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Prevailing convention

Convention for determining the sample size of a randomized trial
comparing a new treatment with a control:

I Assume that the outcomes will be used to perform a test of a
specified null hypothesis (new treatment is not better) at a
conventional test level (5%)

I Select a specific positive effect size MCID (”Minimum
detectable effect”, ”Minimum clinically important difference”)

I Compute sample size sufficient to limit Type II error
probability by 10% or 20% at the effect size MCID, i.e. to
reject the null with at least 80% or 90% probability.



Shortcomings of the prevailing convention

I Inattention to magnitudes of losses: A given error probability
should be less acceptable when the magnitude of the effect is
larger. 10% error probability at effect size MCID tells us little
about expected welfare losses at other effect sizes.

I Use of conventional error probabilities:
Why limit Type I error by 1% or 5%? (Which usually implies
Type II error of 99% or 95% for infinitesimal positive effects)
Why limit Type II error by 10% or 20% at MCID?
Why are they different?

I Limitation to settings with two treatments:
Even with multiple testing adjustments, the hypothesis testing
framework is still about probabilities of Type I/Type II errors.
They do not capture the welfare losses in the problem of
choosing among K treatments.



Bayesian critique

Bayesian statisticians have long criticized the use of concepts in
hypothesis testing to design trials and make treatment decisions.

Bayesian statistical decision theorists argue that the purpose of
trials is to improve medical decision making and conclude that
trials should be designed to maximize subjective expected utility in
settings of clinical interest.

The sample sizes selected may differ from those motivated by
testing theory.

The Bayesian perspective is compelling when one can place a
credible prior distribution on treatment response, but agreeing on
priors is difficult.



ε-optimality

Source: Manski and Tetenov (2016), ”Sufficient trial size to inform
clinical practice,” PNAS 113(38), 10518-10523.

An ideal objective is to collect data that enable implementation of
an optimal rule - one whose expected welfare equals the welfare of
the best treatment in every state of nature.

Optimality is not achievable in general, but ε-optimal rules do exist
when trials have large enough sample size.

An ε-optimal rule has expected welfare within ε of the welfare of
the best treatment in every state. Equivalently, it has maximum
regret no larger than ε.

http://www.pnas.org/cgi/content/short/1612174113


Implementation of the idea requires specification of a value for ε.

The necessity to choose an effect size of interest when designing
trials already arises in conventional practice, where the trial planner
must specify the effect size at which power is calculated.

A possibility is to let ε equal the minimum clinically important
difference (MCID) in the average treatment effect comparing
alternative treatments.

There is suspicion that in practice MCID is often chosen ex post to
formally justify sample size driven by other sample size constraints.



The setup

A planner must assign one of K treatments to each member of a
treatment population, denoted J.

Denote the set of treatments by T .

Each individual j ∈ J has a response function uj(·) : T → R
mapping treatments t ∈ T into welfare outcomes uj(t).

The probability distribution P[u(·)] of the random function
u(·) : T → R describes treatment response across the population.

We will later consider individual observable covariates xj ∈ X ,
where X is finite.



A statistical treatment rule (STR) δ maps sample data ψ into a
treatment allocation.

Q is the sampling distribution generating the data
Ψ is the sample space.

Let ∆ denote the space of functions that map T ×Ψ into the unit
interval and satisfy

∑
t∈T δ(t, ψ) = 1, ∀ψ ∈ Ψ.

Each δ is an STR. δ(t, ψ) is the fraction of individuals assigned to
treatment t when the data are ψ.



Denote the mean outcome of treatment t by µt ≡ E [u(t)].

The planner wants to maximize additive population welfare

U(δ,P, ψ) ≡
∑
t∈T

δ(t, ψ) · µt

but P is unknown.

Specify space S indexing possible states of the world. The
treatment response distribution Ps and the sampling distribution
Qs depend on s ∈ S .

{(Ps ,Qs), s ∈ S} - the set of feasible (P,Q) pairs.

Denote the mean response to treatment t in state s by µst .



The expected welfare (over repeated samples) yielded by rule δ in
state s is

W (δ,Ps ,Qs) ≡
∫

Ψ

(∑
t∈T

δ(t, ψ) · µst

)
dQs(ψ) =

∑
t∈T

Es [δ(t, ψ)]·µst

The maximum welfare achievable is state of the world s is

U∗(Ps) ≡ max
t∈T

µst

We call δ ε-optimal if for all s ∈ S

W (δ,Ps ,Qs) ≥ U∗(Ps)− ε,

i.e., if its maximum regret is no larger than ε:

max
s∈S

[U∗(Ps)−W (δ,Ps ,Qs)] .



We can consider two questions:

1. If a particular treatment rule (a hypothesis test rule or an
Empirical Success (ES) rule) will be implemented, what sample
size is needed to achieve ε-optimality?

2. If any treatment rule could be implemented, what sample size is
sufficient to enable ε-optimal treatment assignment?

I We can obtain sufficient sample size in (1) by evaluating
maximum regret of any candidate treatment rule (e.g., ES) if
we do not know the exact minimax-regret rule.

I Rules that require fractional assignment (including the exact
minimax-regret rule) may not be implementable, then we
should consider implementable rules.

I Even if we cannot evaluate maximum regret exactly, an upper
bound on maximum regret will give us sufficient sample size.



We use Empirical Success (ES) treatment rules to bound minimax
regret.

Let mt(ψ) ≡ (nt)
−1

∑
j∈N(t)

uj be the average outcome among nt

individuals assigned to treatment t in the sample.

An ES rule assigns all persons to treatment(s) that maximize
mt(ψ) over T (treatments with the largest sample mean outcome).

ES rules are easily implementable and practical.
They are exactly or approximately minimax-regret in some settings
with two treatments (Stoye 2009, 2012).
Upper bounds on regret of ES rules are analytically tractable.

https://doi.org/10.1016/j.jeconom.2009.02.013
https://doi.org/10.1016/j.jeconom.2011.06.012


Binary outcomes, two treatments, balanced design

With two treatments T = {a, b}, regret equals

U∗(Ps)−W (δ,Ps ,Qs) = max
t∈T

µst −
∑
t∈T

Es [δ(t, ψ)] · µst

= max(µsa, µsb)− Es [δ(a, ψ)] · µsa − Es [δ(b, ψ)] · µsb

If b is the new treatment and δ is a hypothesis test rule, then

= Es [δ(b, ψ)]︸ ︷︷ ︸
P(Type I error)

· (µsa − µsb)︸ ︷︷ ︸
effect size

if µsa ≥ µsb,

= Es [δ(a, ψ)]︸ ︷︷ ︸
P(Type II error)

· (µsb − µsa)︸ ︷︷ ︸
effect size

if µsb ≥ µsa.



We compute maximum regret of candidate treatment rules in the
case of binary outcomes uj(t) ∈ {0, 1}, two treatments, and equal
sample size for each treatment.

If hypothesis test rules are implemented, the minimum sample size
required for ε-optimality is substantially larger.



For a given sample size, the maximum regret of a 5% one-sided
hypothesis test rule is approx. 5 times larger than the maximum
regret of an ES rule, which necessitates approx. 25 times larger
sample for ε-optimality.



Red lines indicate effect sizes with P(Type II error) = 10%/20%
If sample size is derived from a conventional power calculation,
that’s the MCID effect size.
Maximum regret > MCID × P(Type II error at MCID)



Bounded outcomes, K treatments

We derive new upper bounds on the maximum regret of ES rules
for bounded outcomes uj ∈ [ul , uh] with range M ≡ uh − ul for any
stratified sample sizes (n1, . . . , nK ).

Balanced designs n1 = · · · = nK = n yield the lowest bounds:

Proposition 1:

(2e)−1/2 ·M · (K − 1) · n−1/2

Proposition 2:
M · (lnK )1/2 · n−1/2

(and a sharper bound that has to be evaluated numerically)

The bound in Proposition 2 is lower for K ≥ 4



The bounds on maximum regret of ES rules imply simple bounds
on sufficient sample size that guarantee ε-optimality:

Corollary to Proposition 1: (for K = 2, 3)

n ≥ (2e)−1 · (K − 1)2 ·
(
M

ε

)2

Corollary to Proposition 2: (for K ≥ 4)

n ≥ lnK

(
M

ε

)2

These are only simple sufficient conditions for ε-optimality.

The best approach would be to bound maximum regret
computationally, which seems challenging in the space of all
possible bounded distributions of u(t).



ε-optimality with observable covariates

Suppose that persons have observable covariates taking values in a
finite set X and that the planner can execute a trial with
(treatment, covariate)-specific sample sizes [ntξ, (t, ξ) ∈ T × X ].

There are at least two reasonable ways that a planner may wish to
evaluate ε-optimality in this setting.

One may want to achieve ε-optimality within each covariate group.

This interpretation requires no new analysis. The planner should
simply define each covariate group to be a separate population of
interest.

The design that achieves group-specific ε-optimality with minimum
total sample size equalizes sample sizes across groups.



Alternatively, one may want to achieve ε-optimality within the
overall population, without requiring that it be achieved within
each covariate group.

The design that achieves ε-optimality with minimum total sample
size does not equalize sample sizes across groups. Neither does it
set the sample sizes proportional to group sizes.

With a balanced design assigning nξ individuals from covariate
group ξ to each treatment, the maximum regret of an ES rule is
bounded above by

(2e)−1/2 ·M · (K − 1)
∑
ξ∈X

P(x = ξ)n
−1/2
ξ ,

M · (lnK )1/2
∑
ξ∈X

P(x = ξ)n
−1/2
ξ .



Given a predetermined maximum total sample size N, minimizing
these bounds is achieved by choosing (nξ, ξ ∈ X ) to minimize∑

ξ∈X
P(x = ξ)n

−1/2
ξ

If one treats (nξ, ξ ∈ X ) as continuous variables rather than as
integer sample sizes, then the relative sample sizes for any pair
(ξ, ξ′) of covariate values should have the ratio

nξ
nξ′

=

[
P(x = ξ)

P(x = ξ′)

]2/3

Covariate-specific sample size increases with the prevalence of the
covariate group in the population, but smaller groups are
“oversampled” relative to their size.



Conclusion

Choosing sample sizes to enable ε-optimal treatment rules would
align trial design with the objective of informing treatment choice
better than the conventional practice of choosing sample size to
achieve specified statistical power in hypothesis testing.

There are numerous directions for further research.

1. We considered trials drawing fixed number of subjects for each
covariate group and treatment.

An alternative class of designs specifies a probability distribution
for drawing subjects and assigning them to treatments. Our results
could be used as an “inner loop” for evaluating probabilistic
designs.



2. We let the state space contain all distributions of treatment
response.

This assumption yields generally applicable findings.

However, it is unduly conservative when some credible knowledge
of treatment response is available.

Given credible assumptions, it may be valuable to impose them.
One could restrict feasible distributions P[u(t)|x = ξ] or impose
cross-covariate restrictions.

As the state space shrinks, the minimum sample needed to achieve
ε-optimality logically cannot increase and may decrease.




