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Background

An important objective of empirical research is to analyze treatment response

(policy impacts) in order to inform treatment choice. 

Identification problems combine with the necessity of inference from sample data

to limit the informativeness of studies.



Researchers commonly use methods of statistical inference whose foundations are

distant from the decision problem.

It is common to use local asymptotic theory to motivate inferential methods, even

though the available data often derive from samples too small to make asymptotic

approximations credible.

It is common to perform hypothesis tests and to judge estimates by statistical

significance, even though these concepts are remote from decision making.



The Wald (Statistical Decision Functions,1950) development of statistical decision

theory provides a coherent framework for the use of sample data to make decisions.

Wald posed the task as choice of a statistical decision function, which maps

potentially available data into a choice among the feasible actions.

He recommended ex ante evaluation of statistical decision functions as procedures,

chosen prior to realization of the data, specifying how a decision maker would use

whatever data may be realized.

Thus, the theory is frequentist.

http://www.worldcat.org/oclc/637248115


Expressing the objective as minimization of a loss function, Wald proposed that the

decision maker evaluate a statistical decision function by its mean performance

across realizations of the sampling process (risk).

In the presence of uncertainty about the loss function and the sampling process

yielding the data, he prescribed a three-step decision process.



1. Specify the state space (parameter space), which indexes the loss functions and

sampling distributions that the decision maker deems possible.

2. Eliminate inadmissible statistical decision functions.

A decision function is inadmissible (weakly dominated) if there exists another

that yields at least as good mean sampling performance in every state of nature

and strictly better mean performance in some state.

3. Use some criterion to choose an admissible statistical decision function.

Wald focused on the minimax criterion and on minimization of a subjective

mean of the risk function (Bayes risk).  Savage proposed minimax regret.



Statistical decision theory makes no direct reference to statistical inference. 

However, there exists a prominent finding connecting minimization of Bayes risk

to Bayesian inference.

Minimization of Bayes risk yields the same outcome as would occur if one

1. performs Bayesian inference, combining the prior distribution on the state

space with the data to form a posterior subjective distribution.

2. chooses an action to minimize the posterior mean of expected loss.

This holds as a consequence of Fubini's Theorem.



There is no optimal way to choose an admissible decision function.

There at most are reasonable ways.

Wald (1950) motivated his focus on the minimax criterion in part by stating:

"a minimax solution seems, in general, to be a reasonable solution of the
decision problem when an a priori distribution in Ù does not exist or is
unknown to the experimenter."

Ferguson (Mathematical Statistics,1967) wrote: "A reasonable rule is one that is

better than just guessing."  He continued:

"It is a natural reaction to search for a 'best' decision rule, a rule that has the
smallest risk no matter what the true state of nature.  Unfortunately, situationsin which a best decision rule exists are rare and uninteresting.  For each fixed
state of nature there may be a best action for the statistician to take.  However,
this best action will differ, in general, for different states of nature, so that no
one action can be presumed best over all."

http://www.sciencedirect.com/science/book/9781483182537
http://www.worldcat.org/oclc/637248115


Savage (JASA, 1951) argued against the minimax criterion, writing:

“Application of the minimax rule . . . is indeed ultra-pessimistic; no serious
justification for it has ever been suggested, and it can lead to the absurd
conclusion in some cases that no amount of relevant experimentation should
deter the actor from behaving as though he were in complete ignorance.”

He emphasized that minimax regret is not “ultra-pessimistic.”

Chernoff (ECMA, 1954) argued against minimax regret on the basis that it 

sometimes violates the choice axiom called independence of irrelevant alternatives.

Savage (Foundations of Statistics,1954) developed choice axioms that imply 

maximization of subjective expected utility and argued that adherence to his 

axioms constitutes rationality.  Yet Allais (ECMA, 1953) and Ellsberg (QJE, 1961) 

questioned the positive accuracy and normative appeal of the Savage axioms.

http://www.jstor.org/stable/2280094
http://www.jstor.org/stable/1907435
http://store.doverpublications.com/0486623491.html
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The Wald framework has breathtaking generality.

In principle, it enables comparison of all statistical decision functions whose risk

functions exist.  (Moreover, it may be extended beyond this class.)

It enables comparison of alternative sampling processes as well as decision rules.

It uses no asymptotic approximations.

It applies whatever information the decision maker may have.

The state space may be finite dimensional or larger (nonparametric).

The true state of nature may be point or partially identified.



After publication of Wald (1950), a surge of important extensions and applications

followed in the 1950s.

Much research focused on best point prediction with sample data, analysis of which

began with Hodges and Lehmann (AMS, 1950).

However, this period of rapid development came to a close by the 1960s with the

exception of Bayesian statistical decision theory.

Conditional Bayesian analysis has continued to developed as a self-contained field

of study, disconnected from the Wald frequentist framework.

http://www.jstor.org/stable/2236900


Why did statistical decision theory lose momentum long ago?

One reason may have been the technical difficulty of the subject.

Wald's ideas are easy to describe in the abstract, but applying them can be

analytically and computationally demanding.  Determination of admissible decision

functions and minimax/minimax-regret rules is often difficult.

Another reason may have been diminishing interest in decision making as the

motivation for analysis of sample data.

Modern statisticians and econometricians tend to view their objectives as

estimation and hypothesis testing rather than decision making.



I cannot be sure what role these or other reasons played in the vanishing of

statistical decision theory from statistics and econometrics in the latter part of the

twentieth century.

However, the near absence of the subject in mainstream journals and textbooks of

the period is indisputable.

I think this unfortunate.



Application of Statistical Decision Theory to Treatment Choice

My interest in treatment choice with sample data grew out of my research in the

1990s on partial identification of treatment response.

Consider choice between treatments a and b. The sampling process and maintained

assumptions may not identify the sign of the average treatment effect. 

Then optimal treatment choice is infeasible even with exact knowledge of all

observable features of the population.

The decision problem is further complicated if one only observes sample data.



Finding the Wald theory appealing, I suggested in Manski (ECMA, 2004) that it be

used to study how a planner wanting to maximize social welfare might use sample

data on treatment response to choose treatments for a heterogeneous population.

In this setting, a statistical decision function uses the data to choose a treatment

allocation.

I called such a function a statistical treatment rule (STR).

I called the mean sampling performance of an STR its expected welfare.

http://www.jstor.org/stable/3598783


I used the minimax-regret criterion to evaluate STRs in Manski (ECMA, 2004;Social Choice with Partial knowledge of Treatment Response, 2005; JoE, 2007; andIdentification for Prediction and Decision, 2007).

Manski and Tetenov (JSPI, 2007) studied admissibility in a particular setting,

building on a classical result of Karlin and Rubin (AMS, 1956).

Schlag (2006), Hirano and Porter (ECMA, 2009), Stoye (JoE, 2009; JoE, 2012),

and Tetenov (JoE, 2012) continued study of the minimax regret and related criteria.

Manski and Tetenov (2014, 2015) study quantile performance of STRs and near-

optimality of experimental designs.  Kitagawa and Tetenov (2016) propose

empirical welfare maximization.

http://www.jstor.org/stable/2236994
http://www.jstor.org/stable/3598783
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https://doi.org/10.1016/j.jeconom.2011.06.012
https://doi.org/10.1016/j.jspi.2006.06.037
https://doi.org/10.1016/j.jeconom.2011.06.013
http://www.jstor.org/stable/25621374
http://cadmus.eui.eu//handle/1814/3937
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A Leading Case: Allocating a Population of Observationally Identical Personsto Two Treatments
A planner must assign treatment a or b to each member of population J.

j Œ J has response function uj(◊): T Æ Y mapping treatments t Œ T into individual

welfare outcomes uj(t) Œ R.

The population is a probability space (J, Ù, P).  P(j) = 0, j Œ J.

The members of the population are observationally identical to the planner.



The planner can randomly allocate persons to the two treatments with specified

allocation probabilities ä(a) and ä(b) such that ä(a) + ä(b) = 1.

The planner wants to choose ä to maximize an additive welfare function

U(ä, P)  =  E[u(a)]◊ä(a) + E[u(b)]◊ä(b)  =  á◊ä(a) + â◊ä(b).

It is optimal to set ä(a) = 1 if á $ â and ä(b) = 1 if á # â.

The problem of interest is treatment choice when incomplete knowledge of P

makes it impossible to determine the ordering of á and â.



Suppose that sample data are available.

Let Q be the sampling distribution and Ø be the sample space.  For example, the

data may be treatment response observed in a randomized experiment.

A statistical treatment rule (STR) is a function ä: T ¥ Ø 6 [0, 1] that maps sample

data into a treatment allocation.  Thus, ä(a, ø) + ä(b, ø) = 1, " ø Œ Ø.

Henceforth, let ä(ø) = ä(b, ø) and 1 ! ä(ø) = ä(a, ø).

The welfare realized with ä and data ø is the random variable

U(ä, P, ø)  =  á◊[1 ! ä(ø)] + â◊ä(ø).



The state space [(Ps, Qs), s Œ S] is the set of pairs that the planner deems possible.

Suppose S contains at least one state such that ás > âs and another such that ás < âs.

The mean sampling performance of rule ä in state s is

W(ä, Ps, Qs)  =  ás◊{1 ! Es[ä(ø)]} + âs◊Es[ä(ø)].

Es[ä(ø)] ∫ ÚØ ä(ø)dQs(ø) is the mean fraction of persons allocated to b, across

potential samples.

Rule ä is admissible if there exists no rule äN such that W(äN, Ps, Qs) $ W(ä, Ps, Qs)

for all s 0 S and W(äN, Ps, Qs) > W(ä, Ps, Qs) for some s.



Let Äa be the admissible STRs.  Three decision criteria are

Maximin (MM):     max     min   W(ä, Ps, Qs).
                                 ä 0 Äa    s 0 S

Minimax-regret (MMR):    min     max [max(ás, âs) ! W(ä, Ps, Qs)].
                                              ä 0 Äa    s 0 S

Minimization of Bayes Risk (Bayes):  max  IS W(ä, Ps, Qs)d(s),
                                                                ä 0 Äa

where  is a subjective distribution on the state space.



Optimization over Ä
The set Äa is knowable in principle, but it may be difficult to determine in practice.

Lacking knowledge of Äa, it is common to modify the criteria to choose over the full

set Ä of feasible rules.

If the optimal (MM, MMR, Bayes) rule is unique, the optimal rule is admissible. 

No other rule dominates a unique optimal rule.

When optimization over Ä yields multiple optimal rules, some may be

inadmissible.



The MM and MMR criteria tolerate inadmissibility when the states where a rule is

inferior are not those that yield worst performance across the state space. 

Bayes criteria tolerate it when the states where a rule is inferior collectively have

subjective probability zero.



Using a Randomized Experiment to Evaluate an Innovation
(Source: Manski, Identification for Prediction and Decision, 2007, Ch. 12)

To illustrate, consider a simple case of treatment choice with sample data.

t = a is the status quo treatment and t = b is an innovation.  Outcomes are binary.

The planner knows the success probability á / P[y(a) = 1] of the status quo

treatment, but not the success probability â / P[y(b) = 1] of the innovation.

The planner wants to choose a treatment to maximize the success probability.

http://www.hup.harvard.edu/catalog.php?isbn=9780674026537


An experiment is performed to learn about outcomes under the innovation, with N

subjects randomly drawn from the population and assigned to treatment b.  There

is full compliance.

n subjects realize outcome y = 1 and N ! n realize y = 0.  Outcomes are observed. 

Thus, the experiment point-identifies â.  The planner only faces a problem of

statistical inference.

N indexes the sampling process and the number n of experimental successes is a

sufficient statistic for the sample data.

The feasible statistical treatment rules are functions ä(@): [0, . . . , N] 6 [0, 1] that

map the number of experimental successes into a treatment allocation.



The expected welfare of rule ä is

              W(ä, P, N)  = á@E[1 ! ä(n)] + â@E[ä(n)]  =  á + (â ! á)@E[ä(n)].

The number n of experimental successes is distributed binomial B[â, N].

                                  N
             E[ä(n)]   =    3  ä(i)@f(n = i; â, N).
                                 i = 0

f(n = i; â, N) / N![i!@(N ! i)!]!1âi(1 ! â)N!i is the probability of i successes.

The only unknown determinant of expected welfare is â.  Hence, S indexes the

feasible values of â.  âs / Ps[y(b) = 1].



The Admissible Treatment Rules
It is reasonable to conjecture that admissible treatment rules should be ones in

which the fraction of the population allocated to treatment b increases with n.

The admissible treatment rules are a simple subclass of these rules.

A theorem of Karlin and Rubin (AMS, 1956) shows that the admissible rules are themonotone treatment rules.

http://www.jstor.org/stable/2236994


Monotone rules assign all persons to the status quo if the experimental success rate

is below some threshold and all to the innovation if the success rate is above the

threshold.  Thus, ä is admissible if and only if

            ä(n)  =  0    for n < n0,

            ä(n)  =  ë    for n = n0,

            ä(n)  =  1    for n > n0,

for some 0 # n0 # N and 0 # ë # 1.

Monotone rules have simple expressions for the expected treatment allocation:

                Es[ä(n)]  =   f(n > n0; âs, N)  +  ë@f(n = n0; âs, N).



The collection of monotone treatment rules is a mathematically “small” subset of

the space of all feasible treatment rules.

Nevertheless, it still contains a broad range of rules. These include

Data-Invariant Rules: These are the rules ä(@) = 0 and ä(@) = 1, which assign all

persons to treatment a or b respectively, whatever n may be.

Empirical Success Rules: An optimal treatment rule allocates all persons to

treatment a if â < á and all to b if â > á.  An empirical success rule emulates the

optimal rule by replacing â with its sample analog, the empirical success rate n/N.



Bayes Rules: The form of the Bayes rule depends on the prior subjective

distribution placed on â.  Consider the class of Beta priors, which form the

conjugate family for a Binomial likelihood.  Let (âs, s 0 S) = (0, 1) and let the prior

be Beta with parameters (c, d).  Then the posterior mean for â is (c + n)/(c + d + N).

The resulting Bayes rule is

               ä(n)  =  0     for (c + n)/(c + d + N)  <  á,

               ä(n)  =  ë    for (c + n)/(c + d + N)  =  á,    where   0 # ë # 1,

               ä(n)  =  1    for (c + n)/(c + d + N)  >  á.

As (c, d) tend to zero, the Bayes rule approaches an empirical success rule.

The class of Bayes rules includes the data-invariant rules ä(@) = 0 and ä(b, @) = 1.



Statistical Significance Rules: These use a one-sided hypothesis test to choose

between the status quo and the innovation.  The null hypothesis is [â = á].  The

alternative is [â > á].  Treatment b is chosen if the null is rejected, and treatment

a otherwise.  Thus, the rule is

               ä(n)  =  0    for   n # d(á, è, N),

               ä(n)  =  1    for   n > d(á, è, N),

è is the specified size of the test and d(á, è, N) is the associated critical value.



The use of one-sided hypothesis tests to make treatment choices is institutionalized

in the U. S. Food and Drug Administration drug approval process, which calls for

comparison of a new drug under study (t = b) with an approved treatment if one

exists, or a placebo otherwise (t = a).

Although statistical significance rules are monotone treatment rules, the

conventional practice of hypothesis testing is remote from the problem of treatment

choice with sample data.



Maximin Rule: Minimum expected welfare for rule ä is

                              min  W(ä, Ps, N)  =  á  +  min  (âs ! á)Es[ä(n)].
                              s 0 S                                    s 0 S
 

Es[ä(n)] > 0 for all âs > 0 and for all monotone rules except ä(@) = 0.

Let S contain states with âs < á.  Then the maximin rule is ä(@) = 0.



Minimax-Regret Rule: The regret of rule ä in state s is

U*(Ps) ! W(ä, Ps, N)  =  max(á, âs) ! {á + (âs ! á)@Es[ä(n)]}

                            =  (âs ! á){1 ! Es[ä(n)]}@1[âs $ á]  +  (á ! âs)Es[ä(n)]@1[á $ âs].

Thus, regret is the mean welfare loss when a member of the population is assigned

the inferior treatment, multiplied by the expected fraction of the population

assigned this treatment.

The minimax-regret rule does not have an analytical solution but it can be

determined numerically.  When all values of â are feasible, the minimax-regret rule

is well approximated by an empirical success rule.



Minimax-Regret Treatment Choice

Setup
There is a finite set T of treatments.

Person j in population J has response function yj(@): T 6 Y mapping t 0 T into

outcomes yj(t) 0 Y.  The population is a “large” probability space (J, Ù, P).

A planner observes covariates xj 0 X for each person.  X is finite.

The distribution P[y(@), x] describes treatment response across the population.

P(x) is known but not P[y(@)|x].



Let Ä denote all functions ä(@, @): T ◊ X 6 [0, 1] such that 3 t 0 T ä(t, î) = 1, ú î 0 X.

In the absence of data, the feasible treatment rules are the elements of Ä.

The welfare from assigning treatment t to person j is u[yj(t), t, xj].  Mean welfare

under rule ä is

          U(ä, P)    /     3   P(x = î)   3 ä(t, î)@E{u[y(t), t, î]*x = î}.
                                      î 0 X                t 0 T

The planner wants to solve the problem  max ä 0 Ä  U(ä, P).



The maximum is achieved by allocating all persons with covariates î to a treatment

that solves

         max E{u[y(t), t, î]*x = î}.
         t 0 T 

The population mean welfare achieved by an optimal rule is

        U*(P)  /    3  P(x = î) {max E{u[y(t), t, î]*x = î}}.
                             î 0 X                t 0 T

The optimum is achievable if the planner knows E{u[y(t), t, î]*x = î}, all (t, î).

It may not be achievable with incomplete knowledge.



Statistical treatment rules map covariates and data into treatment allocations.

Let Q denote the sampling process generating the available data and let Ø denote

the sample space.

Let Ä denote the space of functions that map T ◊ X ◊ Ø into the unit interval and

that satisfy the adding-up conditions:

ä 0 Ä  Y  3 t 0 T ä(t, î, ø) = 1,  ú (î, ø)  0 X ◊ Ø.

Each function ä 0 Ä defines a statistical treatment rule.



The expected welfare yielded by rule ä in repeated samples is

       W(ä, P, Q)  /  I {  3   P(x = î)   3 ä(t, î, ø)@E{u[y(t), t, î]*x = î}dQ(ø)
                                    î 0 X                t 0 T 

                          =     3   P(x = î)   3 E[ä(t, î, ø)]@E{u[y(t), t, î]*x = î}.
                               î 0 X                t 0 T

E[z(t, î, ø)]  / Iä(t, î, ø)dQ(ø) is the mean (across potential samples) fraction of

persons with covariates î who are assigned to treatment t.

The state space gives [(Ps, Qs), s 0 S].  The minimax regret criterion is

         min     max   U*(Ps) ! W(ä, Ps, Qs),
        ä 0 Ä     s 0 S

where U*(Ps) is the optimal population mean welfare achievable if P = Ps.



Why Focus on Minimax Regret?
* Interpretable as maximization of uniform closeness to optimal treatment choice.

* Applicable in absence of subjective distribution on state space.

* Balanced consideration of states, in contrast to conservatism of maximin.

* Yields "Reasonable" decision rules in many settings.



Arguments Against Minimax Regret
* Sometimes violates axiom of menu independence (Chernoff, ECMA, 1954).

* Yields a "No Data" decision rule with continuous covariates and no cross-

covariate restrictions on the state space (Stoye, JoE, 2009).

https://doi.org/10.1016/j.jeconom.2009.02.013
http://www.jstor.org/stable/1907435


Approaches to Analysis of Maximum Regret
* Exact analytical evaluation feasible only in some very simple cases.

* Analytical evaluation of bounds feasible in some cases.

* Numerical computation feasible in some cases.

* Application of a game theoretic approach feasible in some cases.



Bounds on the Maximum Regret of Empirical Success Rules with Data
from a Randomized Experiment

(Source, Manski, ECMA, 2004)

Let T = {a, b}.  The outcome has bounded range [0, 1].  Welfare is yj(t).

A randomized experiment is performed and all outcomes are observed.  I consider

stratified random sampling and simple random sampling designs.

http://www.jstor.org/stable/3598783


Stratified Random Sampling
For (t, î) 0 T ◊ X, the experimenter draws Ntî subjects at random from the

population and assigns them to treatment t.  NTX / [Ntî, (t, î) 0 T ◊ X] indexes the

sampling process.  N(t, î) is the sub-sample assigned to t.

The data are the experimental outcomes YTX / [yj, j 0 N(t, î); (t, î) 0 T ◊ X].

Rule ä allocates fraction ä(b, î, YTX) of persons with covariates î to treatment b andä(a, î, YTX) to treatment a.  Its expected welfare is

W(ä, P, NTX)  =

  3 î 0 X P(x = î)@{E[ä(a, î, YTX)]@E[y(a)*x = î]  +  E[ä(b, î, YTX)]@E[y(b)*x = î]}.



Conditional Empirical Success (CES) Rules
The optimal rule solves max t 0 T E[y(t)*x = î], î 0 X.

An empirical success rule replaces E[y(t)*x = î] by yGtî / (1/Ntî)  3 j 0 N(t, î) yj.

Given v(@): X 6 V, let äXv denote a CES rule conditioning on v.  The sample analog

of E[y(t)*v = í] is yGtXí  / 3 î 0 X yGtî@P(x = î*v = í).

The expected welfare of äXv with tie-breaking in favor of treatment a is

   W(äXv, P, NTX)  =  3 P(v = í)@{P(yGaXí $ yGbXí)@E[y(a)*v = í]
                               í 0 V
                                                     +  P(yGbXí > yGaXí)@E[y(b)*v = í]}.



Bounding Expected Welfare and Maximum Regret
Direct analysis of CES rules is difficult, but it is possible to develop a useful

closed-form bound on expected welfare. The analysis exploits a large deviations

theorem of Hoeffding (JASA, 1963):

Large Deviations Theorem (Hoeffding, 1963, Theorem 2): Let w1, w2, . . . , wK be

independent real random variables, with bounds ak # wk # bk, k = 1, 2, . . . , K.  Let 

wG  / (1/K) 3Kk = 1 wk and ì / E(wG ).  Then, for d > 0,

                Pr(wG  - ì $ d) #  exp[-2K2d2{3Kk = 1 (bk ! ak)2}-1].                             ~

http://www.jstor.org/stable/2282952
http://www.jstor.org/stable/2282952


Proposition 1: Let subjects be drawn by stratified random sampling. Let v(@): X 6
V and consider the CES rule äXv.

Let Msí / max{Es[y(a)*v = í], Es[y(b)*v = í]} and ësí / *Es[y(b)*v = í] !
Es[y(a)*v = í]*.
Then the expected welfare of rule äXv in state s satisfies the inequality

 

         3 P(v = í) Msí  ! D(äXv, Ps, NTX)   #  W(äXv, Ps, NTX)  #    3 P(v = í) Msí, 
       í 0 V                                                                                      í 0 V
 
where

D(äXv, Ps, NTX)  / 3P(v = í)@ësí@exp[-2ësí2{ 3  P(x = î*v = í)2(Nbî-1 + Naî-1)}-1]. ~
                           í 0 V                                  î 0 X 



The upper bound is the maximum population welfare achievable with v.

The lower bound differs from this ideal by the non-negative finite-sample penalty
D(zXv, Ps, NTX), which places an upper bound on the loss in welfare that results

from estimating mean treatment outcomes rather than knowing them.

The magnitude of the finite-sample penalty decreases with sample size and

converges to zero at exponential rate if all elements of NTX grow at the same rate.



Bounding Maximum Regret
The bound on expected welfare in Proposition 1 gives a bound on regret: 

        3 P(x = î) Msî  ! 3 P(v = í) Msí  #  U*(Ps) ! W(zXv, Ps, NTX)
      î 0 X                      í 0 V

                                             #  3 P(x = î) Msî  ! 3 P(v = í) Msí  +  D(zXv, Ps, NTX).
                                              î 0 X                     í 0 V

Maximizing this bound over the feasible values of {Es[y(a)*x], Es[y(b)*x]} yields

a bound on maximum regret:  RLv  #  R(zXv)  #  RU(zXv),

where

RLv   /   max     3 P(x = î) max{Es[y(a)*x = î], Es[y(b)*x = î]}
             s 0 S     î 0 X



                                       ! 3 P(v = í) max{Es[y(a)*v = í], Es[y(b)*v = í]},
                                        í 0 V

RU(äXv)   / max       3 P(x = î) max{Es[y(a)*x = î], Es[y(b)*x = î]}
                  s 0 S      î 0 X

                           !  3 P(v = í) max{Es[y(a)*v = í], Es[y(b)*v = í]} 
                             í 0 V

                             +   3 P(v = í)@ësí@exp[!2ësí2{ 3 P(x = î*v = í)2(Nbî!1 + Naî!1)}!1],
                              í 0 V                                  î 0 X

ësí /*Es[y(b)*v = í] ! Es[y(a)*v = í]*,
Es[y(t)*v = í] = 3 î 0 X Es[y(t)*x = î]@P(x = î*v = í).



The CES Rule Conditioning on All Observed Covariates
The bound on maximum regret simplifies for rule äXx.  Then

           0  #  R(äXx)   #    max      3 P(x = î)@ësî@exp[!2ësî2(Nbî!1 + Naî!1)!1].
                                       s 0 S    î 0 X

If all distributions of treatment response are feasible, this reduces to

              0 #   R(äXx)  #  Ω e!Ω  3 P(x = î) (Nbî!1 + Naî!1)Ω . 
                                                î 0 X

If all elements of NTX grow at the same rate, maximum regret converges to zero

with the square root of sample size.



Sufficient Sample Sizes for Beneficial Use of Covariate Information
The maximum regret of any rule conditioning on v exceeds that of CES rule zXx if

RLv > RU(zXx).  That is, conditioning on x is preferable to conditioning on v if

                    RLv  >  Ω e!Ω  3 î 0 X P(x = î) (Nbî!1 + Naî!1)Ω .

!  When this inequality holds, the maximum regret of äXx is smaller than that of all
rules conditioning treatment choice on v.

! The inequality suffices for superiority of äXx to rules that condition on v, but it

is not a necessary condition.

!  äXx need not be the best rule conditioning on x.  There may exist a non-CES rule

superior to äXx.



Bounding Expected Welfare and Regret in Designs with Simple Random Sampling
The experimenter draws N subjects at random from the population and randomly

assigns them to treatments a and b with assignment probabilities q and 1 ! q.  The

pair (N, q) indexes the sampling process.  The sample data are the stratum sample

sizes NTX and the outcomes YTX.  Rule ä allocates fraction ä(a, x, NTX, YTX) of

persons with covariates x to treatment a and ä(b, x, NTX, YTX) to treatment b. 

Expected welfare is

W(ä, P, N, q)  =

 3 P(x = î)@{E[y(a)*x = î]@E[ä(a, î, NTX, YTX)] + E[y(b)*x = î]@E[ä(b, î, NTX, YTX)]}.î 0 X



With simple random sampling, NTX is random.  Proposition 1 applies conditional

on NTX.  It provides the “inner loop” for analysis of simple random sampling.

Proposition 2: Let subjects be drawn by simple random sampling.  Let v(@): X 6 V

and consider the CES rule äv.  For í 0 V, let BNí denote the Binomial distribution

B[P(v = í), N].  For n = 0, . . . , N, let Bnq denote the Binomial distribution B(q, n). 

Then the expected welfare of rule äv in state s satisfies the inequality

         3 P(v = í)Msí  ! D(äv, Ps, n, q)  #  W(äv, N, Ps, q)  #   3 P(v = í)Msí, 
       í 0 V                                                                                  í 0 V

where  D(äv, p, N, q)  /
                                 N        n
        3 P(v = í)@ësí   3       3  BNí(n)@Bnq(m)@exp{!2ësí2[(n ! m)!1 + m!1]!1}.       ~
      í 0 V                  n = 0   m = 0 



The bound on expected welfare gives this bound on regret:

                3 P(x = î)Msî  ! 3 P(v = í)Msí  #  U*(Ps) ! W(äv, Ps, N, q)
              î 0 X                     í 0 V

                                              #  3 P(x = î) Msî  ! 3 P(v = í) Msí  +  D(äv, Ps, N, q).
                                                î 0 X                      í 0 V

Maximizing over the feasible values of {Es[y(0)*x], Es[y(1)*x]} gives a bound on

maximum regret:     RLv  #  R(zv)  #  RU(zv),

where



RU(äv)   /   max    3 P(x = î) max{Es[y(a)*x = î], Es[y(b)*x = î]}
                  s 0 S    î 0 X

             ! 3 P(v = í) max{Es[y(a)*v = í], Es[y(b)*v = í]} 
              í 0 V

                                           N        n
           +   3  P(v = í)@ësí    3       3  BNí(n)@Bnq(m)@exp{!2ësí2[(n ! m)!1 + m!1]!1}.
              í 0 V                   n = 0   m = 0

Sufficient sample sizes for productive use of covariate information follow from the

bounds on maximum regret.  Let v(@): X 6 V and w(@): X 6 W be distinct mappings

of X into covariates v and w respectively. Conditioning on w is necessarily

preferable to conditioning on v if N is such that RLv  >  RU(zw).



Minimax Regret Rules with Data from a Randomized Experiment
(Source: Stoye, JoE, 2009, 2012)

Background
The minimax theorem of von Neumann (MA, 1928) shows that a two-person zero-

sum game with finitely many pure strategies (d, e) 0 D ◊ E and payoffs ±f(d, e) has

a mixed-strategy equilibrium that satisfies the minimax equation

max   min     3      3 p(d)@q(e)@f(d, e)   =   min  max    3      3 p(d)@q(e)@f(d, e).
p 0 P   q 0 Q   p 0 P  q 0 Q                                q 0 Q  p 0 P  p 0 P  q 0 Q

Here P and Q are the sets of possible mixed strategies, p(d) and q(e) being the

probabilities that the players choose d and e respectively.

https://doi.org/10.1016/j.jeconom.2009.02.013
https://doi.org/10.1016/j.jeconom.2011.06.012
http://dx.doi.org/10.1007/BF01448847


Wald (AM, 1945) proves results that relate minimization of Bayes risk to minimax

rules.

Let – denote all distributions on S.  For  0 – and ä 0 Ä, consider the Bayes riskIR(ä, s)d(s).  Given regularity conditions, Wald shows:

(i) There exists a decision rule ä() that minimizes Bayes risk under .

Let R*() / IR[ä(), s]d(s) be minimum Bayes risk under .

(ii) There exists a least favorable distribution * = argmax  0 – R*().

(iii) Rule ä(*) is a minimax rule.

(iv) A minimax rule minimizes Bayes risk under  *.

http://www.jstor.org/stable/1969022


Wald observes that statistical decision problems may be viewed as fictitious zero-

sum games.  One player is the decision maker, whose pure strategies are the rulesä 0 Ä.  The other is nature, whose pure strategies are the states s 0 S.

The risk function R(ä, s) gives the payoffs.  The decision maker wants to minimize

risk.  Nature wants to maximize it.

Wald relates his findings to those of von Neumann.  The least favorable distribution

is nature's maximin strategy in the fictitious game.

The von Neumann and Wald analyses also apply to minimax-regret rules, with

regret rather than risk giving the payoff.



Wald suggested that the equivalence of minimax rules and ones that minimize

Bayes risk under a least favorable distribution may be useful in determining

minimax rules.  He wrote

"An important and unsolved problem is to find a general method which would

permit the actual calculation of an optimum statistical decision function. The fact

that a decision function which minimizes the average risk relative to a least

favorable distribution of è is an optimum decision function may be very helpful in

finding an optimum decision function, since the calculation of a least favorable

distribution of è seems to be a considerably simpler problem."

A common approach is to "guess and verify."  One uses heuristic reasoning to

conjecture a least favorable distribution, derives the decision rule that minimizes

Bayes risk, and then verifies whether the distribution and decision rule solve the

minimax equation (are an equilibrium).



Stoye's Application to Treatment Choice with Sample Data
Stoye (2009) applies the "guess and verify" approach.  He considers two treatments

and data from a randomized experiment. 

1. Stoye initially assumes binary outcomes and no covariates.  He shows:

(i) With balanced stratified random sampling (Na = Nb), the MMR rule is the

empirical success rule that breaks ties by setting ä(b) = Ω when yGa = yGb.

(ii) With balanced random sampling (q = Ω), the MMR rule sets ä(b) = 0 if IN < 0,ä(b) = Ω if IN = 0, and ä(b) = 1 if IN > 0, where IN = Nb(yGb ! Ω) ! Na(yGa ! Ω).

(iii) With choice between an innovation and a status quo treatment, the MMR rule

solves an implicit equation and is well approximated by the empirical success rule. 

https://doi.org/10.1016/j.jeconom.2009.02.013


2. He then enlarges the state space S so that Ps[y(a), y(b)], s 0 S includes all

distributions with binary outcomes plus others with bounded outcomes in [0, 1].

He cites previous findings showing that the support of the least favorable

distribution on S is concentrated on distributions with only binary outcomes. 

The MMR findings proved for the case of binary outcomes continue to hold when

experimental outcomes interior to [0, 1]are coarsened to make them binary.

Each outcome yn is replaced by an independent realization of a Bernoulli random

variable with parameter yn.  Thus, yn is replaced by 1 with probability yn and 0 with

probability 1 ! yn.  One then applies the binary MMR rule to the coarsened data.

The MMR rule using coarsened data may not be the unique MMR rule, raising the

possibility of inadmissibility. 



3. He then considers treatment choice with observable covariates.  

Now the state space has the form {Ps[y(a), y(b)|x = î], î 0 X, s 0 S}.

He considers settings where S "is not constrained by cross-covariate restrictions."

This means that S is the Cartesian-product  ◊ î 0 X {Psî[y(a), y(b)|x = î], sî 0 Sî}.

In these settings, the least favorable distribution concentrates on distributions such

that (sî, î 0 X) are statistically independent.  Minimization of Bayes risk under the

least favorable distribution yields a rule that makes treatment of persons with

covariates î depend only on the outcomes of subjects with this covariate value. 

It follows that the MMR rule separates the outcome data by their covariates.  For

each î 0 X, it is the MMR rule that would hold if one were to only observe

outcomes for subjects with covariates î.



Stoye (2009) views his finding with observable covariates as casting doubt on the

reasonableness of the minimax-regret criterion.  He writes

"Paradoxically, the recommendation based on small sample analysis does not seem desirable

in a world of small samples. It requires one to condition on covariates even if this leads to

extremely small or empty sample cells. While medical researchers might want to consider

the effect of race on treatment outcomes, they will hardly want to altogether ignore

experiences made with white subjects when considering treatment for black subjects unless

samples are extremely large. And surely, they would not want to consider an arbitrary

covariate that happens to be in the data set.

What's more, Proposition 3 implies that as the support of a covariate grows, minimax

regret treatment rules approach no data rules, because the proportion of covariate values that

have been observed in the sample vanishes. Indeed, one can extend the result to a continuous

covariate, and a no-data rule then achieves minimax regret."

In his Conclusion section, he continues as follows:

https://doi.org/10.1016/j.jeconom.2009.02.013


"A natural question is whether the minimax regret criterion is an attractive alternative to

existing approaches. There are two ways to investigate this: One is axiomatic analysis, the

other one is to look whether actual minimax regret rules make sense. The former has been

done elsewhere . . . The latter was one purpose of this paper, and the results raise some

concerns. Consider specifically the findings on covariates. Manski (2004) discovered that

for surprisingly small sample sizes, lower bounds on expected regret incurred by pooling the

sample exceed upper bounds incurred by conditioning on covariates. This finding was used

to criticize prevailing practice, tentatively suggesting that there is too much pooling of

observations across covariate values. However, it is now seen that the result was merely an

approximation of a much stronger, and pathological, one. The exact finding cannot any more

inform a critique of prevailing practice, but rather raises questions about minimax regret." 

"Perhaps the problem can be alleviated by properly specifying available prior information. 

The most obvious way to do this is to restrict S. . . . . Ongoing research indicates that some

natural such restrictions lead to reasonable minimax regret treatment rules."

http://www.jstor.org/stable/3598783


Stoye (JoE, 2012) takes up this idea.

The main findings concern restriction of S by placing a uniform upper bound ê$0

on the variation of mean treatment response across covariate values.

Let outcomes be binary and the design be balanced.  Let N = Na + Nb.  Assume that,

for all t 0 {a, b}, (î, îN) 0 X, and s 0 S,  *Es[y(t)*x = î] ! Es[y(t)*x = îN]* # ê.

Let ä0 = the MMR rule without observation of x,

      ä1 = the MMR rule with observation of x and no cross-covariate restrictions.

Stoye shows that there exist computable ê0(N) < ê1(N) such that ä0 is a MMR rule

if ê # ê0(N) and ä1 is a MMR rule if ê $ ê1(N).

ê0(N) and ê1(N) decrease with N at rate NΩ. 

https://doi.org/10.1016/j.jeconom.2011.06.012


Questions for Discussion
What do the Stoye findings suggest about the reasonableness of MMR as a decision

criterion?

What do the findings suggest about the reasonableness of decision criteria that pool

data across covariates when the state space makes no cross-covariate restrictions?



Treatment Choice with Partial Identification of Treatment Response
(Sources, Manski, JoE, 2007; IPD, 2007; IER, 2009)

Recall that identification problems combine with the necessity of inference from

sample data to limit the informativeness of studies.

The preceding analysis of treatment choice with data from a randomized

experiment dealt with the polar case in which a planner deals with the imprecision

of sample data in a setting with point identification of treatment response.

Now consider the other polar case, in which treatment response is partially

identified and there is full knowledge of observable features of the population.

See Stoye (JoE, 2012) for some analysis of treatment choice with sample data and

partial identification of treatment response.

http://www.hup.harvard.edu/catalog.php?isbn=9780674026537
http://www.jstor.org/stable/25621499
http://dx.doi.org/10.1016/j.jeconom.2006.06.006
https://doi.org/10.1016/j.jeconom.2011.06.012


Setup
There are two treatments, {a, b}.

Each member j of population J has a response function yj(@): mapping treatments

t into outcomes yj(t).

 

P[y(@)] is the population distribution of treatment response.  The population is large,

with P(j) = 0 for all j 0 J.

An allocation ä 0 [0, 1] randomly assigns a fraction ä of the population to treatment

b and the remaining 1 ! ä to treatment a.



The planner wants to maximize mean welfare.

Let á / E[u(a)] and â / E[u(b)].

Mean welfare with allocation ä is

          W(ä)  =  á(1 ! ä) + âä  =  á + (â ! á)ä.

ä = 1 is optimal if â $ á and ä = 0 if â # á.  The problem is treatment choice when

(á, â) is partially known.



Treatment Choice Under Ambiguity
Let S index the feasible states of nature.  The planner knows that (á, â) lies in the

set [(ás, âs), s 0 S].  Let this set be bounded.

Let  áL / min s 0 S ás,    âL / min s 0 S âs,

       áU / max s 0 S ás,   âU / max s 0 S âs.

Let S(a) / {s 0 S: ás > âs} and S(b) / {s 0 S: âs > ás}.

The planner faces ambiguity if S(a) and S(b) are both non-empty.



Bayes Rules
A Bayesian planner places a subjective distribution  on S and solves 

            max     E(á) + [E(â) ! E(á)]ä,
          ä 0 [0, 1]

where E(á) = Iásd and E(â) = Iâsd.

He chooses ä = 0 if E(â) < E(á) and ä = 1 if E(â) > E(á).

The Maximin Criterion
A maximin planner solves

           max       min   ás  +  (âs ! ás)ä.
         ä 0 [0, 1]    s 0 S

Let (áL, âL) be feasible.  Then the decision is ä = 0 if âL < áL and ä = 1 if âL > áL.



The Minimax-Regret Criterion
The minimax-regret criterion is

            min      max    max (ás, âs) ! [ás + (âs ! ás)ä].
        ä 0 [0, 1]    s 0 S

äMR = 1 if S(a) is empty.   äMR = 0 if S(b) is empty.

All ä are MMR if both S(a) and S(b) are empty.



Let S(a) and S(b) both be non-empty.

Let M(a) / max s 0 S(a) (ás ! âs) and  M(b) / max s 0 S(b) (âs ! ás).  Then

                                                                    M(b)
                                                äMR   =   ————— .
                                                              M(a) + M(b)

If (áL, âU) and (áU, âL) are feasible, then

                                                                        âU ! áL
                                               äMR   =   ————————— .
                                                              (áU ! âL) + (âU ! áL)



Proof:
The maximum regret of ä is max [R(ä, a), R(ä, b)], where 

R(ä, a)  /   max  ás ! [(1 ! ä)ás + äâs]
                  s 0 S(a) 

             =   max  ä(ás ! âs)  =  äM(a),
                  s 0 S(a)

R(ä, b)  /   max  âs ! [(1!ä)ás + äâs]
                   s 0 S(b)

             =   max  (1!ä)(âs ! ás)  =  (1!ä)M(b),
                  s 0 S(b)

are maximum regret on S(a) and S(b).



Both treatments are undominated, so R(1, a) = M(a)  > 0 and R(0, b) = M(b) > 0.

As ä increases from 0 to 1, R(@, a) increases linearly from 0 to M(a) and R(@, b)

decreases linearly from M( b) to 0.

Hence, the MR rule is the unique ä 0 (0, 1) such that R(ä, a) = R(ä, b).

This yields the result.



Planning with Observable Covariates
A planner may differentiate among persons with different covariates î 0 X.

He may segment persons by î and treat each group as the population.  This works

when the objective function is separable in covariates but not otherwise.

The Bayes objective function is always separable.

Maximin is separable if (áîL, âîL), î 0 X is feasible.

Minimax-regret is separable if (áîL, âîU), î 0 X and (áîU, âîL), î 0 X are feasible.

Nonseparability occurs with cross-covariate restrictions that relate (áîs, âîs) acrossî 0 X.



Planning with Multiple Treatments
The MR allocation is not always fractional when a planner allocates the population

among more than two treatments.

Stoye (ET, 2007) has studied a class of such problems and has found that the MR

allocations are subtle to characterize.  They often are fractional, but he gives an

example in which there exists a unique singleton allocation.  

http://www.jstor.org/stable/4126572


Minimax-Regret Treatment Choice With Missing Outcome Data
(Manski, JoE, IPD, 2007)

A prominent case of partial identification occurs when outcome data are missing

for some members of the study population and one lacks knowledge of the

distribution of missing data.

This occurs in randomized experiments when some subjects drop out before their

outcomes are measured and one does not know why they dropped out.

It occurs in analysis of observational data when one does not know the process of

treatment selection.  Outcome data may be missing for other reasons as well.

http://dx.doi.org/10.1016/j.jeconom.2006.06.006
http://www.hup.harvard.edu/catalog.php?isbn=9780674026537


Let Jtî denote the sub-population of persons with covariates î whose outcome y(t)

is observable.  By the Law of Iterated Expectations,

E[y(t)*x = î]  =

                 E[y(t)*x = î, Jtî]@P(Jtî*x = î)  + E[y(t)*x = î, not Jtî]@P(not Jtî*x = î).

P(Jtî*x = î) and E[y(t)*x = î, Jtî] can be learned empirically.  E[y(t)*x = î, not Jtî]
cannot be learned empirically.

Let outcomes take values in [0, 1].  In the absence of knowledge of the process

yielding missing data, E[y(t)*x = î, not Jtî] 0 [0, 1].  Hence, for t 0 {a, b},

E[y(t)*x = î, Jtî]@P(Jtî*x = î)  #  E[y(t)*x = î]

                                                #  E[y(t)*x = î, Jtî]@P(Jtî*x = î) + P(not Jtî*x = î).



In terms of the notation used earlier,

áL  =  E[y(a)*x = î, Jaî]@P(Jaî*x = î),áU  =  E[y(a)*x = î, Jaî]@P(Jaî*x = î) + P(not Jaî*x = î),âL  =  E[y(b)*x = î, Jbî]@P(Jbî*x = î),âU  =  E[y(b)*x = î, Jbî]@P(Jbî*x = î) + P(not Jbî*x = î).

The state space is [áL, áU] ◊ [âL, âU].  

äMR = 1 if áU < âL.  äMR = 0 if áL > âU.  Otherwise,

                      âU ! áL                 E[y(b)*x=î, Jbî]@P(Jbî*x=î) + P(not Jbî*x=î) ! E[y(a)*x=î, Jaî]@P(Jaî*x=î)äMR  =  ————————  =  —————————————————————————————— .
           (áU ! âL) + (âU ! áL)                                             P(not Jaî*x=î) + P(not Jbî*x=î)

P(not Jaî*x=î) + P(not Jbî*x=î) = 1 given observational data with all outcomes observed.
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