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Motivation:

Pharmaceutical companies seek approval of their new drugs (so they
could profit from them). To convince the regulator, they commission
costly clinical trials that yield credible but imprecise statistical evidence
(analyzed by hypothesis testing).

Researchers try to gain acceptance of their theories (from which they will
benefit) by undertaking costly data collection or analysis (also analyzed
by hypothesis testing).

Conventional statistical/econometric practice:

Null hypothesis testing: accept H1 in a way that controls test size

P(Type I error|H0) < 5%



Hypothesis tests of H0 : θ ≤ 0 (ineffective treatment) are used for
treatment choice when it is framed as a binary choice between
implementing an innovation and the status quo
- Explicit in international guidelines for drug approval.
- Implicit everywhere (from submission/publication decisions in scientific
journals to newspaper articles).

Conventional test levels are arbitrary.

Widely criticized across many fields, but lives on.



Source: Tetenov (2016), “An economic theory of statistical testing,”
Cemmap working paper CWP50/16

Frame the statistical testing procedure as a strategy in a game against
self-interested and informed proponents, rather than a game against
nature.

Shows an environment in which classical null hypothesis testing criterion
is rational

Derives a problem-specific test level α (not based on convention)

https://www.cemmap.ac.uk/publication/id/8512


Main ideas

Null hypothesis testing is a minimax strategy for the regulator. It is
reasonable if there could be lots of bad proposals.

Sufficiently low probability of approval (test size) deters the proponent
from collecting statistical evidence in a costly and risky trial.

As a result, “null hypotheses” do not get tested.

The statistical procedure is designed to be a deterrent, whose strength
depends on the true state of the world.

Its aim is NOT to infer the state of the world from the data, but to
provide incentives for potential proponents to act on their information
about it.



What is so strange about hypothesis testing?

Textbook way to motivate one-sided test of H0 : θ ≤ 0 vs H1 : θ > 0 by
”statistical decision theory:”

Two actions: accept H1 or accept H0.
Loss function: lose 1 point for Type II errors, lose K points for Type I
errors.

K = 19⇒ one-sided test with 5% level is minimax.
K = 99⇒ one-sided test with 1% level is minimax.

Problems:

I Generates hypothesis testing rules, but not the criterion

I Big errors and tiny errors are treated the same

I Is 5% used because Type I errors are always 19 times worse?



Testing as a game against nature

I Nature picks θ (the treatment effect)

I Statistician observes a noisy estimate θ̂ → θ.

I What if the statistician has no prior about the way nature picks θ?

Minimax criterion (aka maximin) =⇒ never approve innovations.
(Manski, 2004)

Minimax-regret criterion =⇒ accept if θ̂ > 0 (50% test level)
Manski (2004), Hirano and Porter (2009), Schlag (2007), Stoye (2009)

Loss aversion with a factor of 102 under minimax-regret criterion could
rationalize one-sided 5% level tests. (Tetenov, 2012)

Cannot be easily rationalized by typical nonlinear welfare functions.
(Manski and Tetenov, 2007)

https://doi.org/10.1016/j.jeconom.2009.02.013
http://cadmus.eui.eu//handle/1814/3937
http://www.jstor.org/stable/25621374
https://doi.org/10.1016/j.jspi.2006.06.037
https://doi.org/10.1016/j.jeconom.2011.06.013
http://www.jstor.org/stable/3598783
http://www.jstor.org/stable/3598783


Basic setup

One-shot game between a proponent and a regulator (no reputation).

Proponent has an idea for a new treatment/policy.
θ ∈ Θ is the parameter capturing its quality,
known to the proponent, but not to the regulator.

v(θ) is the regulator’s payoff if the proposal is approved. 0 if rejected.

b(θ) > 0 is the proponent’s payoff if approved. 0 if rejected.

Proponent could spend c to collect data X ∈ X distributed F (X ; θ).
- trial cost c is sunk before X is observed.
- ”entry” decision based on expected payoffs.

Regulator approves/rejects based on the data X
- focus on statistical decision rules, not on more general contracts.
- decision rule depends on b(θ), c , F (X ; θ) - all known to both parties.



Overview of the game with perfectly informed proponents

Timing of the game

I Regulator commits to a statistical decision rule δ according to which
data will be mapped into acceptance decisions.

I Proponent learns his type θ ∈ Θ (unknown to the regulator).

I Proponent chooses {trial, no trial} whether spend c to collect
evidence.

I Nature draws data X according to distribution F (X ; θ) if trial.
Both parties learn X .

I Regulator implements decision δ(X ).

Payoffs to (proponent, regulator):

I (0, 0) if no trial

I (−c , 0) if trial and reject

I (b(θ)− c , v(θ)) if trial and approve

Common knowledge: trial cost c , payoffs b(θ), v(θ), distribution F (X ; θ).



The regulator commits to a statistical decision rule:

δ : X → [0, 1].

δ(X ) = 0 : reject when the data is X , δ(X ) = 1 : accept.

Prior to the clinical trial, the probability that an innovation with value θ
would be accepted is

βδ(θ) ≡
∫
X
δ(X )dF (X ; θ).

In statistics, βδ(θ) is the power function of test δ.

Acceptance probability drives the proponent’s decision to collect data.

(Risk-neutral) proponent’s best response to δ:

βδ (θ) >
c

b(θ)
=⇒ conduct the trial,

βδ (θ) <
c

b(θ)
=⇒ no trial



Because of commitment, we could study the regulator’s single-agent
decision problem, taking into account the proponent’s best response.

The regulator’s payoffs are

v(θ) · βδ(θ) if βδ (θ) >
c

b(θ)

0 if βδ (θ) <
c

b(θ)

To attain maximum payoff for v(θ) < 0, it is sufficient to set
βδ(θ) < c

b(θ) .

If the decision to conduct a trial is “exogenous,” the regulator has to set
βδ(θ) = 0 (no approvals) to achieve the same payoffs for v(θ) < 0.



There’s a substantial difference in the supply of ideas with θ < 0 and
θ > 0:

“Discovery consists precisely in not constructing useless
combinations, but in constructing those that are useful, which
are an infinitely small minority.”

Henri Poincare, Science and Method

Null hypothesis: Θ0: v(θ) < 0.
It’s easy to propose treatments that are worse than the status quo. If
there were positive expected profits for proposing and testing ideas with
v(θ) < 0, everyone could try.
Worst-case prior P(Θ0)→ 1 is quite reasonable.

Alternative hypothesis: v(θ) > 0.
Beneficial innovations are in an ”infinitely small minority.”

https://archive.org/details/sciencemethod00poinuoft


Fully deterrent tests

Proposition 1 Decision rules δ∗ that control test size:

βδ∗ (θ) <
c

b(θ)
∀θ ∈ Θ0

are minimax for the regulator w.r.t. θ.

In the simple case of b(θ) = b, this yields the classical hypothesis testing
criterion with level c

b .

Among such decision rules, the regulator could try maximizing power
(probability of acceptance) over Θ1 : v(θ) > 0.



Proponents with precise information

Add structure to compare the fully deterrent test with optimal solutions
of a Bayesian regulator who has a prior on θ

I θ ∈ R
I v(θ) = θ : θ is the net value of the proposal to the regulator.

I F (X ; θ) is continuous and satisfies the Monotone Likelihood Ratio
property.
Leading example X ∼ N (θ, σ2), known σ2.

I Proponent’s benefit is a continuous non-decreasing function
b(θ) > 0.
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Proponents with precise information

The regulator could consider only monotone (threshold) decision rules:

δT (X ) =

{
0 for X < T ,
1 for X ≥ T .

because any decision rule could be replaced by a monotone one which
preserves βδ(0), doesn’t reduce βδ(θ) for θ > 0 and doesn’t increase
βδ(θ) for θ < 0.
(Karlin and Rubin, 1956)

Monotone decision rules could be ordered by the threshold T and
correspond to one-sided tests of different sizes.

http://www.jstor.org/stable/2236994


There is a threshold decision rule δ∗ for which

βδ∗(0) =
c

b(0)

Will call it the fully deterrent test.

Then for all θ < 0 it is not profitable to conduct trials

βδ∗(θ) · b(θ) < βδ∗(0) · b(0) = c

while for all θ > 0 it is.



Proposition 2
δ∗ is admissible (there’s no decision rule at least as good for all θ and
strictly better for some θ) and minimax.

δ∗ is the only admissible minimax decision rule.

Higher threshold (lower test size) makes the rule inadmissible. It has a
strictly lower acceptance probability (hence lower payoff to the regulator)
for all θ > 0. It has the same payoff for θ < 0.

Lower threshold (higher test size) rules are not minimax, the regulator’s
payoff is negative for some θ < 0, which is lower than the minimum
payoff of δ∗ (which is zero).



Multiple trials

Proponents have to pay the trial costs before observing the outcome.

If playing once isn’t profitable for them, playing many times and picking
the best result also isn’t profitable.

Certain proponents with θ > 0 who get a low value of X and do not get
acceptance would find it profitable to retry (with the same c ,F , b (·)).



Comparison with Bayesian regulators

A testing rule that deters all proponents with θ < 0 from trials is too
strict for a Bayesian regulator.

Suppose the regulator has a prior distribution Q (θ) on potential
proponent types.

Optimal tests are not from updating the prior Q(θ), i.e.,

max
T

∫
θβδT (θ)dQ(θ)

Bayesian regulator’s problem accounting for the self-selection of
proponents is:

max
T

∫
θβδT (θ) · I [βδT (θ)b(θ) ≥ c] dQ(θ)



Proposition 3
A Bayesian regulator’s decision rule will always set a lower evidence
threshold than the fully deterrent test.

Hence, some range of proponents with slightly bad ideas θ̄ < θ < 0 will
find it profitable to try them out (and some of them will be approved). In
exchange, all good ideas have a higher probability of acceptance.

Proposition 4:
If you consider priors Qn with Qn (θ < 0)→ 1 and positive density on
[−ε, 0], Bayesian regulator’s decision rules will converge to the fully
deterrent test rule.



Bayes vs Minimax

Hypothesis testing with level c
b(0) is close to optimal if the regulator is

pessimistic about the distribution of potential proposals Q(θ).

Truncated part of the distribution of potential proposals is completely
unobservable if some testing procedures are already in place, making it
hard to have an “informed prior”

As good ideas are implemented, coming up with additional improvements
may be harder.



Proponents uncertain about θ

Proponent has a prior distribution π on θ ∈ R.

Regulator doesn’t know π and doesn’t have a prior about it.

Regulator considers proponent’s beliefs “rational” - the regulator would
use π if these beliefs were revealed.

Common knowledge: cost of data c and proponent’s gain from approval
b(0).

Results in this case rely on additional assumptions:

I Proponent’s payoff b(θ) is concave in θ.

I The ratio
− dF (T ;θ)

dθ

1−F (T ;θ) is non-increasing in θ for all T .

Examples: normally or exponentially distributed X .

Since θ could be negative, the results of the trial may convince the
proponent not to seek regulatory approval. The ex ante probability that
both parties agree on approval is βδ,π(θ).



Proposition 5
If the regulator’s expected payoff (w.r.t. π) conditional on the proponent
collecting evidence is negative∫

R
θβδ,π(θ)dπ(θ) < 0,

then it is not optimal for the proponent to conduct the trial:∫
R
b(θ)βδ,π(θ)dπ(θ)− c < 0.

Proposition 6
Hypothesis test rule δ∗ with fully deterrent test size

βδ∗(0) =
c

b(0)

is admissible and minimax with respect to π.



Choice of trial costs and precision

The fully deterrent test rule could be applied for any trial design (c ,F )
chosen by the proponent (as long as (c ,F ) is known to the regulator).

Choice of (c ,F ) creates complicated incentives for the regulator:

I Regulator may want to be stricter for some trial designs in order to
induce a different choice of (c ,F )

I Regulator may accept less precise experiments to make entry
sufficiently profitable for some types of proponents.

Open question: is a hypothesis test rule with level c
b(0) for any

proponent’s choice of (c ,F ) admissible or should some choices of trial
design (c ,F ) always be discouraged?



Illustration: Phase III clinical trials overview
Last stage of clinical trials before drug approval.
Closest to an ideal randomized experiment.
Well documented.
Very expensive (36% of annual R&D expenses in 2011).

R&D: Delivering Innovation32
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Overview of the R&D 
Process

For those who do not work directly in 
drug development, the difficulty of the 
process can be hard to grasp. Numbers 
can help give a sense of the gauntlet 
of challenges each candidate medicine 
must pass through, and those numbers 
are daunting:

 � On average, it takes about 10 to 
15 years for a new medicine to 
complete the journey from initial 
discovery to the marketplace.6,7,8

 � For every 5,000 to 10,000 compounds 
that enter the pipeline, only one 
receives approval. Even medicines 
that reach clinical trials have only a 
16% chance of being approved.9

 � The process is costly. The average 
R&D investment for each new 
medicine is $1.2 billion, including 
the cost of failures,10 with more 
recent studies estimating the costs 
to be even higher.11

Each potential new medicine goes 
through a long series of steps on its 
way to patients. Figure 11 outlines this 
process.

Drug Discovery

The first step in developing a new 
medicine is to understand the disease or 
condition as thoroughly as possible. The 
entire biomedical research community 
contributes to this body of knowledge. 
In the United States, we are fortunate 

to have a have a dynamic, collaborative 
research ecosystem that includes 
researchers from government, industry, 
and academia. 
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Figure 11: The Research and Development Process

Reproduced from: 2013 Biopharmaceutical Research Industry Profile
(PhRMA)



Phase III clinical trials: costs and benefits

Costs of Phase III clinical trials are spread over 2-3 years.

Sales are spread over 20+ years.

Both need to be discounted to the start of the trials
(could discount to any other date if we’re interested in their ratio).

firms. This issue is discussed further in ‘Drug In-
novation and Industry Evolution Since 1970’. This
increase in industry research intensity can be inter-
preted both as a response to increasing profit op-
portunities from new drug research as well as an
equilibrating factor bringing returns in line with
the industry cost of capital. This makes the ques-
tion of industry returns on new drug introduction
in the 1990s a particularly interesting question to
analyse at the present time.

Empirical Results

The Baseline Case

Using the data and assumptions described
above, we constructed the pattern of cash flows
for the mean of our sample of 118 NCEs shown
in figure 5. The R&D phase lasts for 12 years and
results in a stream of negative cash flows. The first
years of marketing, years 1 and 2, are also charac-
terised by negative cash flows. This is because of
heavy promotion and advertising expenditures
during the product launch period. Cash flows rise
to a peak in year 12 and then begin to decline. The
decline becomes steeper as patent expiry and ge-
neric competition begin.

The baseline case results are shown in the first
row of table III. The IRR is 11.5% and can be com-
pared with our real cost-of-capital estimate of 11%.
Hence, the industry mean performance is positive
but only by a small amount. The present value of
net revenues at the date of marketing is $US525
million and can be compared with the present value
of R&D costs at the same point in time, or $US480
million. This leads to an NPV of $US45 million.

The results for the baseline case for the 1990 to
1994 NCEs are roughly the same as for our earlier
1980 to 1984 sample. In the 1980 to 1984 baseline
case, the IRR was 11.1% compared with a cost of
capital of 10.5%. The 1990 to 1994 IRR is similarly
about a half percentage point above the cost-of-
capital estimate.

Sensitivity Analysis

Given the uncertainty surrounding many of the
key parameters that affect the IRR and NPV, we
have performed a sensitivity analysis for a number
of the parameters. These results are reported in
table III.

An important parameter is the contribution mar-
gin. As discussed earlier, we examined data for a
number of firms during the 1990s and found that
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Fig. 5. Cash flows over the product life cycle: baseline case.
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Reproduced from: Grabowski, Vernon and DiMasi (2002)

https://link.springer.com/article/10.2165/00019053-200220003-00002


Phase III clinical trials: test level

Fully deterrent test level for drug i : αi = ci
bi (0)

.

ci = present value of expected Phase III clinical trial costs

bi (0) = present value of expected profits “unlocked” by the approval if
θi = 0.

Both vary a lot.

Don’t have such data for individual drugs.



Phase III clinical trials: representative drug

Will consider a “representative” drug with:

c = average cost of conducted Phase III trials.
b(0) = average profit of approved drugs.

Data source: DiMasi et al. (2003), summary data on R&D expenses by
phase of development from a confidential survey of firms.

Fully deterrent test level for a representative drug:

α =
$119.2 million

$802 million
= 14.9%.

$802 mln. = average P.V. of pre-approval R&D expenses per approved
drug.

Grabowski et al. (2002) analyze sales data for the earlier half of DiMasi
et al. sample and find that average R&D expenses ≈ average profits.

https://link.springer.com/article/10.2165/00019053-200220003-00002
https://doi.org/10.1016/S0167-6296(02)00126-1


Phase III clinical trials: variability

Need to know joint distribution of (ci , bi (0)) to find out the distribution
of deterrent test levels.

Drugs in the top decile have 5.5 times higher average sales.

Assuming average clinical trial expenses, test level for a top-decile drug:

α ==
$119.2 million

5.5 · $802 million
= 2.7%.

If approval depended only on a single test, conventional levels of 5% and
1% would be a strong deterrent.

Regulator tied to using conventional test levels could adjust c and b(·)
instead. Orphan Drug Act tried to effectively reduce c and increased b
for drugs targeting rare conditions.



Conclusion

Controlling the level of a hypothesis test may be an economically rational
strategy for deterring null hypotheses from being tested.

The level of the test is dictated by the economic parameters, not by
convention.

Self-interested response to statistical procedures could be an important
consideration that could be used to design them.




