Θ Pr(|θ̂n − θ| > ε) = 0, for any ε > 0, i.e. θ̂n is consistent.

3 The Hellinger Rate

3.1 Theory

Let Y denote a real-valued (Euclidean) sample space of random variables y and σ(y) the

(Borel) σ-field generated by y. Consider a parametric family of distributions {F (y; θ), θ ∈
Θ}, where Θ is a compact set.

Definition: A sequence δn(θ), δn(θ) > 0 and δn(θ) → 0 as n → ∞, is called a

Hellinger rate at θ if θ + δn(θ)tn, for any strictly positive, bounded sequence tn with

tn → t ∈ (0, +∞), converges to θ such that the Hellinger affinity of an i.i.d. sample ρ(θ, θ+

5Nonnegativity, symmetry and reflexivity are obvious, identity of indiscernibles follows from the identification

definition, and the triangle inequality is the same as in the case of the L2 norm.
6The Kullback-Leibler divergence is not a distance because it is not symmetric.
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δn(θ)tn)n converges to a limit β(θ, t) ∈ [0, 1], continuous in t and satisfying β(θ, 0) = 1

and limt→+∞ β(θ, t) = 0.

To establish existence of Hellinger rates, the following assumptions will be maintained:

A1: yi ∼ i.i.d. F (y; θ), i = 1, . . . , n, θ ∈ Θ ⊂ R, Θ compact;

A2: (Y, σ(y)) is a σ-finite measurable space, F (y; θ) is absolutely continuous with respect

to Lebesgue measure a.e., and f(y; θ) is the Radon-Nikodym derivative of F (y; θ);

A3: (identification) for any θ, θ′ ∈ Θ, ρ(θ, θ′) = 1 ⇔ θ = θ′.

A4: (tightness) for any statistics Tn which is a measurable map from (Y, σ(y)) to R, the

sequence of probability laws L(Tn|Pθ,n) is tight on R, where Pθ,n(y) =
∏n

i=1 F (yi; θ);7

A5: (contiguity) {Pθ,n, θ ∈ Θ} and {Pθ+δn(θ)tn,n, θ ∈ Θ}, for |tn| bounded, δn(θ) > 0 for

all n and δn(θ) → 0 as n →∞, are contiguous;8

A6: (δn-tail continuity) {Pθ,n, θ ∈ Θ} is δn-tail continuous at θ0 ∈ Θ, i.e. the L1-norm

||Psn,n−Ptn,n|| → 0 for all sequences {sn = δ−1
n (s̃n− θ)} and {tn = δ−1

n (t̃n− θ)} s.t.

(i) δ−1
n (s̃n − θ0) + δ−1

n (t̃n − θ0) = O(1) and (ii) δ−1
n (s̃n − t̃n) = o(1); this holds for

every θ0 ∈ Θ, i.e. {Pθ,n, θ ∈ Θ} is δn-tail continuous.

The following result establishes the existence of Hellinger rates.

Lemma 1: Under A1-A6, for every θ ∈ Θ, there exists a function β(θ, t) ∈ (0, 1),

continuous in t ∈ [0,+∞] such that limn ρ(θ, θ + δn(θ)tn) = β(θ, t), where tn is positive

and bounded and tn → t ∈ (0,∞), i.e. δn(θ) is a Hellinger rate at θ.

Proof: Assumptions A1 and A2 define the relevant probability space. Consider

Ps̃n,n(y) =
∏n

i=1 F (yi; θ + δn(θ)δn(θ)−1(s̃n − θ)) = Pθ,sn,n, where sn = δn(θ)−1(s̃n −
θ) = O(1). Suppose |sn| → s ∈ (0, +∞). Tightness (A4), implies that subsequences

of Pθ,sn,n converge weakly Pθ,sn,n ⇒ Pθ,s, i.e. for any bounded and continuous function

φ,
∫

φdPθ,sn,n → ∫
φdPθ,s.9 Then, for two positive, convergent sequences sn → s and

tn = δ(θ)−1(t̃n − θ) → t, which induce convergent subsequences of P ,

||Pθ,s − Pθ,t|| = ||(Pθ,s − Pθ,sn,n)− (Pθ,t − Pθ,tn,n) + (Pθ,sn,n − Pθ,tn,n)||
≤ ||Pθ,s − Pθ,sn,n)||+ ||Pθ,t − Pθ,tn,n||+ ||Pθ,sn,n − Pθ,tn,n||.

The first two terms go to zero because Pθ,sn,n ⇒ Pθ,s and Pθ,tn,n ⇒ Pθ,t, while the third

term goes to zero by A6 since sn − tn = δ(θ)−1(s̃n − θ) − δ−1
n (t̃n − θ) → s − t, provided

7I.e. for any ε > 0, there exist N(ε) and M(ε) > 0 such that Pθ,n(|Tn| > M(ε)) < ε for all n > N(ε). LeCam

and Yang (2000) refer to this assumption as relative compactness.
8See LeCam and Yang (2000), chapt.3; contiguity can be thought of as mutual absolute continuity for all n.
9See, for exampe, Durrett (1996).
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|s − t| → 0. This implies that the limits Pθ,s are continuous in s. Also, for convergent

subsequences,

1 = lim
n

∫

y
f(y; θ + δn(θ)tn)dy

= lim
n

∫

y

f(y; θ + δn(θ)tn)
f(y; θ)

f(y; θ)dy (well-defined, by A5)

= lim
n

Eθ

[
exp

(
ln

(
f(y; θ + δn(θ)tn)

f(y; θ)

))]

≥ lim
n

ρ(θ, θ + δn(θ)tn)

=: β(θ, t) ≥ 0.

Continuity of Pθ,t implies continuity of β(θ, t). Identification (A3) implies β(θ, 0) = 1. To

see that limt→+∞ β(θ, t) = 0, take tn = δn(θ)−1, so that ρ(θ, θ + δn(θ)tn) = ρ(θ, θ + 1) ∈
(0, 1), and hence the conclusion follows. 2

Next, it will be shown that Hellinger rates form equivalence classes. Define two se-

quences δn(θ) and δ̄n(θ) to be rate equivalent if 0 < lim infn
δ̄n(θ)
δn(θ) ≤ lim supn

δ̄n(θ)
δn(θ) < +∞,

and the equivalence class ∆(δn(θ)), defined by δn(θ), as

∆(δn(θ)) =
{

δ̄n(θ) > 0, δ̄n(θ) → 0 : 0 < lim inf
n

δ̄n(θ)
δn(θ)

≤ lim sup
n

δ̄n(θ)
δn(θ)

< +∞
}

.

To facilitate notation, write δn ∼ δ̄n if δ̄n ∈ ∆(δn). This is indeed an equivalence class

as it obviously satisfies reflexivity and symmetry, and transitivity holds because 0 <

lim infn
δ̄n(θ)
δn(θ) ≤ lim supn

δ̄n(θ)
δn(θ) < +∞ and 0 < lim infn

δ̃n(θ)

δ̄n(θ)
≤ lim supn

δ̃n(θ)

δ̄n(θ)
< +∞ implies

that

lim inf
n

δ̃n(θ)
δn(θ)

= lim inf
n

δ̃n(θ)
δ̄n(θ)

δ̄n(θ)
δn(θ)

= lim inf
n

δ̃n(θ)
δ̄n(θ)

lim inf
n

δ̄n(θ)
δn(θ)

> 0,

and similarly for the lim sup.

The following result establishes that Hellinger rates, assuming they exist, form an

equivalence class.

Lemma 2: If δn(θ) and δ̄n(θ) are Hellinger rates at θ, then

0 < lim inf
n

δ̄n(θ)
δn(θ)

≤ lim sup
n

δ̄n(θ)
δn(θ)

< +∞.

Proof: Suppose, to the contrary, that lim infn
δ̄n(θ)
δn(θ) = 0. Then, for tn → t ∈ (0, +∞),

β(θ, t) = lim
n

ρ(θ, θ + δ̄n(θ)tn)n = lim
n

ρ(θ, θ + δn(θ)(δ̄n(θ)/δn(θ))tn)n,
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implying that limn ρ(θ, θ + δn(θ)sn)n = β(θ, t) > 0 for a sequence sn = (δ̄n(θ)/δn(θ))tn
converging to zero. This contradicts the definition of δn(θ) as a Hellinger rate. An

analogous argument establishes that the supposition lim supn δ̄n(θ)/δn(θ) = +∞ produces

a contradiction. 2

To determine the Hellinger rate, Hellinger distance and/or Hellinger affinity need to be

calculated. Hence, in order to characterize general properties of Hellinger rates, it seems

sensible to deduce them from conditions on Hellinger distance or affinity and to check in

applications whether these conditions are met. The following result provides a necessary

and sufficient condition on Hellinger affinity for the Hellinger rate to be uniform on Θ.

Lemma 3: Suppose A1-A6 hold. A necessary and sufficient condition (H) for the

Hellinger rate to be uniform on Θ is that

0 < lim inf
τ→0

ρ(θ, θ ± τ)
ρ(αθ, α(θ ± τ))

≤ lim sup
τ→0

ρ(θ, θ ± τ)
ρ(αθ, α(θ ± τ))

< +∞,

for any θ ∈ Θ and α ∈ R : αθ, α(θ ± τ) ∈ Θ.

Proof : Uniformity of the Hellinger rate requires that

ρ(θ, θ ± δn) ∼ ρ(θ′, θ′ ± δn) for any θ, θ′ ∈ Θ.

Provided θ 6= 0, this is equivalent to

ρ(θ, θ ± δn) ∼ ρ

(
θ
θ′

θ
, θ

θ′

θ
± δn

)
= ρ(αθ, αθ ± δn) for α = θ′

θ .

Since δn ∼ αδn, this is equivalent to

ρ(θ, θ ± δn) ∼ ρ(αθ, α(θ ± δn)).

Since θ, θ′ ∈ Θ were arbitrary, this is just condition (H) given in the claim. 2

This result covers many cases of interest, in particular the case of location and scale

parameters, as the following Corollary to Lemma 3 establishes, but also certain cases of

shape parameters, as illustrated in the next section.

Corollary 1: Suppose A1-A6 and condition H hold, and (i) θ is a location parameter,

or (ii) θ, 0 < θ < ∞, is a scale parameter. Then, the Hellinger rate does not depend on

the value of θ.

Proof: The case (i) is obvious, since ρ(θ, θ + τ) = ρ(θ′, θ′ + τ) = ρ̄(τ) for all θ, θ′ ∈ Θ

and some function ρ̄(·). Hence, ρ̄(τ) ∼ ρ̄(ατ) for any α ∈ R, and since τ ∼ ατ , the result

follows from Lemma 3.
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In case (ii), let f(·) denote the density of the random variable Y with scale parameter

1. Then, Z = θY , 0 < θ < ∞ has density 1
θf

(
z
θ

)
. Hence, for 0 < θ, θ′ < ∞,

h2(θ, θ′) = 1−
∫

z

√
θ

θ′

√
f(z)f

(
z

θ

θ′

)
dz

= 1−
∫

z

√
1 +

τ

θ′

√
f(z)f

(
z

(
1 +

τ

θ′
))

dz,

= H
( τ

θ′
)

,

where τ = |θ − θ′|, and h2(θ, θ′) = H
(

τ
θ′

) → 0 as τ → 0. This implies that ρ is

homogeneous of degree zero, so that the result follows from Lemma 3 as well. 2

Remark: Notice that a Hölder continuity assumption on the Hellinger distance, as in

Ibragimov and Has’minskii (1981), of the form

h2(θ, θ + τ) ≤ E [K(y)] |τ |β, β > 0,

yields

ρ(θ, θ + τ) ≥ 1− E [K(y)] |τ |β.

The Hölder continuity assumption is not nested by Lemma 2. The reason is that it implies

that there exists a lower bound on the rate at which the Hellinger affinity ρ(θ, θ + τ) at

any θ ∈ Θ approaches 1 as τ → 0, but it does not pin down the actual rate, which may

or may not depend on the value of θ.

The final result in this section shows that the Hellinger rate is invariant under trans-

formations of the random variable that do not depend on the parameter of interest.

Lemma 4: Suppose that A1-A6 hold. Consider invertible transformations Z = g(Y )

of the random variable Y which do not depend on θ. Let ∆Y (δn(θ)) and ∆Z(δn(θ)) denote

the Hellinger rate equivalence classes based on the random variables Y and Z, respectively.

Then, ∆Y (δn(θ)) = ∆Z(δn(θ)) for all θ.

Proof: Let fY (y; θ) denote the density of Y . Since g(·) is invertible, Z has density

fZ(z; θ) = fY

(
g−1(z); θ

) [
g′

(
g−1(z)

)]−1. Therefore, for any θ, if γn(θ) ∈ ∆Y (δn(θ)), then

1
n

∼ ρY (θ, θ + γn(θ))

=
∫

y

√
fY (y; θ)fY (y; θ + γn(θ))dy

=
∫

z

√
fY (g−1(z); θ) fY (g−1(z); θ + γn(θ))

[
g′

(
g−1(z)

)]−1
dz

=
∫

z

√
fZ(z; θ)fZ(z; θ + γn(θ))dz

= ρZ(θ, θ + γn(θ)).
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Hence, γn(θ) ∈ ∆Z(δn(θ)), for any θ. A symmetric argument establishes the reverse

inclusion. 2

3.2 Examples

Under the conditions of Lemma 2, following the proof of Lemma 1 there exists a strictly

decreasing function γ(·), such that

lim
τ→0

γ(τ)h2(θ, θ + τ) exists ∈ (0, 1),

so that the Hellinger rate δn = γ−1(n). The following examples illustrate this result.

Example 1: (Regular case) γ(τ) = τ−2 and so δn = n−
1
2 .

Consider a regular Maximum Likelihood problem, with Θ ⊂ Rk. Here, the vector case

poses no problem, because in the regular case, all components converge at the same rate,
√

n. Let τ ∈ Rk be such that ||τ || → 0. Under regularity conditions, the log-likelihood

ratio has an LAQ expansion about θ, uniformly in τ ,

h2(θ, θ + τ) = S(θ)τ − 1
2
τ ′K(θ)τ + op(1),

where S(θ) = ∇θf(y; θ) and K(θ) = ∇θθf(y; θ), both having finite expectation. This

implies that the Hellinger distance satisfies condition H of Lemma 2, and δn = 1√
n
.

The log-likelihood ratio of an i.i.d. sample satisfies

Λn

(
θ, θ +

1√
n

tn

)
=

n∑

i=1

ln

(
f(yi; θ + 1√

n
tn)

f(y; θ)

)
=

1√
n

Sn(θ)tn − 1
2

1
n

t′nKn(θ)tn + op(1),

where Sn(θ) =
∑n

i=1∇θ ln f(yi; θ) and Kn(θ) =
∑n

i=1∇θθ ln f(y; θ). Therefore,

H2
n(θ, θ +

1√
n

tn) = 1− Eθ

[
exp

(
1
2
Λn

(
θ, θ +

1√
n

tn

))]

= 1− Eθ

[
exp

(
1
2

1√
n

Sn(θ)tn − 1
4

1
n

t′nKn(θ)tn

)]
+ o(1).

The Hellinger rate ensures that the first term in the LAQ expansion converges by a

Central Limit Theorem to a normal random variable, while the second term converges

by a Strong Law of Large Numbers to a constant: 1√
n
Sn(θ) d→ N (0, I(θ)), for I(θ) =

−E[∇θθ ln f(y; θ)] = E[∇θ ln f(y; θ)∇θ ln f(y; θ)′] positive definite, and 1
nKn(θ) → I(θ)

a.s. Then, the Hellinger distance can be shown to converge to an interior limit, uniformly

in tn. Since the exponent in the above expression for H2
n(θ, θ + 1√

n
tn), 1

2
1√
n
Sn(θ)tn −

10



1
4

1
n t′nKn(θ)tn, is nonzero with probability one, H2

n(θ, θ + 1√
n
tn) > 0 for all n. Using

Jensen’s Inequality and the score identity
∫
y ∇θ ln f(y; θ)f(y; θ)dy ≡ 0 for all θ,

H2
n(θ, θ +

1√
n

tn) ≤ 1− exp
(
−1

4
1
n

t′nE [Kn(θ)] tn

)

→ 1− exp
(
−1

4
t′I(θ)t

)
< 1.

Convergence to an interior limit follows from monotonicity and these interior bounds.10

Notice that frequently the expectation E
[
exp

(
1
2

1√
n
Sn(θ)tn − 1

4
1
n t′nKn(θ)tn

)]
cannot

be computed analytically, because the expectation is taken with respect to the arbitrary

regular density f(y; θ), while 1√
n
Sn(θ) asymptotically has a normal distribution. An

analytically tractable case is yi ∼ i.i.d. N (0, 1), i = 1, . . . , n. In this case, standard

calculations yield H2
n(0, 1√

n
tn) = 1− exp(−t2n/8) for any n, and so A(t) = t2/8.

Example 2: (Nonregular case) Suppose that z ∼ G(z), with density g(z). Let ψ(z, λ) =

|z|λsgn(z), λ ∈ (0, 1), and let y = θ + ψ(z, 1/λ). Then, F (y; θ, λ) = G(|y − θ|λsgn(y − θ))

and f(y; θ, λ) = |y− θ|λ−1g(|y− θ|λsgn(y− θ)). The density has a pole at y = θ. Suppose

λ is known. Then, it can be shown that γ(τ) = τ−λ and δn = n−
1
λ .

Suppose λ is not known, and, w.l.o.g., θ = 0 and g(z) the uniform density on

[−1/2, 1/2]. This example illustrates the case where λ is neither a shift nor a scale pa-

rameter, but a shape parameter. It can be shown that h2(λ, λ+ τ) = 1−
√

1+ τ
λ

1+ τ
2λ

(
1
2

) τ
2λ . In

this example, the Hellinger rate for λ, δλ,n, is distinct from rate for θ, δθ,n. By virtue of

Lemma 2, δλ,n again does not depend on the value of λ. In fact, δλ,n = 1
n yields

ρλ

(
λ, λ +

1
n

)n

=

√(
1− 1

λn

)n

1− 1
2λn

(
1
2

) 1
2λ

→ exp
(
− 1

2λ

)(
1
2

) 1
2λ

as n →∞.

Example 3: (Prakasa Rao (1968, 2003), and LeCam and Yang (2000); an example

with similar features is given in Akahira (1975)) Let α > 0 be known and fα(y) =

c(α) exp(−|y|α), where c(α) = (2Γ (1/α))−1. Consider the shift parameter family {f(y; θ), θ ∈
Θ} = {fα(y − θ), θ ∈ R, α > 0}. If α > 1

2 , it can be shown that δn = n−
1
2 , while in the

case of α = 1
2 , γ(τ) =

(
τ2 ln τ

)−1, or δn = 1√
n ln n

; if α < 1
2 , then δn = n−

1
1+2α .

4 Maximal Uniform Convergence Rates

This section derives maximal uniform convergence rates from the Hellinger rate.

10Rotnizky et al.(2000) show that rkI(θ) = k − 1 implies that
√

n convergence only applied to a k − 1

dimensional subvector of θ, while the remaining component of θ converges at a slower rate.
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To motivate this line of argument, two introductory examples will be useful. Both of

these suggest that the random Hellinger distance H2
n(θ, θ̂n), when evaluated at an estima-

tor θ̂n converging at the (inverse) Hellinger rate δ−1
n , has an expectation that converges

to an interior limit α(θ) ∈ (0, 1), i.e. E[H2
n(θ, θ̂n)] → α(θ) as n →∞.

Example 2 (continued): Re-consider the analytically tractable special case of the regu-

lar maximum likelihood example, example 2 above, with yi ∼ i.i.d. N (0, 1), i = 1, . . . , n.

In this case, H2
n(0, τ) = 1− exp(−nτ2/8). Consider the regular maximum likelihood esti-

mator for the mean, ȳn = 1
n

∑n
i=1 yi. For any n,

√
nȳn ∼ N (0, 1). Hence, replacing τ by

the
√

n convergent estimator ȳn, the random Hellinger distance satisfies

H2
n(0, ȳn) = 1− exp(−nȳ2

n/8) d= 1− exp(−x2/8),

where x ∼ N (0, 1), and d= represents equality in distribution. Standard calculations yield

that the expectation of the random Hellinger distance, when evaluated at this estimator

converging at the (inverse) Hellinger rate,

E0[H2
n(0, ȳn)] = 1− E0[exp(−x2/8)] = 1− 2/

√
5

lies in the interior of the unit interval. Note, for future reference, that the asymptotic

distribution - or the exact small sample distribution in the special case of normality - is

non-degenerate and does not depend on n. In fact, the realizations of the stochastically

bounded limiting random variable x ∼ N(0, 1) take the place of the limits t of the

deterministic bounded sequences tn.

Example 4: Consider the case of yi ∼ i.i.d. u[θ− 1
2 , θ + 1

2 ]; here, θ is again a location

parameter. It is easy to show that ρ̄(τ) = 1− τ , and so H2
n(θ, θ + τ) = 1− (1− τ)n for all

θ. Hence, γ(τ) = 1
τ , and therefore γ(δn) = n, or δn = 1

n .

Consider two estimators for θ in this example: (i) θ̂n = 1
2(y(1) + y(n)), where y(1) (y(n))

denotes the minimum (maximum) of the sample {yi, i = 1, . . . , n}; and (ii) θ̄n = ȳn. It

can be shown11 that

var(θ̂n) =
1

2(n + 1)(n + 2)
,

var(θ̄n) =
1

12n
,

i.e. θ̂n converges at the Hellinger rate n, while θ̄n converges at the slower rate
√

n. W.l.o.g.,

let θ = 0. Then, by a Taylor series expansion, H2
n(0, τ) = nτ + n(n − 1)τ2 + o(τ2), and

so, for x ∼ N(0, 1),

E0[H2
n(0, θ̄n)] = n(n− 1)E0[ȳ2

n] + o(1) = (n− 1)E0[x2] + o(1) =
n− 1
12

+ o(1),

11Cp., e.g., David (1970)
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which diverges, locally to θ = 0; since H2
n is uniformly bounded above by 1, this implies

that the expectation converges to 1. Evaluation of the Hellinger distance at θ̂n, on the

other hand, yields an interior limit

E0[H2
n(0, θ̂n)] = n(n− 1)

1
2(n + 1)(n + 2)

→ 1
2
.

This suggests a proposition along the following lines: Suppose assumptions A1-A3,

together with condition H, hold, and denote the Hellinger rate by δn; then, δ−1
n is the

maximal uniform convergence rate for any stochastically bounded estimator. This result,

stated and proven formally below, derives from the following logic. Let θ̂n denote a

δ−1
n consistent estimator for θ0 ∈ Θ, with δ−1

n (θ̂n − θ0) = Op(1). Then, H2
n(θ0, θ̂n) =

H2
n(θ0, θ0 + δnδ−1

n (θ̂n − θ0)). Since δ−1
n (θ̂ − θ0) = Op(1), for every ε > 0, there exists

M(ε) > 0, decreasing in ε, such that, for all n, Pr(δ−1
n |θ̂n − θ0| > M(ε)) < ε. Therefore,

with probability at least 1− ε, for all n

H2
n(θ0, θ̂n) ≤ H2

n(θ0, θ0 + δnM(ε)),

and therefore, in the limit, with probability at least 1− ε,

lim
n

H2(θ0, θ̂n) ≤ 1− exp(−A(θ0,M(ε))),

for A(θ0,M(ε)) as in Lemma 1. Equivalently, for any M > 0, there exists ε(M) > 0,

decreasing in M , such that, for all n, with probability at least 1− ε(M),

lim
n

H2
n(θ0, θ̂n) ≤ 1− exp(−A(θ0,M)).

Hence, the limiting distribution of H2
n(θ0, θ̂n) is non-degenerate, with support [0, 1]. Note

that the values M have the interpretation of limits of sample paths of the stochastically

bounded sequence δ−1
n (θ̂n − θ0).

Next, suppose there exists a stochastically bounded estimator θ̌n that is uniformly

consistent and converges at a faster rate, say δ̌n, i.e. supθ∈Θ δ̌−1
n (θ̌n − θ) = Op(1) and

lim sup δ̌n/δn = 0. This implies that, for any bounded sequence tn, lim supn H2
n(θ0, θ0 +

δ̌ntn) = 0, or lim infn ρ(θ0, θ0 + δ̌ntn)n = 1. Suppose ρ is continuous; then, ρ is also

uniformly continuous, because its arguments θ0 and θ0 + δ̌ntn lie in a compact set. From

the uniform continuity of ρ and the definition of δn, it follows that, for θ ∈ Θ and ε > 0,

|θ0 − θ| < δn ⇒ h2(θ0, θ) < (γ(δn; θ0))
−1

Pr(|θ0 − θ̌n| < δ̌n) ≥ 1− ε ⇒ Pr
(

lim sup
n

H2
n(θ0, θ̌n) ≤ lim inf

n
1− ρ(θ0, θ0 + δ̌n)n

)
≥ 1− ε

⇔ Pr
(

lim sup
n

H2
n(θ0, θ̌n) ≤ 0

)
≥ 1− ε

⇔ Pr
(
lim inf

n
ρ(θ0, θ̌n)n ≥ 1

)
≥ 1− ε.

13



It then follows from the bounded convergence theorem that lim infn E[ρ(θ0, θ̌n)n] = 1.

Hence, the limiting distribution of H2
n(θ0, θ̌n) is degenerate at 0, and the limiting distri-

bution of ρ(θ0, θ̌n)n is degenerate at 1. This means that, unlike in the case of θ̂n, these

limiting random variables are independent of the sample paths of δ̌−1
n (θ̌n−θ0). Therefore,

the convergence result must hold also after linear transformations of the estimator, e.g.

additive shifts. But this contradicts the hypothesized uniform δ̌−1
n consistency of θ̌n.

This is formalized as

Proposition 1:12 Suppose A1-A6 and condition H hold. If a δ−1
n -consistent estimator

exists, then there exists t > 0 such that, for every θ ∈ Θ,

lim inf
n→∞H2

n(θ, θ + tδ−1
n ) > 0.

Proof: Assumptions A1-A3, together with condition H, imply that candidate rates

exist and do not depend on θ, and that the fastest rate at which the result holds is

the Hellinger rate. Let Pθ(B) denote the probability measure induced by
∏n

i=1 F (yi; θ),

applied to sets B ∈ ∏n
i=1 σ(yi), the product σ-field generates by {yi, i = 1, . . . , n}; the

dependence on n is omitted for notational simplicity. Suppose Tn = T (y1, . . . , yn) is a

δ−1
n -consistent estimator. Then, ∃ δ, L > 0 such that, for every ε > 0,

lim sup
n

sup
|θ−θ0|<δ

Pθ(δ−1
n |Tn − θ| ≥ L) < ε.

Let t > 2L. Then, ∃n0 such that for n > n0, δ−1
n > δ−1

n0
> t/δ and

sup
|θ−θ0|<tδn

Pθ(δ−1
n |Tn − θ| ≥ L) < ε,

and

lim sup
n

Pθ+tδn(δ−1
n |Tn − θ − tδn| ≥ L) < ε

lim sup
n

Pθ(δ−1
n |Tn − θ| ≥ L) < ε.

Note that, since t > 2L, δ−1
n |Tn − θ| < L implies δ−1

n |Tn − θ − tδn| ≥ t− L, and hence,

Pθ+tδn(δ−1
n |Tn − θ| < L) ≤ Pθ+tδn(δ−1

n |Tn − θ − tδn| ≥ t− L) < ε.

Therefore, lim infn Pθ+tδn(δ−1
n |Tn − θ| ≥ L) ≥ 1 − ε. Since by the Cauchy-Schwartz

inequality,

H2
n(θ, θ′) ≥ 1

2
(Pθ(B) + Pθ′(B))− (Pθ(B)Pθ′(B))

1
2 for any B ∈ ∏n

i=1 σ(yi),

12The form of the proposition and its proof closely parallel Akahira (1975), but it covers a considerably wider

class of parametric estimation problems.
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it follows that

lim inf
n

H2
n(θ, θ + tδn) ≥ lim inf

n

{
1
2
Pθ(δ−1

n |Tn − θ| ≥ L) +
1
2
Pθ+tδn(δ−1

n |Tn − θ| ≥ L)

− (
Pθ(δ−1

n |Tn − θ| ≥ L)Pθ+tδn(δ−1
n |Tn − θ| ≥ L)

) 1
2

}

≥ 1
2
(1− ε)−√ε.

Since ε > 0 was arbitrary, the result follows. 2

Comment: The result of the proposition is perhaps best interpreted by its contra-

positive: At a rate δ̌n faster than the Hellinger rate δn, lim infn H2
n(θ, θ + tδ̌n) = 0, and

hence Proposition 1 leads to the conclusion that no uniformly δ̌−1
n -consistent estimator

can exist. Hence, the Hellinger rate is the fastest possible uniform convergence.

Remark 1: Akahira (1991) and Akahira and Takeuchi (1995) provide a related result

for the special case of location parameter families. For y = (y1, . . . , yn)′, they use the

absolute variation metric (L1 norm)13

dn(θ, θ′) =
∫

y
|f(y; θ)− f(y; θ′)|dy,

and show that, if a δ−1
n consistent estimator exists, then, for each θ ∈ Θ and every ε > 0,

there exists a positive number t0 such that, for any t ≥ t0,

lim inf
n→∞ dn(θ, θ − tδn) ≥ 2− ε.

Akahira and Takeuchi (1995) show (Lemma 3.5.1) that, for any θ, θ′ ∈ Θ,

2H2
n(θ, θ′) ≤ dn(θ, θ′) ≤ 2

√
2H2

n(θ, θ′),

which implies that
1
8
d2

n(θ, θ′) ≤ H2
n(θ, θ′) ≤ 1

2
dn(θ, θ′).

Hence, convergence in the Hellinger metric is equivalent to convergence in the absolute

variation metric.

Remark 2: View mn =
∏n

i=1 f(yi; θ0) and m̂n(ωn) =
∏n

i=1 f(yi; θ̂n(ωn)), n = 1, . . .,

as elements of an infinite direct product measure space {(Ωn,Bn,mn), n = 1, . . .}, for Bn a

Borel σ-field of subsets of the set Ωn, ωn ∈ Ωn, ω = {ωn, n = 1, . . .} ∈ Ω =
∏∞

1=i Ωn, where

ω denotes a given state of the world, with coordinates ωn. Let ρ(mn, m̂n(ωn)) denote the

Hellinger affinity of these product measures, given ωn. Each state of the world ω ∈ Ω

induces a sample path {θ̂n(ωn), n = 1, . . .} and a sequence of measures {m̂n(ωn), n =

13See also Hoeffding and Wolfowitz (1958) for a discussion of the properties of this metric.
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1, . . .}. Applying a result by Kakutani (1948) shows that, if mn and m̂n(ωn) are mutually

absolutely continuous (or: equivalent) measures , then the infinite product measures m =

limn mn and m̂(ω) = limn m̂n(ωn) are either mutually absolutely continuous or orthogonal,

depending on whether limn
∏n

i=1 ρ(mn, m̂n) is > 0 or = 0. In light of Kakutani’s result,

the above proposition can be interpreted as follows. Consider estimators θ̂n such that

Pr(Ω(M)) = 0, where Ω(M) = {ω ∈ Ω : supθ∈Θ δ−1
n |θ̂n(ω) − θ| > M for all n, M > 0},

i.e. stochastically bounded, uniformly δ−1
n consistent estimators. Then, estimators whose

convergence rate δ−1
n is the Hellinger rate generate sample paths such that the induced

infinite product measures are mutually absolutely continuous (i.e. equivalent).

Proposition 1 covers in particular the class of locally asymptotically quadratic (LAQ)

problems (see, e.g., LeCam and Yang (2000), sec. 5.2, for a definition). Let Sn(θ0)

and Kn(θ0) denote the first and second term in the LAQ expansion of the log-likelihood

ratio Λn(θ0, θ) about θ0, θ, θ0 ∈ Θ. Define the infeasible LAQ estimator θ̂n of θ0 by

θ̂n = θ0 + [Kn(θ0)]−1Sn(θ0). Then, the proposition above has the following corollary:

Corollary 2: Let {f(x; θ), θ ∈ Θ}, Θ compact, be an LAQ family of densities, with

δn > 0 and δn → 0 as n → ∞ such that δnSn(θ) = Op(1) and δ2
nKn(θ) positive definite

almost surely.14 Then, the infeasible LAQ estimator θ̂n = θ0 + [Kn(θ0)]−1Sn(θ0) of θ0

satisfies (i) |θ̂n − θ0| = op(1), (ii) δ−1
n (θ̂n − θ0) = Op(1), and (iii) θ̂n converges at the

maximal rate (i.e. δn is the Hellinger rate).

Proof: Since the log-likelihood permits an LAQ expansion at θ0, uniformly in t,

Λn(θ0, θ0 + δntn) = δnSn(θ0)tn − 1
2
δ2
nt′nKn(θ0)tn + op(1),

which is stochastically bounded as a consequence of the contiguity assumption (as part

of the LAQ property), the quadratic has a unique maximizer

t̂n = arg max
s

Λn(θ0, θ0 + δns) = [δ2
nKn(θ0)]−1δnSn(θ0) = Op(1),

as a direct consequence of the LAQ property: The inverse is finite almost surely and the

second term is stochastically bounded. Hence, δ−1
n (θ̂n − θ0) = t̂n implies that (ii) follows

immediately. Then, (i) follows from δ2
nSn(θ0) = op(1). To show (iii), it suffices to show

that the squared Hellinger distance of an i.i.d. sample at θ and θ + δntn, H2
n(θ, θ + δntn),

θ ∈ Θ and tn any bounded sequence, converges to an interior limit; the result then follows

from the preceding proposition. To demonstrate the interior limit, notice first that

H2
n(θ, θ + δntn) = 1− Eθ

[
exp

(
1
2
Λn(θ, θ + δntn)

)]

= 1− Eθ

[
exp

(
1
2
δnSn(θ0)tn − 1

4
δ2
nt′nKn(θ0)tn + op(1)

)]
.

14It seems implicit in the definition of LAQ that δn does not depend on θ.
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By contiguity, the exponent is stochastically bounded, hence H2
n(θ0, θ0 + δntn) is bounded

away from 1. To see that H2
n(θ0, θ0 + δntn) is bounded away from 0, notice that for any

sequence {tn, n ≥ 1} for which Λn(θ0, θ0 + δntn) = 0 a.s., the sequence {−tn, n ≥ 1} yields

Pr(Λn(θ0, θ0 − δntn) 6= 0) > 0. Therefore,

lim
n

Eθ

[
exp

(
1
2
δnSn(θ0)tn − 1

4
δ2
nt′nKn(θ0)tn + op(1)

)]
∈ (0, 1),

and the result follows.

In the LAQ case, the result can also be obtained by a direct argument. Let δ̌n > 0 be

such that δ̌n →∞ and lim supn δ̌n/δn = 0. Then,

δ̌−1
n (θ̂n − θ0) = δ̌−1

n δn

[
δ2
nKn(θ0)

]−1
δnSn(θ0) = Op(δ̌−1

n δn),

and hence diverges. 2

5 Conclusions

This paper considers rate efficiency in parametric estimation as a criterion to judge the

quality of estimators, next to other efficiency criteria, such as e.g. the Cramér Rao bound,

within a give class estimators converging at a specific rate, e.g.
√

n. It addresses the

question what maximal convergence rates parametric estimators can achieve in parametric

estimation problems with i.i.d. data. The Hellinger metric is proposed as a very convenient

tool to identify the Hellinger rate as a benchmark or gold standard for rate-efficiency.

This work deals only with scalar parameters of interest, or with parameter vectors

whose components converge at the same rate. Future work might deal with cases like

Example 3, in which different components of a parameter vector converge at different

rates, and the rates of convergence of one depend on the other; and with the case of

dependent data, where convergence rates may depend on the value of the parameter of

interest.15
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