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Abstract

Structural mean models (SMMs) were originally formulated to estimate causal ef-
fects among those selecting treatment in randomised controlled trials a¤ected by
non-ignorable non-compliance. It has already been established that SMM esti-
mators identify these causal e¤ects in randomised placebo-controlled trials where
no-one assigned to the control group can receive the treatment. However, SMMs are
starting to be used for randomised controlled trials without placebo-controls, and
for instrumental variable analysis of observational studies; for example, Mendelian
randomisation studies, and studies where physicians select patients�treatments. In
such scenarios, identi�cation depends on the assumption of no e¤ect modi�cation,
namely, the causal e¤ect is equal for the subgroups de�ned by the instrument. We
consider the nature of this assumption by showing how it depends crucially on
the underlying causal model generating the data, which in applications is almost
always unknown. If its no e¤ect modi�cation assumption does not hold then an
SMM estimator does not estimate its associated causal e¤ect. However, if treat-
ment selection is monotonic we highlight that additive and multiplicative SMMs do
identify local (or complier) causal e¤ects, but that the double-logistic SMM esti-
mator does not without further assumptions. We clarify the proper interpretation
of inferences from SMM estimators using a data example and simulation study.

Key Words: Structural Mean Models; Identi�cation; Local Average Treatment
E¤ects; Complier Average Causal E¤ects.

1 Introduction

Robins (1989, 1994) introduced the class of semi-parametric structural mean models

(SMMs) and their associated �G-estimators�for the estimation of causal e¤ects of treat-
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ment regimes on outcomes from randomised controlled trials a¤ected by non-compliance.

Non-compliance comes about when participants choose treatments other than those to

which they were randomised. Of most interest are SMM estimators that allow for the

e¤ects of non-ignorable non-compliance, that is, where participants choose their treat-

ments in a manner associated with their study outcomes, even after baseline (and possibly

time-varying) covariates have been adjusted for. SMMs for non-ignorable non-compliance

are widely used in biomedical research: see, for example, Goetghebeur and Lapp (1997),

Witteman et al. (1998), Fischer-Lapp and Goetghebeur (1999), Ten Have et al. (2004),

Tanaka et al. (2008), and Moodie et al. (2009).

The parameters of SMMs correspond to meaningful functions of expected potential

outcomes for the population of participants exposed to the treatment. For example,

additive SMMs are speci�ed in terms of average treatment (or causal) e¤ects, and mul-

tiplicative SMMs in terms of causal risk ratios. Vansteelandt and Goetghebeur (2003)

developed the generalised SMM and we consider its important special case, the logis-

tic SMM and the �double-logistic�estimator for causal odds ratios. Hernán and Robins

(2006) review additive and multiplicative SMMs and consider the relationship between

these and econometric instrumental variable estimators; Goetghebeur and Vansteelandt

(2005) review all of the SMMs considered here.

In this paper, we consider the estimation of causal e¤ects using SMMs from studies

in which the outcome is binary. More precisely, we consider the conditions under which

each SMM estimator identi�es its target causal parameter, and the consequences if these

conditions do not hold. Until recently, SMMs have mainly been applied to randomised

placebo-controlled trials for which the identi�cation issue is fairly straightforward. How-

ever, SMMs can be applied to other types of randomised controlled trial, and more

generally to the causal analysis of observational studies using instrumental variables. For

these more general designs, the usual identi�cation assumption for a SMM estimator is
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�no e¤ect modi�cation�(NEM) by randomisation (Hernán and Robins, 2006). We high-

light how identi�cation depends crucially on the unknown data generating process from

which the data arise. While data generating processes satisfying the various NEM as-

sumptions do exist, not all data generating processes satisfy NEM, including simple and

widely known mechanisms for binary data like the bivariate probit model.

Another question we address in this paper is: what causal parameter is being identi�ed

if the NEM assumption does not hold? As such, we highlight previous results showing

that additive and multiplicative SMMs identify �local�, or �complier�, causal e¤ects under

the alternative assumption that patients�treatment selection is monotonic (e.g., Angrist

et al., 1996). Local e¤ects are special cases of principal strata and thus widely used in

biostatistics (Frangakis and Rubin, 2002). However, we also highlight that the double-

logistic SMM does not identify the local odds ratio under monotonic selection, but that

the local odds ratio can be identi�ed using an alternative estimator.

The remainder of this paper is organised as follows. In Section 2, we review the

potential outcomes causal framework within which SMMs are speci�ed, and the three

important SMMs considered in this paper. In Section 3, we consider the identi�cation

of each SMM�s causal e¤ect for randomised placebo-controlled trial designs, before go-

ing on in Section 4 to consider identi�cation for more general designs. An alternative

identi�cation strategy based on monotonic treatment selection is considered in Section

5. Finally, in Section 6 we consider a data example and present some numerical results

to illustrate the potential impact on results if NEM does not hold, before making our

concluding remarks in Section 7.
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2 Structural Mean Models

2.1 Potential Outcomes

Before introducing SMMs, we �rst set out the potential outcomes notation to be used

throughout. To simplify notation and highlight concepts, we consider only the sim-

plest set-up: a randomised controlled trial in which patients are randomised to a �xed

treatment dose or to the control group, which they comply with or not according to

some non-ignorable mechanism; the binary study outcome is measured after some �xed

follow-up period. The focus on this simple set-up is done without loss of generality

and our �ndings apply equally to situations including pre-randomisation covariates, vari-

able treatment dose, and treatment regimes involving repeated doses with time-varying

covariates recorded.

Following Hernán and Robins (2006), let Y;X and Z denote random variables repre-

senting the following observed quantities: Z is the randomisation assignment indicator,

with Z = 1 denoting treatment and Z = 0 control; X 2 f0; 1g is the corresponding

indicator for the actual treatment chosen by the patient, where X 6= Z is possible due to

non-compliance; and Y 2 f0; 1g is the binary study outcome. It is assumed throughout

that the observed data f(yi; xi; zi) : i = 1; :::; ng constitute an i.i.d. sample from the

target population.

The potential outcomes can now be de�ned in the usual way. Let Y (x; z) be the

potential outcome that would be obtained if the treatment assignment was set to z and

the treatment received to x by external intervention, rather than by randomising and

letting the patient choose. Similarly, let X(z) be the potential treatment that would be

obtained if treatment assignment was set to z by external intervention.

Five important conditions for identi�cation of causal e¤ects can now be stated as

follows: the �stable unit treatment value assumption�that each patient�s potential out-

comes are mutually independent of those of any other patient; the existence of �causal
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e¤ects�of Z on X and on Y ; the �consistency assumption�Y = Y (X;Z) and X = X(Z);

linking the observed and potential outcomes; the �exclusion restriction�Y (x; z) = Y (x)

constraining the e¤ect of treatment assignment to a¤ect the study outcome only through

its e¤ect on treatment choice (e.g., Angrist et al., 1996); and the �independence as-

sumption� implying that Z is independent of the potential treatments and outcomes

fX(0); X(1); Y (0); Y (1)g.

More generally, Z can be any instrumental variable (IV) satisfying the assumptions

we have just introduced. The scope of SMMs is thus broader than randomised controlled

trials and encompasses observational studies too. However, the practical di¢ culties as-

sociated with choosing an IV are well known. In particular, if Z is a randomisation

indicator then the independence assumption can be taken for granted, but for observa-

tional studies it must be justi�ed and this cannot be done on empirical grounds alone.

To maintain focus, all of these assumptions will be taken to hold throughout this paper,

and so we assume that a valid IV Z is available to the analyst.

2.2 The Additive and Multiplicative SMMs

For the simple scenario just described, the additive SMM is

E (Y jX;Z)� E fY (0) jX;Zg = ( 0 +  1Z)X;

where Y (0) is the treatment-free potential outcome. While this model is saturated, or

non-parametric, more generally the right hand side is a parametric function incorporating

the e¤ect of pre-randomisation covariates or variable treatment dose, which is why SMMs

are referred to as semi-parametric. The parameters of the additive model are  0 =

E fY (1)� Y (0)jX = 1; Z = 0g and  0 +  1 = E fY (1)� Y (0)jX = 1; Z = 1g, that is,

the average causal e¤ect among those who choose treatment but are assigned the control,

and the average causal e¤ect among those who are assigned to and choose treatment,

respectively.
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SMM estimators work by exploiting the conditional mean independence (CMI), or

randomisation, assumption

E fY (0) jZ = 1g = E fY (0) jZ = 0g ; (1)

which follows from the identi�cation conditions in Section 2.1. Under the additive SMM,

(1) can be rewritten as

E fY � ( 0 +  1)XjZ = 1g = E (Y �  0XjZ = 0) ; (2)

from which an estimating equation can be constructed.

The saturated multiplicative SMM for the same scenario is de�ned as

E (Y jX;Z)
E fY (0) jX;Zg = exp f(�0 + �1Z)Xg :

The parameters of the multiplicative SMM are

exp (�0) =
E fY (1)jX = 1; Z = 0g
E fY (0)jX = 1; Z = 0g

and

exp (�0 + �1) =
E fY (1)jX = 1; Z = 1g
E fY (0)jX = 1; Z = 1g ;

that is, causal risk ratios among the same two subgroups as before. Under the multi-

plicative SMM, the CMI assumption (1) leads to the moment condition

E [Y exp f� (�0 + �1Z)Xg jZ = 1] = E fY exp (�X�0) jZ = 0g : (3)

It is clear that neither set of SMM parameters is identi�ed by its corresponding

moment condition because both constitute systems with two unknowns and one equation.

Therefore, further assumptions are required to identify the SMM parameters. Hernán and

Robins (2006) highlight the role of the no e¤ect modi�cation (NEM) by Z assumption.

Each SMM has its own distinct NEM assumption: for the additive SMM, it corresponds

to constraining  1 = 0, and for the multiplicative SMM it corresponds to �1 = 0. Under
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NEM, there is only one unknown in (2) and (3) and the usual target parameters are

identi�ed, namely, for the additive SMM

 0 = E fY (1)� Y (0)jX = 1g ;

the average treatment (or causal) e¤ect among the treated, and for the multiplicative

SMM

exp(�0) =
E fY (1)jX = 1g
E fY (0)jX = 1g ;

the risk ratio among the treated.

The estimators of the additive and multiplicative SMM target parameters can be

written as b 0 = E(Y jZ = 1)� E(Y jZ = 0)
E(XjZ = 1)� E(XjZ = 0) ; (4)

and dexp(�0) = 1� E(Y jZ = 1)� E(Y jZ = 0)
E f(1�X)Y jZ = 1g � E f(1�X)Y jZ = 0g ; (5)

respectively (e.g., Angrist, 2001; Hernán and Robins, 2006). The additive SMM estimator

has the same form as the classical instrumental variable estimator (Angrist et al., 1996);

the numerator in both expressions is called the �intention to treat� estimator. More

generally, the estimating equations under additive and multiplicative SMMs based on (1)

can be solved by G-estimation (Robins, 1994).

The crucial nature of these NEM assumptions for both SMM estimators is thus ap-

parent. It is the validity of this assumption in the binary case that we will consider in

more detail in Section 4.

2.3 The Double-Logistic SMM

Robins et al. (1999) proposed the logistic SMM

E (Y jX;Z)
E (1� Y jX;Z)=

E fY (0)jX;Zg
E f1� Y (0)jX;Zg = exp f(�0 + �1Z)Xg ;
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parameterised in terms of the causal odds ratios among the two treated groups. Under

the no e¤ect modi�cation assumption �1 = 0, its target parameter is

exp (�0) =
E fY (1)jX = 1; Z = zg =E f1� Y (1)jX = 1; Z = zg
E fY (0)jX = 1; Z = zg =E f1� Y (0)jX = 1; Z = zg ;

and we can write the logistic SMM as

logit fE (Y jX;Z)g � logit fE (Y (0) jX;Z)g = �0X;

where logit(a) = log fa= (1� a)g.

The logistic SMM is considered separately here because Robins (1999) showed that no

G-estimator for �0 can be constructed. Vansteelandt and Goetghebeur (2003) developed

the double-logistic estimator by exploiting the result that �0 can potentially be identi�ed

if the researcher speci�es a parametric �association model�

E (Y jX;Z) = m�(X;Z);

which is indexed by parameter vector �. The double-logistic estimator is based on spec-

ifying m�(X;Z) to be logistic. A drawback to this approach in more general settings, as

acknowledged by Vansteelandt and Goetghebeur (2003), is that both the SMM and the

association model cannot both be logistic, so the double-logistic SMM is �uncongenial�

in the sense described by Meng (1994). However, it has been shown that this is not a

problem for the saturated logistic SMMs considered here (Babanezhad et al., 2009). The

double-logistic SMM estimator is then the solution to the moment condition

E [expit f�00 + �01 + (�10 + �11 � �0)Xg jZ = 1] = E [expit f�00 + (�10 � �0)Xg jZ = 0] ;

(6)

where an estimate of (�00; �10; �01; �11) is obtained at the �rst stage by �tting the saturated

logistic association model m�(X;Z) = expit(�00+Z�01+X�10+ZX�11), and expit(a) =

exp(a)=f1 + exp(a)g.
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3 SMMs for Randomised Placebo-controlled Designs

There is a wide scope for applications of SMMs to randomised placebo-controlled trial

designs such as those considered by Greenland (2000), Nagelkerke et al. (2000) and

Vansteelandt and Goetghebeur (2003). For these designs, neither compliers nor non-

compliers randomised to control can receive the treatment because non-compliers (Z =

0; X = 1) receive only the placebo, equating to the condition Pr(X = 0jZ = 0) = 1.

Cuzick et al. (2007) refer to this as a �no contamination�restriction; it is a special case of

the identifying assumptions for binary outcome SMMs described by Robins and Rotnitzky

(2004). To analyse placebo-control designs, an additional assumption of no placebo e¤ect

is also needed that we herein take to hold.

Under the no contamination restriction, the SMM parameters  0, �0 and �0 are not

de�ned because all three are conditioned on the measure-zero event fX = 1; Z = 0g.

Conversely, fX = 1g = fX = 1; Z = 1g and so  0 +  1 =  = EfY (1)� Y (0)jX = 1g,

exp(�0 + �1) = exp(�) = EfY (1)jX = 1g=EfY (0)jX = 1g, and

exp(�0 + �1) = exp(�) =
EfY (1)jX = 1g

Ef1� Y (1)jX = 1g=
EfY (0)jX = 1g

Ef1� Y (0)jX = 1g ;

for the additive, multiplicative and logistic SMMs, respectively.

Under the no contamination restriction, EfY (0)jZ = 0g is always non-parametrically

identi�ed because it equals E(Y jZ = 0). Further, expanding EfY (0)jZ = 1g gives

E fY (0) jZ = 1g = E fY (0) jX = 1; Z = 1gE (XjZ = 1)

+E fY (0) jX = 0; Z = 1gE(1�XjZ = 1);

which can be used in conjunction with CMI (1) to show that

E fY (0) jX = 1; Z = 1g = E (Y jZ = 0)� E f(1�X)Y jZ = 1g
E (XjZ = 1) ;

and the key counterfactual parameters are identi�able from the observed data. Hence,
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the estimators of the additive and multiplicative SMM parameters under the no conta-

mination restriction are, respectively,

 ̂ =
E (Y jZ = 1)� E (Y jZ = 0)

E (XjZ = 1) ;

and dexp(�) = E (XY jZ = 1)
E (Y jZ = 0)� E f(1�X)Y jZ = 1g : (7)

Finally, the double-logistic SMM estimator is

dexp(�) = E (Y jX = 1; Z = 1)

E (1� Y jX = 1; Z = 1)
=

E (Y jZ = 0)� E f(1�X)Y jZ = 1g
E (XjZ = 1)� E (Y jZ = 0) + E f(1�X)Y jZ = 1g :

4 No E¤ect Modi�cation

The role of the no e¤ect modi�cation (NEM) assumption becomes crucial for more general

designs. Each SMM has its own distinct NEM assumption, which acts to constrain the

causal e¤ects among the treated to be equal for those randomised to treatment and

those randomised to control. To take just one example, recall that the additive NEM

assumption constrains  1 = 0 in the additive SMM, and thus

 0 = E fY (1)� Y (0)jX = 1; Z = 0g = E fY (1)� Y (0)jX = 1; Z = 1g =  0 +  1:

The NEM assumptions for the multiplicative and logistic SMMs can be similarly ex-

pressed.

To investigate the validity of NEM for binary outcomes, we make a link between struc-

tural models and potential outcomes by following Hernán and Robins (2006, Appendix

1) and, less directly, Pearl (2000). Suppose that the analyst is faced with data from a

randomised controlled trial for which the no contamination restriction does not hold. In

any application, the observed data and all the counterfactual potential outcomes and

potential treatments are realisations from an unknown �non-parametric structural equa-

tion model� that satis�es CMI and the constraints set out in Section 2.1. Note that
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�non-parametric�here does not imply that the true data generating process cannot be

parametric, but only that no constraints are placed on its unknown form.

Hence, the potential outcome can be written

Y (x) = I ff �Y (x; U) > 0g ;

where indicator function I(a) = 1 if a is true and 0 otherwise, and f �Y (x; U) is a function

that depends on the �xed value of treatment and the latent random variable/vector U .

It is usual to interpret U as the combined e¤ect of all unobserved �confounding�variables

on the outcome, although it also involves the contributions from other variables which

are independent of the exposure selection mechanism; to ensure independence of Z and

Y (x) it follows that U must be independent of Z. The potential treatment is similarly

de�ned as X(z) = I ff �X(z; V ) > 0g, where V is another latent random variable/vector

representing unobservable factors in�uencing treatment choice; it also follows that V and

Z must be independent. If U and V are independent then non-compliance is ignorable,

otherwise it is non-ignorable. For �xed x, it is U that determines whether the potential

outcome is zero or one for a particular patient, with V playing the same role for X(z):

This set-up straightforwardly extends to continuous potential treatments by dropping

the indicator function and specifying X(z) = f �X(z; V ). We discuss a simple model with

continuous treatments in the Appendix.

This class of structural models is extremely general because f �Y (x; u) can be any

function generating, for example, non-linear or heterogeneous treatment e¤ects. However,

it does not include models where the joint support of U and V depends on the observed

variables. For example, this excludes models like Y (x) = f �Y (x) +U and Y (x) = f �Y (x)U

for which Y = f �Y (X)+U and Y = f �Y (X)U , respectively, because the support of U clearly

depends on X in both cases to ensure the outcome lies in f0; 1g. Thus, structurally

implausible data generating models where the support of U depends on a variable to

which it is antecedent are excluded from consideration.
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Crucially, all of the SMM parameters are functions of EfY (x)jX;Zg and so can be

written in terms of the underlying structural model using

E fY (x)jX = 1; Z = zg = Pr ff �Y (x; U) > 0jf �X (z; V ) > 0g :

An advantage of de�ning the class of models in this way is that all its members sat-

isfy the CMI assumption, which can be shown by expanding (1) and using the identity

Pr ff �X(z; V ) > 0g = E(XjZ = z). We can therefore focus on each of the NEM assump-

tions. For a speci�c example, consider the family of simple parametric structural models

with (U; V ) a bivariate continuous random vector related to the potential outcomes by

Y (x) = I (�+ �x� U > 0) ; X(z) = I (
 + �z � V > 0) ; (8)

where E(U) = E(V ) = 0 and (U; V ) has distribution function F� (u; v), with �correlation�

parameter � indexing all non-zero moments involving products of U and V . In this case,

E fY (1) jX = 1; Z = 1g = Pr (U < �+ �jV < 
 + �) = F� (�+ �; 
 + �) =G (
 + �)

E fY (1) jX = 1; Z = 0g = Pr (U < �+ �jV < 
) = F� (�+ �; 
) =G (
)

E fY (0) jX = 1; Z = 1g = Pr (U < �jV < 
 + �) = F� (�; 
 + �) =G (
 + �)

E fY (0) jX = 1; Z = 0g = Pr (U < �jV < 
) = F� (�; 
) =G (
) ;

where G (v) is the marginal distribution function of V . Clearly, if non-compliance is

ignorable then � = 0 and all three NEM assumptions automatically hold. However, if

� 6= 0 then none of the NEM assumptions will necessarily hold. For example, if F is the

distribution function for a zero-mean, unit-variance bivariate normal distribution then

(8) is known as the bivariate probit model; for the additive SMM,

 0 +  1 =
F� (�+ �; 
 + �)

G (
 + �)
� F� (�; 
 + �)

G (
 + �)

6= F� (�+ �; 
)

G (
)
� F� (�; 
)

G (
)
=  0
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almost everywhere; for the multiplicative SMM

exp (�0 + �1) =
F� (�+ �; 
 + �) =G (
 + �)

F� (�; 
 + �) =G (
 + �)

6= F� (�+ �; 
) =G (
)

F� (�; 
) =G (
)
= exp(�0)

almost everywhere; and for the logistic SMM

exp (�0 + �1) =
F� (�+ �; 
 + �) =fG (
 + �)� F�(�+ �; 
 + �)g

F (�; 
 + �) =fG (
 + �)� F�(�; 
 + �)g

6= F� (�+ �; 
) =fG (
)� F� (�+ �; 
)g
F� (�; 
) =fG (
)� F� (�; 
)g

= exp (�0)

almost everywhere. As such, the additive, multiplicative and double-logistic SMMs do

not estimate  0, exp (�0) and exp (�0), respectively, if the data come from a causal model

which is closely approximated by the bivariate probit structural model. However, as

we now discuss, this does not mean that families of distributions for which a NEM

assumption holds cannot be found.

The class of structural models is far broader than that de�ned by (8): it can be

extended to allow for non-linear e¤ects of treatment and IV on the latent scale, and the

latent variables can be multivariate with semi-continuous or even discrete distributions.

However, we contend that each NEM assumption is highly restrictive. We illustrate

this point by focussing on the logistic SMM for which Babanezhad et al. (2009) show

how data can be generated to satisfy both the logistic SMM and its NEM assumption

without specifying the underlying structural model; their approach is based on the SMM

parameterisation developed by Robins and Rotnitzky (2004). Data are generated as

follows: �rst, generate X as Bernoulli with success probability E (XjZ) = expit(
+ �Z);

second, generate the treatment-free outcomes as Bernoulli with success probability

E fY (0) jX;Zg = expit (�0 + �1X + �2Z) ;

and �nally, generate observed outcomes using success probability

E (Y jX;Z) = expit f�0 + (�1 + �0)X + �2Zg ;
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where �0 is the target parameter of a logistic SMMmodel satisfying the NEM assumption

�1 = 0. Finally, to identify �0, the � parameters must be constrained so that

expit (�0 + �1 + �2)E (XjZ = 1) + expit (�0 + �2)E f(1�X) jZ = 1g

= expit (�0 + �1)E(XjZ = 0) + expit (�0)E f(1�X) jZ = 0g

to ensure that the CMI assumption is satis�ed.

An example of a structural model satisfying this data generating process can be

written as

Y (x) = I (�+ �0x+ U > 0) ; X (z) = I (
 + �z + V > 0) ;

where

U = (�0 � �) + �1X + �2Z +W;

and V and W both have standard logistic marginal distributions, are mutually indepen-

dent and independent of Z. This model does not �t into the structural set-up de�ned

above because U and V are associated only indirectly through X and Z, and U is clearly

not independent of Z, but it does show that the family of models satisfying the logis-

tic NEM is very restrictive: the integral of Y = Iff �Y (X;U) > 0g with respect to the

conditional distribution of U given X and Z (and an appropriate measure) must be

logistic, whereas the class of structural models we consider places no such restriction

on this conditional distribution. The existence of other families is straightforward to

show: for example, the family of structural models satisfying NEM for the probit SMM,

where the conditional distribution must be normal rather than logistic, does not satisfy

logistic NEM (Goetghebeur and Vansteelandt, 2005). Furthermore, these models do not

automatically satisfy the other NEM assumptions and so  0 and exp (�0) may not be

estimated by the additive and multiplicative SMMs, even if exp(�0) is estimated by the

double-logistic SMM. We discuss this point further in the Appendix.
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5 Monotonic Selection

We have argued that the families of models for binary outcome and treatment satisfying

the additive, multiplicative or logistic NEM assumptions are very restrictive, and so the

problem facing the practitioner analysing data using any SMM is ascertaining whether

the true data generating process is closely approximated by a model that satis�es its

NEM assumption. Establishing this with any certainty depends on application-speci�c

background knowledge, and is extremely di¢ cult - if not impossible - to do. In many

applications, it may be a reasonable working assumption, but more generally the prac-

titioner may not be prepared to make it. As such, we now discuss an alternative as-

sumption to NEM, namely, monotonic selection of treatment by patients, under which

local, or complier, causal e¤ects can be estimated. Imbens and Angrist (1994) and An-

grist et al. (1996) highlight the importance of �monotonicity� in problems a¤ected by

non-ignorable non-compliance. Patient treatment selection is monotonic if

X (1) � X (0) (9)

for all patients for some coding of X;Z.

In this set-up, monotonic selection corresponds to the assumption that no patient

will be a de�er, such that X(0) = 1; X(1) = 0, with probability one. For this de�nition

to make sense, we must assume that all patients exist in two universes, one in which

they are randomised to control, and another in which they are randomised to treatment.

So the �no de�ers�assumption corresponds to saying that, while patients can disobey

their treatment assignments in one or other of these universes, they cannot disobey their

assignments in both. For example, the simple structural model described in Section 4 is

monotonic because

X(1) = I (
 + � � V > 0) � I (
 � V > 0) = X(0);

if � > 0.
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While the NEM assumption does not generally hold, additive and multiplicative SMM

estimators (4) and (5) do identify local, or complier, e¤ects under monotonic selection.

Compliers are those people who comply with their treatment assignments in both hy-

pothetical universes, such that they satisfy X(0) = 0; X(1) = 1, which we write as

X(1) > X(0). Speci�cally, consider estimator (4) based on the additive SMM. As noted

previously, it has the same form as the classical instrumental variable estimator and so

from the results of Imbens and Angrist (1994) it follows that it is consistent for the local

average treatment e¤ect (LATE),

LATE = E fY (1)� Y (0) jX (1) > X (0)g ; (10)

which is also called the �complier average causal e¤ect� (CACE). Note that no con-

tamination can be seen as an extreme special case of monotonic selection in which

X(1) � X(0) = 0 and the complier and treated groups are equivalent.

Similarly, Angrist (2001) showed that estimator (5) based on the multiplicative SMM

under NEM is consistent for the local relative risk (LRR),

LRR =
E fY (1) jX (1) > X (0)g
E fY (0) jX (1) > X (0)g ; (11)

see also Greenland (2000) and Hernán and Robins (2006).

The local odds ratio (LOR) is de�ned as

LOR =
E fY (1) jX (1) > X (0)g

E f1� Y (1) jX (1) > X (0)g=
E fY (0) jX (1) > X (0)g

E f1� Y (0) jX (1) > X (0)g :

Our numerical examples below illustrate that the double-logistic estimator based on (6) is

biased for the LOR under monotonic selection. Clarke and Windmeijer (2009, Appendix

3) show that the double-logistic estimator is not consistent for the LOR under monotonic

selection unless E fY (1)jX(1) = X(0) = 1g = E fY (1)jX(1) > X(0)g. However, a con-

sistent estimator for the LOR is available. Abadie (2003) proposes an estimator and van

der Laan et al. (2007) note how this estimator can be derived based on the relative risk
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estimator (5): �rst calculate dexp(�0) as per usual, then recode the outcome variable as
Y � = 1�Y and calculate dexp(��0) replacing Y by Y � in (5), then the ratio dexp(�0)= dexp(��0)
is consistent for the LOR by symmetry of the relative risk. We refer to this below as the

�LOR estimator�.

6 Numerical Examples

6.1 Data Example

To summarise and make the implications of these results concrete, consider the following

example of an observational study to which instrumental variables have been used to

obtain causal inferences. A study of patients attending clinical practice was carried

out to assess if the �Cox-2�inhibitor treatment performed better than the standard, non-

selective non-steroidal anti-in�ammatory (NSAID) treatment in preventing the unwanted

side-e¤ect of gastrointestinal bleeding after sixty days�follow-up (Brookhart et al., 2006).

The analysis here is based on a subset of 37842 patients who took part in the original

study, of which 26407 were allocated Cox-2 and 11435 were allocated NSAID by their

physicians (Brookhart and Schneeweiss, 2007; Babanezhad et al., 2009).

In our set-up, Y is 1 if the patient experiences gastrointestinal bleeding within 60 days

of being treated and 0 otherwise; andX is 1 if the patient receives Cox-2, and 0 otherwise.

The IV Z for each patient is taken to be the treatment allocated by the prescribing

physician to the preceding patient. Brookhart et al. (2006) originally proposed the use

of physician preference for this study. We take Z to be a valid IV and refer the reader

to Hernán and Robins (2006) for a detailed discussion of how well physician preference

satis�es the conditions set out in Section 2.1.

We �t the additive, multiplicative and logistic SMMs to these data, along with the

naive logistic regression of Y on X and estimate the local odds ratio as described above;

two-tailed 95-percent percentile con�dence intervals are also calculated based on 100 non-
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parametric bootstrap samples. The results are displayed in Table 1. The naive odds ratio

based on the logistic model is 1:032, indicating a negative e¤ect of Cox-2 over NSAIDS in

the trial; the con�dence interval (CI) is (0:80; 1:37) and includes 1, which indicates that

there is insu¢ cient evidence to reject the hypothesis that the treatments are the same.

[TABLE 1 ABOUT HERE]

The naive odds ratio cannot be interpreted as a causal e¤ect but only as a measure

of association because we hypothesise that physicians allocate Cox-2 treatment based on

unobserved factors which could be associated with the risk of gastrointestinal bleeding.

Hence, we use SMMs in order to estimate causal e¤ects among those treated with Cox-2

inhibitors. To recap, for a speci�c SMM we know that its associated NEM assumption

is required for identi�cation of the causal e¤ect, but in Section 4 we showed that it

does not always hold. However, both the additive and multiplicative SMMs do identify

local causal e¤ects if physicians� treatment selection is monotonic. In this example,

monotonicity corresponds to the assumption that no physicians who prescribe Cox-2

for patients after prescribing NSAID for their previous patients (X(0) = 1) would have

prescribed NSAID for the same patients had they instead (counterfactually) prescribed

Cox-2 to their previous patients (X(1) = 0). As such, unless we know that the additive

NEM or monotonicity assumption holds, we cannot know if the estimate based on the

additive SMM (b 0 = �0:0092) can be interpreted as the average treatment e¤ect among
the treated, or as the local treatment e¤ect. However, the e¤ect itself is clearly indicating

less risk of gastrointestinal bleeding as the con�dence interval excludes 0.

The same scenario holds for the multiplicative SMM, but here dexp(�0) = �0:176 and
so is out of the valid range for a risk ratio. Out of range estimates are not uncommon

for moment-based estimators like these. If the multiplicative NEM assumption holds

then this could be because of sampling variability: although the sample size is large,

the gastrointestinal bleeding event is rare (fewer than 250 patients have events) and is
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sensitive to sampling variability. Alternatively, if the multiplicative NEM assumption has

failed then the negative risk ratio may indicate a failure of the monotonicity assumption.

The estimate again indicates a positive e¤ect of Cox-2 inhibitors because the CI does not

include one

The double-logistic SMM estimate (denoted DL SMM in Table 1) - using the saturated

association model described in Section 2.3 - is dexp(�0) = 0:029 (CI: 0:01; 0:73), which

again indicates a positive e¤ect of Cox-2 inhibitors. Inferences can be made about exp(�0)

only if the logistic NEM assumption holds. If one is not prepared to believe that the

logistic NEM assumption is even approximately correct, an alternative is to assume

monotonicity and use the local odds ratio estimator from Section 5. Here it is estimated

to be �0:174,which is very close to the estimate for the multiplicative SMM and so

again out of range. (Note that we would expect these estimates to be close because the

gastrointestinal bleeding event is rare and so the any odds ratio approximates the risk

ratio closely.) In this example, the out of range estimate again raises some doubt as to

whether treatment selection is monotonic; a more likely explanation, perhaps, is that

the logistic NEM assumption approximately holds and the double-logistic SMM estimate

can be interpreted as evidence of a substantial positive e¤ect of Cox-2 inhibitors among

the patients to which it was allocated. The inherent problem is that these questions

cannot be answered on the basis of the available data. Thus this should be interpreted

as a sensitivity analysis in which we �nd some degree of robustness because a positive

e¤ect of Cox-2 is inferred using all of the causal estimators; in addition, we know that

previously conducted randomised controlled trials have also found positive e¤ects of Cox-

2 (Brookhart et al., 2006).

To demonstrate further the important role of the di¤erent NEM assumptions, we

now conduct two analyses where we know the true structural model generating the data.

We �rst look at a scenario where the data come from a bivariate probit model in which
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the true treatment selection mechanism is monotonic and the unobserved confounders

normally distributed. In this scenario, we can analytically calculate and compare the key

causal parameters. In the second setting, we replicate the design of Didelez et al. (2010)

in which treatment and outcome data are generated using a logistic model, and assess

the key causal parameters and the estimators in a Monte Carlo study. In this example,

we also consider the setting where the true selection mechanism is not monotonic. The

aim of both studies is to show the impact of misinterpreting SMM estimates.

6.2 Bivariate Probit

The �rst illustration is based on structural model (8) from Section 3, namely,

Y (x) = I (�+ �x� U > 0) ; X(z) = I (
 + �z � V > 0) ;

where here we set (U; V ) to have the bivariate normal distribution�
U
V

�
� N

��
0
0

�
;

�
1 �
� 1

��
;

and Pr(Z = 1) = 0:5. Note that � indexes the strength of non-ignorability in the selection

mechanism determining compliance, with � = 0 corresponding to ignorable compliance.

For each set of parameter values (�; �; 
; �; �), we can calculate the corresponding values

of the key causal parameters. We �x the parameters in the outcome model to � = 0,

� = 0:1 and look at how the causal parameters vary as a function of (
; �; �).

Figure 1 displays the values of average treatment e¤ects, relative risks and odds ratios

as a function of � for 
 = 0 and � = 0:5. In the �rst panel, ATE denotes the average

treatment e¤ect EfY (1)� Y (0)g, and the parameters of the additive SMM are denoted

as follows:  0 +  1 = EfY (1) � Y (0) jX = 1; Z = 1g by ATEX1Z1,  0 = EfY (1) �

Y (0) jX = 1; Z = 0g by ATEX1Z0, and the average treatment e¤ect among the treated

EfY (1) � Y (0) jX = 1g by ATEX1; LATE denotes EfY (1) � Y (0) jX (1) > X (0)g.

The parameters are similarly de�ned in the second and third panel for the relative risk
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and odds ratio respectively (RRX1Z1 = exp(�0 + �1), ORX1Z0 = exp(�0), LRR, etc.);

for the odds ratio, there is an additional parameter, denoted by DL, corresponding to

the estimand of the double-logistic SMM (6).

For � = 0 and � = 0:1, the marginal expectations are EfY (1)g = �(0:1) = 0:5398

and EfY (0)g = �(0) = 0:5; and hence ATE = 0:5398� 0:5 = 0:0398, RR = 1:0796 and

OR = 1:1730. Likewise, as 
 = 0 and � = 0:5 then EfX (1)g = �(0:5) = 0:6915 and

EfX (0)g = �(0) = 0:5, indicating a large degree of non-compliance in the control arm.

The proportion of compliers in the population is PrfX(1) > X(0)g = EfX (1)�X (0)g =

0:1915.

Figure 1 shows the di¤erences between the local parameters that are identi�ed by the

SMM estimands, LATE and LRR, and their respective parameters in the treated group,

ATEX1 and RRX1. Clearly, the di¤erences are increasing functions of �. We take ATEX1

and RRX1 as the comparison here, as these are the parameters estimated if the SMM�s

corresponding NEM assumption holds. The di¤erences are quite substantial for large

�: for example, if � = 0:5 the LATE equals 0:0457 and the ATEX1 is equal to 0:0400, a

di¤erence of 14%. In terms of risk ratios, the LRR minus 1 equals 0:0634 and the RRX1

minus 1 equals 0:1030, a 62% di¤erence. The magnitude by which NEM is violated is

indicated by the di¤erence between ATEX1Z1 and ATEX1Z0 for the additive SMM, and

between RRX1Z1 and RRX1Z0 for the multiplicative SMM. Both are relatively small

indicating a minor failure of NEM, but the local parameters take quite di¤erent values.

For the odds ratio, the LOR and ORX1 are quite close: for example, if � = 0:5 the LOR

minus 1 is equal to 0:2018 and the ORX1 minus 1 equal to 0:1926, only a small di¤erence

of 4.8%. Interestingly, the estimand of the double-logistic SMM estimator, DL, tracks

the odds ratio OR quite closely here, but not LOR or ORX1: at � = 0:5, DL minus 1 is

equal to 0:1745, a 10% di¤erence from ORX1 and 15:6% di¤erence from LOR.

Figure 2 displays the same plots for 
 = �1 and � = 0:615. We now have EfX (0)g =
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0:159, so there is more compliance in the control group, while the complier proportion

remains 0:1915. Here we �nd values of LATE and ATEX1 at � = 0:5 of 0:0415 and 0:0341

respectively, a di¤erence of 21%. For the LRR and RRX1 (minus 1) the respective values

are 0:0639 and 0:0458, a di¤erence of 40%. In contrast, the LOR and ORX1 are virtually

identical in this case for all �, with DL now tracking both quite closely.

In Figure 3 we set 
 = �1 and � = 1:208 to give EfX (0)g = 0:023. These parameter

values generate data for which no contamination might be expected to provide a good

approximation. As expected, the local parameters LATE and LRR are very close to

ATEX1Z1 and RRX1Z1 respectively, and to ATEX1 and RRX1 too. The LOR and DL

are in this case identical to ORX1Z1 and ORX1.

[FIGURES 1-3 ABOUT HERE]

6.3 Mixed Logistic

Didelez et al. (2010) considers a more complex model for generating non-ignorable non-

compliance using a logistic structural model. In our notation, it is written

X(z) = I (�1 + z�2 +H�3 + zH�4 + V > 0) ; (12)

Y (x) = I (�1 + x�2 +H�3 + xH�4 + U > 0) ; (13)

where U and V are independent logistically distributed random variables, and H is

unobserved. An equivalent expression to (12) is EfX(z)jH = hg = expit(�1 + z�2 +

h�3+zh�4) and for (13) is EfY (x)jH = hg = expit(�1+x�2+h�3+xh�4). Both models

contain interaction terms allowing the e¤ect of latent H to vary depending on z and x,

respectively. There are heterogeneous treatment e¤ects on the latent scale if �4 6= 0 but

this poses no problems as SMMs do not constrain treatment e¤ects to be homogeneous,

or indeed place any constraints on the form of treatment e¤ect heterogeneity. More

importantly, however, the monotonicity assumption X (1) � X (0) holds only if �4 = 0,

and monotonicity is crucial for identi�cation of local causal e¤ects.
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We generate data according to models (12) and (13), setting the parameters �1 = 0,

�2 = 0:5, �3 = 2, �1 = 0, �2 = 0:3, �3 = 2, and specifying H � N (0; 1) and P (Z = 1) =

0:5. Table 2 contains Monte Carlo estimates, based on 1000 replications, of the mean and

standard deviation of the causal parameters de�ned above and the estimands of three

local e¤ect estimators. For the additive and multiplicative SMMs we use (4) and (5). We

further present estimation results for the consistent estimator of the LOR described in

Section 5 and for the double-logistic SMM, again denoted DL. To minimise the impact

of �nite sample bias and maintain our focus on consistency, we generated samples of size

500; 000. The population parameters ATE, ATEX1 etc. are as de�ned above, but are

here calculated using the generated data samples and approximated by the averages over

the 1000 replications. The column denoted stdev contains the Monte Carlo standard

deviations of the estimates.

[TABLE 2 ABOUT HERE]

The results for �4 = �4 = 0 are given in column 1 and are similar to the results found

in the �rst example above. When we introduce an extra source of treatment heterogeneity

by setting �4 = 1 (column 2), we see again that the additive, multiplicative and LOR

SMM estimators are very close to the local parameters. For the odds ratio, it can also be

seen that treatment e¤ect heterogeneity has here exacerbated the di¤erence between the

local and treated group odds ratios, LOR and ORX1 being 1.175 and 1.369 respectively.

The DL SMM estimator is close to the OR in this case.

When the monotonicity assumption is violated by further setting �4 = 1 (column 3),

we see that the three SMM estimates diverge from the local parameters, with the LOR

estimator especially very poorly behaved. In this example, the divergence between the

target parameters, the causal e¤ects in the treated group, and the estimates of the local

treatment e¤ects gets more pronounced. The mean of the DL SMM estimator is here

also much higher than any of the causal treatment e¤ect parameters.
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7 Conclusions

We have highlighted that causal e¤ects on binary outcomes in studies with non-ignorable

non-compliance are not always identi�ed by SMMs, and that additional assumptions

about the causal process generating the observed data are required. For example, the

double-logistic estimator will be valid for its target parameter, the odds ratio exp(�0), if

the true data generating process is well approximated by that described in Babanezhad

et al. (2009); a similar situation exists for the additive and multiplicative SMM models.

Our examples show that failure of these assumptions can lead to misleading inferences.

Causal parameters can be identi�ed by all three SMMs if the design satis�es the

no contamination restriction that the control group has no access to treatment (e.g.,

randomised placebo-controlled trials). While applications of logistic SMMs have mainly

been to designs satisfying the no contamination restriction, not all randomised controlled

trials satisfy it. SMMs can also be applied to observational studies without a randomi-

sation indicator but where Z is chosen to satisfy the assumptions of an instrumental

variable (e.g., Angrist et al., 1996). For applications such as genetic instruments used

within the �Mendelian randomisation�context (e.g., Didelez and Sheehan, 2007), the no

contamination restriction is likely to be implausible, as it is for our data example where

the instrumental variable for physician treatment selection is the previous prescribing

behaviour by the physician. At present, the form of the structural model generating the

potential outcomes in applications such as these is completely unknown (although scien-

ti�c advances may eventually shed some light on its form) and so a naive interpretation

of SMM estimates as causal e¤ects must always be quali�ed.

An alternative assumption is to assume that the mechanism by which patients select

treatment is monotonic. Under monotonicity, the additive and multiplicative SMM esti-

mators are valid for local causal e¤ects, but these can be quite di¤erent from treatment

e¤ects for the treated. Caution is therefore required when interpreting SMM estimates for
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binary outcomes if patients in the control group can receive treatment, with the issues of

monotonicity and the interpretation of local/complier average e¤ects paramount. When

the NEM assumption fails we �nd that the double-logistic estimator does not estimate

the local odds ratio under monotonicity, but an alternative estimator is available that

does.

If the practitioner is agnostic about these as reasonable working assumptions then

we would recommend he/she performs a sensitivity analysis. In addition to the SMMs

discussed here, various causal estimators for binary outcomes based on instrumental

variable estimators have been proposed in the literature; see reviews by Babanezhad

et al. (2009), Clarke and Windmeijer (2009) and Didelez et al. (2010). Each estimator

makes alternative identifying assumptions, and assessing robustness to these assumptions

should be regarded as essential. Bounds on causal e¤ects can be calculated for the simple

all-binary-variable case without any assumptions further to those set out in Section 2.1

(Balke and Pearl, 1997); for more general problems, a method for calculating bounds

for causal e¤ects for a �exible class of structural models has recently been developed by

Chesher (2010).

Finally, we note that recent work by van der Laan et al. (2007) has extended the

estimating equation approaches developed by Vansteelandt and Goetghebeur (2003) and

Robins and Rotnitzky (2004) to incorporate assumptions about two models (both possi-

bly misspeci�ed) for the conditional means of Y and Y (0) given X and Z. The resulting

estimating equations are consistent under fairly weak conditions, but inferences must

be interpreted carefully; the implications of this approach for practice have yet to be

investigated.

Appendix: Structural Mean Models and the Control
Function Approach
We begin with a simple structural model where treatment X(z) is a continuous mea-
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sure. The model speci�cation is

Y (x) = I (�+ �x+ U > 0) ; X(z) = 
 + �z + V;

where U and V follow a zero-mean bivariate normal distribution. We can then write

U = �V +W;

with � = Cov (U; V ) =V ar (V ) and W � N(0; �2w), leading to a probit SMM (e.g., Goet-

ghebeur and Vansteelandt, 2005)

��1 fE (Y jX;Z)g � ��1 fE (Y (0) jX;Z)g = ��X;

where ��1 is the inverse distribution function of the standard normal distribution, and

E fY (0) jX;Zg = �(�0 + �1X + �2Z) ;

with �0 = (�+ �
) =�w, �1 = �=�w, �2 = ���=�w, �� = �=�w. Clearly, this model

satis�es the NEM and the CMI assumptions, and thus the probit SMM estimator is a

consistent estimator for ��.

Rivers and Vuong (1988) study the ML and control function estimator for the same

probit model. The control function estimator is a two-stage estimator in which stage one

involves obtaining ordinary least squares estimates of b
 and b�, and stage two involves
�tting a probit regression including X and the �tted residual, or control function, bV =

X � b
 � b�Z. The estimated coe¢ cient on X is then a consistent estimator of ��. In

Babanezhad et al. (2009) this estimator is referred to as the �Two-stage IV-estimator I�.

Keeping the distribution of V normal, we can obtain a model that satis�es the as-

sumptions of the logistic SMM by de�ning the distribution of U to be such that again

U = �V +W , but now W is logistically distributed, independent of Z and V .

We now further explore the relationship between the control function approach and

the logistic SMM for binary outcomes and treatments. The structural model in Section
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4, satisfying the logistic SMM assumptions, was given by

Y (x) = I (�+ �0x+ U > 0) ; X (z) = I (
 + �z + V > 0) ;

where

U = (�0 � �) + �1X + �2Z +W;

and V and W are marginally standard logistic, mutually independent and independent

of Z, with the � parameters restricted to satisfy the CMI assumption. It is not directly

clear what this speci�cation implies for the correlation between U and V , but if we

specify the residual R = X �E (XjZ) = X � p0 � (p1 � p0)Z, with p0 = E fX (0)g and

p1 = EfX(1)g, we see that

U = (�0 � �+ �1p0) + �1R + f�2 + �1 (p1 � p0)gZ +W:

If we then further restrict E (U jZ) = 0, we get that �2 = ��1 (p1 � p0), �0 = � � �1p0

and thus

U = �1R +W: (14)

It is interesting to note that the CMI assumption can hold when E (U jZ) 6= 0 and vice

versa, although in both cases Z is not independent of U . If (14) holds, then the simple

logit estimator, regressing Y on X and the estimated residual bR will result in a consistent
estimator of �0. If the parameters are such that both (14) and the CMI assumptions hold,

then both this simple logit estimator and the logistic SMM estimator are consistent.
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Figure 1. γ = 0, δ = 0.500

Figure 2. γ = −1, δ = 0.615

Figure 3. γ = −2, δ = 1.208
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Table 1. Estimation results
Estimator Estimate 95% CI
Logistic OR 1.032 [0.80, 1.37]
Add. SMM −0.0092 [−0.017,−0.002]
Mult. SMM −0.176 [−1.56, 0.81]
LOR Estimator −0.174 [−1.56, 0.70]
DL SMM 0.029 [0.01, 0.73]

Notes: 95% CI calculated from 100 bootstrap samples

Table 2. Causal parameters and SMM estimates for logistic model
(1) (2) (3)

α4 = β4 = 0 α4 = 0, β4 = 1 α4 = 1, β4 = 1
mean stdev mean stdev mean stdev

ATE 0.0453 0.0344 0.0344
ATEX1Z1 0.0455 0.0624 0.0708
ATEX1Z0 0.0437 0.0658 0.0658
ATEX1 0.0447 0.0640 0.0684
LATE 0.0574 0.0402 0.0923
Add. SMM 0.0573 0 .0179 0.0402 0 .0181 0.1143 0 .0229

RR 1.0907 1.0688 1.0688
RRX1Z1 1.0682 1.0935 1.1006
RRX1Z0 1.0627 1.0944 1.0944
RRX1 1.0656 1.0939 1.0977
LRR 1.1219 1.0854 1.1376
Mult. SMM 1.1224 0 .0402 1.0861 0 .0400 1.1515 0 .0332

OR 1.1994 1.1478 1.1478
ORX1Z1 1.2376 1.3464 1.4454
ORX1Z0 1.2421 1.3981 1.3981
ORX1 1.2394 1.3688 1.4225
LOR 1.2586 1.1748 1.5800
LOR estimator 1.2614 0 .0903 1.1778 0 .0852 2.2142 0 .3659
DL SMM 1.2199 0 .0772 1.1420 0 .0685 2.0390 0 .2610

Notes: 1000 Monte Carlo replications; sample size 500, 000. Population parameters
ATE etc. are calculated within the samples and approximated by the averages of
the 1000 replications
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