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A Introduction

We present a detailed procedure to obtain RMSE* provided in Tables 1 and 2, a

detailed algorithm to implement the proposed method, and a proof of Lemma 1, in

this supplemental material.

B A Procedure to Obtain RMSE*

We describe how RMSE* is computed for the LLR estimators based on the MMSE

bandwidths, the IND bandwidths, and the IK bandwidth. We also show how θIK in

page 12 of the main text is obtained.

Once the sample size, the form of a kernel function, the functional forms of

m1(c), m0(c), f(c), σ2
1(c), and σ2

0(c) are given, the AMSE can be computed using the

formula of the AMSE in (2) for each of the bandwidths.

The MMSE bandwidths can be obtained by minimizing MMSEn(h) (not

MMSEp
n(h)) provided in page 16 of the main text. The IND bandwidths can be

obtained based on the formulae provided in the footnote of page 12.

IK bandwidth can be obtained analogously except the regularization terms,

r+ + r−. Note that

r+ =
2160σ2

1(c)

N2,+h42,+
and r− =

2160σ2
0(c)

N2,−h42,−
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where

h2,+ = 3.56

(
σ2
1(c)

f(c)[m
(3)
1 (c)]2

)1/7

N
−1/7
+ , and h2,− = 3.56

(
σ2
0(c)

f(c)[m
(3)
0 (c)]2

)1/7

N
−1/7
− .

Hence the computation of the regularization term requires N+, N−, N2,+, and N2,−.

Since N+ and N− are the number of observations to the left and right of the threshold,

respectively (see p.942 of IK), their population analogues are computed by

N+ = n ·
∫ c

−∞
f(x)dx and N− = n ·

∫ ∞
c

f(x)dx.

Similarly, since N2,+ and N2,− are the numbers of observations with c ≤ Xi ≤ c+h2,+

and c− h2,− ≤ Xi < c, respectively, their population analogues are computed by

N2,+ = n ·
∫ c+h2,+

c

f(x)dx and N2,− = n ·
∫ c

c−h2,−
f(x)dx.

The same procedure is used to obtain θIK in page 12 in the main text.

C Implementation

To obtain the proposed bandwidths, we need pilot estimates of the density, its first

derivative, the second and third derivatives of the conditional expectation functions,

and the conditional variances at the cut-off point. We obtain these pilot estimates in

a number of steps.

Step 1: Obtain pilot estimates for the density f(c) and its first

derivative f (1)(c)

We calculate the density of the assignment variable at the cut-off point, f(c), which

is estimated using the kernel density estimator with an Epanechnikov kernel.1 A pilot

bandwidth for kernel density estimation is chosen using the normal scale rule with

1IK estimated the density in a simpler manner (see Section 4.2 of IK). We used the kernel density
estimator to be consistent with the estimation method used for the first derivative. Our unreported
simulation experiments produced similar results for both methods.

2



Epanechnikov kernel, given by 2.34σ̂n−1/5, where σ̂ is the square root of the sample

variance of Xi (see ? and ? for the normal scale rules). The first derivative of the

density is estimated using the method proposed by ?. The kernel first derivative den-

sity estimator is given by
∑n

i=1 L((c − Xi)/h)/(nh2), where L is the kernel function

proposed by ?, L(u) = −15u(1− u2)1{|u|<1}/4. Again, a pilot bandwidth is obtained

using the normal scale rule, given by σ̂ · (112
√
π/n)1/7.

Step 2: Obtain pilot bandwidths for estimating the second and

third derivatives m
(2)
j (c) and m

(3)
j (c) for j = 0, 1

We next estimate the second and third derivatives of the conditional mean functions

using the third-order LPR.

We obtain pilot bandwidths for the LPR based on the estimated fourth deriva-

tives of m
(4)
1 (c) = limx→c+m

(4)
1 (x) and m

(4)
0 (c) = limx→c−m

(4)
0 (x). Following ?, ?,

and ?, we use estimates of m
(4)
1 (c) that are not necessarily consistent by fitting global

polynomial regressions. First, using observations for which Xi ≥ c, we regress Yi on

1, (Xi − c), (Xi − c)2, (Xi − c)3 and (Xi − c)4 to obtain the OLS coefficients γ̂1 and

the variance estimate ŝ21. Using the data with Xi < c, we repeat the same procedure

to obtain γ̂0 and ŝ20. The pilot estimates for fourth derivatives are m̂
(4)
1 (c) = 24 · γ̂1(5)

and m̂
(4)
0 (c) = 24 · γ̂0(5), where γ̂1(5) and γ̂0(5) are the fifth elements of γ̂1 and γ̂0,

respectively. The plug-in bandwidths for the third-order LPR used to estimate the

second and third derivatives are calculated by

hν,j = Cν,3(K)

(
ŝ2j

f̂(c) · m̂(4)
j (c)2 · nj

)1/9

,

where j = 0, 1 (see ?, Section 3.2.3 for information on plug-in bandwidths and the

definition of Cν,3).
2 We use ν = 2 and ν = 3 for estimating the second and third

derivatives, respectively.

2The bandwidth we use for estimating the third derivatives are not rate optimal when the un-
derlying function has higher order derivative. However, we use this bandwidth to avoid estimating
higher order derivatives.
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Step 3: Estimation of the second and third derivatives m
(2)
j (c)

and m
(3)
j (c) as well as the conditional variances σ̂2

j (c) for j = 0, 1

We estimate the second and third derivatives at the cut-off point using the third-

order LPR with the pilot bandwidths obtained in Step 2. Following IK, we use the

uniform kernel, which yields C2,3 = 5.2088 and C3,3 = 4.8227. To estimate m̂
(2)
1 (c),

we construct a vector Ya = (Y1, . . . , Yna)′ and an na × 4 matrix, Xa, whose ith row

is given by (1, (Xi − c), (Xi − c)2, (Xi − c)3) for observations with c ≤ Xi ≤ c + h2,1,

where na is the number of observations with c ≤ Xi ≤ c + h2,1. The estimated sec-

ond derivative is given by m̂
(2)
1 (c) = 2 · β̂2,1(3), where β̂2,1(3) is the third element

of β̂2,1 and β̂2,1 = (Xa
′Xa)

−1XaYa. We estimate m̂
(2)
0 (c) in the same manner. Re-

placing h2,1 with h3,1 leads to an estimated third derivative of m̂
(3)
1 (c) = 6 · β̂3,1(4),

where β̂3,1(4) is the fourth element of β̂3,1, β̂3,1 = (Xb
′Xb)

−1XbYb, Yb = (Y1, . . . , Ynb
)′,

Xb is an nb × 4 matrix whose ith row is given by (1, (Xi − c), (Xi − c)2, (Xi − c)3)

for observations with c ≤ Xi ≤ c + h3,1, and nb is the number of observations with

c ≤ Xi ≤ c + h3,1. The conditional variance at the cut-off point σ2
1(c) is calculated

as σ̂2
1(c) =

∑n1

i=1(Yi − Ŷi)2/(n1 − 4), where Ŷi denotes the fitted values from the re-

gression used to estimate the second derivative.3 β̂2,0, β̂3,0 and σ̂2
0(c) can be obtained

analogously.

Step 4: Numerical Optimization

The final step is to plug the pilot estimates into the MMSEp given by equation (8) in

the main text and to use numerical minimization over the compact region to obtain

ĥ1 and ĥ0. Unlike AMSE1n(h) and AMSE2n(h) subject to the restriction given in

Definition 1, the MMSE is not necessarily strictly convex, particularly when the sign

of the product is positive. In minimizing the objective function, it is important to

try optimization with several initial values, in order to avoid finding only a local

minimum.

3Clearly, the estimator is not a consistent estimator of the conditional variance, but we do not
need to estimate it consistently. One can use a non-parametric method to consistently estimate it,
but it produces almost identical simulation results.
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D Proof of Lemma 1

The LLR estimator can be expressed as
(
α̂h1(c), β̂h1(c)

)′
= (X(c)′W1(c)X(c))−1X(c)′W1(c)Y ,

where X(c) is an n×2 matrix whose ith row is given by (1, Xi− c), Y = (Y1, . . . , Yn)′,

W1(c) = diag(Kh1(Xi − c)) and Kh1(·) = K(·/h1)I{· ≥ 0}/h1. The LLR estimator of

m1(c) can also be written as α̂h1(c) = e′1 (X(c)′W1(c)X(c))−1X(c)′W1(c)Y , where e1

is a 2 × 1 vector having one in the first entry and zero in the other entry. Similarly,

the LLR estimator for m0(c), denoted by α̂h0(c), can be obtained by replacing W1(c)

with W0(c), where W0(c) = diag(Kh0(Xi − c)) and Kh0(·) = K(·/h0)I{· < 0}/h0.

A contribution to the MSE from a variance component is standard. See ? for

the details. Here we consider the contribution made by the bias component. We

present the proof only for α̂h1(c). The proof for α̂h0 is parallel and hence is omitted.

Denote γ̂1 =
(
α̂h1(c), β̂h1(c)

)′
. The conditional bias is given by

Bias(γ̂1|X) = (X(c)′W1(c)X(c))−1X(c)W1(c)(m1 −X(c)γ1),

where m1 = (m1(X1), . . . ,m1(Xn))′ and γ1 = (m1(c),m
(1)
1 (c))′. Define, for j = 0, 1

and an integer k,

Sn,k,j =

 sn,k,j sn,k+1,j

sn,k+1,j sn,k+2,j

 , cn,k,j =

 sn,k,j

sn,k+1,j

 , sn,k,j =
n∑
i=1

Khj(Xi − c)(Xi − c)k,

Sk,1 =

 µk,0 µk+1,0

µk+1,0 µk+2,0

 , and ck,1 =

 µk,0

µk+1,0

 . (D.1)

Note that Sn,0,1 = X(c)′W1(c)X(c). The argument made by ? can be generalized to

yield

sn,k,1 = nhk
{
f(c)µk,0 + hf (1)(c)µk+1,0 + op (h)

}
. (D.2)

Then, it follows that

Sn,0,1 = nH
{
f(c)S0,1 + hf (1)(c)S1,1 + op (h)

}
H,
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where H = diag(1, h). By using the fact that (A+hB)−1 = A−1−hA−1BA−1 +o (h),

we obtain

S−1n,0,1 = n−1H−1
{

1

f(c)
A0,1 −

hf (1)(c)

f(c)2
A1,1 + op (h)

}
H−1, (D.3)

where

A0,1 =

 µ2,0 −µ1,0

−µ1,0 µ−10,0

 ,
A1,1 =

1

µ0,0µ2,0 − µ2
1,0

 −µ1,0(µ
2
2,0 − µ1,0µ3,0) µ2,0(µ

2
2,0 − µ1,0µ3,0)

µ2,0(µ
2
2,0 − µ1,0µ3,0) µ3

1,0 − 2µ0,0µ1,0µ2,0 + µ2
0,0µ3,0

 .
Next, we consider X(c)W1(c){m1 − X(c)γ1}. A Taylor expansion of m1(·)

yields

X(c)W1(c){m1 −X(c)γ1} =
m

(2)
1 (c)

2
cn,2,1 +

m
(3)
1 (c)

3!
cn,3,1 + op

(
nh3
)
. (D.4)

The definition of cn,k,j in (D.1), in conjunction with (D.2), yields

cn,k,1 = nhkH
{
f(c)ck,1 + hf (1)(c)ck+1,1 + op (h)

}
. (D.5)

Combining this with (D.3) and (D.4) and extracting the first element gives

Bias(α̂h1(c)|X) =
b1m

(2)
1 (c)

2
h21 + b2,1(c)h

3
1 + op

(
h31
)
.

This expression gives the required result. �
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