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Abstract. We propose new concepts of statistical depth, multivariate quan-
tiles, ranks and signs, based on canonical transportation maps between a dis-
tribution of interest on IRd and a reference distribution on the d-dimensional
unit ball. The new depth concept, called Monge-Kantorovich depth, specializes
to halfspace depth in the case of elliptical distributions, but, for more general
distributions, differs from the latter in the ability for its contours to account for
non convex features of the distribution of interest. We propose empirical coun-
terparts to the population versions of those Monge-Kantorovich depth contours,
quantiles, ranks and signs, and show their consistency by establishing a uniform
convergence property for empirical transport maps, which is of independent in-
terest.
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1. Introduction

The concept of statistical depth was introduced in order to overcome the lack
of a canonical ordering in IRd for d > 1, hence the absence of the related notions
of quantile and distribution functions, ranks, and signs. The earliest and most
popular depth concept is halfspace depth, the definition of which goes back to
Tukey [48]. Since then, many other concepts have been considered: simplicial
depth [33], majority depth ([46] and [36]), projection depth ([34], building on [47]
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and [11], [54]), Mahalanobis depth ([37], [34], [36]), Oja depth [41], zonoid depth
([30] and [29]), spatial depth ([32], [40], [6], [50]), Lp depth [55], among many others.
An axiomatic approach, aiming at unifying all those concepts, was initiated by Liu
[33] and Zuo and Serfling [55], who list four properties that are generally considered
desirable for any statistical depth function, namely affine invariance, maximality
at the center, linear monotonicity relative to the deepest points, and vanishing
at infinity (see Section 2.2 for details). Halfspace depth DTukey is the prototype
of a depth concept satisfying the Liu-Zuo-Serfling axioms for the family P of all
absolutely continuous distributions on IRd.

An important feature of halfspace depth is the convexity of its contours, which
thus satisfy the star-convexity requirement embodied in the linear monotonicity
axiom. That feature is shared by most existing depth concepts and might be
considered undesirable for distributions with non convex supports or level contours,
and multimodal ones. Proposals have been made, under the name of local depths,
to deal with this, while retaining the spirit of the Liu-Zuo-Serfling axioms: see [7],
[27], [1], and [42] who provide an in-depth discussion of those various attempts. In
this paper, we take a totally different and more agnostic approach, on the model
of the discussion by Serfling in [45]: if the ultimate purpose of statistical depth is
to provide, for each distribution P , a P -related ordering of IRd producing adequate
concepts of quantile and distribution functions, ranks and signs, the relevance of a
given depth function should be evaluated in terms of the relevance of the resulting
ordering, and the quantiles, ranks and signs it produces.

Now, the concepts of quantiles, ranks and signs are well understood in two par-
ticular cases, essentially, that should serve as benchmarks. The first case is that of
the family P1 of all distributions with nonvanishing Lebesgue densities over the real
line. Here, the concepts of quantile and distribution functions, ranks, and signs are
related to the “classical” univariate ones. The second case is that of the family Pdell
of all full-rank elliptical distributions over IRd (d > 1) with nonvanishing radial
densities. There, elliptical contours with P -probability contents τ provide a nat-
ural definition of τ -quantile contours, while the ranks and unit vectors associated
with sphericized observations have proven to be adequate concepts of multivariate
ranks and signs, as shown in [19], [20], [21] and [22]: call them elliptical quantiles,
ranks and signs. In both cases, the relevance of ranks and signs, whether tradi-
tional or elliptical, is related to their role as maximal invariants under a group of
transformations minimally generating P , of which distribution-freeness is just a
by-product, as explained in [23]. We argue that an adequate depth function, when
restricted to those two particular cases, should lead to the same well-established
concepts: classical quantiles, ranks and signs for P1, elliptical ones for Pdell.

A closer look at halfspace depth in those two particular cases reveals that the
halfspace depth contours are the images of the hyperspheres with radii τ ∈ [0, 1]
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centered at the origin, by a map Q that is the gradient of a convex function. That
mapping Q actually is the essentially unique gradient of a convex function that
transports the spherical uniform distribution Ud on the unit ball Sd of IRd, (i.e., the
distribution of a random vector rϕ, where r is uniform on [0, 1], ϕ is uniform on
the unit sphere Sd−1, and r and ϕ are mutually independent) into the univariate
or elliptical distribution of interest P . By McCann’s [38] extension of Brenier’s
celebrated Polar Factorization Theorem [4], such gradient of a convex function QP

transporting Ud into P exists, and is an essentially unique, for any distribution
P on IRd—not just the elliptical ones. Moreover, when P has finite moments
of order two, that mapping QP coincides with the L2-optimal transport map, in
the sense of measure transportation, of the spherical distribution Ud to P . This
suggests a new concept of statistical depth, which we call the Monge-Kantorovich
depth DMK, the contours and signs of which are obtained as the images by QP of
the hyperspheres with radius τ ∈ [0, 1] centered at the origin and their unit rays.
When restricted to P1 or Pdell, Monge-Kantorovich and halfspace depths coincide,
and affine-invariance is preserved. For P ∈ Pd \ Pdell with d > 1, the two concepts
are distinct, and Monge-Kantorovich depth is no longer affine-invariant.

Under suitable regularity conditions due to Caffarelli (see [51], Section 4.2.2), QP

is a homeomorphism, and its inverse RP := Q−1
P is also the gradient of a convex

function; the Monge-Kantorovich depth contours are continuous and the corre-
sponding depth regions are nested, so that Monge-Kantorovich depth indeed pro-
vides a center-outward ordering of IRd, namely,

x2 ≥DMK
P

x1 if and only if ‖RP (x2)‖ ≤ ‖RP (x1)‖.
Thus, our approach based on the theory of measure transportation allows us to
define

(a) a vector quantile map QP , and the associated quantile correspondence, which
maps τ ∈ [0, 1] to QP (S(τ)),

(b) a vector rank (or signed rank) function RP , which can be decomposed into a
rank function from IRd to [0, 1], with rP (x) := ‖RP (x)‖, and a sign function uP ,
mapping x ∈ IRd to uP (x) := RP (x)/‖RP (x)‖ ∈ Sd−1.

We call them Monge-Kantorovich quantiles, ranks and signs.

To the best of our knowledge, this is the first proposal of measure transportation-
based depth concept—hence the first attempt to provide a measure-driven or-
dering of IRd based on measure transportation theory. That ordering, namely
≥DMK

P
, is canonical in the sense that it is invariant under shifts, multiplication by

a non zero scalar, orthogonal transformations, and combinations thereof; so are
the Monge-Kantorovitch ranks. Previous proposals have been made, however, of
measure transportation-based vector quantile functions in Ekeland, Galichon and
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Henry [15] and Galichon and Henry [16]. Carlier, Chernozhukov and Galichon [5]
extended the notion to vector quantile regression, creating a vector analogue of
Koenker and Basset’s [28] scalar quantile regression. More recently, Decurninge
[9] proposed a new concept of multivariate Lp moments based upon the same no-
tion. In these contributions, however, the focus is not statistical depth and the
associated quantiles and ranks, and the leading case for the reference distribution
is uniform on the unit hypercube in IRd, as opposed to the spherical uniform dis-
tribution Ud we adopt here as leading case, while pointing out that other reference
distributions may be entertained, such as the standard Gaussian distribution on
IRd or the uniform on the hypercube [0, 1]d as mentioned above.

Empirical versions of Monge-Kantorovich vector quantiles are obtained as the
essentially unique gradient Q̂n of a convex function from (some estimator of) the

reference distribution to some estimator P̂n of the distribution of interest P . In
case of smooth estimators, where P̂n satisfies Caffarelli regularity conditions, em-
pirical ranks, depth and depth contours are defined identically to their theoretical
counterparts, and possess the same properties. In case of discrete estimators,
such as the empirical distribution of a sample drawn from P , Q̂n is not invertible,
and empirical vector ranks and depth can be defined as multi-valued mappings or
selections from the latter. In all cases, we prove uniform convergence of Monge-
Kantorovich empirical depth and quantile contours, vector quantiles and vector
ranks, ranks and signs to their theoretical counterparts, as a special case of a new
result on uniform convergence of optimal transport maps, which is of independent
interest.

Notation, conventions and preliminaries. Let (Ω,A, IP) be some probability
space. Throughout, P denotes a class of probability distributions over IRd. Unless
otherwise specified, it is the class of all Borel probability measures on IRd. Denote
by Sd := {x ∈ IRd : ‖x‖ ≤ 1} the unit ball, and by Sd−1 := {x ∈ IRd : ‖x‖ = 1}
the unit sphere, in IRd. For τ ∈ (0, 1], S(τ) := {x ∈ IRd : ‖x‖ ≤ τ} is the
ball, and S(τ) := {x ∈ IRd : ‖x‖ = τ} the sphere, of radius τ . Let PX stand
for the distribution of the random vector X. Following Villani [51], we denote
by g#µ the image measure (or push-forward) of a measure µ ∈ P by a measurable
map g : IRd → IRd. Explicitly, g#µ(A) := µ(g−1(A)) for any Borel set A. For a
Borel subset D of a vector space equipped with the norm ‖ · ‖ and f : D 7→ IR, let

‖f‖BL(D) := sup
x
|f(x)| ∨ sup

x 6=x′
|f(x)− f(x′)|‖x− x′‖−1.

For two probability distributions P and P ′ on a measurable space D, define the
bounded Lipschitz metric as

dBL(P, P ′) := ‖P − P ′‖BL := sup
‖f‖BL(D)≤1

∫
fd(P − P ′),
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which metrizes the topology of weak convergence. A convex function ψ on IRd refers
to a function ψ : IRd → IR∪{+∞} for which ψ((1−t)x+tx′) ≤ (1−t)ψ(x)+tψ(x′)
for any (x, x′) such that ψ(x) and ψ(x′) are finite and for any t ∈ (0, 1). Such a
function is continuous on the interior of the convex set dom ψ := {x ∈ IRd :
ψ(x) < ∞}, and differentiable Lebesgue almost everywhere in dom ψ. Write ∇ψ
for the gradient of ψ. For any function ψ : IRd 7→ IR ∪ {+∞}, the conjugate
ψ∗ : IRd 7→ IR ∪ {+∞} of ψ is defined for each y ∈ IRd by ψ∗(y) = supz∈IRd y>z −
ψ(z). The conjugate ψ∗ of ψ is a convex lower-semi-continuous function. Let U
and Y be convex, closed subsets of IRd. We shall call conjugate pair a pair of
functions U → IR ∪ {+∞} that are conjugates of each other. The transpose of
a matrix A is denoted A>. Finally, we call weak order a complete reflexive and
transitive binary relation.

Outline of the paper. Section 2 introduces and motivates a new notion of sta-
tistical depth, vector quantiles and vector ranks based on optimal transport maps.
Section 3 describes estimators of depth contours, quantiles and ranks, and proves
consistency of these estimators. Additional results and proofs are collected in the
appendix.

2. Statistical depth and vector ranks and quantiles

2.1. Statistical depth, regions and contours. The notion of statistical depth
serves to define a center-outward ordering of points in the support of a distribution
on IRd, for d > 1. As such, it emulates the notion of quantile for distributions on
the real line. We define it as a real-valued index on IRd as follows.

Definition (Statistical depth index and ordering). A depth function is a mapping

D : IRd × P −→ IR+

(x, P ) 7−→ DP (x),

and DP (x) is called the depth of x relative to P . For each P ∈ P , the depth ordering
≥DP

associated with DP is the weak order on IRd defined for each (x1, x2) ∈ IR2d by

x1 ≥DP
x2 if and only if DP (x1) ≥ DP (x2),

in which case x1 is said to be deeper than x2 relative to P .

The depth function thus defined allows graphical representations of the distri-
bution P through depth contours, which are collections of points of equal depth
relative to P .

Definition (Depth regions and contours). Let DP be a depth function relative to
distribution P on IRd.
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(1) The region of depth d (hereafter d-depth region) associated with DP is
defined as CP (d) = {x ∈ IRd : DP (x) ≥ d}.

(2) The contour of depth d (hereafter d-depth contour) associated with DP is
defined as CP (d) = {x ∈ IRd : DP (x) = d}.

By construction, the depth regions relative to any distribution P are nested, i.e.,

∀(d, d′) ∈ IR2
+, d

′ ≥ d =⇒ CP (d′) ⊆ CP (d).

Hence, the depth ordering qualifies as a center-outward ordering of points in IRd.

Figure 1. Tukey Halfspace depth contours for a banana-shaped distribution,
produced with the algorithm of Paindaveine and Šiman [43] from a sample
of 9999 observations. The banana-like geometry of the data cloud is not picked
by the convex contours, and the deepest point is close to the boundary of the
support.
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2.2. Liu-Zuo-Serfling axioms and halfspace depth. The four axioms pro-
posed by Liu [33] and Zuo and Serfling [55] to unify the diverse depth functions
proposed in the literature are the following.

(A1) (Affine invariance) DPAX+b
(Ax+ b) = DPX

(x) for any x ∈ Rd, any full-rank
d× d matrix A, and any b ∈ IRd.

(A2) (Maximality at the center) If x0 is a center of symmetry for P (symmetry
here can be either central, angular or halfspace symmetry), it is deepest,
that is, DP (x0) = maxx∈IRd DP (x).

(A3) (Linear monotonicity relative to the deepest points) If DP (x0) is equal to
maxx∈IRd DP (x), then DP (x) ≤ DP ((1 − α)x0 + αx) for all α ∈ [0, 1] and
x ∈ IRd: depth is monotonically decreasing along any straight line running
through a deepest point.

(A4) (Vanishing at infinity) lim‖x‖→∞DP (x) = 0.

The earliest and most popular depth function is halfspace depth proposed by
Tukey [48]:

Definition (Halfspace depth). The halfspace depth DTukey
P (x) of a point x ∈ IRd

with respect to the distribution PX of a random vector X on IRd is defined as

DTukey
PX

(x) := min
ϕ∈Sd−1

IP[(X − x)>ϕ ≥ 0].

Halfspace depth relative to any distribution with nonvanishing density on IRd

satisfies (A1)-(A4). The appealing properties of halfspace depth are well known
and well documented: see Donoho and Gasko [12], Mosler [39], Koshevoy [29],
Ghosh and Chaudhuri [17], Cuestas-Albertos and Nieto-Reyes [8], Hassairi and
Regaieg [26], to cite only a few. Halfspace depth takes values in [0, 1/2], and its
contours are continuous and convex; the corresponding regions are closed, convex,
and nested as d decreases. Under very mild conditions, halfspace depth moreover
fully characterizes the distribution P . For somewhat less satisfactory features,
however, see Dutta et al. [13]. An important feature of halfspace depth is the
convexity of its contours, which implies that halfspace depth contours cannot pick
non convex features in the geometry of the underlying distribution, as illustrated
in Figure 1.

We shall propose below a new depth concept, the Monge-Kantorovich (MK)
depth, that relinquishes the affine equivariance and star convexity of contours im-
posed by Axioms (A1) and (A3) and recovers non convex features of the underlying
distribution. As a preview of the concept, without going through any definitions,
we illustrate in Figure 2 (using the same example as in Figure 1) the ability of the
MK depth to capture non-convexities. In what follows, we characterize these abil-
ities more formally. We shall emphasize that this notion comes in a package with
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new, interesting notions of vector ranks and quantiles, based on optimal transport,
which reduce to classical notions in univariate and multivariate elliptical cases.

Figure 2. The Monge-Kantorovich depth contours for the same banana-shaped
distribution from a sample of 9999 observations, as in Figure 1. The banana-like
geometry of the data cloud is correctly picked up by the non convex contours.

2.3. Monge-Kantorovich depth. The principle behind the notion of depth we
define here is to map the depth regions and contours relative to a well chosen
reference distribution F , into depth contours and regions relative to a distribution
of interest P on IRd, using a well chosen mapping. The mapping proposed here is
the optimal transport plan from F to P for quadratic cost.

Definition. Let P and F be two distributions on IRd with finite variance. An
optimal transport plan from F to P for quadratic cost is a map Q : IRd −→ IRd
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that maximizes ∫
u>Q(u) dF (u) subject to Q#F = P.(2.1)

This definition has a classical counterpart in case of univariate distributions.

Proposition. When d = 1 and F is uniform on [0, 1], u 7→ Q(u) is the classical
quantile function for distribution P .

In order to base our notion of depth and quantiles for a distribution P on the
optimal transport map from F to P , we need to ensure existence and uniqueness
of the latter. We also need to extend this notion to define depth relative to
distributions without finite second order moments. The following theorem, due to
Brenier [4] and McCann [38] achieves both.

Theorem 2.1. Let P and F be two distributions on IRd. If F is absolutely con-
tinuous with respect to Lebesgue measure, the following hold.

(1) There exists a convex function ψ : IRd → IR∪{+∞} such that ∇ψ#F = P .
The function ∇ψ exists and is unique, F -almost everywhere.

(2) In addition, if P and F have finite second moments, ∇ψ is the unique
optimal transport map from F to P for quadratic cost.

By the Kantorovich Duality Theorem (see Villani [51], Theorem 1.3), the func-
tion ψ, called transportation potential (hereafter simply potential), also solves the
dual optimization problem∫

ψdF +

∫
ψ∗dP = inf

ϕ

∫
ϕdF +

∫
ϕ∗dP,(2.2)

where the infimum is over lower-semi-continuous convex functions ϕ. The pair
(ψ, ψ∗) will be called conjugate pair of potentials.

On the basis of Theorem 2.1, we can define multivariate notions of quantiles
and ranks, through which a depth function will be inherited from the reference
distribution F .

Definition 2.1 (Monge-Kantorovich depth, quantiles, ranks and signs). Let F be
an absolutely continuous reference distribution on IRd. Vector quantiles, ranks,
signs and depth are defined as follows.

(1) The Monge-Kantorovich (hereafter MK) vector quantile function relative
to distribution P is defined for each u ∈ IRd as the F -almost surely unique
gradient of a convex function QP (u) := ∇ψ(u) such that ∇ψ#F = P .
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(2) The MK vector rank of x ∈ IRd is RP (x) := ∇ψ∗(x), where ψ∗ is the con-
jugate of ψ. The MK rank is ‖RP (x)‖ and the MK sign is RP (x)/‖RP (x)‖.

(3) The MK depth of x ∈ IRd relative to P is consequently defined as the
halfspace depth of RP (x) relative to the reference distribution F .

DMK
P (x) := DTukey

F (RP (x)).

The notion of depth proposed in Definition 2.1 is based on an optimal transport
map from the baseline distribution F to the distribution of interest. Each reference
distribution will therefore generate, through the optimal transport map, a depth
weak order on IRd, relative to a distribution of interest P . This order is defined
for each (x1, x2) ∈ IR2d by

x1 ≥DP ;F
x2 if and only if DTukey

F (RP ;F (x1)) ≥ DTukey
F (RP ;F (x2)),

where the dependence of the rank function RP :F and hence DP ;F on the reference
distribution is emphasized here, although, as in Definition 2.1, it will be omitted
in the notation when there is no ambiguity. When requiring regularity of vector
quantiles and ranks and of depth contours, we shall work within the following
environment for the conjugate pair of potentials (ψ, ψ∗).

(C) Let U and Y be closed, convex subsets of IRd, and U0 ⊂ U and Y0 ⊂ Y are
some open, non-empty sets in IRd. Let ψ : U 7→ IR and ψ∗ : Y 7→ IR be
a conjugate pair over (U ,Y) that possess gradients ∇ψ(u) for all u ∈ U0,
and ∇ψ∗(y) for all y ∈ Y0. The gradients ∇ψ|U0 : U0 7→ Y0 and ∇ψ∗|Y0 :
Y0 7→ U0 are homeomorphisms and ∇ψ|U0 = (∇ψ∗|Y0)−1.

Sufficient conditions for condition (C) in the context of Definition 2.1 are provided
by Caffarelli’s regularity theory (Villani [51], Theorem 4.14). One set of sufficient
conditions is as follows.

Proposition (Caffarelli). Suppose that P and F admit densities, which are of
smoothness class Cβ for β > 0 on convex, compact support sets cl(Y0) and cl(U0),
and the densities are bounded away from zero and above uniformly on the sup-
port sets. Then Condition (C) is satisfied for the conjugate pair (ψ, ψ∗) such
that ∇ψ#F = P and ∇ψ∗#P = F.

Under sufficient conditions for (C) to be satisfied for MK vector quantiles QP

and vector ranks RP relative to distribution P , QP and RP are continuous and
inverse of each other, so that the MK depth contours are continuous, MK depth
regions are nested and regions and contours take the following respective forms:

CMK
P (d) := QP

(
CTukey
F (d)

)
and CMK

P (d) := QP

(
CTukey
F (d)

)
, for d ∈ (0, 1/2].
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2.4. Monge-Kantorovich depth with spherical uniform reference distri-
bution. Consider now Monge-Kantorovich depth defined from a baseline distribu-
tion with spherical uniform symmetry. We define the spherical uniform distribution
supported on the unit ball Sd of IRd as follows.

Definition (Spherical uniform distribution). The spherical uniform distribution Ud
is the distribution of a random vector rϕ, where r is uniform on [0, 1], ϕ is uniform
on the unit sphere Sd−1, and r and ϕ are mutually independent.

The spherical symmetry of distribution Ud produces halfspace depth contours
that are concentric spheres, the deepest point being the origin. The radius τ of
the ball S(τ) = {x ∈ IRd : ‖x‖ ≤ τ} is also its Ud-probability contents, that
is, τ = Ud(S(τ)). Letting θ := arccos τ , the halfspace depth with respect to Ud of
a point τu ∈ S(τ) := {x ∈ IRd : ‖x‖ = τ}, where τ ∈ (0, 1] and u ∈ Sd, is

(2.3) DU(τu) =

{
π−1[θ − cos θ log | sec θ + tan θ|] d ≥ 2
(1− τ)/2 d = 1.

Note that for d = 1, u takes values ±1 and that, in agreement with rotational
symmetry of Ud, depth does not depend on u.

The principle behind the notion of depth we investigate further here is to map
the depth regions and contours relative to the spherical uniform distribution Ud,
namely, the concentric spheres, into depth contours and regions relative to a dis-
tribution of interest P on IRd using the chosen transport plan from Ud to P . Under
sufficient conditions for (C) to be satisfied for MK vector quantiles QP and ranks
RP relative to distribution P (note that the conditions on F are automatically sat-
isfied in case F = Ud), QP and RP are continuous and inverse of each other, so that
the MK depth contours are continuous, MK depth regions are nested and regions
and contours take the following respective forms, when indexed by probability
content.

CMK
P (τ) := QP (S(τ)) and CMK

P (τ) := QP (S(τ)) , for τ ∈ (0, 1].

By construction, depth and depth contours coincide with Tukey depth and depth
contours for the baseline distribution Ud. We now show that MK depth of Defini-
tion 2.1 still coincides with Tukey depth in case of univariate distributions as well
as in case of elliptical distributions.

MK depth is halfspace depth in dimension 1. The halfspace depth of a point x ∈ IR
relative to a distribution P over IR takes the very simple form

DTukey
P (x) = min(P (x), 1− P (x)),
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where, by abuse of notation, P stands for both distribution and distribution func-
tion. The non decreasing map defined for each x ∈ IR by x 7→ RP (x) = 2P (x)− 1
is the derivative of a convex function and it transports distribution P to U1, which
is uniform on [−1, 1], i.e., RP#P = U1. Hence RP coincides with the MK vector
rank of Definition 2.1. Therefore, for each x ∈ IR,

DP (x) = DTukey
Ud

(RP (x)) = min(P (x), 1− P (x))

and MK depth coincides with Tukey depth in case of all distributions with nonva-
nishing densities on the real line.

MK depth is halfspace depth for elliptical distributions. A d-dimensional random
vector X has elliptical distribution Pµ,Σ,f with location µ ∈ IRd, positive definite
symmetric d× d scatter matrix Σ and radial distribution function f if and only if

(2.4) R(X) :=
Σ−1/2(X − µ)

‖Σ−1/2(X − µ)‖2

F
(
‖Σ−1/2(X − µ)‖2

)
∼ Ud,

where F , with density f , is the distribution function of ‖Σ−1/2(X − µ)‖2. The
halfspace depth contours of Pµ,Σ;F coincide with its ellipsoidal density contours,
hence only depend on µ and Σ. Their indexation, however, depends on F . The
location parameter µ, with depth 1/2, is the deepest point. In Proposition 2.1, we
show that the mapping R is the rank function associated to Pµ,Σ;f according to
our Definition 2.1.

Proposition 2.1. The mapping defined for each x ∈ IRd by (2.4) is the gradient
of a convex function ψ∗ such that ∇ψ∗#Pµ,Σ;f = Ud.

The mapping R is therefore the MK vector rank function associated with Pµ,Σ;f ,
and MK depth relative to the elliptical distribution Pµ,Σ;f is equal to halfspace
depth. MK ranks, quantiles and depth therefore share invariance and equivariance
properties of halfspace depth within the class of elliptical families, see [19], [20],
[21] and [22].

3. Empirical depth, ranks and quantiles

Having defined Monge-Kantorovich vector quantiles, ranks and depth relative
to a distribution P based on reference distribution F on IRd, we now turn to the
estimation of these quantities. Hereafter, we shall work within the environment
defined by (C). We define Φ0(U ,Y) as a collection of conjugate potentials (ϕ, ϕ∗)
on (U ,Y) such that ϕ(u0) = 0 for some fixed point u0 ∈ U0. Then, the MK vector
quantiles and ranks of Definition 2.1 are

(3.5) QP (u) := ∇ψ(u), RP (y) := ∇ψ∗(y) = (∇ψ)−1 (y),
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for each u ∈ U0 and y ∈ Y0, respectively, where the potentials (ψ, ψ∗) ∈ Φ0(U ,Y)
are such that:

(3.6)

∫
ψdF +

∫
ψ∗dP = inf

(ϕ,ϕ∗)∈Φ0(U ,Y)

∫
ϕdF +

∫
ϕ∗dP.

Constraining the conjugate pair to lie in Φ0 is a normalization that pins down the
constant, so that (ψ, ψ∗) are uniquely determined. We propose empirical versions
of MK quantiles and ranks based on estimators of P , and possibly F , if necessary
for computational reasons.

3.1. Data generating processes. Suppose that {P̂n} and {F̂n} are sequences of
random measures on Y and U , with finite total mass, that are consistent for P
and F :

(3.7) dBL(P̂n, P )→IP∗ 0, dBL(F̂n, F )→IP∗ 0,

where →IP∗ denotes convergence in (outer) probability under probability mea-

sure IP, see van der Vaart and Wellner [49]. A basic example is where P̂n is

the empirical distribution of the random sample (Yi)
n
i=1 drawn from P and F̂n is

the empirical distribution of the random sample (Ui)
n
i=1 drawn from F . Other,

much more complicated examples, including smoothed empirical measures and
data coming from dependent processes, satisfy sufficient conditions for (3.7) that
we now give. In order to develop some examples, we introduce the ergodicity
condition:

(E) Let W be a measurable subset of IRd. A data stream {(Wt,n)nt=1}∞n=1, with
Wt,n ∈ W ⊂ IRd for each t and n, is ergodic for the probability law PW
on W if for each g :W 7→ IR such that ‖g‖BL(W) <∞,

(3.8)
1

n

n∑
t=1

g(Wt,n)→IP

∫
g(w)dPW (w).

The class of ergodic processes is extremely rich, including in particular the follow-
ing.

(E.1) Wt,n = Wt, where (Wt)
∞
t=1 are independent, identically distributed random

vectors with distribution PW ;
(E.2) Wt,n = Wt, where (Wt)

∞
t=1 is stationary strongly mixing process with mar-

ginal distribution PW ;
(E.3) Wt,n = Wt, where (Wt)

∞
t=1 is a non-stationary irreducible and aperiodic

Markov chain with stationary distribution PW ;
(E.4) Wt,n = wt,n, where (wt,n)nt=1 is a deterministic allocations of points such

that (3.8) holds deterministically.
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Thus, if we observe the data sequence {(Wt,n)nt=1}∞n=1 that is ergodic for PW , we
can estimate PW by the empirical and smoothed empirical measures

P̂W (A) =
1

n

n∑
t=1

1{Wt,n ∈ A}, P̃W (A) =
1

n

n∑
t=1

∫
1{Wt,n + hnε ∈ A∩W}dΦ(ε),

where Φ is the probability law of the standard d-dimensional Gaussian vector,
N(0, Id), and hn ≥ 0 is a semi-positive-definite matrix of bandwidths such that
‖hn‖ → 0 as n → ∞. Note that P̃W may not integrate to 1, since we are forcing
it to have support in W .

Lemma 3.1. Suppose that PW is absolutely continuous with support contained in
the compact set W ⊂ Rd. If {(Wt,n)nt=1}∞n=1 is ergodic for PW on W, then

dBL(P̂W , PW )→IP∗ 0, dBL(P̃W , PW )→IP∗ 0.

Thus, if PY := P and PU := F are absolutely continuous with support sets con-
tained in compact sets Y and U , and if {(Yt,n)nt=1}∞n=1 is ergodic for PY on Y
and {(Ut,n)nt=1}∞n=1 is ergodic for PU on U , then P̂n = P̂W or P̃W and F̂n = P̂U
or P̃U obey condition (3.7).

Comment 3.1. Absolute continuity of PW in Lemma 3.1 is only used to show
that the smoothed estimator P̃W is asymptotically non-defective.

3.2. Empirical quantiles, ranks and depth. We base empirical versions of
MK quantiles, ranks and depth on estimators P̂n for P and F̂n for F satisfying
(3.7). We define empirical versions in the general case, before discussing their

construction in some special cases for P̂n and F̂n below. Recall Assumption (C) is
maintained throughout this section.

Definition 3.1 (Empirical quantiles and ranks). Empirical vector quantile Q̂n

and vector rank R̂n are any pair of functions satisfying, for each u ∈ U and y ∈ Y ,

(3.9) Q̂n(u) ∈ arg sup
y∈Y

y>u− ψ̂∗n(y), R̂n(y) ∈ arg sup
u∈U

y>u− ψ̂n(u),

where (ψ̂n, ψ̂
∗
n) ∈ Φ0(U ,Y) is such that

(3.10)

∫
ψ̂ndF̂n +

∫
ψ̂∗ndP̂n = inf

(ϕ,ϕ∗)∈Φ0(U ,Y)

∫
ϕdF̂n +

∫
ϕ∗dP̂n.

Depth, depth contours and depth regions relative to P are then estimated with
empirical versions inherited from R̂n. For any x ∈ IRd, the depth of x relative to P
is estimated with

D̂n(x) = DTukey
F (R̂n(x)),
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and for any d ∈ (0, 1/2], the d-depth region relative to P and the corresponding
contour are estimated with the following:

Ĉn(d) := {x ∈ IRd : D̂n(x) ≥ d} and Ĉn(d) := {x ∈ IRd : D̂n(x) = d}.(3.11)

A more direct approach to estimating the regions and contours may be computa-
tionally more appealing. Even though Q̂n(CTukey

F (d)) and Q̂n(CTukey
F (d)) may now

be finite sets of points, in case P̂n is discrete, they are shown to converge to the
population d-depth region and corresponding contour and can therefore be used
for the construction of empirical counterparts. In case of discrete P̂n, the latter can
be constructed from a polyhedron supported by Q̂n(CTukey

F (d)) or Q̂n(CTukey
F (d)). For

precise definitions, existence and uniqueness of such polyhedra, see [10] for d = 2
and [18] for d = 3.

3.2.1. Smooth P̂n and F̂n. Suppose P̂n and F̂n satisfy Caffarelli regularity condi-
tions, so that Q̂n = ∇ψ̂n and R̂n = ∇ψ̂∗n, with (ψ̂n, ψ̂

∗
n) satisfying (C). Empiri-

cal versions are then defined identically to their theoretical counterparts. Depth,
depth contours and depth regions relative to P are then estimated with empirical
versions inherited from Q̂n and R̂n. In particular, for any x ∈ IRd, the depth of x
relative to P is estimated with

D̂n(x) = DTukey
F (R̂n(x)).

Since R̂n = Q̂−1
n , as for the theoretical counterparts, for any τ ∈ (0, 1], the esti-

mated depth region relative to P with probability content τ and the corresponding
contour can be computed as

Ĉn(τ) := Q̂n

(
CTukey
F (d)

)
and Ĉn(τ) := Q̂n

(
CTukey
F (d)

)
.

Empirical depth regions are nested, and empirical depth contours are continuous,
as are their theoretical counterparts. The estimators Q̂n and R̂n can be computed
with the algorithm of Benamou and Brenier [3]1. In the case where the reference
distribution is the spherical uniform distribution, i.e., F = Ud, the estimated depth
region relative to P with probability content τ and the corresponding contour can
be computed as

Ĉn(τ) := Q̂n (S(τ)) and Ĉn(τ) := Q̂n (S(τ)) ,

where S(τ) and S(τ) are the ball and the sphere of radius τ , respectively.

1A guide to implementation is given at http://www.numerical-
tours.com/matlab/optimaltransp 2 benamou brenier/).
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3.2.2. Discrete P̂n and smooth F̂n. Suppose now P̂n is a discrete estimator of P
and F̂n is an absolutely continuous distribution with convex compact support
IB ⊆ IRd. Let P̂n =

∑Kn

k=1 pk,nδyk,n , for some integer Kn, some non negative weights

p1,n, . . . , pKn,n such that
∑Kn

k=1 pk,n = 1, and y1,n, . . . , yKn,n ∈ IRd . The leading

example is when P̂n is the empirical distribution of a random sample (Yi)
n
i=1 drawn

from P .

The empirical quantile Q̂n is then equal to the F̂n-almost surely unique gradient
of a convex map ∇ψ̂n such that ∇ψ̂n#F̂n = P̂n, i.e., the F̂n-almost surely unique
map Q̂n = ∇ψ̂n satisfying the following:

(1) ∇ψ̂n(u) ∈ {y1,n, . . . , yKn,n}, for Lebesgue-almost all u ∈ IB,

(2) F̂n

(
{u ∈ IB : ∇ψ̂n(u) = yk,n}

)
= pk,n, for each k ∈ {1, . . . , Kn},

(3) ψ̂n is a convex function.

The following characterization of ψ̂n specializes Kantorovich duality to this discrete-
continuous case (for a direct proof, see for instance [15]).

Lemma. There exist unique (up to an additive constant) weights {v∗1, . . . , v∗n} such
that

ψ̂n(u) = max
1≤k≤Kn

{u>yk,n − v∗k}

satisfies (1), (2) and (3). The function

v∗ 7→
∫
ψ̂ndF̂n +

Kn∑
k=1

pk,nv
∗
k

is convex and minimized at v∗ = {v∗1, . . . , v∗n}.

The lemma allows efficient computation of Q̂n using a gradient algorithm pro-
posed in [2]. ψ̂n is piecewise affine and Q̂n is piecewise constant. The correspon-

dence Q̂−1
n defined for each k ≤ Kn by

yk,n 7→ Q̂−1
n (yk,n) := {u ∈ IB : ∇ψ̂n(u) = yk,n}

maps {y1,n, . . . , yKn,n} into Kn regions of a partition of IB, called a power diagram.

The estimator R̂n of the rank function can be any measurable selection from
the correspondence Q̂−1

n . Empirical depth is then D̂n(x) = DTukey
F (R̂n(x)), and

depth regions and contours can be computed using the depth function, according
to their definition as in (3.11), or from a polyhedron supported by Q̂n(CTukey

F (d))

or Q̂n(CTukey
F (d)) as before.
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3.2.3. Discrete P̂n and F̂n. Particularly amenable to computation is the case,
where both distribution estimators P̂n and F̂n are discrete with uniformly dis-
tributed mass on sets of points of the same cardinality. Let P̂n =

∑n
j=1 δyj/n

for a set Yn = {y1, . . . , yn} of points in IRd and F̂n =
∑n

j=1 δuj/n, for a set

Un = {u1, . . . , un} of points in IRd. The restriction of the quantile map Q̂n to
Un is the bijection

Q̂n|Un : Un −→ Yn
u 7−→ y = Q̂n|Un(u)

that minimizes
n∑
j=1

u>j Q̂n|Un(uj),

and R̂n|Yn is its inverse. The solutions Q̂n and R̂n can be computed with any
assignment algorithm. More generally, in the case of any two discrete estimators
P̂n and F̂n, the problem of finding Q̂n or R̂n is a linear programming problem.

In the case of the spherical uniform reference distribution F = Ud, empiri-
cal depth contours Ĉn(τ) and regions Ĉn(τ) can be computed from a polyhedron

supported by Q̂n(Un(τ)), where Un(τ) = {u ∈ Un : ‖u‖ ≤ τ}, τ ∈ (0, 1]. Es-
timated depth contours are illustrated in Figure 2 for the same banana-shaped
distribution as in Figure 1. The specific construction to produce Figure 2 is the
following: P̂n is the empirical distribution of a random sample Yn drawn from the
banana distribution in IR2, with n = 9999; F̂n is the discrete distribution with
mass 1/n on each of the points in Un. The latter is a collection of 99 evenly spaced
points on each of 101 circles, of evenly spaced radii in (0, 1]. The sets Yn and
Un are matched optimally with the assignment algorithm of the adagio package
in R. Empirical depth contours Ĉn(τ) are α-hulls of Q̂n(Un(τ)) for 11 values of
τ ∈ (0, 1) (see [14] for a definition of α-hulls). The α-hulls are computed using the
alphahull package in R, with α = 0.3. The banana-shaped distribution considered
is the distribution of the vector (X+R cos Φ, X2 +R sin Φ), where X is uniform on
[−1, 1], Φ is uniform on [0, 2π], Z is uniform on [0, 1], X, Z and Φ are independent,
and R = 0.2Z(1 + (1− |X|)/2).

3.3. Convergence of empirical quantiles, ranks and depth contours. Em-
pirical quantiles, ranks and depth contours are now shown to converge uniformly
to their theoretical counterparts.

Theorem 3.1 (Uniform Convergence of Empirical Transport Maps). Suppose that
the sets U and Y are compact subsets of IRd, and that probability measures P and F
are absolutely continuous with respect to the Lebesgue measure with support(P ) ⊂
Y and support(F ) ⊂ U . Suppose that {P̂n} and {F̂n} are sequences of random
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measures on Y and U , with finite total mass, that are consistent for P and F in
the sense of (3.7). Suppose that condition (C) holds for the solution of (3.6) for
Y0 := int(support(P )) and U0 := int(support(F )). Then, as n → ∞, for any
compact set K ⊂ U0 and any compact set K ′ ⊂ Y0,

sup
u∈K
‖Q̂n(u)−QP (u)‖ →IP∗ 0, sup

y∈K′
‖R̂n(y)− RP (y)‖ →IP∗ 0,

dH(Q̂n(K),QP (K))→IP∗ 0, dH(R̂n(K ′),RP (K ′))→IP∗ 0.

The first result establishes the uniform consistency of empirical vector quantile
and rank maps, hence also of empirical ranks and signs. The set Q(K) such that
IPUd

(U ∈ K) = τ is the statistical depth contour with probability content τ . The

second result, therefore, establishes consistency of the approximation Q̂n(K) to
the theoretical depth contour Q(K). The proof is given in the appendix.

Uniform convergence of empirical Monge-Kantorovitch quantiles τ 7→ Q̂n(S(τ)),

ranks r̂n := ‖R̂n‖ and signs ûn := R̂n/‖R̂n‖ to their theoretical counterparts rP
and uP follows by an application of the Continuous Mapping Theorem.

Corollary 3.1. Under the assumptions of Theorem 3.1, as n → ∞, for any
compact set K ⊂ U0 and any compact set K ′ ⊂ Y0,

sup
y∈K
‖r̂n(y)− rP (y)‖ →IP∗ 0, sup

y∈K′
‖ûn(y)− uP (y)‖ →IP∗ 0,

sup
τ∈(0,1)

dH(Q̂n(S(τ)),QP (S(τ)))→IP∗ 0, sup
τ∈(0,1)

dH(Q̂n(S(τ)),QP (S(τ)))→IP∗ 0.

Appendix A. Uniform Convergence of Subdifferentials and
Transport Maps

A.1. Uniform Convergence of Subdifferentials. Let U and Y be convex,
closed subsets of IRd. A pair of convex potentials ψ : U 7→ IR ∪ {∞} and
ψ∗ : Y 7→ IR ∪ {∞} is conjugate over (U ,Y) if, for each u ∈ U and y ∈ Y ,

ψ(u) = sup
y∈Y

y>u− ψ∗(y), ψ∗(y) = sup
u∈U

y>u− ψ(u).

Recall that we work within the following environment.

(C) Let U and Y be closed, convex subsets of IRd, and U0 ⊂ U and Y0 ⊂ Y are
some open, non-empty sets in IRd. Let ψ : U 7→ IR and ψ∗ : Y 7→ IR be
a conjugate pair over (U ,Y) that possess gradients ∇ψ(u) for all u ∈ U0,
and ∇ψ∗(y) for all y ∈ Y0. The gradients ∇ψ|U0 : U0 7→ Y0 and ∇ψ∗|Y0 :
Y0 7→ U0 are homeomorphisms and ∇ψ|U0 = (∇ψ∗|Y0)−1.
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We also consider a sequence of conjugate potentials approaching (ψ, ψ∗).

(A) A sequence of conjugate potentials (ψn, ψ
∗
n) over (U ,Y), with n ∈ N, is

such that: ψn(u) → ψ(u) in IR ∪ {∞} pointwise in u in a dense subset of
U and ψ∗n(y) → ψ∗(y) in IR ∪ {∞} pointwise in y in a dense subset of Y ,
as n→∞.

The condition (A) is equivalent to requiring that either ψn or ψ∗n converge pointwise
over dense subsets. There is no loss of generality in stating that both converge.

Define the maps

Q(u) := arg sup
y∈Y

y>u− ψ∗(y), R(y) := arg sup
u∈U

y>u− ψ(u),

for each u ∈ U0 and y ∈ Y0. By the envelope theorem,

R(y) = ∇ψ∗(y), for y ∈ Y0; Q(u) = ∇ψ(u), for u ∈ U0.

Hence, Q is the vector quantile function and R is its inverse, the vector rank
function, from Definition 2.1.

Let us define, for each u ∈ U and y ∈ Y ,

(A.12) Qn(u) ∈ arg sup
y∈Y

y>u− ψ∗n(y), Rn(y) ∈ arg sup
u∈U

y>u− ψn(u).

It is useful to note that

Rn(y) ∈ ∂ψ∗n(y) for y ∈ Y ; Qn(u) ∈ ∂ψn(u) for u ∈ U ,

where ∂ denotes the sub-differential of a convex function; conversely, any pair
of elements of ∂ψ∗n(y) and ∂ψn(u), respectively, could be taken as solutions to
the problem (A.12) (by Proposition 2.4 in Villani [51]). Hence, the problem of
convergence of Qn and Rn to Q and R is equivalent to the problem of conver-
gence of subdifferentials. Moreover, by Rademacher’s theorem, ∂ψ∗n(y) = ∇ψ∗n(y)
and ∂ψn(u) = ∇ψn(u) almost everywhere with respect to the Lebesgue measure
(see, e.g., [51]), so the solutions to (A.12) are unique almost everywhere on u ∈ U
and y ∈ Y .

Theorem A.1 (Local uniform convergence of subdifferentials). Suppose condi-
tions (A) and (C) hold. Then, as n → ∞, for any compact set K ⊂ U0 and any
compact set K ′ ⊂ Y0,

sup
u∈K
‖Qn(u)−Q(u)‖ → 0, sup

y∈K′
‖Rn(y)− R(y)‖ → 0.
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Comment A.1. This result appears to be new. It complements the result stated
in Lemma 5.4 in Villani [53] for the case U0 = U = Y0 = Y = IRd. This result also
trivially implies convergence in Lp norms, 1 ≤ p <∞:∫

U
‖Qn(u)−Q(u)‖pdF (u)→ 0,

∫
Y0
‖Rn(y)− R(y)‖pdP (y)→ 0,

for probability laws F on U and P on Y , whenever for some p̄ > p

sup
n∈N

∫
U
‖Qn(u)‖p̄ + ‖Q(u)‖pdF (u) <∞, sup

n∈N

∫
Y0
‖Rn(y)‖p̄ + ‖R(y)‖pdP (y) <∞.

Hence, the new result is stronger than available results on convergence in measure
(including Lp convergence results) in the optimal transport literature (see, e.g.,
Villani [51, 52]). �

Comment A.2. The following example also shows that, in general, our result can
not be strengthened to the uniform convergence over entire sets U and Y . Consider
the sequence of potential maps ψn : U = [0, 1] 7→ IR:

ψn(u) =

∫ u

0

Qn(t)dt, Qn(t) = t · 1(t ≤ 1− 1/n) + 10 · 1(t > 1− 1/n).

Then ψn(u) = 2−1u21(u ≤ 1− 1/n) +
{

10(u− (1− 1/n)) + 2−1(1− 1/n)2
}

1(u >
1 − 1/n) converges uniformly on [0, 1] to ϕ(u) = 2−1u2. The latter potential has
the gradient map Q : [0, 1] 7→ Y0 = [0, 1] defined by Q(t) = t. We have that
supt∈K |Qn(t)−Q(t)| → 0 for any compact subsetK of (0, 1). However, the uniform
convergence over the entire region [0, 1] fails, since supt∈[0,1] |Qn(t)−Q(t)| ≥ 9 for
all n. Therefore, the theorem can not be strengthened in general. �

We next consider the behavior of image sets of gradients defined as follows:

Qn(K) := {Qn(u) : u ∈ K}, Q(K) := {Q(u) : u ∈ K},

Rn(K ′) := {Rn(y) : y ∈ K ′}, R(K ′) := {R(y) : y ∈ K ′},
where K ⊂ U0 and K ′ ⊂ Y0 are compact sets. Also recall the definition of the
Hausdorff distance between two non-empty sets A and B in IRd:

dH(A,B) := sup
b∈B

inf
a∈A
‖a− b‖ ∨ sup

a∈A
inf
b∈B
‖a− b‖.

Corollary A.1 (Convergence of sets of subdifferentials). Under the conditions of
the previous theorem, we have that

dH(Qn(K),Q(K))→ 0, dH(Rn(K ′),R(K ′))→ 0.
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A.2. Uniform Convergence of Transport Maps. We next consider the prob-
lem of convergence for potentials and transport (vector quantile and rank) maps
arising from the Kantorovich dual optimal transport problem.

We equip Y with an absolutely continuous probability measure P and let

Y0 := int(support(P )).

We equip U with an absolutely continuous probability measure F and let

U0 := int(support(F )).

We consider a sequence of measures Pn and Fn that approximate P and F :

(W) There are sequences of measures {Pn}n∈N on Y and {Fn}n∈N on U , with
finite total mass, that converge to P and F , respectively, in the topology
of weak convergence:

dBL(Pn, P )→ 0, dBL(Fn, F )→ 0.

Recall that we defined Φ0(U ,Y) as a collection of conjugate potentials (ϕ, ϕ∗) on
(U ,Y) such that ϕ(u0) = 0 for some fixed point u0 ∈ U0. Let (ψn, ψ

∗
n) ∈ Φ0(U ,Y)

solve the Kantorovich problem for the pair (Pn, Fn)

(A.13)

∫
ψndFn +

∫
ψ∗ndPn = inf

(ϕ,ϕ∗)∈Φ0(U ,Y)

∫
ϕdFn +

∫
ϕ∗dPn.

Also, let (ψ, ψ∗) ∈ Φ0(U ,Y) solve the Kantorovich problem for the pair (P, F ):

(A.14)

∫
ψdF +

∫
ψ∗dP = inf

(ϕ,ϕ∗)∈Φ0(U ,Y)

∫
ϕdF +

∫
ϕ∗dP.

It is known that solutions to these problems exist; see, e.g., Villani [51]. Recall
also that we imposed the normalization condition in the definition of Φ0(U ,Y) to
pin down the constants.

Theorem A.2 (Local uniform convergence of transport maps). Suppose that the
sets U and Y are compact subsets of IRd, and that probability measures P and F are
absolutely continuous with respect to the Lebesgue measure with support(P ) ⊂ Y
and support(F ) ⊂ U . Suppose that Condition (W) holds, and that Condition (C)
holds for a solution (ψ, ψ∗) of (A.14) for the sets U0 and Y0 defined as above. Then
conclusions of Theorem A.1 and Corollary A.1 hold.

Appendix B. Proofs

B.1. Proof of Proposition 2.1. Denote by Ψ a primitive of F . It is easily
checked that x 7→ R(x) is the gradient of Ψ(x) := Σ1/2Ψ(‖Σ−1/2(x−µ)‖). In order



22 VICTOR CHERNOZHUKOV, ALFRED GALICHON, MARC HALLIN, AND MARC HENRY

to show that Ψ is convex, it is sufficient to check that its Hessian, that is, the
Jacobian of R, is positive definite. The Jacobian of R is

F (‖Σ−1/2(x− µ)‖2)

‖Σ−1/2(x− µ)‖2

Σ−1/2 − F (‖Σ−1/2(x− µ)‖2)

2‖Σ−1/2(x− µ)‖3
2

Σ−1/2(x− µ)(x− µ)>Σ−1

+
f(‖Σ−1/2(x− µ)‖2)

2‖Σ−1/2(x− µ)‖2
2

Σ−1/2(x− µ)(x− µ)>Σ−1,

which is positive semidefinite if I− 1
2
UU> is, where U := Σ−1/2(x−µ)/‖Σ−1/2(x−

µ)‖2. Denoting by U,U2, . . . , Ud an orthonormal basis of IRd, we obtain

I − 1

2
UU> =

1

2
UU> + U2U

>
2 + . . .+ UdU

>
d ,

which is clearly positive definite.

B.2. Proof of Theorem A.1. The proof relies on the equivalence of the uniform
and continuous convergence.

Lemma B.1 (Uniform convergence via continuous convergence). Let D and E
be complete separable metric spaces, with D compact. Suppose f : D 7→ E is
continuous. Then a sequence of functions fn : D 7→ E converges to f uniformly
on D if and only if, for any convergent sequence xn → x in D, we have that
fn(xn)→ f(x).

For the proof, see, e.g., Rockafellar and Wets [44]. The proof also relies on the
following convergence result, which is a consequence of Theorem 7.17 in Rockafellar
and Wets [44]. For a point a and a non-empty set A in Rd, define d(a,A) :=
infa′∈A ‖a− a′‖.

Lemma B.2 (Argmin convergence for convex problems). Suppose that g is a
lower-semi-continuous convex function mapping IRd to IR ∪ {+∞} that attains a
minimum on the set X0 = arg infx∈IRd g(x) ⊂ D0, where D0 = {x ∈ IRd : g(x) <∞}
is a non-empty, open set in IRd. Let {gn} be a sequence of convex, lower-semi-
continuous functions mapping IRd to IR ∪ {+∞} and such that gn(x) → g(x)
pointwise in x ∈ IRd

0, where IRd
0 is a countable dense subset of IRd. Then any

xn ∈ arg infx∈IRd gn(x) obeys

d(xn,X0)→ 0,

and, in particular, if X0 is a singleton {x0}, xn → x0.

The proof of this lemma is given below, immediately after the conclusion of the
proof of this theorem.
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We define the extension maps y 7→ gn,u(y) and u 7→ ḡn,y(u) mapping IRd to
IR ∪ {−∞}

gn,u(y) =

{
y>u− ψ∗n(y) if y ∈ Y
−∞ if y 6∈ Y , ḡn,y(u) =

{
y>u− ψn(u) if u ∈ U
−∞ if u 6∈ U .

By the convexity of ψn and ψ∗n over convex, closed sets Y and U , we have that
the functions are proper upper-semi-continuous concave functions. Define the
extension maps y 7→ gu(y) and u 7→ ḡy(u) mapping IRd to IR∪{−∞} analogously,
by removing the index n above.

Condition (A) assumes pointwise convergence of ψ∗n to ψ∗ on a dense subset of Y .
By Theorem 7.17 in Rockafellar and Wets [44], this implies the uniform convergence
of ψ∗n to ψ∗ on any compact setK ⊂ int Y that does not overlap with the boundary
of the set D1 = {y ∈ Y : ψ∗(y) < +∞}. Hence, for any sequence {un} such that
un → u ∈ K, a compact subset of U0, and any y ∈ (int Y) \ ∂D1,

gn,un(y) = y>un − ψ∗n(y)→ gu(y) = y>u− ψ∗(y).

Next, consider any y 6∈ Y , in which case, gn,un(y) = −∞→ gu(y) = −∞. Hence,

gn,un(y)→ gu(y) in IR ∪ {−∞}, for all y ∈ IRd
1 = IRd \ (∂Y ∪ ∂D1),

where IRd
1 is a dense subset of IRd. We apply Lemma B.2 to conclude that

arg sup
y∈IRd

gn,un(y) 3 Qn(un)→ Q(u) = arg sup
y∈IRd

gu(y) = ∇ψ(u).

Take K as any compact subset of U0. The above argument applies for every point
u ∈ K and every convergent sequence un → u. Therefore, since by Assumption (C)
u 7→ Q(u) = ∇ψ(u) is continuous in u ∈ K, we conclude by the equivalence of the
continuous and uniform convergence, Lemma B.1, that

Qn(u)→ Q(u) uniformly in u ∈ K.

By symmetry, the proof of the second claim is identical to the proof of the first
claim. �

B.3. Proof of Lemma B.2. By assumption, X0 = arg min g ∈ D0, and X0 is
convex and closed. Let x0 be an element of X0. We have that, for all 0 < ε ≤ ε0

with ε0 such that Bε0(X ) ⊂ D0,

(B.15) g(x0) < inf
x∈∂Bε(X0)

g(x),

where Bε(X0) := {x ∈ IRd : d(x,X0) ≤ ε} is convex and closed.

Fix an ε ∈ (0, ε0]. By convexity of g and gn and by Theorem 7.17 in Rockafellar
and Wets [44], the pointwise convergence of gn to g on a dense subset of IRd is
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equivalent to the uniform convergence of gn to g on any compact set K that does
not overlap with ∂D0, i.e. K ∩ ∂D0 = ∅. Hence, gn → g uniformly on Bε0(X0).
This and (B.15) imply that eventually, i.e. for all n ≥ nε,

gn(x0) < inf
x∈∂Bε(X0)

gn(x).

By convexity of gn, this implies that gn(x0) < infx 6∈Bε(X0) gn(x) for all n ≥ nε,
which is to say that, for all n ≥ nε,

arg inf gn = arg min gn ⊂ Bε(X0).

Since ε can be set as small as desired, it follows that any xn ∈ arg inf gn obeys
d(xn,X0)→ 0. �

B.4. Proof of Corollary A.1. By Lemma A.1 and the definition of the Hausdorff
distance,

dH(Qn(K),Q(K)) ≤ sup
u∈K

inf
u′∈K
‖Qn(u)−Q(u′)‖ ∨ sup

u′∈K
inf
u∈K
‖Qn(u′)−Q(u)‖

≤ sup
u∈K
‖Qn(u)−Q(u)‖ ∨ sup

u′∈U
‖Qn(u′)−Q(u′)‖

≤ sup
u∈K
‖Qn(u)−Q(u)‖ → 0.

The proof of the second claim is identical. �.

B.5. Proof of Theorem A.2. Step 1. Here we show that the set of conjugate
pairs is compact in the topology of the uniform convergence. First we notice that,
for any (ϕ, ϕ∗) ∈ Φ0(U ,Y),

‖ϕ‖BL(U) ≤ (‖Y‖‖U‖) ∨ ‖Y‖ <∞, ‖ϕ∗‖BL(Y) ≤ (2‖Y‖‖U‖) ∨ ‖U‖ <∞,

where ‖A‖ := supa∈A ‖a‖ for A ⊂ IRd and where we have used the fact that
ϕ(u0) = 0 for some u0 ∈ U as well as compactness of Y and U .

The Arzela-Ascoli theorem implies that Φ0(U ,Y) is relatively compact in the
topology of the uniform convergence. We want to show compactness, namely that
this set is also closed. For this we need to show that all uniformly convergent
subsequences (ϕn, ϕ

∗
n)n∈N′ (where N′ ⊂ N) have the limit point

(ϕ, ϕ∗) = lim
n∈N′

(ϕn, ϕ
∗
n) ∈ Φ0(U ,Y).
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This is true, since uniform limits of convex functions are necessarily convex ([44])
and since

ϕ(u) = lim
n∈N′

[
sup
y∈Y

u>y − ϕ∗n(y)

]
≤ lim sup

n∈N′

[
sup
y∈Y

(u>y − ϕ∗(y)) + sup
y∈Y
|ϕ∗n(y)− ϕ∗(y)|

]
= sup

y∈Y
u>y − ϕ∗(y);

ϕ(u) = lim
n∈N′

[
sup
y∈Y

u>y − ϕ∗n(y)

]
≥ lim inf

n∈N′

[
sup
y∈Y

(u>y − ϕ∗(y))− sup
y∈Y
|ϕ∗n(y)− ϕ∗(y)|

]
= sup

y∈Y
u>y − ϕ∗(y);

Analogously, ϕ∗(y) = supu∈U u
>y − ϕ(y).

Step 2. The claim here is that

(B.16) In :=

∫
ψndFn +

∫
ψ∗ndPn →n∈N

∫
ψdF +

∫
ψ∗dP =: I0.

Indeed,

In ≤
∫
ψdFn +

∫
ψ∗dPn →n∈N I0,

where the inequality holds by definition, and the convergence holds by∣∣∣∣∫ ψd(Fn − F )

∣∣∣∣+

∣∣∣∣∫ ψ∗d(Pn − P )

∣∣∣∣ . dBL(Fn, F ) + dBL(Pn, P )→ 0.

Moreover, by definition

IIn :=

∫
ψndF +

∫
ψ∗ndP ≥ I0,

but

|In − IIn| ≤
∣∣∣∣∫ ψnd(Fn − F )

∣∣∣∣+ ∣∣∣∣∫ ψ∗nd(Pn − P )

∣∣∣∣ . dBL(Fn, F )+dBL(Pn, P )→ 0.

Step 3. Here we conclude.

First, we observe that the solution pair (ψ, ψ∗) to the limit Kantorovich problem
is unique on U0 × Y0 in the sense that any other solution (ϕ, ϕ∗) agrees with
(ψ, ψ∗) on U0 × Y0. Indeed, suppose that ϕ(u1) 6= ψ(u1) for some u1 ∈ U0. By
the uniform continuity of elements of Φ0(U ,Y) and openness of U0, there exists a
ball Bε(u1) ⊂ U0 such that ψ(u) 6= ϕ(u) for all u ∈ Bε(u1). By the normalization
assumption ϕ(u0) = ψ(u0) = 0, there does not exist a constant c 6= 0 such that
ψ(u) = ϕ(u) + c for all u ∈ U0, so this must mean that ∇ψ(u) 6= ∇ϕ(u) on
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a set K ⊂ U0 of positive measure (otherwise, if they disagree only on a set of

measure zero, we would have ψ(u)−ψ(u0) =
∫ 1

0
∇ψ(u0 +v>(u−u0))>(u−u0)dv =∫ 1

0
∇ϕ(u0 + v>(u − u0))>(u − u0)dv = ϕ(u) − ϕ(u0) for almost all u ∈ Bε(u1),

which is a contradiction). However, the statement ∇ψ 6= ∇ϕ on a set K ⊂ U0 of
positive Lebesgue measure would contradict the fact that any solution ψ or ϕ of
the Kantorovich problem must obey∫

h ◦ ∇ϕdF =

∫
h ◦ ∇ψdF =

∫
hdP,

for each bounded continuous h, i.e. that ∇ϕ#F = ∇ψ#F = P , established on
p.72 in Villani [51]. Analogous argument applies to establish uniqueness of ψ∗ on
the set Y0.

Second, we can split N into subsequences N = ∪∞j=1Nj such that for each j:

(B.17) (ψn, ψ
∗
n)→n∈Nj

(ϕj, ϕ
∗
j) ∈ Φ0(U ,Y), uniformly on U × Y .

But by Step 2 this means that∫
ϕjdF +

∫
ϕ∗jdP =

∫
ψdF +

∫
ψ∗dP.

It must be that each pair (ϕj, ϕ
∗
j) is the solution to the limit Kantorovich problem,

and by the uniqueness established above we have that

(ϕj, ϕ
∗
j) = (ψ, ψ∗) on U0 × Y0.

By Condition (C) we have that, for u ∈ U0 and y ∈ Y0:

Q(u) = ∇ψ(u) = ∇ϕj(u), R(u) = ∇ψ∗(u) = ∇ϕ∗j(u).

By (B.17) and Condition (C) we can invoke Theorem A.1 to conclude that Qn → Q
uniformly on compact subsets of U0 and Rn → R uniformly on compact subsets
of Y0. �

B.6. Proof of Theorem 3.1. The proof is an immediate consequence of the
Extended Continuous Mapping Theorem, as given in van der Vaart and Wellner
[49], Theorem A.1 and Corollary A.1.

The theorem, specialized to our context, reads: Let D and E be normed spaces
and let x ∈ D. Let Dn ⊂ D be arbitrary subsets and gn : Dn 7→ E be arbitrary
maps (n ≥ 0), such that for every sequence xn ∈ Dn such that xn → x, along a
subsequence, we have that gn(xn)→ g0(x), along the same subsequence. Then, for
arbitrary (i.e. possibly non-measurable) maps Xn : Ω 7→ Dn such that Xn →IP∗ x,
we have that gn(Xn)→IP∗ g0(x).

In our case Xn = (P̂n, F̂n) is a stochastic element of D, viewed as an arbitrary
map from Ω to D, and x = (P, F ) is a non-stochastic element of D, where D is the
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space of linear operators D acting on the space of bounded Lipschitz functions.
This space can be equipped with the norm

‖ · ‖D : ‖(x1, x2)‖D = ‖x1‖BL(Y) ∨ ‖x2‖BL(U).

Moreover, Xn →IP∗ x with respect to this norm, i.e.

‖Xn − x‖D := ‖P̂n − P‖BL(Y) ∨ ‖F̂n − F‖BL(U) →IP∗ 0.

Then gn(Xn) := (Q̂n, R̂n) and g(x) := (Q,R) are viewed as elements of E =
`∞(K×K ′, IRd×IRd), the space of bounded functions mapping K×K ′ to IRd×IRd,
equipped with the supremum norm. The maps have the continuity property: if
‖xn − x‖D → 0 along a subsequence, then ‖gn(xn) − g(x)‖E → 0 along the same
subsequence, as established by Theorem A.1 and Corollary A.1. Hence conclude
that gn(Xn)→IP∗ g(x). �

B.7. Proof of Lemma 3.1. Step 1. The set G1 = {g :W 7→ IR : ‖g‖BL(W) ≤ 1} is
compact in the topology of the uniform convergence by the Arzela-Ascoli theorem.
Consider the sup norm ‖g‖∞ = supw∈W |g(w)|. By compactness, any cover of G1

by balls, with the diameter ε > 0 under the sup norm, has a finite subcover with

the number of balls N(ε). Let (gj,ε)
N(ε)
j=1 denote some points (“centers”) in these

balls. Thus, by the ergodicity condition (E) and N(ε) being finite, we have that

sup
g∈G1

∫
gd(P̂W − PW ) ≤ max

j∈{1,...,N(ε)}

∫
gj,εd(P̂W − PW ) + ε

∫
|dP̂W |+ |dPW |

= max
j∈{1,...,N(ε)}

∫
gj,εd(P̂W − PW ) + 2ε→ 2ε.

Since ε > 0 is arbitrary, conclude supg∈G1
∫
gd(P̂W − PW )→IP∗ 0.

Step 2. The same argument works for P̃W in place of PW , since

sup
g∈G1

∫
gd(P̂W − P̃W )

≤ sup
g∈G1

∫ ∫
{g(w)− g(w + εhn)}1(w + εhn ∈ W)dΦ(ε)dP̂W (w)

+

∫ ∫
1{w + hnε ∈ Wc}dΦ(ε)dP̂W (w),

where both terms converge in probability to zero. The first term is bounded by

n−1

n∑
t=1

∫
‖εhn‖dΦ(ε) . ‖hn‖ → 0.

As for the second term, we first approximate the indicator x 7→ 1(x ∈ Wc) from
above by a function x 7→ gδ(x) = (1 − d(x,Wc)/δ) ∨ 0, which is bounded above
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by 1 and obeys ‖gδ‖BL(Rd) ≤ 1 ∨ δ−1 < ∞. Then the second term is bounded

by
∫ ∫

gδ{w + hnε}dΦ(ε)dP̂W (w), which converges in probability to
∫
gδdPW by

Step 1. By absolute continuity of PW and support(PW ) ∩ Wc = ∅, holding by
assumption, and by the definition of gδ, we can set

∫
gδdPW arbitrarily small by

setting δ arbitrarily small. �
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