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Summary 

 

 

When designing data collection, questions arise regarding how much data to 

collect and how much effort to expend to enhance the quality of the data. 

 

To make choice of sample design a coherent subject of study, it is desirable to 

specify an explicit decision problem. 

 

We use the Wald framework of statistical decision theory to study allocation of a 

predetermined budget between two or more sampling processes. 

  



 
 

All processes draw random samples from a population of interest and aim to 

collect data that are informative about the sample realizations of an outcome. 

 

The processes differ in the cost of data collection and quality of the data obtained. 

 

Increasing the allocation of budget to a low-cost process yields more data, while 

increasing the allocation to a high-cost process yields better data. 

  



 
 

We initially view the concept of “better data” abstractly and then fix attention on 

two important cases. 

 

In both cases, the high-cost process accurately measures the outcome of each 

sample member. The cases differ in the data yielded by the low-cost process. 

 

In one case, the low-cost process has nonresponse. 

 

In the other, it provides a low-resolution interval measure of outcomes. 

 

We study minimax-regret prediction of a real outcome under square loss when the 

decision maker imposes no assumptions that restrict the unobserved outcomes. 

  



 
 

Background 

 

Cochran, Mosteller, and Tukey (1954) considered an instance of the design 

decision. 

 

They assessed the methodology of the Kinsey study of male sexual behavior. 

 

They compared the benefits of increased sample size versus increased rates of 

response when the objective is to estimate the population mean of an outcome. 

 

They wrote: “Very much greater expenditure of time and money is warranted to 

obtain an interview from one refusal than to obtain an interview from a new 

subject.” 

http://www.worldcat.org/oclc/2908863


 
 

They considered the mean square error of an estimate of the mean. 

 

They recognized that, with no knowledge of the process generating nonresponse, 

obtaining an interview from a new randomly drawn subject only reduces variance. 

 

Obtaining an interview from a non-respondent sample member reduces both 

variance and maximum potential bias. 

 

Horowitz and Manski (1998) and Tetenov (2012) provide further analysis, using 

the modern framework of partial identification analysis. 

  

http://carloalberto.org/assets/working-papers/no.98.pdf
https://doi.org/10.1016/S0304-4076(97)00077-8


 
 

Using Statistical Decision Theory to Choose a Sample Design and Predictor 

 

Optimal Prediction (Optimal Choice of a Standard Treatment) 

 

Consider a planner who must choose a standard treatment for members of 

population J, formally a probability space (J, Ω, P) with P(j) = 0, all j � J. 

 

The set of feasible treatments is T, a subset of the real line. 

 

Each j � J has an optimal treatment value, denoted yj. 

 

A loss function Lj(yj − t) gives the social cost of assigning treatment t to person j. 

 



 
 

The unconstrained optimal plan assigns each person his optimal treatment. 

 

The planner faces a constrained problem, in which every person must receive the 

same treatment. 

 

The mean cost that results if everyone is assigned treatment t is E[L(y − t)]. 

 

The planner wants to solve the problem min t � T E[L(y − t)]. 

 

He can solve this problem if he knows P(y).  



 
 

 

 

Prediction with Sample Data 

 

The planner does not know P(y). 

 

He can use a budget B to draw persons at random and attempt to measure the 

outcome of each sampled person.  He then uses the data to choose a point 

prediction.  

 

Let two sampling processes be available, labelled 1 and 2.  These processes incur 

different marginal costs (c1, c2) per sample member, with 0 < c1 < c2. They yield 

data of different quality. 



 
 

 

The planner faces a joint problem of sample design and choice of a predictor. 

 

The design alternatives are feasible values for the sample sizes (N1, N2). 

 

The feasible designs are (N1, N2) such that 0 ≤ c1N1 + c2N2 ≤ B. 

 

Given a design, a predictor maps the realized data into a prediction. 

 

Samples of size (N1, N2) yield data ψ = (ψ1k, k = 1, . . . , N1; ψ2k, k = 1, . . . , N2).   

Ψ denotes the sample space indexing all possible data realizations. 

 

A predictor is a function δ(·): Ψ o T. 



 
 

 

The State-Dependent Risk of a Design-Predictor Pair 

 

Wald’s statistical decision theory evaluates each design-predictor pair by its risk, 

the expected value of mean social cost across potential samples. 

 

Let Q(N1, N2) be the sampling distribution of the data under design (N1, N2). 

 

The risk of design-predictor pair [(N1, N2), δ] is 

 

r[(N1, N2), δ]  =  ³E{L[y − δ(ψ)]}dQ(ψ; N1, N2) 

 

             =  ³ ³L[y − δ(ψ)]dP(y)dQ(ψ; N1, N2). 



 
 

 

 

Evaluation of risk is possible if one knows P(y) and Q(N1, N2). 

 

We study decision making with incomplete knowledge of these distributions. 

 

Let the feasible distributions be (Ps, Qs, s � S].  S is called the state space in 

decision theory and the parameter space in statistics. 

 
In principle, one can compute state-dependent risk 

 

rs[(N1, N2), δ]  =  ³Es{L[y − δ(ψ)]}dQs(ψ; N1, N2) 

             =  ³ ³L[y − δ(ψ)]dPs(y)dQs(ψ; N1, N2). 



 
 

 

Choosing a Design-Predictor Pair 

 

Wald’s basic idea is to use the vector {rs[(N1, N2), δ], s � S} to evaluate each 

design-predictor pair. 

 

One first eliminates inadmissible (weakly dominated) options. 

 

One then uses some criterion to choose among the set D of admissible options. 

 

Leading cases are minimization of Bayes risk (the expectation of risk with respect 

to a subjective distribution φ on S), minimax, and minimax regret. 

  



 
 

 

The quantities to be minimized are 

 

Bayes Risk: ³rs[(N1, N2), δ]dφ(s), 
 
 
Maximum Risk: Max rs[(N1, N2), δ], 
              s � S 
 
 
Maximum Regret: Max rs[(N1, N2), δ] −    Min     rs[(N1, N2), δ]′ . 
                s � S         [(N1, N2), δ]′ � D 
  

 

Note: One might skip the step of determining admissibility and use a decision 

criterion to choose among all feasible options, not just those that are admissible. 

 



 
 

 

Computation 

 

Use of statistical decision theory to choose a sample design and predictor is simple 

in principle, but it can be difficult in practice. 

 

Monte Carlo simulation enables computation of risk in a specified state. 

 

Risk in state s is the expected value of L[y − δ(ψ)] over (y, ψ), which are 

statistically independent with distributions Ps(y) and Qs(ψ; N1, N2). 

 

Risk can be approximated by drawing multiple realizations of (y, ψ), computing 

L[y − δ(ψ)], and averaging the results.



 
 

 

Risk and Regret under Square Loss 

 

The optimal prediction with square loss is E(y).  Let μs = Es(y) and λδs = Es[δ(ψ)]. 

 

It can be shown that risk and regret in state s are 

 

rs[(N1, N2), δ]  =  Vs(y) + Vs[δ(ψ)] + (μs − λδs)2. 

 

rs[(N1, N2), δ]  −   Min   rs[(N1, N2), δ]′  =  Vs[δ(ψ)] + (μs − λδs)2. 
                [(N1, N2), δ]′ �D 
 

Thus, regret is the mean square error when δ is used to estimate the mean outcome. 



 
 

 

Low-Cost Sampling with Nonresponse 

 

Background 

 

P(y)  =  P(y|z = 1)P(z = 1) + P(y|z = 0)P(z = 0), 

 

where z = 1 if a person’s outcome is observable and z = 0 if not.  A sampling 

process with nonresponse partially identifies P(y), revealing that 

 

              P(y)  �  [P(y|z = 1)P(z = 1) + γP(z = 0),  γ � Γ], 

 

where Γ is the set of all probability distributions on the outcome space. 



 
 

 

Suppose that an agency is designing a new survey to be administered for a 

predetermined total budget. 

 

Two vendors submit bids to conduct the survey. 

 

One proposes a low-cost sampling process with a known positive rate of 

nonresponse and a large sample size.  The other proposes a high-cost sampling 

process with full response but a smaller sample. 

 

We derive the MMR choice between these sampling processes under the 

assumption that the planner will use specific reasonable predictors. 



 
 

 

The analysis generalizes to MMR comparison of any set of bids that differ only 

in terms of nonresponse rate and sample size. 

 

The analysis also generalizes to designs that combine low-cost and high-cost 

sampling processes, under the assumption that the planner will pool the observed 

outcomes. 

 

Pooling the data may not be optimal because it discards information on data 

quality, but it is a simple practice that occurs frequently. 

  



 
 

 

Minimax-Regret Analysis under Square Loss 

 

We maintain several assumptions that simplify analysis. 

 

The planner knows the response rate P(z = 1) with low-cost sampling. 

 

y and t take values in the unit interval. 

 

With low-cost sampling, the cost c1 per sample member is incurred when an 

outcome is observed rather than when observation of an outcome is attempted.  

Hence, N1 is the number of outcomes that will be observed. 

  



 
 

 

 

The outcome data observed with sample design (N1, N2) are 

           ψ = (y1k, k = 1, . . . , N1; y2k, k = 1, . . . , N2). 

 

The state space is [Ps(y|z = 1), Ps(y|z = 0), s � S] = Γ u Γ. 

 

Each pair [Ps(y|z = 1), Ps(y|z = 0)] determines a unique population outcome 

distribution Ps(y). 

  



 
 

 

In this setting, the MMR predictor is known when only high-cost data are 

available; that is, when N1 = 0 and N2 > 0.  (Hodges and Lehman, 1950). 

 

The MMR predictor does not have a known explicit form when only low-cost data 

are available; that is, when N1 > 0 and N2 = 0. 

 

However, we are able to easily derive the maximum regret of a reasonable choice. 

 

We first consider these polar cases and then consider the general design decision, 

where the planner chooses a (N1, N2) pair that satisfies the budget constraint. 

  

http://www.jstor.org/stable/2236900


 
 

 

Prediction with Only High-Cost Sampling 

 

Let m2 denote the sample average value of the N2 observations of y.  Hodges and 

Lehmann (1950) prove that 

 

the MMR prediction is (m2√N2 + ½)/(√N2 + 1),  

 

the minimax value of regret is 1/[4(√N2 + 1)2]. 

 

The conventional estimate of a population mean under random sampling is the 

sample average m2.  It has maximum regret 1/(4N2). 

 



 
 

 

Prediction with Only Low-Cost Sampling 

 

The MMR predictor and minimax value of regret do not have known forms. 

 

We study a simple predictor, the midpoint of a sample estimate of the interval that 

forms the identification region for the optimal prediction E(y). 

 

This is a reasonable choice because, if the identification interval were known 

rather than estimated, its midpoint would be the minimax-regret prediction. 

 
 

  



 
 

 

Low-cost sampling reveals that E(y) lies in the interval 

         [E(y|z = 1)P(z = 1),  E(y|z = 1)P(z = 1) + P(z = 0)]. 

 

Let m1 be the average of the observed N1 outcomes.  The interval estimate is 

                [m1P(z = 1),  m1P(z = 1) + P(z = 0)]. 

 

We consider use of m1P(z = 1) + ½P(z = 0) as the predictor. 

 

It can be shown that the maximum regret of this predictor is 

 

      Max s � S Vs[δ(ψ)] + (μs − λδs)2  =  ¼[P(z = 1)2/N1 + P(z = 0)2]. 

 



 
 

 

Choosing Between the Low-Cost and High-Cost Designs 

 

We first examine the constrained setting in which the planner must choose 

between one of the two polar designs, intermediate options not being feasible. 

 

With marginal sampling costs (c1, c2) and budget B, the feasible sample sizes are 

N1 = INT(B/c1) for low-cost sampling and N2 = INT(B/c2) for high-cost sampling. 

 

We henceforth ignore for simplicity the fact that sample sizes must be integers 

and take the feasible sample sizes to be N1 = B/c1 and N2 = B/c2. 

  



 
 

 

The best design from the MMR perspective is the one that minimizes maximum 

regret when using the MMR predictor for that design. 

 

We have an explicit expression for the maximum regret predictor with high-cost 

sampling but not with low-cost sampling. 

 

To level the playing field, we consider choice of a design when the planner 

commits to use the simple predictors m1P(z = 1) + ½P(z = 0) for low-cost 

sampling and m2 for high-cost sampling. 

  



 
 

 

With these predictors, the feasible low-cost and high-cost designs yield maximum 

regret ¼[P(z = 1)2(c1/B) + P(z = 0)2] and ¼(c2/B), respectively. 

 

Hence, the low-cost or high-cost design yields smaller maximum regret if 

 

        P(z = 1)2c1 + BP(z = 0)2  <  c2, 

        P(z = 1)2c1 + BP(z = 0)2  >  c2. 

 

The threshold budget is 

 

          B  =  [c2 − P(z = 1)2c1]/P(z = 0)2. 

 



 
 

 

This finding generalizes to choice among multiple sampling processes that differ 

in their costs and response rates. 

 

Let a set Q of sampling processes be feasible, each q � Q having sampling cost 

cq and response rate Pq(z = 1). 

 

Given the predetermined budget B, the maximum regret of process q is 

 

                 ¼[Pq(z = 1)2(cq/B) + Pq(z = 0)2]. 

 

If the planner is constrained to choose among these processes, the best design 

minimizes Pq(z = 1)2(cq/B) + Pq(z = 0)2. 



 
 

 

Allocation of Budget to Both Sampling Processes, with Data Pooling 
 

Suppose it is feasible to allocate budget to both a low-cost and a high-cost 

sampling process, subject only to the overall budget constraint c1N1 + c2N2 ≤ B. 

 

There are many reasonable ways to choose a predictor combining the data from 

both samples, but computation of maximum regret is burdensome. 

 

We focus on a particular predictor for which MMR computation is tractable. 

  



 
 

 

We suppose that the planner pools the observed outcomes across the two samples 

and then proceeds as if the data were drawn entirely by low-cost sampling. 

 

Pooling is easy to study because the results obtained above apply to the pooled 

sample. 

 

Let m12 be the pooled sample average of the observed N1 + N2 outcomes. 

 

Let π { P(z = 1) be the response rate with low-cost data. 

 

Assume for simplicity that the realized response rate equals the population 

response rate.  



 
 

 

N1/π is the total size of the low-cost sample drawn to obtain N1 responses. 

 

The response rate in the pooled sample is (N1 + N2)/(N1/π + N2). 

 

The predictor is the interval-estimate midpoint 

 

     m12[(N1 + N2)/(N1/π + N2)] + ½[(N1/π − N1)/(N1/π + N2). 

 

Maximum regret with a given sample design (N1, N2) is 

 

       [2(N1/π + N2)]-2[(N1 + N2) + (N1/π − N1)2]. 

  



 
 

 

The design that minimizes maximum regret chooses (N1, N2) to solve the problem 

 

            min         [2(N1/π + N2)] -2 [(N1 + N2) + (N1/π – N1)2]. 
        (N1, N2): 0 ≤ c1N1 + c2N2 ≤ B 
 

 

The optimal design exhausts the budget.  Hence, we can set N2 = (B − c1N1)/c2 

and rewrite this as the one-dimensional minimization problem 

 

    min    {2[N1/π + (B − c1N1)/c2]}-2{[N1 + (B − c1N1)/c2] + (N1/π – N1)2}. 
  N1: 0 ≤ N1 ≤ B/c1 
 
 
Numerical calculations are instructive. 



 
 

 

 



 
 

 

 



 
 

 

 



 
 

 

Allocation of Budget to Both Processes with an Intersection Estimate as Predictor 

 

Pooling data discards available information on data quality. 

 

It is reasonable to ask whether a predictor that uses this information may 

outperform one that pools the data. 

 

We focus on rules that use “intersection estimates” as the predictor. 

  



 
 

 

As earlier, let m1 and m2 be the average values of y observed using the low-cost 

and high-cost sampling processes. 

 

The two samples yield interval and point estimates of μ, namely 

          [m1P(z = 1), m1P(z = 1) + P(z = 0)]  and  m2. 

 

Conventional confidence intervals for m1 and m2 have the form 

 

[m1 − b1/√N1, m1 + b1/√N1] ∩ [0, 1]  and  [m2 − b2/√N2, m2 + b2/√N2] ∩ [0, 1], 

 

where b1 > 0, b2 > 0.  This suggests an interval estimate of μ of the form 

 



[(m1 − b1/√N1)P(z = 1), (m1 + b1/√N1]P(z = 1) + P(z = 0)] 

∩  [m2 − b2/√N2, m2 + b2/√N2]  ∩  [0, 1]. 

Such “intersection estimates” have been studied in the literature on partial 

identification with missing data; see Manski (1990, 2003), Manski and Pepper 

(2000, 2009), Krieder and Pepper (2007), Chernozhukov, Lee, and Rosen (2013). 

We consider the predictor that equals 

(i) the midpoint of the intersection interval when the two intervals intersect,

(ii) the midpoint between the lesser upper bound and the greater lower bound

when the intervals do not intersect.

http://www.jstor.org/stable/23524295
http://www.jstor.org/stable/27639874
http://www.jstor.org/stable/2999533
http://www.jstor.org/stable/23116601
http://www.springer.com/gp/book/9780387004549
http://www.jstor.org/stable/2006592


 
 

 

For any specified design (N1, N2), response rate P(z = 1), and outcome 

distributions [Ps(y|z = 1), Ps(y|z = 0)], Monte-Carlo simulation can be used to 

compute the regret of this predictor in state s. 

 

Maximum regret can be approximated by discretizing the state space. 

 

To illustrate, we suppose that y has support {0, ½, 1}.  We set b1 and b2 equal to 

1.96 times the respective sample standard deviation of y. 



 
 

 

 



 
 

 

Low-Cost Sampling with Interval Measurement of Outcomes 

 

Low-Resolution Interval Measurement 

  

Let y and t take values in the unit interval. 

 

Let the high-cost measurement method always yield errorless observations of y. 

 

Let the low-cost method yield an interval measurement. 

 

That is, for k = 1, . . . , N1, one observes a sub-interval of [0, 1] that contains yk. 

  



 
 

 

It appears difficult to characterize the maximum regret of design-predictor pairs 

when low-cost sampling produces general forms of interval measurement. 

 

Progress is possible in special cases of practical importance. 

 

One is data with nonresponse.  Here only two types of intervals occur: [yk, yk] 

when the outcome is observable and [0, 1] when the outcome is unobservable. 

 

Another uses a low-resolution measurement device that locates each value of a 

continuous outcome within a given finite set of M ≥ 2 intervals.  These intervals, 

denoted (I1, I2, . . . , IM), collectively cover the unit interval and overlap at most at 

their endpoints. 



 
 

 

We focus on the case of equal-length closed intervals, each of length 1/M. 

 

Thus, the intervals are Im = [(m – 1)/M, m/M], m = 1, . . . , M. 

 

Example: Low-resolution measurement of a patient’s optimal drug dose relative 

to a specified maximum dose may place it in one of four intervals [0, ¼], [¼, ½], 

[½, ¾], [¾, 1]. 

  



 
 

 

Prediction with Low-Cost Sampling 

 

We earlier assumed that the marginal cost c1 for low-cost sampling is incurred 

only when an outcome is observed.  Here it is incurred for every sample member. 

 

We study a simple predictor, the midpoint of the sample analog estimate of the 

identification region for the optimal prediction E(y). This is ∑ m [(m – ½)/M]p1m. 

 

It can be shown that the maximum regret of this predictor is 
 

       sup s � S Vs[δ(ψ)] + (μs − λδs)2  =  ¼M-2 [(M – 1)2/N1 + 1]. 

 



 
 

 

Choosing Between the Low-Cost and High-Cost Designs 

 

Suppose that one must choose between the low and high-cost designs, using 

predictor ∑ m [(m – ½)/M]p1m or m2. 

 

Then maximum regret is ¼M-2[(M – 1)2(c1/B) + 1] or ¼(c2/B). 

 

The low-cost or high-cost design yields smaller maximum regret if 

 

     M-2 [(M – 1)2c1 + B]  <  c2,      M-2 [(M – 1)2c1 + B]  >  c2. 

 

The threshold budget is  B = c2M2 − (M – 1)2c1. 



 
 

 

Conclusion 

 

We hope that this paper will encourage use of statistical decision theory to inform 

the design of data collection when data quality is a decision variable. 

 

We have considered two settings: nonresponse and interval measurement. 

 

We note that these phenomena may interact. 

 

Surveys often elicit interval data on real outcomes in order to reduce rates of item 

nonresponse that arise for questions about sensitive topics.  Increasing the 

resolution may yield increased nonresponse. 
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