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Abstract

We study linear factor models under the assumptions that factors are mutually indepen-
dent and independent of errors, and errors can be correlated to some extent. Under factor
non-Gaussianity, second to fourth-order moments are shown to yield full identification
of the matrix of factor loadings. We develop a simple algorithm to estimate the matrix
of factor loadings from these moments. We run Monte Carlo simulations and apply our
methodology to British data on cognitive test scores.

JEL codes: C14.
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1 Introduction

A linear factor model relates a vector of L measurements to a vector of K unobserved

sources, or factors, via a linear relationship:

Y =AX +U, (1)

where A is L-by-K matrix of parameters (factor loadings) and U is a vector of L er-
rors. In Factor Analysis (FA) sources are assumed orthogonal, and A is identified up
to a rotation (Anderson and Rubin, 1956). Independent Component Analysis (ICA)
strengthens the orthogonality assumption, and assume that all components of X and U
are independent. Then, if K < L(L —1)/2 and factors are not normally distributed, A is
generically identified up to sign and permutation normalizations (Comon, 1994, Eriksson
and Koivunen, 2003). In the past ten years, ICA has become the standard approach to
source separation, with numerous applications to signal processing, telecommunications,
and medical imaging (Hyvérinen, Karunen and Oja, 2001).

In those fields where factor analysis is widely used, such as finance, macroeconomics
and psychometrics, factor independence may be a natural assumption. For example, in
Ross’s (1976) Arbitrage Pricing Theory expected returns on assets are modelled as linear
combinations of independent factors. Other examples are structural VAR models (e.g.,
Blanchard and Quah, 1989) and dynamic factor models (e.g., Forni and Reichlin, 1998), if
one assumes that the underlying structural innovations are independent instead of simply
uncorrelated. If the data are sufficiently non-normal, the higher-order orthogonality
conditions implied by independence can then be used to allow for more factors and, if
needed, to identify the rotation.

The particular application that we consider in this paper refers to psychometrics. We
use an independent factor model to analyze cognitive test scores. Factor analysis has

been widely used for this purpose, since the pioneering work of Spearman (1904) and



Thurstone (1947). Recent microeconometric studies also use independent multi-factor
models to reveal various dimensions of ability; see for instance Carneiro, Hansen and
Heckman (2003) and Heckman, Stixrud and Urzua (2006). In these papers second-order
information is sufficient to identify factor loadings because ez-ante restrictions are made
on factor loadings, each unobserved factor having at least two specific measurements.

In comparison, we exploit the identifying content of the independence assumption.
Studying the so-called Thurstone’s box problem, Jennrich and Trendafilov (2005) have
recently shown that rotating factor loadings towards independence rather than using a
priori restrictions yields interpretable loadings (see also Mooijaart, 1985). Indeed, the
most independent rotations are also the ones that maximize factor non-Gaussianity, an
idea that closely matches Kaiser’s (1958) Varimaz rotation criterion, widely used in
psychometrics (Kano et al., 2003).

As cognitive tests do not perfectly measure ability, the additive noise cannot be ne-
glected in our application. This is generally the case in applications to econometrics,
psychometrics and finance, because of the presence of measurement error or specific fac-
tors. However, most ICA algorithms do not explicitly allow for noise. Indeed, in ICA
applications errors are usually assumed negligible (U ~ 0), and noise-free methods are
applied hoping that the signal-to-noise ratio will be high enough for the bias due to ne-
glecting errors to be small (Cardoso and Pham, 2004). The methodological contribution
of this paper is to fill this gap in the literature, and to provide a close substitute to
noise-free ICA algorithms that remains consistent in the presence of noise.

Our approach builds on the ICA literature. In the noise-free case, several efficient ICA
algorithms are currently available to separate up to K = L unobserved factors, FastICA
(Hyvérinen and Oja, 1997) and JADE (Cardoso and Souloumiac, 1993) being especially
popular. Most of these methods use a two-step approach to estimation (Chen and Bickel,

2005). In the first step (prewhitening), the data are transformed so that the covariance



matrix is the identity, e.g. using Principal Component Analysis (PCA). In the second
step (source separation) the rotation matrix is derived from higher-order information.

Two approaches have been proposed to deal with noisy ICA models. However,
these two approaches are not without drawbacks for our purpose. In the first approach
(Moulines et al., 1997, Attias, 1999) a flexible parametric model is postulated for fac-
tor and error distributions. Maximum Likelihood is often used for estimation, together
with the EM algorithm. This requires an appropriate parametric specification, raising
e.g. the issue of the number of components in mixture models, as well as computational
difficulties.

The second approach relies on a prewhitening step as in noise-free ICA methods,
replacing PCA by Probabilistic PCA (Beckmann and Smith, 2004) or FA (Ikeda and
Toyama, 2000, Stegeman and Mooijaart, 2007). This approach yields a fast semi-
parametric estimation of A. Yet, as only second-order moments of the data are used
in the prewhitening step, the number K of common factors must be less than the Led-
ermann bound (K = (2L + 1 — /8L + 1)/2 if errors are mutually independent) for the
procedure to be consistent. Moreover, it only deals with Gaussian errors. If errors are
sizeable and the data are highly non-normal, this assumption can be problematic.

We also adopt a semi-parametric, two-step approach. In the first step, second to
fourth-order moments of error variables are inferred from a set of linear restrictions,
and filtered out from the corresponding data moments. Importantly, unlike the previous
literature we use all second to fourth-order data moments in the first step. Then, the
second step uses Cardoso and Souloumiac’s (1993) JADE algorithm to estimate factor
loadings. We call quasi-JADE this two-stage estimation procedure.

Quasi-JADE is consistent whether errors are Gaussian or not, and is almost as fast to
run as JADE. An important property of the algorithm is that errors can be correlated to

some extent. We show that, if .J is the number of mutually independent error pairs, up to



K = min{J, L} factors are generically identified. In the particular case of independent
errors, we can thus relax the Ledermann bound and estimate up to L factors. This is
because we use higher-order data moments in the prewhitening step of the algorithm.

The algorithm can be applied to cases where factor loadings are restricted ez-ante, as
in structural VARs. If there are sufficiently many restrictions for the rotation indeter-
minacy to disappear, factor loadings and error covariances can be jointly estimated from
the first estimation step. The benefits of using higher-order information then translate
into the possibility of allowing for a richer error structure.

The estimation procedure uses information from second, third and fourth-order mo-
ments of the data, while most ICA algorithms assume symmetric factors and discard
third-order information. In econometric applications, though, third-order moments can
be informative. Following Geary (1942) and Reiersol (1950), a long series of econometric
contributions have proposed different ways to combine second and third-order moments
to identify factor loadings in the linear measurement error (one-factor) model. See e.g.
Pal (1980), Dagenais and Dagenais (1997), Lewbel (1997), and Erickson and Whited
(2002). The estimator introduced in this paper can be seen as a generalization of this
approach to multi-factor structures.

Finally, we also consider the case of overcomplete (K > L) ICA models with restric-
tions on factor loadings. Our estimation procedure can be applied iteratively to estimate
a model with L unrestricted factors, L — 1 factors specific to measurements {2, ..., L},
L — 2 factors specific to measurements {3, ..., L}, etc., and one last factor specific to
the last two measurements, for a total of L (L — 1) /2 factors. Estimating overcomplete
models is a notoriously difficult problem (e.g., Comon, 2004, for the case L = 2, K = 3).
To our knowledge we are the first to provide a simple, consistent estimation procedure
for a large class of overcomplete models.

Sections 2 and 3 present the model, derive the moment restrictions on which identi-



fication and estimation are based and show the identification of the number of factors,
error cumulants and factor loadings. In Section 4 we discuss the estimation of the num-
ber of factors and factor loadings, and develop the asymptotic distribution theory for
JADE, surprisingly missing in the literature. In Section 5, we illustrate the finite-sample
properties of our procedure by means of Monte-Carlo simulations, and in Section 6 we

apply the method to British data on cognitive test scores. Lastly, Section 7 concludes.

2 Model and moment restrictions

2.1 The model

Let Y = (Yi,...,Yz)" be a vector of L > 2 zero-mean, real-valued random variables
(measurements), where T denotes the transpose operator. Let X = (X}, ...,XK)T be a
random vector of K > 1 real valued, non degenerate random variables (factors). Let also
U = (Uy,...,Up)" be a vector of L real-valued random variables (errors). An observation

sample is a collection of N independent draws of vector Y.

Assumption A1 There exists a L-by-K matriz of scalar parameters (factor loadings),

A = Mg, such that Y = AX + U, and A, X and U satisfy the following conditions:
1. (XU, UNT has zero mean and finite moments up to the fourth order.
2. The components of X are mutually independent, and independent of those of U.
3. The components of X have unitary variance.
A triple (A, X,U), satisfying these assumptions is called a representation.

In the second statement, independence can be replaced by the weaker assumption of
zero multivariate cumulants up to the fourth order, as we shall only consider moments
up to the fourth order for identification and estimation. The third statement is a nor-

malization condition. If (A, X,U) is a representation, then (AD~' DX,U) is another
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representation for any diagonal matrix D with positive entries on the diagonal. Hence,
one may as well normalize the variance of each component of X to unity.

The normalization of the variance of X is not sufficient to grant identification. For any
value of K, the number of factors, let us define the set of sign-permutation matrices as the
set Sk of all products DP, where D is a diagonal matrix with diagonal components equal
to 1 or —1 and P is a permutation matrix. For given values of L and K, let (A, X,U)
be a representation. Clearly, for all S € Sk, (AS, STX, U) is another representation.
We say that the matrix of factor loadings A is identified if any equivalent representation
(A, X,U) is such that A and A are equal modulo Sx (i.e. A = AS for some S € Sk).

Given the linearity and independence assumptions, working with cumulants is espe-
cially convenient. Multivariate cumulants of centered random variables of order 2, 3 and

4 are defined as follows:
Cum (Z1,75) = E(Z1Z,),
Cum (71,25, Z3) = E(Z1Zy73),
Cum (71, Zy, Z3, Zy) = E(Z17:7374) — B(Z1 Z5)E(Z5 7Z4) — B(Z, Z3)E(Z5 Z4)
—E(Z1 Z4)E(Zy Z3).

To ensure identification we impose the following restrictions on the first cumulants of

error variables.

Assumption A2 There exists a non empty set of indices J C {(¢,m) € {1,...,L}* (<

m} such that, for all (¢,m) € J and all measurement indices i and j, we have:
Cum (Uy, Uy,) = Cum (U;, U, U,y,) = Cum (U;, U;, Uy, Uy,) = 0.

Most of the ICA literature makes parametric assumptions on errors, usually assuming
Gaussianity. However, Davies (2004) points out that error Gaussianity alone is not suffi-
cient to provide identification of factor loadings in a noisy ICA model. For identification,

one needs to restrict the dependence between errors, which is what Assumption A2 does.



The following lemma shows that Assumption A2 is satisfied by a broad class of error

structures.

Lemma 1 Let U = lIle, where 11 is a L-by-H matriz of scalar parameters, and the
components of € are mutually independent and independent of those of X with finite

moments up to the fourth order. Then U satisfies assumption A2, with
J={,m)ec{1,. LY, ¢<m, U ILUp,},
where I denotes statistical independence.

The proof is in section A.1 of the mathematical Appendix.

Lemma 1 shows that several commonly used error dependence structures satisfy As-
sumption A2. A first example is provided by independent heteroskedastic errors. In this
case:

L(L-1)

T ={,m)e{1,...L¥ {<m}, and J=#J= —

If the data has a group structure, with r disjoint groups of size M; (i = 1,...,r), and
errors are independent between groups, then J = {(¢,m) € M; x M;,i # j,{ < m},
and J = Z;;i M; (L — ZZZI MZ) The application to cognitive test scores, allowing for
contemporaneous correlation in the errors, will offer an example of a block-independent
structure.

In addition, Assumption A2 allows for temporal or spatial correlation patterns. For
instance, if errors are MA(q) then J = {(¢{,m) € {1,...,L}*,/ < m — q}, and J =
(L—¢q)(L—q—1)/2. Likewise, spatial MA models may also satisfy the assumption, with
J depending on the zeros of the matrix of spatial weights (e.g., Anselin, 2003).

In contrast, autoregressive (or spatial autoregressive) error structures do not satisfy
Assumption A2, as errors are correlated at all lags and leads. However, the methods of

this paper are applicable in this case also. To see how one might proceed, let us consider



a case where errors are ARMA(1,1). Then by taking quasi-differences Y, — pY; 1, where
p is the autoregressive parameter, we end up with MA (1) errors. Using the results below,
p can then be obtained in the first estimation step (prewhitening), together with error

moments.
2.2 Moment restrictions

We start by deriving the moment restrictions implied by Assumption Al. Let p € {2, 3,4}

and (¢4, ...,4y) € {1,..., L}". Assumption Al implies

K p
Cum (Yp,,....Yp,) = Y (H AM> kp (X3) + Cum (Up,, ..., Up)) (2)

k=1 \i=1
where we write k, (Z) = Cum (Z, ..., Z) (repeat Z p times) for univariate cumulants of

order p > 1.
Moment restrictions (2) have a common multilinear structure which can be conve-
niently expressed in matrix form, as in ordinary Factor Analysis. Define the following

L-by-L, symmetric, square matrices:

Yy = [Cum (Y;ayv])]a
I'y (¢) = [Cum(Y;,Y;,Y,)], (e€{l,..,L},
Qy (6,m) = [Cum (Y}, Y}, Y, Y,)], ¢me{l,.. L},

with similar expressions for Xg, T'yy (€) or Qg (£, m).

Restrictions (2) imply that

Sy = AAT 4+ %y, (3)
Ty (0) = ADsdiag(A) AT +Ty (0), (4)
Qy (6, m) = ADjdiag(A¢® Ap) AT+ Qp (£,m), (5)

where A} € RE*! is the ¢th row of A, D3 (resp. D,) is the diagonal matrix with cumulant
k3 (Xk) (resp. k4 (X})) in the kth entry of the diagonal, and ® is the Hadamard (element

by element) matrix product.



Assumption A2 imposes additional restrictions. Combining the assumption with re-

strictions (5) yields:
Qy (¢,m) = AD,diag (A, ® A,,) AT, V(¢,m) € J.

For a symmetric matrix A = [a;;], we denote as vech the operator that stacks the
elements of the upper triangular part of A, extracted horizontally from left to right:

vech (A4) = [a;;],;- Applying the vech operator we obtain:
vech (Qy (¢,m)) =QDy (A O Ay), Y(,m) e T,

where @ is the @—by—K matrix which generic (7, 7) row, i < 7, i (A1 Aj1, oy XiAjK),
i.e.

Q = [vech (A AT) ..., vech (AgAk)],
where X\ denotes the kth column of A.

Next, construct the @—by—(} matrix {2y by concatenating all vectors vech (Qy (£, m)),

(¢,m) € J. Clearly:
QY = [WY (Ea m)](l,m)ej
= [Cum (K,Y}anaym)]

(E<j)x(l,m)eT *

Matrix Qy contains all fourth-order cumulants of measurements which are not contami-
nated by the presence of noise. Moreover, letting () 7 be the J-by-K matrix obtained by

selecting rows (i, ) € J from @, we obtain:
Oy =QD4Qs " (6)
We can similarly construct the following matrix of third-order cumulants:

'y = [Cum (Y}, Y2, Yin)]

ix(l,m)



where the rows of 'y are indexed by i € {1,...,L} and the columns are indexed by
(¢,m) € J. Then,

Iy = AD;Q;". (7)

In the next section, we take J as given and focus on the identification of factor

loadings, using moment restrictions (3) to (7).

3 Identification results

In this section, we use the moment restrictions implied by the noisy ICA model to give
sufficient conditions for the identification of factor loadings and error moments. We start

with the number of factors, K.

3.1 Identification of the number of factors

The following theorem is an immediate consequence of (6) and (7).

Theorem 1 The two following statements hold:

i) Assume that all factor variables are kurtotic (k4 (Xi) # 0,Yk), and that matriz Q 7
has rank K, which in particular implies K < J. Then matriz Qy has rank K.

i) Assume that all factors are skewed (k3 (Xy) # 0,Vk), and that both A and Q7

have rank K, which implies that K < min{.J, L}. Then 'y has rank K.

Theorem 1 shows that matrices 2y and I'y allow to identify the number of common
factors K. Notice that fourth-order cumulants can be used together with third-order
cumulants. Define

Qy () = [Cum (V;,Y;, Y, Y,)], je{L,...,L}, and
Py = [y, Q(1),..., 2 (L)].
Then, it is easily shown that, if factors are either skewed or kurtotic and A and @ 7 have

rank K, then matrix ®y has rank K.
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3.2 Identification of error moments

Applying operator vech to (3), (4) and (5) yields the following linear restrictions:

vech (Xy) = @1k + vech (Zy),
vech (T'y (¢)) = QD3Ay+ vech (I'y (£)), V¢,

vech (Qy (¢,m)) = QDy (A ® Ayy,) + vech (Qy (6,m)), VYV (¢,m),

where 1 is a K-dimensional vector of ones.
Let us begin by assuming that all factors are kurtotic, so that D4 has no zero on its

main diagonal. Theorem 1 shows that, if matrix () 7 has rank K, then rank (Qy) = K.

L(L+1)
2

So one can choose an orthogonal basis of the null space of Qf, and construct a

by- (@ — K) orthogonal matrix B that satisfies: QLB = 0. Hence, as Q 7 D, has full

column rank, it follows that QTB = 0. So,

B'vech (Xy) = B'vech(Zp), (8)
B vech (Ty (¢)) = B"vech (T'y (£)), V¢, (9)
BT vech (Qy (¢,m)) = BTvech (Qy (4,m)), VY ({,m). (10)

The following theorem shows that these linear restrictions identify error cumulants.

Theorem 2 Assume that all factor variables have non zero excess kurtosis and that
matriz Q) 7 has rank K. Then, second, third and fourth-order cumulants of error variables

are uniquely defined by identifying restrictions (8), (9) and (10).

The proof is in Section A.2 of the mathematical appendix.

Theorem 2 provides linear restrictions identifying error cumulants of order 2 to 4
irrespective of A and X. The theorem shows that high-order moments of the data,
appearing in (4) and (5), contain information on error moments that is not contained

in second-order moments of the data. Exploiting this information allows to increase the
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number of common factors that can be identified in Factor Analysis, which only relies
exclusively on second-order restrictions (3).

The following corollary is immediate.

Corollary 1 Assume that the conditions of Theorem 2 are satisfied. Then the elements

of AAT are uniquely defined by restrictions (3) and (8).

If K < L, the corollary shows that if the conditions of Theorem 2 hold, then A
is identified up to right-multiplication by an orthogonal matrix. The last part of the
identification proof, that we derive in the next section, is devoted to the identification of
this rotation.

Corollary 1 can be of interest in its own right, if ez-ante restrictions are assumed on
matrix A. Indeed, if these restrictions are sufficient to identify A from the knowledge of
AAT, then the rest of the identification proof is unnecessary. This is for example the case

if A is assumed to be lower triangular, as in the following linear panel data model:
Yie = Dt +uir,  (i,t) € {1,..., N} x {1,...,T},

where p;; is a random walk: p; = pii—1 + €y, With pj, €1, ...,€ir independent. The
transitory shocks u;; can be e.g. MA(q), or the sum of an MA(g) and an iid component
(e.g., measurement error).

We can proceed similarly if every factor is skewed. If both A and @7 have full column
rank K, Theorem 1 shows that T'y = AD3Q ;" has rank K. Hence, there exists a L-by-
(L — K) orthogonal matrix C' such that T'y.C' = 0. So, as D3 has no zero on its diagonal,
it must also be that CTA = 0.

The second, third and fourth-order cumulants of Uy, for all £ € {1, ..., L}, thus satisfy

12



the following linear restrictions:

oYy = 0Ty, (11)
CTy (0) = C'Ty (0), (12)
CTQy (6,m) = CTQy (6,m). (13)

Define, for all ¢ € {1, ..., L}, the sets
r={me{l,..,L}, m<lor (¢{,m) e T},

with I, = #Z,. Denote also Az, the I,-by-K matrix obtained by selecting rows ¢ € Z, from
A. The following theorem gives conditions under which the system of linear restrictions

(11), (12), and (13), has a unique solution.

Theorem 3 Assume that every factor distribution is skewed, that Q7 has rank K, and
that Az, has full column rank for all £. Then second, third and fourth-order cumulants

of error variables are identified from restrictions (11), (12), and (13).

The proof is in Section A.3 of the mathematical appendix.

Theorem 3 implies that the number of factors is bounded by min {I,,¢ € {1,...,L}}.
In the particular case of independent errors this yields K < L —1. Focusing on the model
with L = 2 and K = 1, Geary (1942) has shown that identification holds, provided that
the factor is skewed. Theorem 3 provides a generalization of this result to multi-factor
models.

Lastly, the discussion in this subsection can be generalized to the case where every
factor is either skewed or kurtotic (k3 (X) k4 (Xi) # 0). One needs only replace matrix

Ty by matrix ®y = [y, Qy(1),..., Qy(L)], and compute C such that ®].C' = 0.
3.3 Identification of factor loadings

In this section we assume that the cumulants of order 2, 3 and 4 of error components are

known, the previous section giving sufficient conditions for their identification. Second,
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third and fourth-order restrictions (3), (4), (5) imply that matrix A satisfies, simultane-

ously,

Yy = 3y — Xy = AAT, (14)
Ty (/) = Ty (0) =Ty (¢) = AD;diag (A) A, (15)
Qv (,m) = Qy (6, m) — Qu (¢, m) = AD, diag (A, ® A,,,) AT (16)

Let us assume that K < L, and let P be an L-by-K matrix such that
PSSy PT = Iy. (17)

Matrix P can easily be constructed from eigenvectors and eigenvalues of Sy. Left and

right-multiplying (14), (15) and (16) by P and P", respectively, we obtain:

PTy (0) P* = VDsdiag(A) VT, ¢e{1,.. L},

PQy (6,m) PT = VDydiag(A,© A,) VT, €< m,

where V' = PA is orthonormal (VV™T = Ix). Therefore, V solves a joint diagonalization

problem. Theorem 4 below gives conditions for the solution to this problem to be unique.

Theorem 4  Assume that error cumulants are known, and that matriz A has full col-
umn rank K, so in particular K < L.

(i) If at most one factor variable has zero excess kurtosis, then factor loadings are
identified from second and fourth-order moment restrictions (14) and (16).

(1) If at most one factor variable has zero skewness, then factor loadings are identified
from second and third-order moment restrictions (14) and (15).

(i) If for any couple of factors indices (k, k'), (k3 (Xk), k3 (Xp), kg (Xi) , ka4 (Xir)) #
0, then factor loadings are identified from second, third and fourth-order moment restric-

tions (14), (15) and (16).
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The proof is in Section A.4 the mathematical appendix.

Combining Theorems 2, 3 and 4 we obtain that (i) at most K = min{.J, L} factors
can be identified if all factors are kurtotic, and (i7) at most K = min{I,,¢ € {1,...,L}}
if all factors are either skewed or kurtotic. In the case where errors are independent
one can thus identify up to K = L factors in the first case and K = L — 1 in the
second case. By comparison, the number of factors in FA models is bounded by K =
(2L +1- m) /2. The general identification results hold provided that the errors
are not too correlated. To give an example, if errors follow an MA(q) process indexed by
the measurement indices ¢ = 1, ..., L, then one can generically identify I common factors
if J]=(L—q)(L—q—1)/2>L,thatisifq< (2L —1—+/8L+1)/2.

We end this section by remarking that Lemma 2, together with the previous iden-
tification theorems, imply that overcomplete ICA models are identified if there exist

sufficiently many restrictions on factor loadings. To see that, let us consider the model:
Y — A1X1 —|— —|— ASXS —|— U,

where, for all s € {1,..., S}, X, has K; < L elements, A, is L-by-K,, and all factors and
errors are assumed mutually independent. Let us suppose that all factors are kurtotic,
the argument being similar when factors are skewed. Theorems 2 and 4 show that one
can generically identify up to K; = J; factors X;, where .J; is the number of components
of Ao Xo + ... + AsXg + U that are mutually independent. As an example, K1 = L — 1
factors X; are identified, if the first row of all matrices A, ..., Ag is identically zero.
Applying this procedure sequentially shows identification in the case where S = L — 1,
and for all s € {1,...,.S} Ky, = L — s, and the first s — 1 rows of A, are zero. This
corresponds to a block-triangular structure where the first L — 1 factors are common to
all measurements, the next L — 2 factors are specific to Y5,...,Y;, and so on. In this
model there are K = L(L —1)/2 factors, and L(L —1)?/6 restrictions on the L?(L —1)/2

factor loadings.
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4 Estimation

We start by discussing the issue of estimating the number of factors, and the factor
loadings. Then, we provide the asymptotic theory of the JADE estimator, and discuss

how to perform inference for JADE and quasi-JADE in practice.

4.1 Estimating the number of factors K

All factors are kurtotic. Assuming that Q7 has full column rank and that factor
variables show excess kurtosis, then matrix Qy has rank K < .J (see Theorem 1). We
use the sequential testing procedure developed by Robin and Smith (2000) to estimate
the rank of Qy (see Appendix D for a description of the test).

Monte Carlo simulations show that the rank test, applied to matrix €2y alone, suffers
from substantial size distortions (see the simulations in the next section). Assuming
K < L, the factor structure provides additional rank conditions that can be used to
improve the test’s properties. We propose the following refinement.

Consider matrices Qy (¢,m) with (¢, m) € J. They satisfy the restrictions:
QY (f, m) = AD4 dlag (Ag ® Am) AT.
Let w = (wep, (¢,m) € J) be a vector of J positive weights. Then,
Qvw= Y wemQy (6, m) = AD,diag (Q7"w) A”. (18)
(L,m)eg
As no column of ()7 is identically zero, matrix €y, has rank K for almost all w.
It seems natural to weight cumulant matrices more if they are more precise. We
therefore suggest to choose wy,, equal to the inverse of the simple average of the asymp-

totic variances of the components of an empirical analog Qy (¢, m) of Qy (¢, m). These

variances can be computed by standard bootstrap.
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All factors are skewed (or either skewed or kurtotic). Assuming that A and Q7
have full column rank and that factor variables have non zero skewness, then matrix I'y
has rank K < min (I,,¢ € {1,...,L}). One can thus apply the rank test to any analog
estimator fy.

Assuming that each factor distribution is either skewed or kurtotic, matrix
(I)y - [Fy, Qy(]_), ceey Qy(L)]

has rank K. One can thus test the rank of any consistent analog estimator dy-. Alterna-
tively, in the same spirit as in the previous paragraph, remark that, under the assumption
that all factors are skewed or kurtotic, all matrices
L
Oy, =Ty + > w;jQy (j) = A [Ds + Dy diag (ATw)] Q" (19)
j=1
have rank K, for almost all weights w = (wy, ..., wL)T € R, Matrices ®y-,, can therefore
be used to estimate the number of factors K. We suggest to set w; equal to the average
of the variances of the components of fy divided by the average of the variances of the

components of Qy (5).

4.2 Estimation of factor loadings

The two steps of the estimation algorithm are as follows.

Prewhitening. In the first step error moments are estimated. In the case where all

factors are kurtotic one may apply the following procedure:

1. Construct matrix Qy = [Cum (Y}, Y}, Y?,Y,,)], where rows are indexed by couples

(1,7), i < j, and columns are indexed by couples (¢/,m) € J.

2. Assuming that rank (Qy) = K, find the null space of QF, i.e. compute an orthog-

onal, L(L;l)—by—(L(L;l) - K) matrix B such that QB = 0. A Singular Value

Decomposition (SVD) can be used for this purpose.
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3. Solve for the non-zero elements of ¥ in the linear system (8). Proceed in the same

way for third-order and fourth-order error cumulant matrices I'y; (¢) and Q (¢, m).

Alternatively, if all factors are skewed, or either skewed or kurtotic, one can follow a
similar procedure, basing the estimation on matrix Iy or matrix ®y-, respectively.

In the algorithm, Step 3 can be performed by Least Squares. However, doing so does
not necessarily deliver a positive-definite matrix ¥y — ;. This is why it seems preferable
to combine the linear restrictions (8) with the covariance restrictions (3), and perform a
factor analysis of ¥y with linearly constrained error variances and covariances.

In practice, we simultaneously solve for the lower triangular matrices W (L-by-K)

and Z (L-by-L) such that restrictions

Yy = WWv+ 277,
B"vech (Sy) = B'vech (ZZ"),

[ZZT](M) = 0, VY(,m)eJ,

approximately hold in a L? sense. This is a quadratic problem that can be solved using
standard optimization routines.

Remark that, if there are sufficently many restrictions on A for it to be identified, then
one can estimate A together with ¥y directly from this system. The source separation
step below then becomes unnecessary, see the discussion following Corollary 1.

Because one can base the restrictions on error moments either on €y or I'y, we
suggest to weight both sets of moment restrictions by the average of the variances of the
components of an estimate f)y divided by the average of the variances of the components
of Qy (resp. fy) See Cragg (1997) for a related strategy based on the moments of the
standard normal distribution.

Lastly, once errors cumulants Xy, T'yy(¢) and Qg (¢, m) have been estimated, the data

cumulant matrices are whitened as in equations (14), (15) and (16).
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Source separation. Given whitened cumulant matrices Sy, Ty (¢) and Qy (£, m), we
compute V as the K-by-K matrix of common orthonormal eigenvectors (VVT = Ix) of
matrices PTy (¢) PT and PQy (¢,m) PT, where P satisfies equation (17). For example,
one can choose P = W~ (the Moore-Penrose generalized inverse of W), where W has
been estimated in the prewhitening step. Then factor loadings are obtained as A = PV.

In practice, we replace theoretical moments by empirical ones and use Cardoso and
Souloumiac’s (1993) Joint Approximate Diagonalization algorithm (JADE). This algo-
rithm provides a fast way of minimizing with respect to an orthonormal matrix V' the sum
of squares of off-diagonal elements of matrices VT PTy (¢£) PTV and VT PQy (¢, m) PTV.
As before one may weight the third and fourth-order cumulants differently. We suggest
to use the same weights as in the prewhitening step.

The JADE algorithm is described in Appendix B. We call the resulting algorithm
quasi-JADE, to emphasize the two-step nature of our procedure. It is only marginally
more complicated to implement than JADE and almost as fast. However, unlike JADE,
it is robust to the presence of (possibly correlated) noise.

Lastly, once factor loadings have been estimated, one can obtain the third and fourth-

order cumulants of factor variables from the linear restrictions (6) and (7).

4.3 Inference

As far as we know, there is no derivation of the asymptotic properties of JADE in the
ICA literature. This section aims at filling this gap. At the end of the section, we discuss
how to perform inference for the JADE and quasi-JADE estimates in practice.

To proceed, let A\l, e ES be root-N consistent and asymptotically normal estimators
of S symmetric K-by-K matrices Aq,..., Ag. Construct A= [;1\1, o ;1\5] and A =

[Ay, ..., Ag] by concatenation. Let V4 be the asymptotic variance of N2 vec(A4). The
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JADE estimator is

s
V = arg min off(VTA,V),
VeOg 1
where off(M) = 37, mZ for a matrix M = [m;], and Ok is the set of orthonormal

K-by-K matrices.
Assume that there exists V € Ok such that, for all s = 1,...,5, VTA,V = D,,
where D is the diagonal matrix with diagonal elements ds1, ..., dsx. Define the K-by-K

matrices:

s —

[ (dsk — dsm) ]
S omi(dsk = dym)? kym=1,...,K
and 7, = vec(R;). Lastly, let W be the following K2-by-SK? matrix:

W = [diag (r1), ..., diag (rg)] -
We show the following result in Appendix C.
Theorem 5 Assume that Zle(dsk — dgm)? # 0 for all k #m. Then

~

(Vec(V) — V€C(V)> — N (0,Vy)  (weakly),

N

N

where:

Vi =[g @ VW@V @VHV4Is @V V)W (IgaVT). (20)

Let us consider the particular case of S = 1. In this case, (20) yields the well-known
expression for the variance-covariance matrix of the eigenvectors of a symmetric matrix
(e.g., Anderson, 1963). The diagonal coefficients of matrix W are equal to 1/(dix — dim),
for £ #£ m. The variance of eigenvectors thus increases when two eigenvalues of A; get
close to each other.

In the general case of more than one matrix (S > 1), precise estimation requires
> (dsi, — dsm)? to be away from zero, for all indices (k,m). Cardoso (1999) already
noted that joint diagonalization algorithms seemed less sensitive to the presence of mul-

tiple roots than usual diagonalization techniques (see also the asymptotic distribution
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of estimators of Common Principal Components derived by Flury, 1986). Theorem 5
permits to better understand the conditions granting a good precision.

In the quasi-JADE algorithm using fourth-order moments, indices are s = (¢, m), and
matrices Dy are: Dydiag (Ay ® A,,). If there exist k, k' such that dg, = dg for all s, it
must be that

Ak Amita (Xk) = Aow A 64 (X ), Y (€, m).

This cannot happen if at most one factor has zero excess kurtosis and the columns of A
are not proportional to each other.

This result is not surprising, as the variance of eigenvector estimators blows up when
the model is not identified. Non identification arises in PCA when the variance of the
vector of measurements has multiple eigenvalues (there are then obviously many possible
choices for a basis of the corresponding eigenspace). In ICA this happens when two
columns of the matrix of factor loadings are proportional or when factor distributions
lack skewness and/or excess kurtosis. We shall produce Monte-Carlo simulations to
illustrate this point.

Lastly, the asymptotic result for JADE given in Theorem 5 can be generalized to quasi-
JADE, at the cost of introducing extra notation. As a result, the algorithm yields root-/NV
consistent and asymptotically normal estimates of factor loadings and error moments,
under the conditions of Theorem 2 (or Theorem 3, if using third-order moments) and
Theorem 4. However, this generalization is not of direct interest to our purpose, as

illustrated by the next remark.

Practical remark. In practice, we do not recommend to use formula (20) to compute
standard errors. Instead, we suggest to compute standard errors or confidence intervals by
standard bootstrap (maybe with appropriate recentering for finite sample improvements).

The reason is that (20) involves variances of third and/or fourth-order moments of the
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Table 1: Empirical cumulants of the standard log-normal

N 500 1000 5000 10000

ks 4.49 (2.20) 487 (2.47) 5.66 (2.54) 5.83 (3.17)
ki 35.9 (.88) 44.5 (.93) 72.9 (.72) 79.8 (.93)
ke 4,825 (.36) 8,698 (.35) 44,492 (.21) 55,505 (.28)

kg 856,819 (.22) 2,642,849 (.20) 59,108,559 (.12) 80,815,329 (.16)

Note: Empirical skewness, excess kurtosis, 6th and 8th-order cumulants of a log-normal random
variable. ¢-statistics in parentheses. Estimates from 1000 independent draws, for each sample
size N.

data, i.e. sixth and eighth-order moments. These are difficult to estimate precisely (see
Table 1 for an example with log-normal variables). In our simulation experiments, we
obtained extremely imprecise estimates of matrix V4, even with very large samples (more
than 10,000 observations). In contrast, bootstrapping provided good approximations of

the true variance-covariance matrix of the JADE estimator.

5 Monte-Carlo simulations

In this section, we study the finite-sample properties of our estimator with numerical
simulations. We first consider the estimation of A given the true value of K, the number

of factors. Then, we turn to the estimation of K.

5.1 Estimation of factor loadings

Table 2 displays means and standard deviations of the Monte Carlo distributions of factor
loadings estimates obtained from 1000 simulations of samples of various sizes generated

by standardized log-normal factors, standard normal errors and A equal to

AlE

— =N

11
2 1
1 2
We only report the estimates of the first column of A and the variance of the first error, the

other estimates being qualitatively similar. Monte Carlo standard deviations of estimates
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Table 2: Quasi-JADE for various sample sizes

N 500 1000 5000 10000

A 2.03 (28) 2.03 (.17) 2.01 (.09) 2.01 (.06)
Aot 95 (.23) .99 (.14)  1.00 (.07) 1.00 (.05)
A3y 95 (.23) .99 (.15) .99 (.07) 1.0 (.05)

Var(Up) .77 (59) .87 (.43) .96 (.20) .98 (.16)

Note: log-normal factors, standard normal errors, A = A;.

are given between brackets. Estimation is based on all moments of order 2, 3 and 4 of
the data and uses the restrictions of Theorem 2. The error moments are estimated by
least squares, based on restrictions (8)-(10) and (11)-(13).

Table 2 shows that finite sample biases are small and rapidly decrease as N increases.
By comparison, small sample biases are much larger and convergence is much slower
for empirical cumulants. The striking contrast between Tables 2 and 1 suggests that
our algorithm does a good job at extracting the relevant information from high-order
moments of the data, while being relatively immune to the imprecision of their estimation
in finite samples.

We then study the robustness of the JADE and quasi-JADE algorithms to noise (see
Table 3). We run the simulations with normal errors, log-normal factors, a sample size
of N = 1000 and A = A;. The standard deviation of errors can take four values: 0.1,
0.5, 1 and 2. The performance of quasi-JADE deteriorates as the signal-to-noise ratio
decreases. However, biases remain limited even for rather large error variances. By
comparison, JADE produces large finite sample biases.

Next, we investigate the sensitivity of our algorithm to factor Gaussianity. The sam-
ple size is N = 1000. Errors are standard normal variables. We simulate symmetric,
kurtotic factors as mixtures of two independent normals. Table 4 summarizes Monte
Carlo distributions for kurtosis values in %, 2, 5, 10 and 100. In the first column of Table

4, we also report results for the case of uniformly distributed factors. The uniform dis-

23



Table 3: Robustness to noise

JADE
Var(Uy) 01 .25 1 4
A1 2.00 (07) 2.11 (.08) 2.36 (.12) 2.81 (.46)
Aot 1.00 (.11)  1.00 (.12) .95 (.24) .72 (.86)
A3 1.00 (.11) 1.03 (.14) 1.08 (.22) 1.05 (.77)
Quasi-JADE
Var(Uy) .01 .25 1 4
M1 1.98 (.12) 2.01(.13) 2.03 (.17) 2.02 (.44)
Aot 1.00 (.15) .99 (.12) .99 (.14) .95 (.31)
st 1.00 (.16) .99 (.13) .99 (.15) .95 (.32)
Var(U;) .04 (11) .18 (.22) .87 (43) 3.77 (.98)

Note: log-normal factors, standard normal errors, A = Ay, N = 1000.

Table 4: Near-Gaussianity biases

Ka 6/5 1/2 1 5 10 100 ~110
(uniform) (normal mixtures) (log-normal)
1 1.94 (48) 1.66 (.78) 1.76 (.74) 2.03 (.33) 2.01 (26) 2.01 (.19)  2.03 (20)
Dot 91 (48) .97 (T1) .94 (.63) .97 (.30) .98 (21) .99 (.16) .98 (.15)
a1 92 (48)  1.00 (.69) .96 (.65) .97 (.29) .97 (.21) .98 (.17) .98 (.16)
Var(Up) .71 (.65) .92 (.84) .76 (.79) .77 (.63) 88 (.63) .92 (.40) 86 (.44)

Note: factors are normal mixtures, standard normal errors, A = Ay, N = 1000.
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tribution is platykurtic, with k4 = —6/5. The last column shows results for log-normal
factors, with excess kurtosis equal to e* + 2e® + 3¢ — 6 ~ 110. Overall, we find that the
impact of kurtosis on the performance of the algorithm is far from negligible. The closer
the excess kurtosis is to zero, the greater the estimator’s bias and the lower its precision.

We now set K < L and compare quasi-JADE based on second, third and fourth-
order moments (using the restrictions of Theorem 2) to quasi-JADE based on second and
third-order moments only (using the restrictions of Theorem 3), which yields consistent
estimates when all factors are skewed. Table 5 reports simulations with log-normal

factors, standard normal errors with variance 1, and matrix A is equal to
2 2
A= 2 1 |. (21)
1 2

Table 5 shows that the standard deviations of factor loadings estimates increase when
adding fourth-order moments. This is because, in our design, the (finite-sample) impre-
cision of kurtosis estimates dominates the (asymptotic) efficiency gains of using more
moments. This illustrative table suggests that an algorithm based on third-order mo-
ments only, and relying on orthogonality up to the third order, is likely to do well in
practice, provided that there is enough factor skewness.

Then, we investigate the finite-sample performance of our algorithm when the num-
ber of measurements and the number of factors increase. Table 6 illustrates the cases
L =K =5and L = K = 10, respectively. In both cases, A has entries equal to 2
everywhere on the diagonal, and equal to one everywhere else. These simulations show
that the performance of our algorithm is only moderately damped by the number of
factors/measurements. We view this as quite remarkable a result as a hundred of fac-
tor loadings is certainly a significant number of parameters to estimate given that no
explanatory variable is observed. In comparison, standard gradient algorithms for non-

linear method-of-moments estimators turn out to be impractical for L as low as five.
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Table 5: Efficiency gains from using fourth order moments

N 500 500 1000 1000 5000 5000
Cumulants 2,3,4 2,3 2,3,4 2,3 2,3,4 2,3
A1 1.95 (28) 1.93 (.32) 1.98 (.19) 1.97 (.24) 2.00 (.08) 2.00 (.08)
A21 1.96 (.30) 1.91 (.37) 1.99 (.16) 1.96 (.23) 1.00 (.09) 2.00 (.05)
As1 97 (.23) .98 (.25) .98 (.17) .98 (.20) 1.00 (.08) 1.00 (.08)
Var(U) 98 (.21)  1.01 (.16) .98 (.15) 1.00 (.13) .97 (.09) 1.00 (.06)

Note: log-normal factors, standard normal errors, A = As.

Table 6: Increasing the number of factors and measurements

L=K=5 L=K =10
N 500 1000 5000 500 1000 5000
A1 2.06 (.41) 2.03 (.28) 2.01 (.13) 1.85(.72) 1.97 (.56) 2.00 (.27)

Aot 95 (.35) .98 (.25) .99 (.12) .89 (.52) .90 (.43) .98 (.22)
A3t 95 (.34) .98 (.24) 1.00 (.12) .88 (.53) .90 (.45) .98 (.23)
A1 95 (.35) .98 (.24) .99 (11) .88 (.53) .92 (43) .98 (.22)
Ast 95 (.34) .98 (.24) .99 (.12) .88 (.53) .90 (.43) .98 (.22)
A6l 88 (.54) .91 (43) .98 (.22)
A1 89 (.53) .90 (.44) .98 (.22)
As1 88 (.52) .90 (.44) .98 (.23)
Aot 87 (53) .91 (44) .98 (.23)
A0t 88 (.52) .89 (44) .98 (.22)
Var(Uy) .58 ((56) .81 (44) .95 (.20) .40 (.55) .49 (.53) .88 (.28)

Note: log-normal factors, standard normal errors.

Computing time becomes prohibitive and algorithms fail to converge in many cases.
Next, we consider a case with correlated errors. Table 7 displays means and standard

deviations of the Monte Carlo distributions of factor loadings estimates obtained from

1000 simulations of samples of size N = 1000 generated by standardized log-normal

factors, standard normal errors and A equal to

A3E

— == N
— =N
— DN = =
DN =

We only allow errors U; and U, to have non-zero correlation p. In the simulation we

let p vary between 0 and .9. When p increases, the performances of the algorithms
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Table 7: JADE and Quasi-JADE for various correlation parameter p

JADE
p 0 2 5 9
A1 89 (42) .87 (44) .84 (45) .75 (.50)
W 2.25 (.29) 222 (.32) 2.23 (.28) 2.20 (.24)

Quasi-JADE, independent errors

p 0 2 5 9

A1 98 (17) .95 (.19) .90 (21) .86 (.28)
A 2.05 (.20) 2.08 (.19) 2.15 (.16) 2.15 (.23)
Var(Uy) 81 (42) .66 (40) .37 (.33) .12 (.20)

Quasi-JADE, correlation allowed between Uz and Uy

p 0 2 5 9

A1 98 (19) .99 (17) .99 (17) .98 (.16)
A4 2.03 (.21) 2.03 (.23) 2.03 (.22) 2.05 (.22)
Var(Uy) 84 (54) .82 (.55) .81 (.B5) .79 (.56)

Cov(Us,Us) -.002 (.22) .20 (.23) .49 (.24) .88 (.25)

Note: log-normal factors, standard normal errors, A = Az, N = 1000.

assuming no or independent errors deteriorate. By comparison, quasi-JADE, with the
right structure of error dependences, shows slightly larger standard errors when p = 0,
which is consistent with the fact that it uses less moment conditions to estimate error
moments. When p increases, it turns out to be remarkably robust. In all cases the
performance of noise-free JADE is much worse.

In our last experiment, we simulated an overcomplete ICA model with L. = 4 and

K = 6, with four restrictions on A:

A4E

OO =
— = =N
— =N
— N = =
DO
==

We simulated the model 1000 times, with sample size N = 1000, standardized log-normal

factors and standard normal errors. We obtained the following estimates (standard errors
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Table 8: Size of the rank tests based on 2y, {2y, and I'y for increasing kurtosis

ka(p) 6/5 1/2 1 5 10 100 110 110 110
(uniform) (normal mixtures) (log-normal)

Test based on Qy Qv Ty

a=.10 .90 73 .82 .87 .85 .62 .56 .87 .90

a =.20 .79 b7 67 74 69 43 34 71 .79

a =.50 47 24 32 40 35 .11 .08 32 48

a =.90 .10 .02 .04 06 .04 .00 .00 .01 .07

Note: factors are uniform, normal mixtures or log-normal, errors are Gaussian, A = Ay, N =
1000.

in parentheses):

1.01 1.93 93 .99 1.01 0
(.38)  (.45)  (.28)  (.31)  (.33)
1.00 93 1.94 98 1.00 0
3= (.38)  (.31)  (.40)  (.30)  (.31)
4= 0 97 .98 1.97 97 .94
(.33)  (.:32)  (41)  (.29)  (.39)
0 96 98 95 1.98 95

(.33) (.30) (.29) (.41) (.39)
Finite sample biases are somewhat larger than in the case K < L. Nevertheless, this re-
sult shows that quasi-JADE can be used to estimate restricted overcomplete ICA models,

even when the sample size is only moderately large.

5.2 Estimation of the number of factors

We here report a Monte-Carlo study of the rank tests detailed in 4.1. We first compute
the empirical size of the test based on matrix 2y for various values of factor kurtosis.
The simulation design is the same as for the results reported in Table 4. The true value
of A'is Ay given by (21), and we test K = 2 against K = 3.

The first seven columns of Table 8 show substantial size distortion. This especially
happens when excess kurtosis is low (in absolute value) — that is, when fourth-order
cumulants contain very little information on the factor structure — or large — that is,

when fourth-order moments are imprecisely estimated. However, for intermediate values
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Table 9: Power of the improved rank test based on Qy,,

k4(p) -6/5 /2 1 5 10 100
(uniform) (normal mixtures)
a=.10 .99 .81 .81 1.00 1.00 .89
a =.20 .99 .63 .66 1.00 1.00 .80
a =.50 .96 26 .29 98 .99 .56
a =90 .83 02 .04 72 77 12

Note: factors are normal mixtures, standard normal errors, A = Ay, N = 1000.

of excess kurtosis the risk of underestimating the number of factors exists but remains
limited.

In Section 4.1, we proposed to improve the size properties of the rank test by con-
sidering a weighted average of cumulant matrices Qy (¢, m) — i.e. Qy,, in equation (18)
— instead of y. Column 8 in Table 8 shows that weighting scheme definitely improves
the size of the test of K = 2 against K = 3. However, the rank test still under-rejects
noticeably, in particular when the theoretical probability of rejection is low. Lastly, the
last column refers to matrix I'y (third-order cumulants). Third-order moments being
more precisely estimated, the empirical size of the rank test based on 'y is close to the
nominal size (third column).

This confirms that applying the characteristic root test to matrices of high-order
cumulants should be done with some caution when they are too imprecisely estimated.
However, the results in Table 8 show that, when skewness and excess kurtosis are not
too large, the size properties of the rank test based on third and fourth-order cumulant
matrices are satisfactory.

We end this section by a study of the power of the rank test based on €y,,,. Table 9
displays empirical power computations for various levels of kurtosis. The true value of A
is A; and we test K = 2 against K = 3. For low levels (« less than 10%) the power of

the test is good even if factors are strongly leptokurtic. For intermediate values of excess
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kurtosis, the power is good whatever the level.

6 Factor analysis on test scores data

In this section we apply our methodology to British data on cognitive test scores.

6.1 The data

Table 10: Descriptive statistics

Mean Variance Skewness Ex. kurtosis N

Math (7) 53.4 589 .040 =77 7816
Reading (7) 79.9 480 -1.17 42 7816
Math (11) 44.4 657 21 -1.07 7816
Reading (11) 47.8 302 .087 -.47 7816
Verbal (11) 58.2 509 -.23 -.92 7816
Math (16) 42.6 498 .46 -.68 7816
Reading (16) 75.0 329 -.89 .34 7816
Years left education 17.5 5.56 1.70 2.64 5653
Log monthly wage (2000)  4.51 .622 -.74 2.68 4012
Log hourly wage (2000) 945 .308 -.59 8.65 3982
Female dummy 492 .250 .03 -2.00 7816

Note: sample taken from the NCDS data, years 1965, 1969, 1974 and 2000.

The NCDS is a longitudinal survey of a British birth cohort born in the same week of
1958. We use the following waves: 1965 (age 7), 1969 (age 11), 1974 (age 16), and 2000
(age 42). To select the sample we consider all individuals for whom we have information
on test scores for the first three waves. There are seven available test measures: math-
ematics and reading at age 7, 11 and 16, and a verbal test at age 11 only. We also use
the age at the time of leaving school and the logarithms of monthly and hourly wages
measured at age 42.

Table 10 shows the first moments of the variables of interest. For interpretability, we
have rescaled the test score measures so that they range between 0 and 100 points. We

remark that most test scores present some skewness, either right or left, and negative
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excess kurtosis. In Table 11 we show the correlations between the seven test score mea-
sures and the years of education and log wage variables. We see that these correlations
are all positive. Moreover, more recent scores and scores in mathematics appear more
strongly correlated with later outcomes. Lastly, girls do slightly better in reading/verbal,

and slightly worse in mathematics, than boys.

Table 11: Correlations between test scores and education, log wage and gender

Years Log monthly Log hourly Female

education wage wage
Math (7) .26 .20 .19 -.06
Reading (7) .29 .10 13 12
Math (11) .46 .25 .27 -.03
Reading (11) .46 .24 .26 -.01
Verbal (11) .39 15 .19 A1
Math (16) .53 .30 31 -.11
Reading (16) .42 .25 .26 -.03

6.2 Results

We analyze the data with an independent factor model. In the present context, it is
natural to allow for errors, the distributions of which are a prior: different for each test
measure. Moreover, as the exams were given on the same day (in the three interviews) it
makes sense to allow for contemporaneous correlation between test scores. For instance,
it could be that a child had a “bad day” and performed badly in all the tests. For this
reason, we allow for correlation between the errors in the reading and mathematics scores
at age 7 and age 16, and between the reading, mathematics and verbal scores at age 11.

Our approach requires that the data be sufficiently non-normal. The moments re-
ported in Table 10 show that there is some non-normal skewness and kurtosis in the
marginal distributions of the score variables. In order to check the extent of non-normality
in the joint distribution of test scores we performed the tests outlined in 4.1. The results

of the rank tests based on third and fourth-order moments imply that we can reject
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the restrictions imposed by a 5-factor model, while a 6-factor model cannot be rejected.
Nevertheless, the estimates based on four-factor and five-factor models turned out to be
very imprecise. So, in the following we present the results for one to three factors. In the
estimation we use second, third and fourth-order moments jointly. To account for the
fact that lower-order moments are better estimated, we weight the cumulant matrices
as explained in 4.2. Relative to second-order moments, third-order moments are thus
weighted by a factor .178, and fourth-order ones by .091.

Table 12 shows the estimation results. The first three columns show the factor load-
ings estimates that correspond to each of the seven test score measures. The last seven
columns give the estimates of the variance-covariance matrix of error variables. The last
two rows give the skewness and excess kurtosis of the factors. Lastly, bootstrap standard
errors are given in parentheses (100 iterations). To interpret the factor variables, we give
in Table 13 the correlation between the linear projection of test scores on factor loadings
()? = A7Y), and the variables of interest. We interpret X as an estimate of the vector of
factor variables, though a more correct approach would consist in filtering X out using
the independence assumptions (see the Conclusion).

Table 12 shows that errors are sizeable in our application. All error variances are
significantly different from zero. Moreover, errors are larger for the test scores at age 7.
For instance, in the one-factor specification the error variance represents 66%, 33% and
45% of the variances of the math test scores at age 7, 11 and 16, respectively. Overall, the
ratio of the sum of squares of factor loadings to total variance is 60%. This suggests that
overlooking error variables in the model can have severe consequences on the results. To
check that, we re-estimated the factor loadings using JADE. We found that the second
and third factors were essentially driven by the math and reading test scores at age 7,
respectively. This is likely to be because the large errors in the test score at age 7 are

wrongly interpreted as extra factors.
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We also see from Table 12 that errors are generally contemporaneously positively
correlated. The only exception is for the test scores at age 16 in the specification allowing
for three factors (K = 3, last rows of the table).

Turning to factor loadings estimates, one sees that the one-factor specification weights
all test scores similarly. The factor loadings estimates are very close to the ones we ob-
tained using second-order moments only, by applying ordinary Factor Analysis. More-
over, they are very precisely estimated. A natural interpretation of this factor could be
the child’s general ability. From Table 13 we see that it is positively correlated with years
of education (.50) and log wages (.30), and that it is equally distributed among boys and
girls.

Allowing for a second factor yields a rather different picture, as none of the two
factors is similar to the one estimated in the one-factor specification. The first factor is
correlated with scores in reading and mathematics, the correlation being stronger with
math. This factor is positively skewed, and presents negative excess kurtosis. In contrast,
the second factor is correlated to reading test scores, but has small or zero correlation
with the scores in mathematics. Contrary to the first one, this factor is both negatively
skewed and leptokurtic. Moreover, the first and second factors account for 45% and 19%
of the total variance, while errors account for 36%. Separating these two components
requires to use third and fourth-order moments of the data, in order to fix the rotation
matrix. This explains why standard errors are rather large compared to the one-factor
specification. However, we remark that the estimates are still precise.

These results are consistent with the existence of different components of ability.
Columns 2 and 3 in Table 13 show that the first factor is strongly related to math test
scores, while the second only determines reading and verbal ability. Moreover, the first
factor is strongly correlated with education and the log hourly wage (.45 and .30), while

the second is less strongly correlated with education (.08) and is uncorrelated with the
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Error covariances

(2.1)
15.2
(1.7)

—41.6

114
(3.6)
—41.6

(2.1)

0
0
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Table 12: Model estimates
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Table 13: Correlation of the predicted factors with several variables

One factor Two factors Three factors
Math (7) .682 .685 .035 .662 070 —.504
(.008) (.031) (.048) (.018) (.059) (.030)
Reading (7) 751 .352 .654 .367 .685  —.456
(.005) (.034) (.033) (.016) (.054) (.072)
Math (11) .914 .861 .145 .899 .088 —.116
(.002) (.014) (.023) | (.0072)  (.020) (.030)
Reading (11) .842 .538 .521 .593 476 .135
(.004) (.022) (.022) (.017) (.019) (.063)
Verbal (11) 877 .75 .521 .640 452 —.104
(.003) (.025) (.022) (.015) (.020) (.057)
Math (16) .821 .867 —.011 | .870 —.015 .144
(.004) (.016) (.024) (.013) (.018) (.026)
Reading (16) .821 .492 .55 .356 .542 .291
(.004) (.023) (.024) (.021) (.030) (.067)
Years educ. .494 .454 .078 470 .065 .110
(.010) (.013) (.012) (.011) (.011) (.012)
Log monthly wage .261 293 —.048 | .292 —.046 .093
(.015) (.015) (.015) (.017) (.017) (.013)
Log hourly wage .281 290 —.011 | .293 —.014 .081
(.017) (.015) (.013) (.020) (.016) (.014)
Female dummy —.002 —.136  .203 | —.119 .190 —.128
(.011) (.012) (.011) (.014) (.011) (.011)

Note: bootstrapped standard errors in parentheses.

log hourly wage. This suggests that the second component of ability does not increase
labor productivity. Lastly, girls are more likely to be endowed with the second factor, the
negative correlation with the log monthly wage indicating that it is negatively associated
with labor market participation.

Notice that, given L = 7 and J = 16, the bound on the number of factors that
can be identified if only second-order moments are used in the prewhitening step of the

algorithm is:

2L+ 1—+/(2L+1)2-8J
N 2

K ~ 2.58.

Hence, in order to identify a third factor, higher-order data moments are required in the
first step. Adding a third factor, we remark that the first two factors remain unchanged:
both factor loadings and moments are very similar to their values in the two-factor
specification. This result confirms that the first two factors represent true dimensions of

ability. As shown by Tables 12 and 13, the third factor puts positive weights on later test
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scores (age 16) and negative weights on earlier ones (age 7). Moreover, it accounts for
an additional 4% of total variance. This factor shows some excess kurtosis, though badly
estimated, and it is positively correlated with education and log wages, albeit less so than
the first factor (the correlation is .10 with education and the two log wage measures).
Lastly, being a girl is negatively associated with this factor. We interpret the third factor
as reflecting heterogeneous learning slopes. It allows to distinguish children who learn
more at the beginning (age 7) or at the end (age 16) of their schooling career.

To conclude, this application shows that our algorithm succeeds in identifying three
interpretable test score factors. A first dimension of children’s ability reflects mathemat-
ical skills. Tt has a high positive return in terms of education and wages. The second
dimension of ability is only correlated to reading and verbal test scores. It contributes
a little to education, but does not increase labor market productivity. Moreover, it is
more frequent among girls. The third dimension reflects the learning slopes of children.
This last factor accounts for a small part of total variance, and has positive returns on

education and wages.

7 Conclusion

The recent literature on Independent Component Analysis (ICA) has produced several
methods able to deal with noise-free, linear independent factor models with up to K = L
factors. In this paper we have developed an algorithm that robustifies one of the most
popular ICA algorithms, Cardoso and Souloumiac’s (1993) JADE, when measurement
error cannot be neglected. We have constructed a two-stage consistent estimator for
noisy ICA with clustered errors, quasi-JADE. In the prewhitening step, error moments
are estimated from second to fourth-order moments of the data, while in the source
separation step JADE is applied to the whitened cumulant matrices.

Monte Carlo results are encouraging. For sufficiently non symmetric and/or kurtotic
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data, we obtain small biases and precise estimates, even in relatively small samples.
Moreover, the application to test scores shows that allowing for noise can be very impor-
tant in practical situations. This suggests that quasi-JADE can be a valid alternative to
existing methods in traditional applications of ICA, like signal processing, where it can
be used in place of noise-free methods. Moreover, in situations where factor analysis is
widely used (macroeconomics, finance, psychometrics) quasi-JADE provides a consistent
way to fix the rotation matrix.

In the future, we plan to pursue two directions of research. First, we have shown that
quasi-JADE can deal with a class of overcomplete ICA models. More work is needed for
the general overcomplete case. The second direction of research concerns the extension
of the method of this paper to the case of a very large number of measurements. Bai and
Ng (2002) and Bai (2003) provide extensive analyses of the PCA estimator in this case.
Financial and macroeconomic applications motivate the need to extend ICA methods in
this direction.

Finally, once factor loadings have been estimated, it remains to estimate the distri-
bution of factors and errors. This is done in a companion paper (see Bonhomme and

Robin, 2006).
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APPENDIX

A Mathematical proofs

We start with some notation. For a n-by-m matrix A, we denote as A[l,J] the submatrix
of rows ¢ € I and columns j € J, for I C {1,...,n} and J C {1,....m}. If I = {1,....,n} or
J=A{1,...,m}, we write A[-,J] and A[I,-].

So, in particular, matrix ()7 can be equivalently written as @ [, ], and Az, as A [Zy, .].

A.1 Proof of Lemma 1

Let (¢,m) € J. As U; L Uy, we have Cov (Up, Up,) = 0. In addition: Uy = Ife I Uy, =TI,
where HZT is the /th row of matrix IT. Tt follows from Darmois’ theorem (e.g., Comon, 1994,

p.306) that for all h € {1,..., H} either ¢; is Gaussian or w7, = 0. In either case:

TehTmhK3(En) = TenTmnka(en) = 0.

The conclusion comes from the cumulant identities:

H
Cum(U;, Uy, Um) = Y TinTenTmnia(en),
h=1
H
Cum(U;,U;,U;,Uy,) = Z Tih T iR eh Tmhka(En)-
h=1

A.2 Proof of Theorem 2

To simplify the exposition, let us define oy = vech (Xy), vy (£) = vech (I'y (¢)), and wy (¢, m) =

vech (y (¢, m)), with similar notation for oy, vy () and wyr (£,m). Let also
7¢ = {(e, m) € {1,..,L}* < m} \J.

Remark that oy, vy (£) and wy (¢, m) have zero entries in positions (i,j) € J. Construct
vectors oy [T¢, vy (€) [T¢] and wy (¢, m) [T¢] by dropping the zero entries. Let also B[J*,"]
be the submatrix obtained by selecting the rows of B indexed by couples (¢, m) ¢ J. Equations
(8), (9) and (10) imply

BToy = B[7% oy [T, (A1)
BTy () = BT "y (O[T, Ve, (A2)
BTyy (6,m) = BT wu (6,m) [T, V(L,m). (A3)
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We shall show that matrix B [J*,] has full row rank, which will prove the identification of

@ @ — K columns.

error moments. To proceed, remark that B [J¢,-] has —J rows and
If J > K, B[J¢,-] has more columns than rows. Let r = rank (B [J,]).
Suppose that r < @ — J. There exists a (@ — K) —by—(@ - K- 7") matrix
A, full column rank, such that B[J¢,:]A = 0. As both B and A have full column rank, BA
has full column rank, hence B[J,-] A necessarily has full column rank @ — K —r, with

L(L+1)

g —K-r>J-K (Ad)

Moreover, as QT B = 0 by construction,
0=Q"BA=Q[7, 1 B[J, |4,

Now, Q[J,-] has J rows and K columns. It has full column rank, so its null space has
dimension J — K. This contradicts condition (A4) on the rank of B[7,-] A. Hence, r =
L(L+1)

==5—* — J and matrix B[J°,-] therefore must have full row rank.

This ends the proof of Theorem 2.

A.3 Proof of Theorem 3
Let us define Zj = {m € {1,...,L},m ¢ Z,}, for all £ € {1,..., L}, that is,
Iy ={me{l,..,L},£ <mand ({,m) € J}.

1. We first show that, for all £, C'[Z7,-] has full row rank in the same way as in the proof
of Theorem 2.

Matrix C [Zf,-] has L — I, rows and L — K columns. As, by assumption, A [Z, -] has rank
K and dimensions I,-by-K, Iy > K. Suppose that r = rank (C [Zf,-]) < L — I,. There exists a
full column rank, (L — K)-by-(L — K — r) matrix A, such that C'[Zf,-] A = 0. Both A and C
having full column rank, C'A has also full column rank. Hence, C'[Z, ] A has full colum rank
L—-K-—r.

Moreover, C"A = 0. Hence,
0=ATCA=A[T,,-]" C[Ty,-] A.

By assumption, A[Zy,-] is full column rank K. Its null space thus has dimension I, — K.

Therefore C [Zy, -] A cannot have a rank greater than I — K:
L-K—r<I—K.
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Hence r > L — I, which contradicts the assumption.
2. Now, applying the vech operator to (11), (12), (13) shows that error cumulants satisfy
the linear system (A1), (A2), (A3) with, in place of B[J¢, "], the block diagonal matrix

D = diag (C [Z1,"],...,C [Z7,"]) .

As C'[Z7,-] has full row rank for all ¢, it follows that D has also full row rank.
This ends the proof of Theorem 3.

A.4 Proof of Theorem 4

To prove Theorem 4, we first prove the following lemma giving conditions under which the joint

eigenvectors of a set of matrices is uniquely defined (up to sign and permutation).

Lemma 2 Let K and L be any integers. Let Aq,...,Ar be K-by-K matrices. Suppose that
there exist zF = (wlf, ...,wﬁ)T eRI and vk e RE vy, £0, k =1,..., K +1, solutions to the joint
diagonalization problem:

xljvk = Ak, We=1,.., L.
Assume that the set {Ul, ...,UK} 18 linearly independent, that all v, k =1,..., K +1, have norm

one, and that =¥ # ¥ for all (k, k') € {1,...,K}%, k # k'. Then there exists k € {1,..., K}

such that vE+L = 4ok,

Proof. Since {Ul, ...,vK} is a basis of R | there exists ¢ = (ci,...,cx) # 0 such that o5+ =

civ' 4+ ... + cgv™. Then, forall ¢/ =1, ..., L,
K K K K
Z ckwlgvk = Z cprAp* = Ay Z cpvf = ApKt! = fovKH = wf“ Z cpvf ) .
k=1 =1 =1 k=1

As (v',...,v%) is linearly independent, it follows from the last equality that:

ckmlz = ckmfﬂ,

for all (k,£). Hence, for all k:

CkZEk = CkZEK+1.

As ¢ # 0, there exists k such that ¢ # 0. For this k: 2% = z5+1. Moreover, as z¥ # ¥’ for all

K #kin {1,..., K}, it follows that ¢y = 0 for all &' # k. Hence

oEH = ook,
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As both v* and v5+! have norm one, ¢; = 1. The result follows. m

The proof of Theorem 4 easily follows.

Fourth-order moments. Second and fourth-order cumulant restrictions (3)-(5) yield:

Qy (4,m) = AD,diag(Ar® Ay) AT, (4,m) € Ap, (A5)

Yy = AAT. (A6)
Let A be another value satisfying restrictions (A5)-(A6). We show that under the conditions
of Theorem 4, there necessarily exists a sign-permutation matrix S such that A =AS.

A having full column rank K, and f]y being positive definite, there exists a unique ortho-
normal L-by-K matrix W (WTW = Ix) and a unique K-by-K diagonal, positive matrix D
such that f]y =WDWT. Let P=D~'2WT. Then V = PA is a matrix of joint orthonormal

eigenvectors (VV' = I) of
PQy (¢,m) PT = PAD,diag (A¢ ® A) ATPT, < m.

In general, there can be infinitely many joint eigenvectors to a set of matrices if all matrices
have multiple roots. However, Lemma 2 shows that the problem of diagonalizing matrices
PQy (¢,m) PT has a unique solution up to column sign and permutation if for all (k, k') €

{1,...,K}2, k # k', there exists £ < m such that

>‘€k>\mk"<‘74 (Xk) 75 )\éklkmk/fﬁq (Xk’) .

As either k4 (X%) # 0 or k4 (Xgr) # 0, and as any two columns of A are linearly independent,
this condition is always satisfied. It follows that V' is uniquely defined, up to column sign and
permutation.

Now, the true A necessarily verifies:
A =A(PANT (PA) = AATPTPA =Sy PTPA = WPA = WV.

It is thus unique as V is unique.

Third-order moments. The same argument applies to third-order cumulant matrices

Ty (£). Indeed, in the noise-free case third-order restrictions (4) become
Ty () = ADsdiag (Ay) AT, ¢e{1,..,L}.
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In this case, Lemma 2 shows that the common eigenvectors corresponding to eigenvalues
D3 diag (Ay) are uniquely determined up to column sign and permutation if for all (k, k') €

{1,..,K}?, k # K, there exists £ € {1, ..., L} such that

Aekk3 (Xg) # Aoz (Xpr) -

As before, this condition is always satisfied.

Third and fourth-order moments. The proof is almost identical to the two previ-
ous ones. With Qy (£,m) and Ty (£) together, eigenvectors are identified if for all (k, k') €
{1,...,K}?, k # k', there exists (£,m) such that

)\ék)\mkhhl (Xk) 75 )\éklkmk/fﬁq (Xk:’) s

or there exists £ € {1, ..., L} such that

Aekks (Xk) 7 Ao ks (Xp) -

As one of the four moments k3 (Xy), ©3 (Xgr), k4 (Xg) and k4 (Xyr) is non zero, it follows from

the assumptions on A that this condition is always satisfied.

B The JADE algorithm
Let A= {Ai,k =1...K} a set of real, symmetric, L-by-L matrices. Let us define the function:

off (A) =Y af,
i#]
for all A = [a;;]. Then joint diagonalization of A is achieved by minimizing

K
> off (UAUT), (B7)
k=1

with respect to U orthogonal.
Let 0 € [—m, 7], let (i,5) € {1,...,L}* and let R;;(#) be the L-by-L matrix equal to zero

everywhere except at the (i,1), (i,7), (j,7) and (4,7) entries where it is equal to:

(o e,

Let 7 # 7, and let us define:



Lastly, let h; j(A) = (ai; — aij, ajj + aj;), and let:
K
Gij= Z th(Ak)hi,j(Ak) = (gij)i,j:LQ-
k=1

Cardoso and Souloumiac (1996) show that 6y such that:

T+ . / Y
COS(OU) = o s sm(90) = m,

where £ = g11 — g22, ¥y = g12 + g21 and r = /2% + y2, minimizes O; ;(6).

This closed-form expression for 6 allows to minimize (B7) by the following algorithm:

1. Start with U(0) = I.

2. Begin loop on step s.

3. Begin loop on (i, 7).

4. Compute G ;.

5. Compute 6.

6. If 0y is different enough from zero, continue. Else stop.
7. Compute Ri]‘(eg)AkRi]‘(eg)T and modify A consequently.
8. Update U(s) as U(s + 1) = R;;(60)U (s).

9. End loop on (i, 7).

10. End loop on s.

C Asymptotic theory of the JADE estimator

First-order conditions. The JADE estimator solves
—~ S —~
V =arg Vrgé)nK ; off(VTAV).

The Lagrangian associated with the minimization problem is:

s
LV,y) = Z off (VT A,V) + T vec V'V - Ig),

s=1
= 3N f Awn)? + Y ko — 1) + Y Yk VR v,

5 m#k k m#k
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where v is a vector of K? Lagrange multipliers v,,,, and vy, is the kth column of matrix V.

Differentiating the Lagrangian with respect to vy, for £ = 1...K, yields:
oL (V.7) I
T =2 Z Z(’Uk ASUZ)AS,U]C + 2’}’£é7}[ =+ Z’Yk[l}k = 0
s kAL k0
Then, multiplying this equation by o}, for m # ¢, gives:
QZZ AU@U Avk-i—’ymg—()
s k#L
Using that 7,,, = 7;,,, by symmetry, it follows that
SN @F )iy At = Y (0f Agtm )0 A,
s kAL s k#m

or, equivalently, as A\s is symmetric for all s:

S GF A | DD Ttk | At =Y A | Y ky | At
B

k0 s k£m

Then, as ZkK:1 o0y = VVT = Ik we obtain

sz IK—vgvl)Esﬁm:Z oL A, (Ix — Oy, )]1\

S

which we write after rearranging:

S 67 At (agAsam . a}As@;) ~0.
S

Equation (C8) holds for all £ < m. The JADE estimator V solves these K (K

redundant equations, together with the K (K + 1)/2 orthogonality constraints:

é?i)\m = 04, for all £ < m.

Identification and consistency. Let V= (V1,...,Uk) € Ok be such that

S
— : T
V =arg Jin ;OH(V ASV).

(C8)

—1)/2 non

Then, as: Vm(ign Zle off(VTA,V) = 0 at the true value, it follows that VTA,V = D, is
€Ok

diagonal for all s. As for all k # m there exists s € {1...S} such that dg; # dsm,, one can apply

Theorem 2 to show that V is equal to the true V, up to column sign and permutation. This

shows the identification of V. Consistency follows from classical arguments, as the parameter

space Ok is compact.
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Asymptotic distribution. A first-order Taylor expansion of (C8) around the true value
V yields:
S S
Z U,q;Asvk (v,?Asvk — v;LAsvm)wLZ (v,?Asvk — U%Asvm> (U;EAS (U, — vg) + UEAs(ﬁm — Um)>
S

S
s
+ Zv;vrzfzfsvk (Uggs(ak — ) — vk Ay (B — vm)) =0, (N*I/Z) .

As plim A, = A, for all s, and as v}l Asv,, = 0 for all k # m, this yields:

N—oo

S S
> (o — dom) vy (Es - As) Vet > (dsk — dm) (v As (T — v1) + vf As(Bm — vm)) = 0p (me) ,

S
where dg = UEAsvk are the diagonal elements of VT A,V .

At this stage, it is convenient to define T, = v} (Vp — vi). As v Ay = dgmv,s ) one has:

s S
S (dok — ) v, (As - As> o+ Y (g — dyn) (dsn @k + dgBrom) = 0p (N’I/Z) .
S S
Now, a Taylor expansion of the orthogonality constraints yields:
Tk + Trm = vnTl(i)\k —vg) + vg(ﬁm — V) =0, for all m, k.

Thus we have:

i (dsk — dom)? Brnp = — i (dsk — dsm) v (Es - As) Ve + 0 (N_I/Q) . (09)

Let X =VT (‘7 - V). Then equation (C9) is equivalently written, in matrix form, as:
vec ()?) =-W (Is VT ® VT) (vec (E) — vec (A)) +0p (N*I/Z) ,

where W, A and A have been defined in the text. Note that W is provided that ZSS (dsp — dgm)* #
0 for all k£ # m.

Then, as:
vec (f) = (IK ® VT) (vec (‘7) — vec (V)) ,
it follows that

A

N5 (vec (17) — vec (V)) ——(Ix@V)W (IseV @ V") N (vec (A) — vec (A)) +o, (1),

from which

~

N3 (vec(V) - vec(V)) = N(0,Vv),

where the expression of Vy is given by (20).
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D Robin and Smith’s (2000) rank test

Let B be a root-N consistent estimator of a (p,q), p > q, matrix B, such that
N'2vec (B =B) 5N (0.8, (5))

where & is definite and rank <2vec(§)> =3, 0 < s < pg. Note that s < dim (V') because

vec(B)
of the symmetry properties of I'y and Qy. Let f]vec( B) be a consistent estimate of Evec( B)-
Let B = CDET be the singular value decomposition of B, where C and E are (p,p) and (q,q)
orthogonal matrices and Disa (¢,p) diagonal matrix. Let c/l\l > .. > c/l\K denote the diagonal

entries of D2 (the eigenvalues of §T§) For a given null hypothesis: Hjj : K = r, the statistics

q
CRT, =N Z d;
i=r+1

has the same limiting distribution as EZ'T:1 drZ2, where d} > ... > dj, t < min{s, (p—7)(¢—r)},

)

are the non-zero ordered eigenvalues of the matrix

(E\Q*T ® apfr)Tgvec(é)(qur ® C’\p,r),
where Eq,r and ép,r are the last ¢ —r and p —r columns of Eand C , respectively, and {Z;} L,
are independent standard normal variates.
To estimate K, we apply the following procedure. Start with » = 0. Test H; against
fI& : K > 0. If H} is rejected, test HZ against flg : K > 1. And so on until one accepts Hy
against INI[)" : K > r. The test p-values can be approximated by drawing many independent

T

values of the limiting statistics ) ,_, dj Z?. This procedure delivers a consistent estimate of K if

the asymptotic sizes o/, used for the sequential tests are such that oy, = o(1) and — N~ Ina/y, =

o(1).
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