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Abstract 

This paper modifies the Wald development of statistical decision theory to offer new perspective on the 
performance of certain statistical treatment rules.  We study the quantile performance of test rules, ones 
that use the outcomes of hypothesis tests to allocate a population to two treatments.  Let λ denote the 
quantile used to evaluate performance.  Define a test rule to be λ-quantile optimal if it maximizes 
λ-quantile welfare in every state of nature.  We show that a test rule is λ-quantile optimal if and only if 
its error probabilities are less than λ in all states where the two treatments yield different welfare.  We 
give conditions under which λ-quantile optimal test rules do and do not exist.  A sufficient condition for 
existence of optimal rules is that the state space be finite and the data enable sufficiently precise 
estimation of the true state.  Optimal rules do not exist when the state space is connected and other 
regularity conditions hold, but near-optimal rules may exist.  These nuanced findings differ sharply from 
measurement of mean performance, as mean optimal test rules generically do not exist.  We present 
further analysis that holds when the data are real-valued and generated by a sampling distribution which 
satisfies the monotone-likelihood ratio (MLR) property with respect to the average treatment effect.  We 
use the MLR property to characterize the stochastic-dominance admissibility of STRs when the data have 
a continuous distribution and then generate findings on the quantile admissibility of test rules. 

We have benefitted from the opportunity to present parts of this work at the January 2014 Workshop on 
Likelihood and Simplicity at Bar-Ilan University, the November 2014 Cemmap Conference on Microdata 
Methods and Practice, and in seminars at the Center for the Study of Rationality of the Hebrew University 
of Jerusalem, Northwestern University, the University of California at Berkeley, and University College 
London. 
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1. Introduction 

 

This paper modifies one feature of the Wald (1950) development of finite-sample statistical 

decision theory to offer new perspective on the performance of certain statistical treatment rules.  We 

study the quantile performance of rules that use the outcomes of hypothesis tests to allocate a population 

of observationally identical persons to two treatments. 

Wald considered the broad problem of using informative sample data to make decisions under 

uncertainty.  He posed the task as choice of a statistical decision function, which maps potentially 

available data into a choice among the feasible actions.  He recommended ex ante evaluation of 

statistical decision functions as procedures, chosen prior to realization of the data, specifying how a 

decision maker would use whatever data may be realized.  Expressing the objective as minimization of a 

loss function, he proposed that the decision maker evaluate a statistical decision function by its mean 

performance across realizations of the sampling process, which he termed risk. 

In the presence of uncertainty about the loss function and the sampling process yielding the data, 

Wald prescribed a three-step decision process.  The first stage specifies the state space (parameter 

space), which indexes the loss functions and sampling distributions that the decision maker deems 

possible.  The second stage eliminates inadmissible statistical decision functions.  A decision function 

is inadmissible (weakly dominated) if there exists another one that yields at least as good mean sampling 

performance in every possible state of nature and strictly better mean performance in some state.  The 

third stage uses some criterion to choose an admissible statistical decision function.  Wald considered 

the minimax criterion, but researchers have also studied other criteria such as minimax regret and 

minimization of a subjective mean of the risk function (Bayes risk). 

Manski (2004, 2005), Manski and Tetenov (2007), Hirano and Porter (2009), Stoye (2009, 2012), 

and Tetenov (2012) have used the Wald framework to study how a planner might use sample data on 



2 
 
treatment response to choose treatments for the members of a population.  In this setting, a statistical 

decision function uses the data to choose a treatment allocation, so such a function has been called a 

statistical treatment rule (STR).  The planner's objective has been expressed as maximization of a social 

welfare function that sums treatment outcomes across the population. 

An important special form of STR uses the outcome of an hypothesis test to allocate a population 

of observationally identical persons to two treatments.  For example, data from a randomized clinical 

trial (RCT) may be used to inform allocation of a group of similar medical patients between a status quo 

treatment and an innovation.  A common suggestion is to use a hypothesis test to choose between the 

two treatments.  The null hypothesis is that the innovation is no better than the status quo and the 

alternative is that the innovation is better.  Using the data to test the null, a health planner assigns all 

patients to the innovation if the null is rejected and all to the status quo treatment if the null is not 

rejected. 

The U. S. Food and Drug Administration (FDA) uses such a test to decide on drug approval. A 

pharmaceutical firm wanting approval of a new drug (the innovation) performs RCTs that compare the 

new drug with an approved drug or placebo (the status quo).  Approval of the new drug normally 

requires rejection of the null hypothesis in two independent trials (Fisher and Moyé, 1999). 

How well do rules based on hypothesis tests perform?  This question has been difficult to 

address within the Wald framework.  Consider the basic matter of admissibility.  The only findings to 

date concern a special setting in which (a) treatment outcomes are binary (success or failure), (b) the 

welfare achieved by a treatment allocation is a monotone and weakly concave function of its 

population-wide success rate, (c) the planner knows the population success rate that would occur if all 

persons were to receive the status quo treatment, and (d) the available data on response to the innovation 

is the empirical success rate in an RCT. 

In this context, Manski (2005) observed that a theorem of Karlin and Rubin (1956) characterizes 

the set of admissible STRs when welfare is linear in the population success rate.  Then the admissible 
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rules are the monotone step functions that assign everyone respectively to the innovation or status quo if 

the empirical success rate of the innovation in the RCT is above or below some specified threshold.  

This implies that a test-based STR, henceforth called a test rule, is admissible if and only if the test 

respectively rejects or does not reject the null hypothesis when the empirical success rate in the RCT is 

above or below a specified threshold.  Subsequent work of Manski and Tetenov (2007) considers 

situations in which welfare is a concave-monotone function of the population success rate and finds that 

STRs that are monotone step-functions remain admissible if the welfare function has sufficiently weak 

curvature. 

To provide new perspective on test rules, this paper modifies the criterion used by Wald to 

evaluate the sampling performance of statistical decision functions.  Whereas Wald proposed 

measurement of mean performance across potential samples, we instead measure quantile performance.  

Econometricians and statisticians have long known that the mean and quantiles of a probability 

distribution provide interesting alternative point predictors of the realization of a random variable.  

Analogously, maximization of expected and quantile utility provide interesting alternative criteria for 

decision making under uncertainty. 

Decision making using a quantile-utility criterion was proposed in Manski (1988) in a setting 

without sample data.  It was observed there that maximization of expected and quantile utility differ in 

important respects. Whereas the ranking of actions by expected utility is invariant only to cardinal 

transformations of the objective function, the ranking by quantile utility is invariant to ordinal 

transformations.  Whereas expected utility conveys risk preferences through the shape of the utility 

function, quantile utility does so through the specified quantile, with higher values conveying more risk 

preference.  Whereas expected utility is not well-defined when the distribution of utility has unbounded 

support with fat tails, quantile utility is always well-defined. 

It turns out to be much simpler to analyze the quantile performance of test rules than their mean 

performance.  Whereas the mean performance of a test rule depends jointly on the probabilities and 
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magnitudes of errors in treatment assignment, quantile performance depends only on error probabilities.  

In this respect, quantile performance is similar to classical hypothesis testing, which also focuses 

exclusively on error probabilities.  However, the quantile performance of test rules differs from classical 

testing in the way that it uses error probabilities. 

After formally introducing concepts and notation in Section 2, we develop the primary analysis in 

Section 3.  We present two polar findings, determined by the error probabilities of an hypothesis test.  

Let λ ∈ (0, 1) denote the quantile used to evaluate performance.  Define a test rule to respectively be 

λ-quantile optimal or minimal if it respectively maximizes or minimizes λ-quantile welfare in every state 

of nature.  Proposition 1 shows that a test-based rule is λ-quantile optimal if and only if its error 

probabilities are less than λ in all states where the two treatments yield different welfare.  Contrariwise, 

a test rule is λ-quantile minimal if and only if its error probabilities are greater than or equal to λ in all 

states where the treatments yield different welfare.  The properties of optimality and minimality are 

much stronger than admissibility and inadmissibility. 

We give conditions under which λ-quantile optimal test rules do and do not exist.  We show that 

optimal rules always exist when λ > ½ and sometimes exist when λ ≤ ½.  The main positive finding in 

the latter setting (Proposition 2) implies that optimal rules exist when the state space is finite and the data 

enable sufficiently precise estimation of the true state.  The main negative finding (Proposition 3) is that 

optimal rules do not exist when the state space is connected and other regularity conditions hold.  In this 

setting near-optimal rules may exist.  These nuanced findings differ sharply from measurement of mean 

performance, as mean optimal test rules generically do not exist. 

A fundamental feature of the quantile performance of test rules is that all error probabilities 

symmetrically determine the results.  In contrast, the classical theory of hypothesis testing differentiates 

between null and alternative hypotheses, and correspondingly between Type I and Type II errors.  It 

restricts attention to tests that yield a predetermined probability of a Type I error (conventionally 0.05 or 

0.01) and seeks a test of this type that yields an adequately small probability of a Type II error, typically 
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0.20.  For example, an FDA document providing guidance for the design of RCTs evaluating new 

medical devices states that the probability of a Type I error is conventionally set to 0.05 and that the 

probability of a Type II error depends on the claim for the device but should not exceed 0.20 (U. S. Food 

and Drug Administration, 2014).  The International Conference on Harmonisation (ICH) has provided 

similar guidance for the design of RCTs evaluating pharmaceuticals.  The ICH document states the 

following (International Conference on Harmonization, 1999, p. 1923): 

“Conventionally the probability of type I error is set at 5% or less or as dictated by any adjustments 

made necessary for multiplicity considerations; the precise choice may be influenced by the prior 

plausibility of the hypothesis under test and the desired impact of the results. The probability of 

type II error is conventionally set at 10% to 20%; it is in the sponsor’s interest to keep this figure as 

low as feasible especially in the case of trials that are difficult or impossible to repeat. Alternative 

values to the conventional levels of type I and type II error may be acceptable or even preferable in 

some cases.”  

Such asymmetric treatment of the two hypotheses is illogical from the perspective of statistical 

decision theory.  Proposition 4 shows that, given a test with predetermined size less than λ, a decision 

maker concerned with λ-quantile performance may be able to do better by shrinking the acceptance 

region for the null hypothesis to some extent and correspondingly enlarging the acceptance region for the 

alternative.  For example, the FDA view that 0.05 and 0.20 are acceptable probabilities of Type I and 

Type II error suggests that if the agency were to assess new medical devices by quantile performance in 

RCTs, it might set λ = 0.20 and want to adopt a test rule that yields equal probabilities of Type I and Type 

II errors that are less than 0.20. 

 Section 4 presents further analysis that holds when the data are real-valued and generated by a 

sampling distribution which satisfies the monotone-likelihood ratio (MLR) property with respect to the 

average treatment effect.  Statisticians and econometricians have long appreciated that the MLR property 

is mathematically benign.  Karlin and Rubin (1956) and Manski and Tetenov (2007) have previously 

used it in their studies of the mean admissibility of STRs.  In this paper we use it to characterize 
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admissibility of STRs when the data have a continuous distribution.  Proposition 5 shows that any STR 

is weakly stochastically dominated by a STR that varies treatment assignment shares monotonically with 

the data.  Proposition 6 then fully characterizes which fractional monotone STRs are quantile admissible. 

 

 

2. Concepts and Notation 

 

2.1. The Planning Problem 

 

The setup is as in Manski (2004) and Manski and Tetenov (2007).  A planner must assign one of 

two treatments to each member of a treatment population, denoted J.  The feasible treatments are T = {a, 

b}.  Each j ∈ J has a response function uj(⋅): T → Y mapping treatments t ∈ T into individual welfare 

outcomes uj(t) ∈ R.  Treatment is individualistic; that is, a person's outcome may depend on the 

treatment he is assigned but not on the treatments assigned to others.  The population is a probability 

space (J, Ω, P), and the probability distribution P[u(⋅)] of the random function u(⋅): T → R describes 

treatment response across the population.  The population is “large,” in the formal sense that J is 

uncountable and P(j) = 0, j ∈ J. 

While treatment response may be heterogeneous, the members of the population are 

observationally identical to the planner.  That is, the planner does not observe person-specific covariates 

that would enable systematic differentiation of treatment of different persons.  However, the planner can 

randomly allocate persons to the two treatments with specified allocation probabilities. 

A statistical treatment rule maps sample data into a treatment allocation.  Let Q denote the 

sampling distribution generating the available data and let Ψ denote the sample space; that is, Ψ is the set 

of data samples that may be drawn under Q.  Let Δ denote the space of functions that map T × Ψ into the 
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unit interval and that satisfy the adding-up conditions: δ ∈ Δ  ⇒  δ(a, ψ) + δ(b, ψ) = 1,  ∀  ψ ∈ Ψ.  

Each function δ ∈ Δ defines a statistical treatment rule, δ(a, ψ) and δ(b, ψ) being the fractions of the 

population assigned to treatments a and b when the data are ψ.  Observe that this definition of an STR 

does not specify which persons receive each treatment, only the assignment shares.  Designation of the 

particular persons receiving each treatment is immaterial because assignment is random, the population is 

large, and the planner has an additive welfare function.  As δ(a, ψ) + δ(b, ψ) = 1, we use the shorthand 

δ(ψ) to denote the fraction assigned to treatment b.  The fraction assigned to treatment a is 1 − δ(ψ). 

The planner wants to maximize population welfare, which adds welfare outcomes across persons.  

Given data ψ, the population welfare that would be realized if the planner were to choose rule δ is 

 

(1)     U(δ, P, ψ)  ≡  E[u(a)]⋅[1 − δ(ψ)] + E[u(b)]⋅δ(ψ)  ≡  α⋅[1 − δ(ψ)] + β⋅δ(ψ), 

 

where α ≡ E[u(a)] ≡ ∫Juj(a)dP(j) and β ≡ E[u(b)] ≡ ∫Juj(b)dP(j) are assumed to be finite.  Inspection of (1) 

shows that, whatever value ψ may take, it is optimal to set δ(ψ) = 0 if α > β and δ(ψ) = 1 if α < β.  All 

allocations are optimal if α = β. 

The problem of interest is treatment choice when knowledge of P and Q does not suffice to 

determine the ordering of α and β.  Hence, the planner does not know the optimal treatment. 

 

2.2. Evaluating STRs by their State-Dependent Welfare Distributions 

 

The starting point for development of implementable criteria for treatment choice under 

uncertainty is specification of a state space, say S.  Thus, let {(Ps, Qs), s ∈ S} be the set of (P, Q) pairs 

that the planner deems possible.  The planner does not know the optimal treatment if S contains at least 

one state such that αs > βs and another such that αs < βs.  We assume this throughout. 
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Considered as a function of ψ, U(δ, Ps, ψ) is a random variable with state-dependent sampling 

distribution Qs[U(δ, Ps, ψ)].  Following Wald's view of statistical decision functions as procedures, we 

use the vector {Qs[U(δ, Ps, ψ)], s ∈ S} of state-dependent welfare distributions to evaluate rule δ.  In 

principle this vector is computable, whatever the state space and sampling process may be.  Hence, in 

principle, a planner can compare the vectors of state-dependent welfare distributions yielded by different 

STRs and base treatment choice on this comparison. 

How might a planner compare the state-dependent welfare distributions yielded by different 

STRs?  The planner wants to maximize welfare, so it seems self-evident that he should weakly prefer 

rule δ to an alternative rule δ′ if, in every s ∈ S, Qs[U(δ, Ps, ψ)] equals or stochastically dominates 

Qs[U(δ′, Ps, ψ)].  It is less obvious how one should compare rules whose state-dependent welfare 

distributions are not uniformly ordered in this manner. 

Writing in the mid-twentieth century, Wald adopted the then ubiquitous practice of using 

expected utility (equivalently, expected loss) to evaluate actions that yield probability distributions of 

outcomes.  Following Wald, recent research on treatment choice with sample data has evaluated STRs 

by their mean performance across realizations of the sampling process.  The mean performance of rule δ 

in state s, denoted W(δ, Ps, Qs), is 

 

(2)  W(δ, Ps, Qs)  =  αs⋅{1 − Es[δ(ψ)]} + βs⋅Es[δ(ψ)], 

 

where Es[δ(ψ)] ≡ ∫Ψ δ(ψ)dQs(ψ) is the mean (across potential samples) fraction of persons who are 

assigned to treatment b. 

Should a planner seek to maximize mean performance across potential samples rather than some 

other functional of the welfare distribution?  A common view among economists has been that the von 

Neumann and Morgenstern (1944) and Savage (1954) axiomatic derivations of expected utility 
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maximization provide rationales to favor this criterion over others.  However, subsequent developments 

in decision theory have called into question whether the axioms that yield expected utility maximization 

are as compelling as they once seemed.  See, for example, Binmore (2009).  Among other 

developments, Rostek (2010) has provided an axiomatic derivation of quantile utility maximization. 

Eschewing axiomatic thinking, Manski (1988, 2011) argues that one may reasonably seek to 

maximize any functional of the welfare distribution that at least weakly respects stochastic dominance.  

One may, for example, measure performance by a quantile of the welfare distribution.  To evaluate 

quantile performance, observe that welfare in state s may be written 

 

(1′)   U(δ, Ps, ψ)  =  αs + (βs − αs)δ(ψ)  =  βs + (αs − βs)[1 − δ(ψ)]. 

 

The invariance of quantiles to increasing continuous transformations implies that, for any λ ∈ (0, 1), the 

λ-quantile of welfare in state s, denoted Vλ(δ, Ps, Qs), is 

 

(3) Vλ(δ, Ps, Qs) =  αs + (βs − αs)⋅vλs[δ(ψ)]      if  αs ≤ βs, 

=  βs + (αs − βs)⋅vλs[1 − δ(ψ)]   if  αs ≥ βs, 

 

where vλs[δ(ψ)] and vλs[1 − δ(ψ)] denote the λ-quantile of δ(ψ) and 1 − δ(ψ) in state s.  Thus, welfare 

quantiles are one of two linear functions of quantiles of the treatment allocation. 

Mean and quantile performance are obviously identical in states where αs = βs.  However, they 

generically differ in states where αs ≠ βs.  Expressions (2) and (3) simplify when the STR is uniformly 

singleton.  Rule δ is uniformly singleton if, for every possible data realization, δ assigns the entire 

population to one of the two treatments.  Thus, for each ψ ∈ Ψ, either δ(ψ) = 0 or δ(ψ) = 1. 

Consider a state with αs ≠ βs.  Let Rs(δ) be the state-dependent probability that δ yields an error, 
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choosing the inferior treatment over the superior one.  That is, 

 

(4) Rs(δ) =  Qs[δ(ψ) = 0]   if αs < βs, 

=  Qs[δ(ψ) = 1]   if αs > βs. 

 

It is the case that 

 

(5) W(δ, Ps, Qs) =  min(αs, βs)⋅Rs(δ) + max(αs, βs)⋅[1 − Rs(δ)], 

 

(6) Vλ(δ, Ps, Qs) =  min(αs, βs)  if  Rs(δ) ≥ λ,  

=  max(αs, βs)  if  Rs(δ) < λ. 

 

Observe that mean and quantile performance share the property of being monotonically decreasing in the 

error probability, falling from max(αs, βs) to min(αs, βs) as Rs(δ) increases from 0 to 1.  However, they 

differ substantially in the pattern of decrease.  Whereas mean performance varies linearly with the error 

probability, quantile performance is a step function. 

We may now define mean and quantile admissibility and inadmissibility.  Rule δ is mean 

inadmissible (admissible) if there exists (does not exist) another rule δ′ such that W(δ′ Ps, Qs) ≥ W(δ, Ps, 

Qs) for all s ∈ S and W(δ′ Ps, Qs) > W(δ, Ps, Qs) for some s.  Analogously, δ is λ-quantile inadmissible 

(admissible) if there exists (does not exist) a δ′ such that Vλ(δ′, Ps, Qs) ≥ Vλ(δ, Ps, Qs) for all s ∈ S and 

Vλ(δ′, Ps, Qs) > Vλ(δ, Ps, Qs) for some s. 

Going further, we define quantile optimality and minimality.  Rule δ is λ-quantile optimal if 

Vλ(δ, Ps, Qs) = sup δ' ∈ Δ Vλ(δ', Ps, Qs) = max(αs, βs) for all s ∈ S.  δ is λ-quantile minimal if Vλ(δ, Ps, Qs) = 

inf δ' ∈ Δ Vλ(δ', Ps, Qs) = min(αs, βs) for all s ∈ S.  λ-quantile optimality and minimality are stronger 
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properties than λ-quantile admissibility and inadmissibility.  Every λ-quantile optimal rule is λ-quantile 

admissible.  Every λ-quantile minimal rule is dominated by a data-invariant rule that sets either δ(ψ) = 0 

or δ(ψ) = 1 for all ψ ∈ Ψ.  Section 3 studies the circumstances in which λ-quantile optimal and minimal 

rules do and do not exist. 

We can analogously define mean optimality and minimality, but these concepts are not useful in 

practice.  Rule δ is mean optimal if W(δ, Ps, Qs) = max(αs, βs) for all s ∈ S and is mean minimal if W(δ, 

Ps, Qs) = min(αs, βs) for all s ∈ S.  These properties are achievable only if, for all s ∈ S, the sample data 

reveal the sign of βs − αs with probability one. 

 

 

3. Quantile Optimality and Minimality of Test Rules 

 

Construction of a test rule begins by partitioning the state space into disjoint subsets Sa and Sb, 

where Sa contains all states in which treatment a is optimal and Sb contains all states in which b is 

optimal.  Thus, αs > βs ⇒ s ∈ Sa, αs < βs ⇒ s ∈ Sb, and the states with αs = βs are somehow split between 

the two sets.  Let s* denote the unknown true state.  The two hypotheses are [s* ∈ Sa] and [s* ∈ Sb]. 

A test rule δ partitions the sample space Ψ into disjoint acceptance regions Ψδa and Ψδb.  When 

the data ψ lie in Ψδa, the rule accepts hypothesis [s* ∈ Sa] by setting δ(ψ) = 0.  When ψ lies in Ψδb, the 

rule accepts [s* ∈ Sb] by setting δ(ψ) = 1.  We use the word "accepts" rather than the traditional term 

"does not reject" because treatment choice is an affirmative action. 

The above shows that test-based rules are uniformly singleton.  Indeed, the converse holds as 

well. If δ is uniformly singleton, one can collect all of the data values for which the rule assigns everyone 

to treatment a, call this subset of the sample space the acceptance region Ψδa, and do likewise for Ψδb.  
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3.1. Basic Finding 

 

Given the equivalence of uniformly singleton and test rules, we can study the quantile 

performance of uniformly singleton rules and apply the findings immediately to test rules. The basic 

finding is this elementary but powerful proposition: 

 

Proposition 1:  Let rule δ be uniformly singleton. δ is λ-quantile optimal if and only if Rs(δ) < λ for all s 

∈ S s. t. αs ≠ βs.  δ is λ-quantile minimal if and only if Rs(δ) ≥ λ for all s ∈ S s. t. αs ≠ βs.           

 

Proof:  Vλ(δ, Ps, Qs) = max(αs, βs) = min(αs, βs) when αs = βs.  Hence, it suffices to consider states 

where αs ≠ βs.  Application of equation (6) to these states yields the results. 

Q. E. D. 

 

The proposition has strikingly contrasting implications for evaluation of test rules, dependent on 

the error probabilities.  A rule with error probabilities uniformly less than λ is the best STR possible 

from the perspective of λ-quantile welfare.  One with error probabilities uniformly greater than or equal 

to λ is the worst possible.  Observe that all error probabilities symmetrically determine the results.  The 

proposition does not distinguish Type I and Type II errors as in the classical theory of hypothesis testing. 

A special but important class of hypothesis tests juxtaposes two simple hypotheses.  Then the 

Neyman-Pearson Lemma shows that, among all tests with a specified probability of a Type I error, the 

likelihood-ratio test minimizes the probability of a Type II error, and vice versa.  In the context of 

treatment choice, having two simple hypotheses means that S contains two states, with treatment a better 

in one state and b better in the other.  Then the Neyman-Pearson Lemma implies that a planner 

considering use of a test rule need not look beyond the class of likelihood-ratio tests.  Applying 
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Proposition 1 to likelihood ratio tests yields this corollary, which makes explicit the form of error 

probabilities for likelihood-ratio tests. 

 

Corollary:  Let S = {0, 1}, with α0 > β0 and α1 < β1.  Let the sample data have distinct state-dependent 

sampling distributions Q0 and Q1 with either Lebesgue density or probability mass functions q0(⋅) and 

q1(⋅).  Let η ≥ 0 and let δ be the likelihood-ratio rule with threshold η; thus, Ψδa = [ψ ∈ Ψ: q1(ψ) ≤ 

ηq0(ψ)] and Ψδb = [ψ ∈ Ψ: q1(ψ) > ηq0(ψ)].  Then δ is λ-quantile optimal if and only if max {Q0[q1(ψ) > 

ηq0(ψ)], Q1[q1(ψ) ≤ ηq0(ψ)]} < λ.  δ is λ-quantile minimal if and only if min {Q0[q1(ψ) > ηq0(ψ)], 

Q1[q1(ψ) ≤ ηq0(ψ)]} ≥ λ.      

 

Proof:  Rule δ has error probabilities R0(δ) = Q0[q1(ψ) > ηq0(ψ)] and R1(δ) = Q1[q1(ψ) ≤ ηq0(ψ)].  

Hence, the result is an immediate application of the proposition. 

Q. E. D. 

 

In practice, the sets Sa and Sb typically contain multiple elements; that is, they are composite 

rather than simple hypotheses.  The Neyman-Pearson Lemma generically does not extend to tests of 

composite hypotheses, so a planner considering test rules may not want to restrict attention to rules based 

on likelihood-ratio tests.  Nevertheless, a planner measuring λ-quantile performance will still want to 

determine if there exist test-based rules that are λ-quantile optimal and, if so, to choose such a test.  The 

planner will not want to choose a rule that is λ-quantile minimal. 

An obvious way to improve on a minimal rule is to choose a data-invariant rule, one that makes 

either Ψδa or Ψδb the entirety of the sample space.  A planner who lets Ψδa = Ψ always assigns the entire 

population to treatment a, regardless of the data.  This rule has zero probability of error for all s ∈ Sa and 

probability one of error for all s ∈ Sb.  Hence, the rule is neither λ-quantile optimal nor minimal, 
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whatever value the planner specifies for λ.  Letting Ψδb = Ψ yields the analogous result. 

A potentially more interesting way to improve on a minimal rule is to choose a uniformly 

fractional rule, one such that 0 < δ(ψ) < 1 for all ψ ∈ Ψ.  In every state such that αs ≠ βs, such a rule 

always yields welfare that is strictly greater than min(αs, βs) and strictly less than max(αs, βs).  Hence, the 

rule is neither λ-quantile optimal nor minimal. 

When do there exist quantile optimal test rules?  Sections 3.2 through 3.5 report some findings. 

 

3.2. Existence of Quantile Optimal Test Rules 

 

There exists an obvious λ-quantile optimal rule whenever λ > ½.  While one ordinarily thinks of 

ψ as data that are informative about treatment response, statistical decision theory also encompasses study 

of STRs that make treatment choice vary with uninformative data.  That is, δ may make the treatment 

allocation depend on data generated by a randomizing device.  Suppose in particular that Ψ = {0, 1}, 

Qs(ψ = 0) = Qs(ψ = 1) = ½ for all s ∈ S, and δ is the rule that lets Ψδa = {0} and Ψδb = {1}.  The error 

probabilities for this test rule are Rs(δ) = ½ for all s ∈ S.  Hence, δ is λ-quantile minimal for all λ ≤ ½ 

and λ-quantile optimal for all λ > ½.  See Sections 3.4 and 3.5 for further discussion of randomized test 

rules. 

To the best of our knowledge, there exists no similarly obvious way to form a λ-quantile optimal 

rule when λ ≤ ½.  In this domain, optimality becomes a more stringent condition as λ decreases and as 

the state space expands.  It appears infeasible to perform an elementary general analysis, but we can 

make progress by examining particular contexts. 

A preliminary finding is that there exists no λ-quantile optimal rule with λ ≤ ½ if the data are 

uninformative about the sign of the average treatment effect, in the sense that the sampling distribution 

does not vary with the sign of β − α.  Suppose that there exist two states 0 and 1 such that α0 > β0, α1 < 



15 
 
β1, and Q0 = Q1.  Then, for any test rule δ, the error probabilities in the two states satisfy R0(δ) + R1(δ) = 

1.  Hence, the error probability in one state is necessarily at least equal to 1/2.  Hence, quantile 

optimality is impossible for λ ≤ 1/2. 

 Suppose that the sampling distribution of the data varies with the sign of the average treatment 

effect.  Proposition 2 demonstrates that quantile optimal rules exist if there is a positive distance between 

the sets Sa and Sb (for example, if S is finite), and the data enable sufficiently precise estimation of the 

true state.  In contrast, Proposition 3 shows that for λ < ½, no λ-quantile optimal test rule exists if the set 

S is connected and other regularity conditions hold.  In combination, the two propositions show that 

quantile optimality is neither an empty concept nor ubiquitous.  It is attainable by a test rule in some 

settings but not in others.  In the setting of Proposition 3, we show by example that a test rule may be 

nearly optimal even though not exactly so. 

 

Proposition 2: Let S be a subset of a metric space (Θ, d) with distance d(⋅, ⋅).  Let 

 

(7) ε = ½ ⋅ min s ∈ Sa , s' ∈ Sb d(s, s') > 0. 

 

Suppose that an estimator š(⋅): Ψ → Θ is ε-far from the true state s with probability below λ: 

 

(8) Qs[d(š(ψ), s) ≥ ε] < λ  for every  s ∈ S. 

 

Then the minimum-distance test rule 

 

(9) δmd(ψ)  ≡  1[min s ∈ Sb d(š(ψ), s) < min s ∈ Sa d(š(ψ), s)] 
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is λ-quantile optimal.            

 

Proof: It follows from the definition of ε that in every state s ∈ Sa, 

            d(š(ψ), s) < ε  ⇒  d(š(ψ), s) < d(š(ψ), s') for all s' ∈ Sb. 

The same is true for s ∈ Sb and s' ∈ Sa.  Hence, a necessary condition for rule (8) to yield an error when s 

is the true state is that d(š(ψ), s) ≥ ε.  Hence, 

            Rs(δmd)  ≤  Qs[d(š(ψ), s) ≥ ε]. 

It follows from this and (8) that Rs(δmd) < λ for every s ∈ S.  Hence, the rule is optimal.  

                                                                            Q. E. D. 

 

Remark: A sufficient condition for (7) to hold is that the average treatment effect βs − αs be uniformly 

continuous in s and bounded away from zero.  If the state space S is finite, condition (8) is satisfied 

whenever š(⋅) is a weakly consistent estimator of the true state and the sample size is sufficiently large. 

 

Proposition 3: Let S be a connected subset of a metric space (Θ, d) with distance d(⋅, ⋅).  Let Sa> ≡ {s ∈ 

S: αs > βs} and Sb> ≡ {s ∈ S: αs < βs}.  Assume that the closure of the set Sa> ∪ Sb> is S; that is, for any s 

∈ S and any r > 0, there exists s' ∈ Sa> ∪ Sb> such that d(s, s') < r.  Let the probability Qs(Ψ0) be 

continuous in s for every measurable subset of the sample space Ψ0 ⊂ Ψ.  Then no λ-quantile optimal 

test rule exists for λ < ½.    

 

Proof: Let λ < ½ and suppose that test-rule δ is λ-quantile optimal.  Let sa ∈ Sa> and sb ∈ Sb>.  

Optimality requires that Qsa(Ψδb) < λ and Qsb(Ψδb) > 1 − λ. 

 Given that Qs(Ψδb) is continuous in s and that S is connected, there exists s* such that Qs*(Ψδb) = 

½. (See Rudin, 1976, Theorem 4.22).  Continuity of Qs(Ψδb) in s implies that there exists r > 0 such that 
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d(s, s*) < r ⇒ Qs(Ψδb) − Qs*(Ψδb) = Qs(Ψδb) − ½ < ½ − λ.  Given that S = cl(Sa> ∪ Sb>), there exists 

either s' ∈ Sa> or s' ∈ Sb> such that d(s', s*) < r.  Hence, Qs'(Ψδb) − ½ < ½ − λ. 

 If s' ∈ Sa>, the optimality condition Qs'(Ψδb) < λ implies that Qs'(Ψδb) − ½ = ½ − Qs'(Ψδb) > ½ − 

λ, which contradicts the conclusion reached above.  If s' ∈ Sb>, the optimality condition Qs'(Ψδb) > 1 − λ 

implies that Qs'(Ψδb) − ½ = Qs'(Ψδb) − ½ > ½ − λ, which again contradicts the conclusion reached above.  

Hence, δ is not λ-quantile optimal. 

                                                                              Q. E. D. 

 

Remark: The state space has the required structure if a is a status-quo treatment with known mean 

outcome α* ∈ (0, 1) and b is an innovation with mean outcome known to lie in the interval (0, 1).  Then 

S = (0, 1), with αs = α* and βs = s for s ∈ S.  It is the case that Sa> = (0, α*), Sb> = (α*, 1), and cl(Sa> ∪ 

Sb>) = (0, 1).  The sampling distribution has the required continuity if, for example, Qs is Normal(s, k) 

for some fixed k > 0 or if Qs is Binomial (n, s) for some integer n. 

 

 

3.3. Existence of Near-Optimal Test Rules 

 

Quantile optimality is a very strong property, so it should not be surprising that it is sometimes 

unattainable.  In settings such as Proposition 3 where no test rule is exactly quantile optimal, there may 

nevertheless exist STRs that a planner deems acceptably close to optimal.  In particular, there may exist 

a rule δ that is ε-optimal in the sense that Vλ(δ, Ps, Qs) ≥ max(αs, βs) – ε for all s ∈ S and a specified ε > 0. 

Consideration of ε-optimality may be particularly relevant to medical practice, which has long 

distinguished between the statistical and clinical significance of treatment effects.  While the idea of 

clinical significance has been interpreted in various ways, many writers call an average treatment effect β 
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− α clinically significant if |β – α| > ε for a specified value of ε deemed minimally consequential in clinical 

practice.  The ICH put it this way (International Conference on Harmonisation, 1999, p. 1923): “The 

treatment difference to be detected may be based on a judgement concerning the minimal effect which has 

clinical relevance in the management of patients.”  A numerical example is given by Sedgwick (2014). 

Evaluating a topical ointment to prevent infection after minor surgery, he states (p. 1): “The smallest 

effect of clinical interest was an absolute decrease in the incidence of infection of 5%.” Thus, he specifies 

ε = 0.05 in a context where the outcome could take the value 0 (no infection) or 1 (infection). 

  The following Lemma shows that empirical success rules based on random samples of 

outcomes are ε-optimal when the sample sizes are sufficiently large. 

 

Lemma: Let (na, nb) be the sample sizes for each treatment and denote the independent treatment 

outcomes by ψ = (ya,1, . . . , ya,na, yb,1, . . . , yb,nb).  Let Es(ya) = αs and Es(yb) = βs.  Denote the sample means 

by ma = (∑i=1..na ya,i)/na and mb = (∑i=1..na yb,i)/nb.  Define the empirical success rule δes(ψ) ≡ 1[mb > ma].  

Consider any ε > 0 and λ ∈ (0, 1). 

(A). Assume that the variance of outcomes is uniformly bounded in all states s: Vars(yt) ≤ v for some finite 

v.  Then δes is λ-quantile ε-optimal if 4vε−2(1/na + 1/nb) < λ.  If the design is balanced, with n = na = nb, 

letting n > 8v/(ε2λ) ensures ε-optimality. 

(B). Assume that outcomes are uniformly bounded in all states: wlog, let 0 ≤ yt ≤ 1.  Then δes is 

λ-quantile ε-optimal if 2exp(−½ε2na) + 2exp(−½ε2nb) < λ.  If the design is balanced, letting n > 

−2log(λ/4)/ε2 ensures ε-optimality.         

 

Proof: (A) The variances of ma and mb are bounded from above by Vars(ma) ≤ v/na and Vars(mb) ≤ v/nb.  

By Chebyshev's inequality, Qs(|ma − α | ≥ ε/2) ≤ Vars(ma)/(ε/2)2 ≤ 4v/(ε2na).  Analogously, Qs(|mb − β | ≥ 

ε/2) ≤ 4v/(ε2nb). 
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 Consider states for which |βs − αs| ≥ ε.  If |(mb − ma) − (β − α)| < ε for data realization ψ, then 

U(δes, Ps, ψ) = max(αs, βs).  Hence, the error probability Rs(δes) is bounded above as follows: 

 Rs(δes)  ≤  1 − Qs[|(mb − ma) − (β − α)| < ε]  ≤  1 − Qs[|mb − β| < ε/2 and |ma − α | < ε/2] 

  =  Qs[|mb − β| ≥ ε/2 or |ma − α | ≥ ε/2]  ≤  Qs[|mb − β| ≥ ε/2] + Qs[|ma − α | ≥ ε/2]  

  ≤  4vε−2(1/na + 1/nb). 

It follows that Rs(δes) < λ for sufficiently large sample sizes (na, nb).  Then Vλ(δes, Ps, Qs) = max(αs, βs) 

for all s such that |βs − αs| ≥ ε.  Moreover, regardless of sample size, Vλ(δes, Ps, Qs) ≥ max(αs, βs) – ε for 

all s such that |βs − αs| < ε.  Hence, δes is ε-optimal.  With a balanced design, the threshold value of n 

that ensures ε-optimality is obtained by solving the equation 8vε−2/n = λ. 

(B) The large deviations inequality of Hoeffding (1963, Theorem 2) shows that Qs(|ma − α| ≥ ε/2) ≤  

2exp(−½ε2na) and Qs(|mb − β| ≥ ε/2) ≤ 2exp(−½ε2nb).  Applying the same argument as part (A) with these 

inequalities yields the ε-optimality result.  With a balanced design, the threshold value of n that ensures 

ε-optimality is obtained by solving the equation 4exp(−½ε2n) = λ. 

                                                                             Q. E. D. 

 

 To illustrate application of the lemma, consider the setting of Sedgwick (2014).  He specifies ε = 

0.05.  The data are from an RCT with a balanced design.  He considers a test with the conventional 

probabilities of Type I and Type II errors, namely 0.05 and 0.20.  This suggest consideration of quantile 

performance with λ = 0.20. 

Parts A and B of the lemma both apply in this setting.  Either may yield the lower threshold 

sample size, depending on the value of v that one is able to specify.  In the absence of prior knowledge 

of α and β, the uniform bound on variance is v = ¼, so the Chebychev inequality yields the threshold 

sample size 2/(0.052 × 0.2) = 4000.  The Hoeffding inequality yields a lower threshold sample size, this 

being −2log(0.05)/(0.05)2 = 2397.  Thus, the lemma shows that a sufficient condition for the empirical 

success rule to be 0.2-quantile 0.05-optimal is that the trial have balanced sample sizes n > 2397. 
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Neither the Chebychev nor the Hoeffding inequality use the information that the outcome is 

binary in the Sedgwick setting.  Bringing this information to bear can be shown to yield substantially 

smaller threshold sample sizes.  An exact calculation using knowledge that the outcome is binary shows 

that the empirical success rule is 0.2-quantile 0.05-optimal if the trial has balanced sample sizes n > 161. 

 

 

3.4. Randomized Test Rules 

 

 In Section 3.2 we observed that statistical decision theory encompasses study of STRs that make 

the treatment allocation depend on data generated by a randomizing device.  Letting Ψ = {0, 1} and Qs(ψ 

= 0) = Qs(ψ = 1) = ½ for all s ∈ S, we showed that the randomized test rule with Ψδa = {0} and Ψδb = {1} 

is λ-quantile optimal for all λ > ½. The only non-randomized rules available in this setting are the 

data-invariant rules that always choose one treatment or the other.  These rules are not optimal.  

In this section we consider randomized testing when λ ≤ ½.  The simple randomized rule 

described earlier is minimal when λ ≤ ½, hence uninteresting.  However, data generated by a 

randomizing device can still be useful when combined with informative data.  An example suffices to 

demonstrate this. 

 To formalize randomized testing, we now let Ψ denote the sample space for informative data.  

We introduce a random variable υ distributed Uniform(0, 1), independent of ψ, to serve as a randomization 

device.  Then the joint sample space is Ψ × [0, 1] and Q denotes the sampling distribution generating 

realizations of (ψ, υ).  The shorthand δ(ψ, υ) denotes the fraction of the population that rule δ assigns to 

treatment b.  With this background, we present an example in which there exists a randomized λ-quantile 

optimal test rule but no non-randomized λ-quantile optimal test rule. 
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Example: Let S = {sa, sb} consist of two states with βsa < αsa and βsb > αsb.  Let Ψ = {0, 1} and let the 

sampling distributions Qsa and Qsb of the informative data be: 

 Qsa(ψ = 0)  =  0.96,   Qsa(ψ = 1)  =  0.04, 

 Qsb(ψ = 0)  =  0.32,   Qsb(ψ = 1)  =  0.68. 

Consider a randomized test rule δ(ψ, υ) with 

 δ(0, υ)  =  1[υ > 0.75],   δ(1, υ)  =  1 for all υ. 

The distribution of welfare U(δ, Psa, ψ) in state sa is 

 Q sa[U(δ, Psa, ψ) = βsa]  =  Q sa[δ(ψ, υ) = 1]  =  0.96⋅0.25 + 0.04  =  0.28, 

 Q sa[U(δ, Psa, ψ) = αsa]  =  Q sa[δ(ψ, υ) = 0]  =  0.96⋅0.75  = 0.72. 

The distribution of welfare in state sb is 

 Q sb[U(δ, Psb, ψ) = βsb]  =  Q sb[δ(ψ, υ) = 1]  =  0.32⋅0.25 + 0.68  =  0.76, 

 Q sb[U(δ, Psb, ψ) = αsb]  =  0.24. 

For λ = 0.3, rule δ is λ-quantile optimal. 

 Now consider the space of non-randomized test rules; that is, rules in which δ(ψ, υ) does not vary 

with the realization υ.  Given that Qsa(ψ = 0) = 0.96, a non-randomized rule can be 0.3-quantile optimal 

only if δ(0, υ) = 0 for all υ, but it then follows that U(δ, Psb, ψ) = αsb with probability 0.32.  Hence, δ is not 

0.3-quantile optimal. Thus, there does not exist any 0.3-quantile optimal non-randomized test rule.    

 

 The above discussion shows that randomization may be useful when evaluating STRs by their 

quantile performance.  One may ask whether it is useful from the perspective of mean performance.  

The answer is negative.  The mean welfare of a randomized STR δ(ψ, υ) in state s equals 

 

(2') W(δ, Ps, Qs)  =  αs⋅ {1 − Es[δ(ψ, υ)]} + βs⋅Es[δ(ψ, υ)], 
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where Es[δ(ψ, υ)] ≡ ∫Ψ ∫[0,1] δ(ψ, υ)dυ dQs(ψ).  The same mean welfare is obtained by a non-randomized 

rule δ'(ψ) ≡ ∫[0,1] δ(ψ, υ)dυ that averages treatment assignment fractions over υ.  Thus the class of 

non-randomized rules is essentially complete with regard to mean welfare. 

 

3.5. Classical Testing with Predetermined Size 

 

Whereas decision-theoretic evaluation of test rules considers all error probabilities symmetrically, 

classical hypothesis testing asymmetrically differentiates between null and alternative hypotheses, setting 

a predetermined probability of a Type I error (size).  A necessary condition for a classical test to yield a 

λ-quantile optimal test rule is that the size γ of the test be set to a value less than λ.  This done, the test 

rule is λ-quantile optimal if and only if the resulting probability of a Type II error is also less than λ. 

An heuristic argument suggests that, given a test rule δ based on a test with size γ < λ, a decision 

maker concerned with λ-quantile performance can do better by shrinking the acceptance region for the 

null hypothesis to some extent and correspondingly enlarging the acceptance region for the alternative.  

Let Sa and Sb be the null and alternative hypotheses, with Ψδa and Ψδb being the corresponding acceptance 

regions for δ.  As in Proposition 3, let Sa> ≡ (s ∈ S: αs > βs) and Sb> ≡ (s ∈ S: αs < βs).  These are the 

only states relevant to decision making so we henceforth restrict attention to them. 

A test with size γ has Type I error probability (sup Rs(δ), s ∈ Sa>) = γ and Type II error 

probability (sup Rs(δ), s ∈ Sb>).  Let δ' be an alternative rule based on a test where Ψδ'a is a subset of Ψδa 

such that γ < (sup Rs(δ'), s ∈ Sa>) < λ.  Then rules δ' and δ have the same optimal λ-quantile performance 

on Sa>, but rule δ' may outperform δ in terms of Type II error probability. 

 A simple way to formalize the heuristic argument is to let δ' be a randomized version of rule δ that 

uses the randomization device to appropriately shrink Ψδa and enlarge Ψδb.  Proposition 4 gives conditions 

under which a randomized rule dominates δ or even is λ-quantile optimal. 
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Proposition 4: Let δ(ψ) = 1[ψ ∈ Ψδb] be a test rule with size γ < λ.  There exists randomized test rules 

that dominate δ if Rs(δ) ∈ [λ, λ⋅(1−γ)/(1−λ)) for some s ∈ Sb>.  There exists randomized test rules that 

are λ-quantile optimal if Rs(δ) < λ⋅(1−γ)/(1−λ) for all s ∈ Sb>.      

 

Proof: Let υ be distributed Uniform(0, 1), independent of ψ.  Consider a randomized test rule 

 δ'(ψ, υ)  ≡  1[υ ≤ v] + δ(ψ) ⋅1[υ > v], 

where v ∈ (0, 1).  For s ∈ Sa>, 

 Rs(δ')  =  Qs[δ'(ψ, υ) = 1]  =  v + (1 − v)Rs(δ)  ≤  v + (1 − v)⋅γ  =  γ + v⋅(1 − γ). 

Hence, Rs(δ') < λ for any v < (λ − γ)/(1 − γ).  Hence, Vλ(δ', Ps, Qs) = Vλ(δ, Ps, Qs) = αs. 

 For s ∈ Sb>, 

 Rs(δ')  =  Qs[δ'(ψ, υ) = 0]  =  (1 − v)Rs(δ)  ≤  Rs(δ). 

Hence, Vλ(δ', Ps, Qs) ≥ Vλ(δ, Ps, Qs). 

 The above shows that δ' has the same λ-quantile performance as δ on Sa> and weakly outperforms 

δ on Sb>.  Suppose that Rs(δ) ∈ [λ, λ⋅(1 − γ)/(1 − λ)) for some s ∈ Sb>.  Then Rs(δ') = (1 − v)Rs(δ) < λ for 

any v > 1 − λ/Rs(δ).  Hence, Vλ(δ', Ps, Qs) = βs > αs = Vλ(δ, Ps, Qs).  Given the assumption that Rs(δ) < 

λ⋅(1 − γ)/(1 − λ), it follows that 1 − λ/Rs(δ) < (λ − γ)/(1 − γ).  Hence, there exists v such that 1 − λ/Rs(δ) < 

v < (λ − γ)/(1 − γ).  Hence, rule δ' dominates δ in λ-quantile. 

 Finally, suppose that Rs(δ) ∈ [λ, λ⋅(1 − γ)/(1 − λ)) for all s ∈ Sb>.  Then the above argument 

shows that Vλ(δ', Ps, Qs) = βs for all s ∈ Sb>.  Hence, δ' is λ-quantile optimal. 

                                                                            Q. E. D. 
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4. Treatment Choice When Continuous Real Data Satisfy the Monotone-Likelihood Ratio Property in the 
Average Treatment Effect 
 

 The analysis of Section 3 placed little structure on the data used to inform treatment choice.  

Hence, the findings should be widely applicable.  This section presents further analysis that holds when 

the data have considerable structure.  Specifically, the data are assumed to be real-valued and generated 

by a sampling distribution that satisfies the monotone-likelihood ratio (MLR) property with respect to the 

average treatment effect (β − α). 

These assumptions are quite special, so it should not be expected that the findings of this section 

will have broad application.  Nevertheless, treatment choice in this setting is intellectually worthy of 

study because the MLR property is mathematically benign.  Karlin and Rubin (1956) and Manski and 

Tetenov (2007) have previously used it to study the mean admissibility of STRs.  Here we use it to study 

admissibility in stochastic dominance, a strong property with immediate implications for quantile 

admissibility. 

 The analysis begins with Proposition 5, which shows that the fractional monotone treatment rules 

form an essentially complete class with respect to stochastic dominance when the data satisfy the 

maintained assumptions.  A fractional monotone rule is one in which δ(ψ) is weakly increasing in ψ.  

Essential completeness means that any randomized decision rule δ(ψ, υ) can be replaced by a fractional 

monotone rule δ'(ψ) that weakly stochastically dominates δ(ψ, υ) in each state s.  The planner then does not 

need to consider any other types of STRs.  Manski and Tetenov (2007, Proposition 1) show that fractional 

monotone rules form an essentially complete class when the planner wants to maximize the expectation 

Es[f(U(δ, Ps, ψ, υ))] of a concave-monotone function f(⋅) of the population welfare and ψ is binomial.  Here 

we find that a planner with any decision criterion that respects stochastic dominance can restrict attention to 

fractional monotone rules.  Criteria that respect stochastic dominance include maximizing a quantile, the 

mean, or the mean of an increasing function of U(δ, Ps, ψ, υ). 

 The choice problem posed in Proposition 5 is more general than that of choice between two 
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treatments, this because we found that the proposition holds more generally.  After stating the proposition, 

we show that it applies to the treatment-choice problem of interest, to test rules among others.  The proofs 

of all propositions and lemmas in this section are collected in an Appendix. 

 

Proposition 5:  Let u(a, s) be the payoff function from action a ∈ [al, ah] ⊂ R in state s ∈ S.  Assume that 

u(a, s) is weakly monotonic in a for each s.  For s ∈ S, let the data ψ ∈ R have a continuous distribution 

Qs(ψ) and density qs(ψ) with respect to Lebesgue measure.  Let υ ~ Uniform[0, 1] be a randomization 

variable independent of ψ.  Assume that there exists a state s0 for which u(a, s0) is constant in a. 

 Let Qs(ψ) possess the monotone likelihood ratio property for all pairs (s, s0) such that u(a, s) is not 

constant in a.  That is, 

 

(10a) if u(a, s) is non-increasing in a, then qs(ψ)/qs0(ψ) ≥ qs(ψ')/qs0(ψ') for all ψ < ψ', 

(10b) if u(a, s) is non-decreasing in a, then qs(ψ)/qs0(ψ) ≤ qs(ψ')/qs0(ψ') for all ψ < ψ'. 

 

Then for any randomized strategy δ(ψ, υ): Ψ × [0, 1] → [al, ah], there exists a monotone non-randomized 

strategy δ'(ψ): Ψ → [al, ah] whose distribution of payoffs Qs[u(δ'(ψ),s)] weakly first order stochastically 

dominates the distribution of payoffs Qs[u(δ(ψ, υ),s)] of δ in each state s.  δ' could be constructed by 

monotonically rearranging the values taken by δ(ψ, υ) in state s0:   

 

(11) δ'(ψ)  ≡  G-1
δ,s0 (F0(ψ)), 

 

where G-1
δ,s0(⋅) is the quantile function of the distribution Qs0[δ(ψ, υ)] of the action δ(ψ, υ) in state s0 and F0(t) 

≡ Qs0 (ψ ≤ t) is the c.d.f. of ψ in state s0.            
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 Proposition 5 applies to the treatment-choice problem with action a ∈ [0, 1] denoting the fraction of 

the population assigned to treatment b.  Payoff function (1) is decreasing in a when βs − αs < 0 and is 

increasing in a when βs − αs > 0.  If Qs(ψ) possesses the monotone likelihood ratio property in β − α, then 

(10a) and (10b) hold.  In this setting, δ'(ψ) defined in (11) is a fractional monotone treatment rule.  The 

Corollary below applies the proposition to this setting. 

 

Corollary: If Qs(ψ) is continuous and possesses the monotone likelihood ratio property in (β − α), then the 

class of fractional monotone STRs is essentially complete under any decision criterion that respects 

stochastic dominance.  (A criterion respects stochastic dominance if rule δ' is weakly preferred to δ when 

the distribution of outcomes of δ' weakly stochastically dominates the distribution of outcomes of δ.)    

 

Quantiles respect stochastic dominance, so the corollary applies.  It implies that, for any rule δ, Vλ(δ′, Ps, 

Qs) ≥ Vλ(δ, Ps, Qs) for all s ∈ S. 

 Thus far, the quantiles of fractional monotone treatment rules are abstract objects.  Proposition 6 

will provide an explicit characterization of these quantiles, facilitating analysis.  As a prelude, we give a 

lemma that characterizes quantiles of monotone, possibly discontinuous, functions of continuously 

distributed random variables.  The lemma is followed by a corollary applying it to the treatment-choice 

problem. 

 

Lemma 1: Let X be a random variable with a continuous probability distribution P and f(⋅) a monotonic 

function.  Denote the λ-quantile of f(X) by Qλ[f(X)] = inf {g: P[f(X) ≤ g] ≥ λ}.  If f(⋅) is non-decreasing, it 

equals the limit of f(x) from the left at the λ-quantile of X: 

 

(12a) Qλ[f(X)]  =  lim x → q− f(x), 
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where q ≡ inf [x: P(X ≤ x) ≥ λ].  If f(⋅) is non-increasing, it equals the limit of f(x) from the right at the 

upper (1 − λ)-quantile of X: 

 

(12b) Qλ[f(X)]  =  lim x → r + f(x), 

 

where r ≡ sup [x: P(X ≤ x) ≤ 1 − λ].     

 

Remark: In general, neither (12a) nor (12b) can be simplified by replacing the one-sided limits with the 

value of f(x) at any x.  For example, let X have a Uniform(0, 1) distribution and let f(x) = x⋅1[x < ½] + 1[x 

≥ ½].  X is continuous and f(⋅) is non-decreasing. The median Q½[f(X)] equals ½, but there is no x at 

which f(x) = ½. 

 

Corollary: If ψ has a continuous distribution in state s and δ(ψ) is non-decreasing in ψ, then for αs ≤ βs: 

 

(13a) Vλ(δ, Ps, Qs)  =  αs + (βs − αs)⋅ lim ψ → qλs
− δ(ψ), 

 

where qλs ≡ inf [x :Qs(ψ ≤ x) ≥ λ] is the λ-quantile of ψ in state s.  For states with αs ≥ βs: 

 

(13b) Vλ(δ, Ps, Qs)  =  βs + (αs − βs)⋅[1 − lim ψ → rλs
 + δ(ψ)], 

 

where rλs ≡ sup[x :Qs(ψ ≤ x) ≤ 1 – λ] is the upper (1 − λ)-quantile of ψ in state s.    

 

Remark:  If αs ≤ βs and δ(⋅) is continuous at qλs, then 
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(14a) Vλ(δ, Ps, Qs)  =  αs + (βs – αs)⋅δ(qλs). 

 

Similarly, if αs ≥ βs and δ(⋅) is continuous at rλs, then 

 

(14b) Vλ(δ, Ps, Qs)  =  βs + (αs – βs)⋅(1 − δ(rλs)). 

 

 The corollary shows that, in each state s, the λ-quantile of welfare of every fractional monotone 

rule is determined by the one-sided limit of δ(ψ) at a particular point (qλs or rλs) that is invariant across 

rules.  This simplifies comparison of alternative monotone rules.  Let ψ+ ≡ {qλs, s: βs − αs > 0} and ψ− ≡ 

{rλs, s: βs − αs < 0} denote the sets of comparison points.  Proposition 6 characterizes the class of 

λ-quantile admissible monotone rules, first for the case in which the sets ψ− and ψ+ overlap or touch and 

then for the case in which they are distant from each other. 

 

Proposition 6: Let Qs(ψ) be continuous and possess the monotone likelihood ratio property in (β − α). 

(A). Suppose that inf ψ− < inf ψ+ ≤ sup ψ− < sup ψ+ and that the sets ψ− and ψ+ are intervals on R.  Then a 

fractional monotone rule δ is λ-quantile admissible if and only if: 

 

(15a) δ(ψ) = 0  for all ψ < inf ψ+, 

(15b) δ(ψ) = 1  for all ψ > sup ψ−. 

 

(B). Suppose that inf ψ− ≤ sup ψ− < inf ψ+ ≤ sup ψ+.  Then a fractional monotone rule δ is λ-quantile 

admissible if and only if: 
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(16a) δ(ψ) = 0  for all ψ < sup ψ−, 

(16b) if sup ψ− ∈ ψ−,  then lim δ(ψ) = 0 for ψ → (sup ψ−) +, 

(16c) δ(ψ) = 1  for all ψ > inf ψ+, 

(16d) if inf ψ+ ∈ ψ+,  then lim δ(ψ) = 1 for ψ → (inf ψ+) −.           

 

Proposition 6 applies both to test rules and to ones that allocate positive fractions of the population 

to both treatments.  It shows that an admissible rule allocates everyone to treatment a if the realized data 

value ψ is sufficiently small and everyone to b if ψ is sufficiently large.  Allocations for intermediate 

values of ψ can be singleton or fractional, but the fraction allocated to b must weakly increase with ψ. 

The reasoning underlying the proposition can be understood most easily when considering the 

subset of continuous decision rules δ(⋅) for which characterization (14a, 14b) holds.  If ψ ∈ ψ−, then Vλ(δ, 

Ps, Qs) = βs + (αs − βs)⋅[1 − δ(ψ)] in some state of nature with βs − αs < 0.  Hence, minimizing δ(ψ) 

increases λ-quantile welfare.  Similarly, if ψ ∈ ψ+, then Vλ(δ, Ps, Qs) = αs + (βs − αs)⋅δ(ψ) in some state of 

nature with βs − αs > 0.  Here maximizing δ(ψ) increases λ-quantile welfare.  When seeking a rule δ'(⋅) 

that dominates δ(⋅), we have to take into account two constraints.  First we have to preserve monotonicity.  

Second, if the same point ψ belongs to both sets ψ ∈ ψ− and ψ ∈ ψ+, changing the value of δ(ψ) necessarily 

reduces λ-quantile welfare in at least one state of nature.  Hence δ' can dominate δ only if δ'(ψ) = δ(ψ) at 

such ψ. 

  Here is an example in which the conditions of Proposition 6 are satisfied. 

 

Example: Let [(βs − αs), s ∈ S] = R and let Qs be Normal(βs − αs, 1).  In this case, qλs = (βs − αs) + Φ-1(λ) and 

rλs = (βs − αs) + Φ-1(1 − λ).  ψ+ = (Φ-1(λ), ∞) and ψ− = (−∞, Φ-1(1 − λ)). 

 Consider λ ≤ ½.  Then inf ψ+ ≤ sup ψ− and monotone treatment rules are admissible if and only if 

they satisfy conditions (15a) and (15b): 
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 δ(ψ) = 0  for all ψ < inf ψ+ = Φ-1(λ), 

 δ(ψ) = 1  for all ψ > sup ψ− = Φ-1(1 − λ). 

 Consider λ > ½.  Then sup ψ− < inf ψ+ and monotone treatment rules are admissible if and only if 

they satisfy conditions (16a)−(16d).  Conditions (16b) and (16d) are not binding because the sets ψ− and ψ+ 

are not closed.  Conditions (16a) and (16c) are: 

 δ(ψ) = 0  for all ψ < sup ψ− = Φ-1(1 − λ), 

 δ(ψ) = 1  for all ψ > inf ψ+ = Φ-1(λ). 

 For the median, λ = ½, we obtain the stark result that there is essentially only one admissible 

monotone rule, with δ(ψ) = 0 for all ψ < 0 and δ(ψ) = 1 for all ψ > 0.  This is also the only rule admissible 

for all quantiles. 

 Both mean admissible and quantile admissible rules are increasing in ψ, but the two criteria have 

somewhat different implications.  The class of mean-admissible rules in this example is the class of all 

threshold rules δ(ψ) = 1[ψ > t], t ∈ R.  Threshold rules with t ∈ [min{ Φ-1(1 − λ), Φ-1(λ)}, max{Φ-1(1 − λ), 

Φ-1(λ)}] are λ-quantile admissible, but those with t < min{ Φ-1(1 − λ), Φ-1(λ)} or t > max{Φ-1(1 − λ), Φ-1(λ)} 

are not.       

 

We would like to determine whether Propositions 5 and 6 can be extended to settings in which 

the data have discrete support.  A case of some applied interest is that in which outcomes are binary and 

the data, arising from a randomized trial, have a Binomial distribution.  These extensions appear 

technically challenging. 
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5. Conclusion 

 

 Statisticians and econometricians have devoted considerable attention to development of the 

classical theory of hypothesis tests.  This paper explores a distinct perspective on tests as a class of 

statistical treatment rules that use acceptance regions to assign a population to one of two treatments. 

It has been difficult to study the mean performance of test rules, but we have found it productive 

to study their quantile performance.  We view the paper as achieving two major findings.  One, 

initiated in Propositions 1 and fleshed out in Propositions 2 through 4, is that the concept of quantile 

optimality has content.  The other, developed in Proposition 5 and applied in Proposition 6, is that the 

concept of stochastic dominance admissibility has content. 

We see considerable scope for further analysis in multiple directions.  While exact quantile 

optimality is too strong a property to have general applicability, the concept of near optimality may be 

broadly useful.  It may be particularly helpful to medical decision making, which already uses the idea 

of clinical significance.  Hence, we see good reason to continue our study of near optimality, adding to 

the Lemma and initial application given in Section 3.3. 

When multiple optimal or acceptable near-optimal STRs exist, a planner must choose among 

them.  Contrariwise, when no acceptable near-optimal rule exists, a planner must choose among the 

admissible rules.  Previous research has studied classical decision criteria (maximin, minimax-regret, 

Bayes) when STRs are evaluated by mean sampling performance.  We think it important to learn the 

properties of these criteria when rules are evaluated by quantile performance. 

 Finally, we think it important to extend the study of quantile performance to settings more 

complex than allocation of observationally identical persons to two treatments.  Suppose that members 

of the population can be treated differentially conditional on observable covariates and/or that the number 

of feasible treatments is larger than two.  The concept of an STR extends immediately to these settings.  
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Let X be the covariate space and let Δ denote the space of functions that map T × X × Ψ into the unit 

interval, with δ ∈ Δ ⇒ ∑ t ∈ T δ(t, x, ψ) = 1, ∀ (x, ψ) ∈ X × Ψ.  Then each δ ∈ Δ defines an STR and δ is 

uniformly singleton if δ(t, x, ψ) only takes the values 0 and 1.  However, the quantile welfare of an STR 

does not have a simple expression comparable to (3), which was the starting point for the analysis of this 

paper.  Hence, study of quantile performance appears challenging. 

 

 

Appendix: Proofs of Findings in Section 4 

 

Proof of Proposition 5: 

 First we show that the non-randomized strategy δ'(ψ) defined in (11) re-arranges the values of δ(ψ, 

υ) to be increasing in ψ and has the same probability distribution of actions (and hence payoffs) as δ(ψ, υ) in 

state s0.  Then we show that Qs[u(δ'(ψ),s)] weakly stochastically dominates Qs[u(δ(ψ, υ),s)] in all other 

states of nature. 

 Given that ψ has a continuous distribution, random variable F0(ψ) has a Uniform(0, 1) distribution 

in state s0.  Hence, random variable δ'(ψ) = G-1
δ,s0(F0(ψ)) has c.d.f. Gδ,s0 in state s0.1  Given that both G-1

δ,s0(⋅) 

and F0(⋅) are non-decreasing, δ'(ψ) is also non-decreasing in ψ.  Given that F0 is continuous and G-1
δ,s0 is 

left-continuous, δ'(ψ) is also left-continuous. 

 In states where u(a, s) is constant in a, the distributions of payoffs are identical for all strategies.  

Hence, weak stochastic dominance holds.  Now suppose that state s satisfies (10a), so u(a, s) is 

non-increasing in a.  (The proof is analogous for states in which u(a, s) is non-decreasing in a.) 

We want to show that the distribution of δ'(ψ) is weakly stochastically dominated by the 

                                                 
1 Let Q and F be the quantile and distribution functions of a random variable.  It is the case that, for all u in (0, 1) 
and all real t (see, for example, Pfeiffer, 1990, p.266) Q(u) ≤ t ⇔ u ≤ F(t).  If u is itself random with distribution P, 
it follows that P[Q(u) ≤ t] = P[u ≤ F(t)].  If u is uniform, P[u ≤ F(t)] = F(t). 
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distribution of δ(ψ, υ).  Denote the c.d.f. of action δ(ψ, υ) in state s by 

 

 Gδ,s(t)  ≡  Qs[u(δ(ψ, υ),s)]  =  ∫ qs(ψ) ∫1[δ(ψ, υ) ≤ t]dυdψ. 

 

Given any t ∈ [al, ah], consider the indicator functions 1[δ(ψ, υ) ≤ t] and 1[δ'(ψ) ≤ t].  These indicator 

functions generate rejection regions for classical hypothesis tests with null hypothesis s0 and alternative 

hypothesis s.  A randomized test with rejection region Ω ≡ {(ψ, υ): δ(ψ, υ) ≤ t} has power function Gδ,s(t) as 

a function of s.  Similarly, Gδ',s(t) ≡ ∫qs(ψ)∙1[δ'(ψ) ≤ t]dψ is the power function (as a function of s) of a 

non-randomized test with rejection region Ω' ≡ {ψ: δ'(ψ) ≤ t}.  We have shown above that the two tests 

have equal power in state s0: Gδ',s0 (t) = Gδ,s0(t).  Given that δ'(ψ) is non-decreasing in ψ, 1[δ'(ψ) ≤ t] is 

non-increasing in ψ and there exists ψt such that 

 

 1[δ'(ψ) ≤ t]  =  1  for all ψ < ψt, 

 1[δ'(ψ) ≤ t]  =  0  for all ψ > ψt. 

 

Given that state s satisfies (10a), the test with rejection region Ω' = (ψ: ψ ≤ ψt) is a likelihood-ratio test.  

The tests with rejection regions Ω and Ω' have the same size.  If follows from the Neyman-Pearson lemma 

that test Ω' must be at least as powerful as Ω in state s.2  That is, Gδ',s(t) ≥ Gδ,s(t). 

 We can thus establish that Gδ',s(t) ≥ Gδ,s(t) for all t.  Hence, the distribution of δ(ψ, υ) weakly 

stochastically dominates the distribution of δ'(ψ).  Given that u(a, s) is a weakly decreasing function of a, 

Qs[u(δ'(ψ),s)] weakly stochastically dominates Qs[u(δ(ψ, υ),s)]. 

                                                                                               Q. E. D. 

 

 
                                                 
2 For a version that covers randomized tests see, for example, Lehmann and Romano (2008), Theorem 3.2.1. 
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Proof of Lemma 1: 

 We show the proof for non-increasing f(⋅).  The proof for non-decreasing functions is analogous. 

 First, we establish that Qλ[f(X)] ≤ lim x → r + f(x).  Consider any x* > r.  From monotonicity of f(⋅) it 

follows that lim x → r + f(x) ≥ f(x*).  Hence, 

 

 P[f(X) ≤ lim x → r + f(x)]  ≥  P[f(X) ≤ f(x*)]  ≥  P(X ≥ x*). 

 

The second inequality holds because x ≥ x* ⇒ f(x) ≤ f(x*).  Give that the above inequality holds for all 

x* > r, it holds for the limit from the right: 

 

 P[f(X) ≤ lim x → r + f(x)]  ≥  lim x → r + P(X ≥ x). 

 

Given that P(X) is continuous, lim x → r + P(X ≥ x) = λ.  Therefore, P[f(X) ≤ lim x → r + f(x)] ≥ λ and Qλ[f(X)] ≤ 

lim x → r + f(x). 

 Now suppose that lim x → r + f(x) > Qλ[f(X)].  Then there exists some x* > r for which f(x*) > 

Qλ[f(X)].  This implies, from the definition of Qλ[f(X)], that P[f(X) ≤ f*] ≥ λ  for some f* < f(x*).  Then 

 

 λ  ≤  P[f(X) ≤ f*]  ≤  P[f(X) < f(x*)]  ≤  P(X > x*)  ≤  P(X ≥ x*)  <  λ. 

 

The second inequality holds because f(x) < f(x*) ⇒ x > x*.  The last inequality holds from the definition of 

r, continuity of X, and x* > r.  We have arrived at a contradiction.  Hence, Qλ[f(X)] = lim x → r + f(x). 

                                                                                               Q. E. D. 
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Proof of Proposition 6: 

 

(A) Suppose that δ does not satisfy (15a) for some ψ' < inf ψ+.  Then δ(ψ) > 0 on the interval (ψ', inf ψ+) 

because δ(⋅) is non-decreasing.  There is at most a countable set of points ψ at which δ(⋅) is discontinuous, 

so there exists ψ* ∈ (max(ψ', inf ψ−), inf ψ+) such that δ(⋅) is continuous at ψ*.  Let ψ** be any point in the 

open interval (ψ*, inf ψ+). 

 Decision rule δ(⋅) is inadmissible because it is λ-quantile dominated by 

δ'(ψ) =  0  for  ψ ≤ ψ**, 

  =  δ(ψ) for  ψ > ψ**. 

Given that inf ψ− < ψ* < inf ψ+ ≤ sup ψ− and ψ− is an interval, there exists a state s such that ψ* = rλs and βs 

− αs < 0.  Then 

 

Vλ(δ', Ps, Qs)  =  βs + (αs − βs)⋅(1 − δ'(ψ*))  =  αs  

       >   βs + (αs − βs)⋅(1 − δ(ψ*))  =  Vλ(δ, Ps, Qs), 

 

because δ(ψ*) > 0, both δ(⋅) and δ'(⋅) are continuous at ψ* and (14b) holds. 

 It remains to show that Vλ(δ', Ps, Qs) ≥ Vλ(δ, Ps, Qs)  in every state s.  For states with βs − αs < 0, it 

is true because δ'(ψ) ≤ δ(ψ) for all ψ.  Take any state of nature s with βs − αs > 0.  Since ψ** < inf ψ+ ≤ qλs, 

δ'(ψ) = δ(ψ) in the neighborhood of qλs.  Therefore, lim ψ → qλs
− δ'(ψ) = lim ψ → qλs

− δ(ψ).  It follows from (13a) 

that Vλ(δ', Ps, Qs) = Vλ(δ, Ps, Qs). 

 The proof that condition (15b) is necessary is analogous.  

 Now we will establish the sufficiency of conditions (15a) and (15b) for admissibility.  Suppose 

that δ satisfies them.  For δ to be inadmissible, there must be a fractional monotone rule δ' such that Vλ(δ', 

Ps, Qs) ≥ Vλ(δ, Ps, Qs)  in every state s and Vλ(δ', Ps*, Qs*) > Vλ(δ, Ps*, Qs*) in some state s*.  We will show 
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that if Vλ(δ', Ps*, Qs*) > Vλ(δ, Ps*, Qs*) in some state s*, then necessarily Vλ(δ', Ps', Qs') < Vλ(δ, Ps', Qs') in 

some other state s'. 

 Suppose that βs* − αs* > 0.  Then it must be that lim ψ → qλs*
− δ'(ψ) > lim ψ → qλs*

− δ(ψ).  Either qλs* > sup 

ψ− or qλs* ≤ sup ψ−.  If qλs* > sup ψ−, it follows from (15b) that lim ψ → qλs*
− δ(ψ) = 1 and it is impossible that 

lim ψ → qλs*
− δ'(ψ) > 1, since δ'(⋅) ≤ 1.  Hence, it must be that qλs* ≤ sup ψ−. 

 Denote d = lim ψ → qλs*
− δ(ψ).  Given that lim ψ → qλs*

− δ'(ψ) > d, there exists some ψ* < qλs* for which 

δ'(ψ*) > d.  Given that δ'(⋅) is non-decreasing, we can select ψ* > inf ψ− such that δ'(ψ*) > d.  Given 

that the set ψ− is an interval by assumption and inf ψ− < ψ* < qλs* ≤ sup ψ−, there is some state s' with βs' − αs' 

< 0 for which rλs' = ψ*.  We will show that δ' must perform worse than δ at s'. 

 Given that δ(⋅) is non-decreasing, δ(ψ) ≤ d for ψ < qλs* and lim ψ → ψ* + δ(ψ) ≤ d.  On the other hand, 

lim ψ → ψ* + δ'(ψ) ≥ δ'(ψ*) > d.  Then it follows from (13b) and lim ψ → ψ* + δ'(ψ) > lim ψ → ψ* + δ(ψ) that Vλ(δ', Ps', 

Qs') < Vλ(δ, Ps', Qs').  A similar argument applies if we assume βs* − αs* < 0. 

 

(B) Suppose that δ satisfies (16a) and (16b).  For any s with βs − αs < 0, either rλs < sup ψ− or rλs = sup ψ−.  

If rλs < sup ψ−.  It follows from (16a) that lim ψ → rλs
 + δ(ψ) = 0.  If rλs = sup ψ−, the same conclusion follows 

from (16b).  Hence, 

 

 Vλ(δ, Ps, Qs)  =  βs + (αs − βs)⋅(1− lim ψ → rλs
 + δ(ψ))  =  αs 

 

for all s with βs − αs < 0.  Similarly, if δ satisfies (16c) and (16d), then Vλ(δ, Ps, Qs) = βs for all s with βs − αs 

> 0.  If δ satisfies (16a)−(16d), it is λ-quantile optimal, therefore admissible. 

 To show that conditions (16a)−(16d) are necessary, first observe that the monotone rule 

 

 δ*(ψ) =  0  for  ψ ≤ (sup ψ− + inf ψ+) / 2, 
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  =  1  for  ψ > (sup ψ− + inf ψ+) / 2 

 

is λ-quantile optimal.  For all s with βs − αs < 0, δ*(ψ) = 0 for ψ in the neighborhood of rλs.  Hence, 

 

 Vλ(δ*, Ps, Qs)  =  βs + (αs − βs)⋅(1 − lim ψ → rλs
 + δ*(ψ))  =  αs. 

 

Similarly, Vλ(δ*, Ps, Qs) = βs for all s with βs − αs > 0.  Given that there exists a λ-quantile optimal 

decision rule, only λ-quantile optimal decision rules are admissible. 

 If δ does not satisfy any of the conditions (16a)−(16d), it is not λ-quantile optimal.  If (16a) is not 

satisfied, then δ(ψ') > 0 for some ψ' < sup ψ−. Therefore there is a ψ* ∈ ψ− such that ψ' < ψ*.  By 

monotonicity of δ(⋅), δ(ψ) ≥ δ(ψ') > 0 for all ψ > ψ*.  Therefore lim ψ → (ψ*)+ δ(ψ) > 0, Vλ(δ, Ps, Qs) < αs, and 

δ(⋅) is not λ-quantile optimal.  If (16b) does not hold, there exists s with βs − αs < 0, for which rλs = sup ψ− 

and lim ψ → rλs
 + δ(ψ) > 0.  Hence Vλ(δ, Ps, Qs) < αs and δ(⋅) is not λ-quantile optimal.  The necessity of 

(16c) and (16d) is proved analogously. 

                                                                                               Q. E. D.  
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