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Stoye (2009), Proposition 4: If covariate X is continuously
distributed, minimax regret is constant and does not decrease with
sample size.

This result changes if

1. Stronger assumptions on how average treatment response
E [Yt |X ] varies with X (Stoye, 2012)

2. The set of feasible treatment rules is restricted

Source: Kitagawa and Tetenov (2017), “Who Should be Treated?
Empirical Welfare Maximization Methods for Treatment Choice”
Cemmap working paper CWP24/17

https://doi.org/10.1016/j.jeconom.2009.02.013
https://doi.org/10.1016/j.jeconom.2011.06.012
https://www.cemmap.ac.uk/publication/id/9246


Regret is evaluated relative to the best implementable treatment
rule.

Stoye (2009, Proposition 4) assumes that any treatment allocation
is feasible, including arbitrarily complex treatment rules.

This is an unreasonable benchmark for public policies. Constraints
frequently restrict the complexity and other characteristics of
feasible treatment rules.

I Treatment rules are often publicly communicated to
individuals and need to be understandable and transparent

I Monotonicity of treatment rules in some covariates if desirable
(e.g., cannot treat the rich but not the poor)

I Some treatments may be capacity-constrained

I Other aggregate constraints (e.g., aggregate proportion
treated cannot vary with race)

https://doi.org/10.1016/j.jeconom.2009.02.013


Setup

A Randomized Controlled Trial (RCT) sample

I Xi ∈ X - pre-treatment observed covariates

I Di ∈ {0, 1} - randomized treatment

I Yi ∈ R - treatment outcome

I Y0,i ,Y1,i - potential outcomes

I e(x) ∈ [κ, 1− κ] - the probability of being randomized to
treatment 1 in the experiment

We consider a restricted set of treatment rules G. Each G specifies
which subset of the population will be treated (after analyzing the
experimental data)

I X ∈ G will be assigned to treatment 1

I X /∈ G will be assigned to treatment 0

(excludes randomized/fractional treatment rules)

Ĝ ∈ G treatment rule as a function of the sample



Empirical Welfare Maximization

I Estimate the policy directly by maximizing empirical welfare

ĜEWM = arg max
G∈G

Wn(G ),

I Sample analogue

Wn(G ) ≡ 1

n

n∑
i=1

[
YiDi

e(Xi )
· 1 {Xi ∈ G}+

Yi (1− Di )

1− e(Xi )
· 1 {Xi /∈ G}

]
consistently estimates the population welfare of policy G ,

W (G ) = E [Y1 · 1 {X ∈ G}+ Y0 · 1 {Xi /∈ G}] .

I EWM treatment rule: ĜEWM ≡ arg max
G∈G

Wn(G )



Empirical Illustration

I National Job Training Partnership Act (JTPA) Study (Bloom
et al, 1997)

I Sample: 11,204 adult applicants

I Propensity score = 2/3 (probability of treatment)
I Outcome Y = D(Y1 − cost) + (1− D)Y0:

I Total individual earnings in the 30-month period following
treatment assignment

I Total earnings minus $774 (average cost of each treatment
assignment, taking into account variable take-up)

I Covariates X : Years of education, pre-program earnings

I Average treatment effect: $1,157

I 95% CI: ($513, $1,801)

http://www.jstor.org/stable/146183


Parametric plug-in treatment rule:
estimate E (Y1|X ) and E (Y0|X ) by OLS.
Assign treatment 1 if X ′β1 > X ′β0

No cost: treat everyone, est. gain $1,157
With $774 cost: treat 96%, est. gain $466 (per population
member)
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EWM linear rule: maximizes the sample analog of welfare among
linear decision rules Ĝ = 1{X ′β ≥ 0}

No cost: treat 90%, est. gain $1,408. 95% CI: ($592, $2,225)
$774 cost: treat 90%, est. gain $712. 95% CI: (-$107, $1,532)
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EWM quadrant rule: select best min or max threshold for each
covariate Ĝ = 1{x1 > (<)t1, x2 > (<)t2}

No cost: treat 93%, est. gain $1,277. 95% CI: ($519, $2,034)
$774 cost: treat 83%, est. gain $687. 95% CI: (-$71, $1,445)
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Non-parametric plug-in rule: bivariate kernel reg of Y1|X and Y0|X
(ROT bandwidth).

No cost: treat 82%, est. gain $1,867
$774 cost: treat 69%, est. gain $1,257



Welfare Criterion

Object of interest: policy with the highest utilitarian (additive)
welfare

Outcome variable Y should reflect social preferences, so it may
need to

I give different weight to different individuals

I non-linearly transform outcomes

I aggregate multi-dimensional outcomes

I subtract treatment costs from outcomes



I The utilitarian welfare of treatment rule G is

W (G ) ≡ E [Y1 · 1 {X ∈ G}+ Y0 · 1 {X /∈ G}]
= E [Y0] + E [τ(X )1 {X ∈ G}] ,

τ(X ) ≡ E (Y1 − Y0|X ) : the conditional treatment effect

I We can equivalently work with the welfare gain of treating
subset G relative to treating no one

V (G ) ≡ W (G )−W (∅)
= E [τ(X ) · 1 {X ∈ G}] ,



First Best treatment rule (with no constraints on G )

G ∗FB ≡ {x : τ(x) ≥ 0)}
∈ arg max

G∈B(X )
W (G )

∈ arg max
G∈B(X )

V (G )

Second Best treatment rule
maximizing welfare in a constrained class G

G ∗ ∈ arg max
G∈G

W (G )

∈ arg max
G∈G

V (G )

The maximized feasible welfare

W ∗
G ≡ sup

G∈G
W (G ) ≤W (G ∗FB)



Assumptions:

Distribution of (Y0,Y1,D,Y ) is P ∈ P.

The only assumption on the distribution of treatment response:

I Bounded Outcomes: Y1, Y0 ∈
[
−M

2 ,
M
2

]
, M <∞, implying

|τ(x)| ≤ M, ∀x .

Restriction on experimental design (point-identifies τ(x))

I Strict Overlap: There exist κ > 0, s.t. e(x) ∈ [κ, 1− κ], ∀x .

Restriction on G:

I Complexity of Decision Sets: G is a countable VC-class of
subsets with finite VC-dimension: v = the maximal number of
points in X that can be shattered by G.



Examples of VC-classes G
Linear eligibility score:

G =
{
{x : x ′β ≥ 0} : β ∈ Rdx

}
has v = dx + 1.

Generalized eligibility score:

G =

{{
x :

m∑
k=1

ak fk(x) ≥ g(x)

}
: (a1, . . . , am) ∈ Rm

}

has v ≤ m + 1.

Multiple index rules:

G = {{x : (f1(x1) ≤ c1) ∩ · · · (fK (xK ) ≤ cK )} : (c1, . . . , cm) ∈ Rm}

has v ≤ K + 1.



Upper bound on maximum regret of EWM

Theorem 2.1: Let P be a class of DGPs satisfying assumptions
Bounded Outcomes and Strict Overlap. Let G be a VC-class of
treatment choice rules. Then

sup
P∈P

EPn

[
W ∗
G −W (ĜEWM)

]
≤ C1

M

κ

√
v

n
,

where C1 is a universal constant.

Remarks on rate bounds:

I This rate bound is valid whether G ∗FB ∈ G or not.

I Parametric plug-in with misspecified regressions does not have
such second-best optimality.



Proof: sketch

For any G̃ ∈ G,

W (G̃ )−W (ĜEWM)

≤ Wn(ĜEWM)−Wn(G̃ ) + W (G̃ )−W (ĜEWM)

≤
∣∣∣Wn(ĜEWM)−W (ĜEWM)

∣∣∣+
∣∣∣Wn(G̃ )−W (G̃ )

∣∣∣
≤ 2 sup

G∈G
|Wn(G )−W (G )| .

So,
W ∗
G −W (ĜEWM) ≤ 2 sup

G∈G
|Wn(G )−W (G )|



Proof: sketch

Wn(G ) = En(f (·;G )) and W (G ) = E (f (·;G )), where

f (·;G ) =

[
YiDi

e(Xi )
1{Xi ∈ G}+

Yi (1− Di )

1− e(Xi )
1{Xi /∈ G}

]
Lemma A.1
If G is a VC-class of sets with VC-dimension v and g(·), h(·) are
two given real-valued functions of observations, then functions

{f (·;G ) = g(·) · 1{x ∈ G}+ h(·) · 1{x /∈ G}, G ∈ G}

form a VC-subgraph class with VC-dimension ≤ v .

Using this lemma, we can apply a well-known maximal inequality
for centered empirical processes to

sup
G∈G
|Wn(G )−W (G )| = sup

G∈G
|En(f )− E (f )|



Lower bound on minimax regret

Theorem 2.2: Let P be a class of DGPs satisfying Bounded
Outcomes and Strict Overlap. Let G be a VC-class of treatment
choice rules. Then, for any treatment choice rule Ĝ

sup
P∈P

EPn

[
W ∗
G −W (Ĝ )

]
≥ M

2
e−2
√
2

√
v

n
for all n ≥ 16v ,

Remarks on rate bounds:

I Both are finite-sample bounds (but not sharp).

I ĜEWM is minimax rate optimal: no Ĝ has maximum regret
converging to zero at a faster rate uniformly over P.

I EWM is minimax rate optimal even when v grows with n.



Proof: sketch

For the lower bound, we adapt the argument in Lugosi (2002):

sup
P∈P

EPn

[
W ∗
G −W (Gn)

]
≥ sup

P∈P∗
EPn

[
W ∗
G −W (Gn)

]
≥

∫
P∗

EPn

[
W ∗
G −W (Gn)

]
dµ(P)

≥
∫
P∗

EPn

[
W ∗
G −W (Ĝbayes)

]
dµ(P),

where P∗ ⊂ P is a class of DGPs that has a discrete support of X
with v points and τ(x) = γ or −γ. For uniform prior µ, the Bayes
risk can be analytically computed as a function of γ. Setting
γ =

√
v/n gives the lower bound.

https://link.springer.com/chapter/10.1007/978-3-7091-2568-7_1


Discussion: EWM and Statistical Decision Theory

There are important open questions:

I Are EWM rules admissible?

I Finite-sample minimax regret: we know that EWM rules
cannot be exactly minimax regret in some cases (when
fractional/randomized treatment assignment for tie-breaking
is required). Are they close to finite-sample minimax regret?

I Are there better treatment rules with the same uniform regret
convergence rates?



Alternative approaches to treatment choice with covariates

Plug-in approach: uniformly estimates τ(x) = E (Y1 − Y0|X = x)
and use treatment rule 1{τ̂(x) > 0}

I Requires assumptions on τ(x) that may not be credible

I May generate treatment rules that are not implementable

EWM approach: maximizes
∫
G τ(x)dPX (x) over a constrained set

of G ∈ G
I Minimal assumptions on τ(x) needed to uniformly estimate

∫
G

I Easily incorporates constraints

I Computationally challenging

Surrogate loss functions (e.g., Support Vector Machines):
maximizes

∫
G τ̃(x)dPX (x) for a more convenient τ̃(x) 6= τ(x) s.t.

sign(τ̃(x)) = sign(τ(x))

I Not well suited for constrained problems

I Computationally attractive



Computing EWM rules

EWM among policies linear in X (or its functions)

ĜEWM ≡ 1
{
X ′β̂ ≥ 0

}
β̂ ∈ arg max

β∈B

∑
i=1..n

gi · 1
{
X ′i β ≥ 0

}
,

gi ≡
YiDi

e(Xi )
− Yi (1− Di )

1− e(Xi )

Similar to the maximum score estimator.

We improve on the approach of Florios and Skouras (2008), who
noticed that the problem could be substituted by an equivalent
Mixed Integer Linear Programming problem.

https://doi.org/10.1016/j.jeconom.2008.05.018


Remark 2.1: capacity constraints

Capacity constraint: Proportion of the target population assigned
to treatment 1 cannot exceed K > 0.

If the distribution of covariates PX is known, restrict maximization
to a subset of class G that satisfies the capacity constraint:

GK ≡ {G ∈ G : PX (G ) ≤ K}.

If PX is unknown, we cannot guarantee that estimated policy Ĝ
will satisfy the capacity constraint. To evaluate welfare, we need to
specify what will happen in that case.



Remark 2.1: capacity constraints

I We assume that treatment 1 is “rationed” randomly among
targeted recipients with X ∈ Ĝ and the resulting welfare is
WK (G ).

I Let ĜK maximize the sample analog of the
capacity-constrained welfare.

Theorem B.1: Under the same assumptions as previous theorems,

sup
P∈P

EPn

[
sup
G∈G

WK (G )−WK (ĜK )

]
≤ C1M(κ−1 + K−1)

√
v

n
,

where C1 is a universal constant.



Remark 2.2: Target population has a different composition

EWM when target population 6= sampled population.

I Suppose ET (Y1 − Y0|X ) = E (Y1 − Y0|X ) = τ(X ), but the
distributions of X are different.

I If G ∗FB ∈ G, G ∗FB is optimal for both populations.

I If G ∗FB /∈ G, a second best policy for the sampled population
6= an optimal policy for the target population

I EWM with weighted empirical welfare: If ρ(x) =
dPT

X /dx
dPX /dx

is
known,

ĜT
EWM ≡ arg max

G∈G
En

[(
YD

e(X )
− Y (1− D)

1− e(X )

)
ρ(X )1{X ∈ G}

]
I If supx ρ(x) <∞, reweighting only affects the constant term

of the welfare loss bounds.



Remark 2.3: Invariance

Wn(G ) =
1

n

n∑
i=1

[
YiDi

e(Xi )
· 1 {Xi ∈ G}+

Yi (1− Di )

1− e(Xi )
· 1 {Xi /∈ G}

]

I If Y is multiplied by a constant, Wn(G ) is multiplied by the
same constant (for all G )

I If Y is replaced by Y + c , Wn(G ) changes by

c · 1

n

n∑
i=1

[
Di

e(Xi )
· 1 {Xi ∈ G}+

1− Di

1− e(Xi )
· 1 {Xi /∈ G}

]
6= c ,

which in finite samples varies with G .

I Linear transformations of Y could change the proposed
finite-sample treatment rule and welfare gain estimates



Remark 2.3: Invariance

I We make a simple adjustment to obtain treatment rules that
are invariant to linear transformations of Y by demeaning
outcomes Yi by their sample mean:

Y dm
i ≡ Yi − En[Yi ]

I and maximize

arg max
G∈G

En

[
Y dm
i Di

e(Xi )
· 1 {Xi ∈ G}+

Y dm
i (1− Di )

1− e(Xi )
· 1 {Xi /∈ G}

]
.

I This modification of the EWM treatment rule has the same√
n welfare convergence rate.

I In simulations, improved performance when E [Y ] is far from
zero.

I We use demeaned outcomes in our application.



Faster convergence with a Margin Assumption

Does EWM remain rate optimal for a smaller class of DGPs?

Correct Specification of G: G ∗FB ∈ G.

Assumption MA: Margin Assumption (Mammen & Tsybakov
(99, Ann.Stat)). There exists constants 0 < η ≤ M and
0 < α <∞ such that

PX (|τ(X )| ≤ t) ≤
(
t

η

)α
∀0 ≤ t ≤ η.

Denote the class of DGPs satisfying these assumptions by
PFB(M, κ, α, η).



Margin Assumption Examples

One covariate X ∼ Uniform[0, 1].

I Linear: τ (X ) = β0 + β1X . P (|τ (X )| ≤ t) = 2
β1
t.

Margin α = 1 and η = β1/2.

I Discontinuous at zero: for h > 0

τ(X ) =

{
X − h for X ≤ 0

X + h for X > 0

Margin α can be arbitrarily large, α = +∞, and η = h.

I Low margin: τ (X ) =
(
1
2 − X

)3
. P (|τ (X )| ≤ t) = 2t1/3.

Margin α = 1
3 , η = 1/8.



Convergence rates with a margin assumption

Theorem 2.3: Let PFB(M, κ, α, η) be a class of DGPs satisfying
Bounded Outcome, Strict Overlap, G ∗FB ∈ G, & MA with margin
coefficient α > 0. Then,

sup
P∈PFB(M,κ,α,η)

EPn

[
W (G ∗FB)−W (ĜEWM)

]
≤ c3

(v
n

) 1+α
2+α

.

where c3 is a constant that depends only on (M, κ, α).
Theorem 2.4: Let PFB(M, κ, α, η) be a class of DGPs satisfying
Bounded Outcomes and Strict Overlap. Let G be a VC-class,
v ≥ 2. Then, for any treatment choice rule Ĝ

sup
P∈PFB(α,η)

EPn

[
W (G ∗FB)−W (Ĝ )

]
≥ c4

(
v − 1

n

) 1+α
2+α

,

for all n ≥ max{(M/η)2, 42+α}(v − 1).



What do we learn from the margin assumption results?

These results are of theoretical value, since they do not affect
estimation of EWM rules.

Pointwise regret convergence rates (holding distribution P fixed):
a lot of interesting simulation examples you could come up with
satisfy the margin assumption and yield a variety of pointwise
convergence rates. The margin assumption explains a lot of this
variation.

In some application, the margin assumption may hold uniformly in
P. For example, if it is known ex ante that τ(x) is monotonic in x
and varies substantially, i.e., the absolute value of the derivative∣∣∣∂τ(x)dx

∣∣∣ is bounded away from zero.



Unknown propensity score e(X )

I Hybrid of EWM and regression plug-in

Ĝm−hybrid ∈ arg max
G∈G

En [τ̂m(Xi ) · 1{Xi ∈ G}]

τ̂m(Xi ) ≡ m̂1(Xi )− m̂0(Xi )

I Hybrid of EWM and propensity score plug-in

Ĝe−hybrid ∈ arg max
G∈G

En [τ̂ ei · 1{Xi ∈ G}]

τ̂ ei ≡
[
YiDi

ê(Xi )
− Yi (1− Di )

1− ê(Xi )

]
· 1 {εn ≤ ê (Xi ) ≤ 1− εn}

I Theorems 2.5, 2.6 establish rate upper bounds, which are the
maximum of the nonparametric rate and the EWM rate

I We do not know whether these rate bounds are sharp.



EWM for non-additive social welfare functions

The EWM idea (maximizing a sample analogue of the welfare
function) may be applicable to problems with social welfare
functions that are not additive over x ∈ X .

Examples: externalities, general equilibrium effects.

Source: Kitagawa and Tetenov (2017), “Equality-Minded
Treatment Choice” Cemmap working paper CWP10/17

We extend the EWM idea to treatment choice with
rank-dependent social welfare functions.

https://www.cemmap.ac.uk/publication/id/8909


Social welfare functions

Y - individual income with distribution F (y).

Two major types of social welfare functions:

1. Additively separable in individual incomes (Atkinson, 1970)

W (F ) =

∫
U(y)dF (y)

Redistributive preferences are expressed by a concave U(y).

The previously-discussed “Empirical Welfare Maximization” paper
(Kitagawa and Tetenov, 2017) covers this problem, it is sufficient
to replace outcomes Yi with U(Yi ).

https://www.cemmap.ac.uk/publication/id/9246
https://doi.org/10.1016/0022-0531(70)90039-6


2. Rank-dependent social welfare Mehran (1976), Weymark
(1981), Yaari (1988), Ben Porath and Gilboa (1994).

W (F ) =

∫
Y · ω (Rank(Y )) di

Equality-minded: decreasing ω(·), lower welfare weight is given to
incomes at higher quantiles.

Equivalent representation:

W (F ) =

∫
Λ(1− F (y))dy

Convex, differentiable, decreasing function Λ(·) : [0, 1]→ [0, 1]

ω(r) = −dΛ(r)

dr

http://www.jstor.org/stable/1913446
https://doi.org/10.1016/0165-4896(81)90018-4
https://doi.org/10.1016/0022-0531(88)90010-5
https://doi.org/10.1006/jeth.1994.1076


Rank-dependent welfare functions are closely linked to inequality
indices

Could be expressed as

W (F ) = µ(F )(1− I (F ))

µ(F ) - average income
I (F ) - an index of inequality (e.g. Gini when ω(r) = 2(1− r))

Performance of a policy is summarized by the representative
income: Distribution F is as good as everyone having income
Y = W (F ).



Equality-minded treatment choice

A randomized treatment rule δ : X → [0, 1] specifies the fraction
of individuals with covariates X who will be treated.

It generates income distribution with CDF

Fδ(y) ≡
∫
X

[
(1− δ(x))FY0|X + δ(x)FY1|X

]
dP(X ),

We would like to find δ that maximizes W (Fδ).

Challenges:

1. A class of δ(·) can be huge.

2. The value of the policy is not additive across subgroups of the
population, i.e., what policy is given to one subpopulation
affects what policy should be given to other subpopulations!

3. No closed-form solution for the optimal treatment rule.



Sufficiency of non-randomized treatment rules

Proposition 1:
If W (·) is an equality-minded welfare criterion, then for any
treatment rule δ there exists a non-randomized treatment rule
δ′ = 1{X ∈ G} such that W (Fδ′) ≥W (Fδ).

(follows from the convexity of Λ(·) in the representation)

We index non-randomized treatment rules by their decision sets
G ∈ G.
δ(X ) = 1{X ∈ G}

Social welfare will be denoted by W (G ).



Empirical Welfare Maximization

We propose maximizing a sample analog of the social welfare
function

Ĝ ≡ arg max
G∈G

Ŵ (G ), Ŵ (G ) =

∫ M

0
Λ(0 ∨ (1− F̂G (y)))dy

where F̂G (y) is the sample analog of the income CDF

F̂G (y) ≡ 1

n

n∑
i=1

[
Di · 1{Yi ≤ y}

e(Xi )
· 1{Xi ∈ G}+

+
(1− Di ) · 1{Yi ≤ y}

1− e(Xi )
· 1{Xi /∈ G}

]
.

e(Xi ) is the propensity score of observation i

F̂G (y) could be normalized to a proper CDF.



Welfare regret upper bound

Proposition 2
Let P be a class of DGPs satisfying assumptions Bounded
Outcomes and Strict Overlap. Let G be a VC-class of treatment
choice rules. If W is an equality-minded SWF with Λ(·) that is
convex, differentiable, and has a bounded derivative, then

sup
P∈P

[
sup
G∈G

W (G )− EPn

[
W (Ĝ )

]]
≤ C · |Λ′(0)|M

κ

√
v

n
.



Welfare regret lower bound

Proposition 3 If |Λ′(t∗)| > 0 for some t∗ ∈ (0, 1), then for any
non-randomized treatment choice rule G̃ ,

sup
P∈P

[
sup
G∈G

W (G )− EPn

[
W (Ĝ )

]]
≥ |Λ′(t∗)|Me−4

4

√
v − 1

n

for all n >= 4(v − 1)t∗.

1/
√
n is the minimax optimal uniform convergence rate over P in

terms of welfare regret.




