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Our Contribution

Methodology for semiparametric panel data models for financial data
with large n,T

I Flexible heterogeneous nonparametric covariate effects
I Fixed effects in two directions

Application to assessing the impact on market quality of the
introduction of competition between equity trading venues in Europe
post MiFID I, 2007

I Competition has marginally improved quality in the presence of very big
downer from the financial crisis
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Model

We observe a sample {(Yit ,Xit ) : i = 1, . . . , n, t = 1, . . . ,T}. The
benchmark model is a heterogenous nonparametric panel model

Yit = µ0 +mi (Xit ) + αi + γt + εit

with E[εit |Xit ] = 0, where m1, . . . ,mn are smooth nonparametric
functions, µ0 is the model constant, αi is an unknown individual specific
effect and γt denotes an unknown time specific effect.
For identification we shall assume that ∑n

i=1 αi = ∑T
t=1 γt = 0 and that

Emi (Xit ) = 0.
The main focus of this paper is on the unknown functions mi (.) the
estimation of which is complicated by the presence of the nuisance
parameters θ = {µ0, αi ,γt ; i = 1, . . . , n; t = 1, . . . ,T}. Large n,T .
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Our T is not so large so we will look at the restricted model where

mi (·) =
K

∑
k=1

βikµk (·)

where
µ1(·), . . . , µK (·)

are unknown functions, and

B = (βik )

are unknown parameters (loadings), and perhaps K is unknown too.

4 / 63



Parameter of interest is mi (1)−mi (0) or some weighted average

n

∑
i=1
wi {mi (1)−mi (0)} =

n

∑
i=1
wi

K

∑
k=1

βik {µk (1)− µk (0)}

Alternatively, may want to compare the cross-sectional "distributions" of

mi (1),mi (0)
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We will allow "correlated random effects"

E[αi + γt |X ] 6= 0

in general, the unobserved (fixed) effects αi and γt introduce a
simultaneity between X and Y . This is important in applications where
there are reasons to believe there are common unobserved factors (eg HFT
intensity) affecting both X and Y .
For example. For some deterministic functions Gi ,Ht and additional
random errors ηi , δt

αi = Gi (Xi1, . . . ,XiT ,Yi1, . . . ,YiT ; ηi )
γt = Ht (X1t , . . . ,Xnt ,Y1t , . . . ,Ynt ; δt )

Chamberlain (1982). Restricts the channels through which this
endogeneity can work.
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Two alternative specifications (non-nested) require modification in our
procedures.

1 Fixed effect in X . For some {(δi , αi )} and {(γt , ct )} arbitrary
processes

Xit = δi + ct + Uit

2 Interactive fixed effects

Xit = Γ
ᵀ
i ft + vit

Yit = µ0 +mi (Xit ) + α
ᵀ
i ft + εit

where ft ∈ Rd
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Outline

1 Brief Literature review
2 Elimination of nuisance parameters
3 Dimensionality reduction or common functions in covariate effects
4 Identification
5 Estimation
6 Distribution Theory
7 Application
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Literature Review

Pesaran (2006, Econometrica). Observe Yit ,Xit , dt , linear model with
multiple factors and loadings varying in cross section

Yit = α
ᵀ
i dt + β

ᵀ
i Xit + γ

ᵀ
i ft + εit

Xit = A
ᵀ
i dt + Γ

ᵀ
i ft + vit

But common unobserved factor ft ∈ RK enters Z = (X ,Y ) in a linear
way.
Estimation Idea is that

∑
i
wiZit ' A

ᵀ
(w)dt + Γ

ᵀ
(w)ft

for diversified weights. Can obtain ft upto an affi ne transformation with
enough different weights. Include control function

Yit ' α∗
ᵀ
i dt + β

ᵀ
i Xit + γ∗

ᵀ
i Z

w
t + εit

More general than our treatment with respect to number of factors effects
but less general in functional form and about the way fixed effects are
related. 9 / 63



Mammen, Støve, and Tjøstheim (2009, ET). Additive nonparametric
regression. Mostly deal with the case with n→ ∞ and T fixed and no
cross sectional dependence

Yit = µ0 + γt +
J

∑
j=1
mj (Xjit ) + εit .

Estimation is by backfitting(and joint estimation of fixed effect). Iterative
one dimensional smooths of partial residuals

mj (Xjit )←− E


partial residuals︷ ︸︸ ︷{

Yit − µ0 − γt −
J

∑
k 6=j

mk (Xkit )

}
|Xjit


Hastie and Tibshirani (1990). Mammen, Linton, and Nielsen (1999). No
concurvity(singularity in joint distribution of (X1, . . . ,XJ ).
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Connor, Hagmann, and Linton (2012, Econometrica) consider the model
(for returns) with large n and T but again no heterogeneity

Yit = γ0t +
J

∑
j=1
mj (Xji )γjt + εit ,

Allow dependence of weak sort in time and cross section but covariates
not time varying and no fixed effect in them.

mj (Xjit )←− E


partial residuals︷ ︸︸ ︷

1
γjt

{
Yit − γ0t −

J

∑
k 6=j

mk (Xkit )γkt

}
|Xjit



γt ←−
(
M

ᵀ
tMt

)−1
M

ᵀ
t Yt

Many other papers especially with time varying parameters.
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Kneip, Sickles, and Song (2012, ET).

Yit = µ0(t) + αi (t) +
J

∑
j=1

βjXjit + εit

αi (t) =
K

∑
k=1

θikµk (t),

They do not allow individual effects to be related to included covariates,
i.e., no endogeneity. Estimation method based on splines.
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Elimination of Nuisance Parameters by Fixed Effect Transformation

Denote the time, cross sectional, and global averages by

Y i =
1
T

T

∑
t=1
Yit , Y t =

1
n

n

∑
i=1
Yit , Y =

1
nT

n

∑
i=1

T

∑
t=1
Yit

Y feit = Yit − Y i − Y t + Y
Then note that the fixed effect transformation completely removes the
fixed effects (αi + γt) with some approximation error depending on mi and
on properties of Xit

Y feit = mi (Xit ) + εit −
1
T

T

∑
t=1

εit −
1
n

n

∑
i=1

εit +
1
nT

n

∑
i=1

T

∑
t=1

εit

− 1
T

T

∑
t=1
mi (Xit )−

1
n

n

∑
i=1
mi (Xit ) +

1
nT

n

∑
i=1

T

∑
t=1
mi (Xit )

= mi (Xit ) + εit +Op(T−1/2) +Op(n−1/2).
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Elimination of Nuisance Parameters by Differencing

An alternative approach is to use differencing to eliminate the nuisance
parameters. Specifically, the DID transformation

Y didijts = Yit − Yis − (Yjt − Yjs )
= mi (Xit )−mi (Xis )−mj (Xjt ) +mj (Xjs ) + uijts ,

where uijts = εit − εis − (εjt − εjs ) is a serially dependent error term.
The right hand side is a four term "dyadic" (Fafchamps and Gubert
(2007)) additive time series regression model with Y didijts on
Xit ,Xis ,Xjt ,Xjs . Backfitting type estimation. For estimation need
E (εit |Xit ,Xis ,Xjt ,Xjs ) = 0 rather than just E (εit |Xit ) = 0 needed for the
fixed effect method.
Henderson, Carroll, and Li (2008) propose this method (with just time
differencing) in the homogeneous one way model, i.e.,
Yit = µ0 + αi +m(Xit ) + εit .
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Common Structure

We allow for heterogeneous functions mi . In many applications, it is very
restrictive to assume that mi = m for all individuals. However, rather than
allowing the functions mi to vary completely freely across individuals, one
may expect some common underlying structure.
For example,

mi (x) = βim(x),

for common function m and parameters βi . We consider the K-factor
specification

mi (x) =
K

∑
k=1

βikµk (x),

where µk (·), k = 1, . . . ,K are unknown functions and βik are unknown
constants.
Like CHL (2012) except that same covariate in each component, which
makes this a "second moment" estimation problem rather than a first
moment one. The joint distribution of (X ,X , . . . ,X ) is singular.
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Identification (ForePlay)

Writing m(x) = (m1(x), . . . ,mn(x))
ᵀ
and µ(x) = (µ1(x), . . . , µK (x))

ᵀ
,

we can represent m as
m(x) = Bµ(x)

where B is a n×K matrix with the entries βik . Identification issue. We
assume
The matrix B is orthogonal, i.e. B

ᵀ
B = IK and

∫
µ(x)µ(x)

ᵀ
dw(x) is a

diagonal matrix with non-zero diagonal entries.
It follows that once B is known

B
ᵀ
m(x) = B

ᵀ
Bµ(x) = µ(x)
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We have

Ω =
∫
m(x)m(x)

ᵀ
w(x)dx = B

∫
µ(x)µ(x)

ᵀ
w(x)dx B

ᵀ
= BDB

ᵀ
,

where D = diag(λ1, . . . ,λK ) with λk =
∫

µ2k (x)w(x)dx .
We obtain B from the eigendecomposition of Ω, thence

µ = B
ᵀ
m.

This equation almost surely identifies the functions µ up to sign.
Practical/Theoretical problem is that Ω is n× n.
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We transform it into a system of dimension K . Let W = (ωki ) be a
K × n matrix such that S = WB is a full-rank K ×K matrix. Then
g = Wm with g = (g1, . . . , gK )

ᵀ
and

gk (x) =
n

∑
i=1

ωkimi (x) =
n

∑
i=1

ωki

K

∑
j=1

βijµj (x),

whence
g(x) = Sµ(x),

where S has the entries Skj = ∑n
i=1 ωki βij . We now impose that

The matrix S is orthonormal, i.e. S
ᵀ
S = IK and

∫
µ(x)µ(x)

ᵀ
dw(x) is a

diagonal matrix (with non-zero diagonal entries).
Once S is known we have

S
ᵀ
g(x) = S

ᵀ
Sµ(x)g(x) = µ(x)
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We have that

Σ =
∫
g(x)g(x)

ᵀ
w(x)dx = S

∫
µ(x)µ(x)

ᵀ
w(x)dx S

ᵀ
= SDS

ᵀ
,

where D = diag(λ1, . . . ,λK ) with λk =
∫

µ2k (x)w(x)dx .
Therefore,

µ(·) = Sᵀg(·).

It follows that µ is identified up to sign.
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Nonparametric Estimation of mi

Let h be a scalar bandwidth and K (·) a kernel satisfying
∫
K (u)du = 1

and Kh(·) = h−1K (h−1·). Then define local linear kernel smoother

QT (θ0, θ1; x) =
T

∑
t=1
Kh(Xit − x){Y feit − θ0 − θ1(Xit − x)}2,

Then let θ̂0, θ̂1 minimize QT (θ0, θ1; x) with respect to θ0, θ1 and let
m̂i (x) = θ̂0,
Consistent under some conditions e.g. iid; but not under fixed effect in X .
Good at boundary points.
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Estimation Algorithm

1 First construct estimates of the functions g1, . . . , gK according to

ĝk (x) =
n

∑
i=1

ωki m̂i (x).

2 Then estimate the matrix Σ by

Σ̂ =
∫
ĝ(x)ĝ(x)

ᵀ
w(x)dx .

3 Then estimate the eigenvalues and eigenvectors by

Σ̂ = ŜD̂Ŝ
ᵀ
,

i.e. by performing an eigenvalue decomposition of Σ̂.
4 Let

µ̂(·) = Ŝᵀ ĝ(·).
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[5]. We then estimate the loadings by the least squares estimator

β̂i =

[
1
T

T

∑
t=1
w(Xit )µ̂(Xit )µ̂(Xit )

ᵀ
]−1

1
T

T

∑
t=1
w(Xit )µ̂(Xit )Y feit .

Assume that K is known but in practice choose between them using model
selection tools. Theory allows some zero eigenvalues so only need an upper
bound on K .
[6] Let

m̂ei (x) = β̂
ᵀ

i µ̂(x)

[7] Continue, update fixed effects estimators
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Method is SIMPLE
Iterated version may converge to minimum of (Gaussian LIKELIHOOD)

n

∑
i=1

T

∑
t=1
[Yit − µ0 −mi (Xit )− αi − γt ]

2
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Distribution Theory

Theory established under some alternative specifications. Need CLT for
objects like

1
nT

n

∑
i=1

T

∑
t=1
Kh(Xit − x)εit

1 {Xit , εit} are i.i.d across i and t;
2 {Xit , εit} are stationary and weakly dependent across t and iid across i
3 {Xit , εit} are stationary and weakly dependent across t and i (this is
based on an ordering of i that we do not know, Connor and
Koraczyck, 1993). eg cov(εit , εjs ) = γ(||(i − j , t − s)||), where
γ(u)→ 0 as u → ∞

4 {Xit , εit} are locally stationary (Dahlhaus, 1997) and weakly
dependent across t and i

5 Fixed effect in X ? See below

This allows general class of volatility processes
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Locally stationary nonparametric regression (Vogt, 2011 Mannheim PhD,
Forthcoming in Annals of Statistics)
Xt as in Dahlhaus definition has (local) stationary density fu(x) for
u ∼ t/T . Excludes Xt = t/T .
Results are similar to the stationary case in every regard except limiting
constants are averages of local densities and variances etc.
Can generalize this in the cross-section dimension for some ordering of i
that we do not observe.
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Our theory involves:

1 Obtain expansion for m̂i (x) (Large T ) and hence ĝk (x) (Large n)
2 Obtain asymptotics for Σ̂
3 Derive rate of convergence of Ŝ using theory of estimation of
eigenvalues and eigenvectors of sample matrices

4 Obtain asymptotics for µ̂(x) and β̂i

5 Obtain asymptotics for m̂i (x) = β̂
ᵀ

i µ̂(x)
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Theorem. Under some regularity conditions

sup
x∈[0,1]

‖µ̂(x)− µ(x)‖ = Op

(√
log nT
nTh

)

Moreover, for any fixed point x ∈ (0, 1),

√
Th (m̂i (x)−mi (x)) d−→ N

(
0, ||K ||22

σ2i (x)
fi (x)

)
√
nTh(µ̂(x)− µ(x))

d−→ N
(
0, ||K ||22S

ᵀ
VS
)
.

Here, V = (Vk ,k ′)k ,k ′=1,...,K with

Vk ,k ′ = limn→∞ n∑n
i=1 ωkiωk ′ i

σ2i (x)
fi (x)

; σ2i (x) = E[ε2it |Xit = x ].
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Theorem. Under some regularity conditions for any fixed i ,

√
T (β̂i − βi )

d−→ N(0, Γ−1i Ψi (Γ−1i )
ᵀ
),

where:

Γi = E[w(Xi0)µ(Xi0)µ(Xi0)
ᵀ
]

Ψi =
∞

∑
l=−∞

cov(χi0,χil )

χit = {w(Xit )µ(Xit )−E[w(Xit )µ(Xit )]}εit −E[w(Xit )µ(Xit )]mi (Xit )
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Pooled Estimator of mi

Let ∆n,T = max{T−1/2, (nT )−2/5}. We have

m̂ei (x)−mi (x) = (β̂i − βi )
ᵀ
µ(x) + β

ᵀ
i (µ̂(x)− µ(x)) + op(∆n,T ).

The first term on the right hand side is of order T−1/2, while the second
term is of order (nT )−2/5 under our conditions. The leading term is
determined by the ratio n4/T : if n4/T → 0, then the larger term is the
second one of order (nT )−2/5, while if n4/T → ∞, the larger term is the
first one of order T−1/2. The knife edge case where n4/T stays bounded
away from zero and infinity allows both terms to contribute to the limiting
behaviour.
It follows that m̂ei (x) is asymptotically normal, and at a faster rate than
m̂i (x), which converges at rate T 2/5.

29 / 63



Parameters of interest

In our application below, we are interested in the parameter

ci = mi (1)−mi (0),
which measures the difference between monopoly and competition for
stock i . Letting ĉi = m̂ei (1)− m̂ei (0) we have

ĉi − ci = (β̂i − βi )
ᵀ
(µ(1)− µ(0)) + β

ᵀ
i (µ̂(1)− µ(1))

−β
ᵀ
i (µ̂(0)− µ(0)) + op(∆n,T ),

Under the null hypothesis that ci = 0, we should observe that
√
nThĉi

d−→ N (0, τi ) , τi = β
ᵀ
i (S
∗)

ᵀ
[V (1) + V (0)]S∗βi ,

which could form the basis of a test. Specifically, we can estimate the
asymptotic variance τi consistently by τ̂i , then

ti =
ĉi√

τ̂i/nTh
=⇒ N(0, 1).
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Alternatively, compare the marginal cross-sectional distribution of mi (1)
with that of mi (0). First order, second order, et al dominance

Let X1 and X2 be two random variables (incomes, returns/prospects)
at either two different points in time, or for different regions or
countries, or with or without a program (treatment).

X1 First Order Stochastic Dominates X2,

X1 �FSD X2 if F1(x) ≤ F2(x), ∀x

X1 Second Order Stochastic Dominates X2

X1 �SSD X2 if
∫ x

−∞
F1(t)dt ≤

∫ x

−∞
F2(t)dt, ∀x .
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Robustness of the estimation method

So far, we have worked under the simplifying assumption that the number
K of common component functions µ1, . . . , µK is known. We now drop
this assumption and take into account that K is usually not observed in
applications. We only suppose that there is some known upper bound K
of the number of component functions and we do our procedure using the
upper bound.
Theorem. For all k = 1, . . . ,K

sup
x∈Ih

∣∣µ̃k (x)− µk (x)
∣∣ = Op(√ log nTnTh

)
For k = K + 1, . . . ,K ,∫

µ̃2k (x)w(x)dx = op
( 1√

nTh

)
Taken together, these results show that our procedure is robust to
overestimating the number of component functions K .
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Selecting the number of components

Our estimator of K is defined as

K̂ = min

{
k ∈ {1, . . . ,K} | λ̃1 + . . .+ λ̃k

λ̃1 + . . .+ λ̃K
≥ 1− δn,T

}
.

The intuition behind this estimator is simple: Under our assumptions, the
matrix Σ has K non-zero eigenvalues, i.e. the first K entries of λ are
non-zero. The first K entries of the estimator λ̃ thus converge to some
positive values, whereas the other ones approach zero as the sample size
increases. Hence, the ratio

λ̃1 + . . .+ λ̃k

λ̃1 + . . .+ λ̃K

should converge to a number strictly smaller than 1 for k < K and to 1 for
k ≥ K . This suggests that K̂ consistently estimates the true number of
components K .
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Application

Application follows from my part in UK Government Offi ce for Science
Foresight project on Future of Computer Based Trading in Financial
Markets.
http://www.bis.gov.uk/foresight/our-work/projects/current-
projects/computer-trading.
International project with hundreds of academics and practitioners
involved: O’Hara, Leland, Hendershott, Foucault, Menkveld, Farmer etc.
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Flash Crash May 6th, 2010

SEC/CFT report 2010: Automated sell order, High frequency trading,
fragmentation of trading, market maker obligations, stub quotes, NMS
trading rules etc.
Can we predict flash crash now?
Easley, D., Lopez de Prado, M., O’Hara, M., 2011a. The microstructure of
the “flash crash”: flow toxicity, liquidity crashes, and the probability of
informed trading. Journal of Portfolio Management 37 (2), 118—128.
Anderson and Bondarenko VPIN and the Flash Crash (2011→2013)
SSRN-id2292605.
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Paul Krugman represents the contrarian view of high frequency trading:

“It’s hard to imagine a better illustration [of social
uselessness] than high frequency trading. The stock market is
supposed to allocate capital to its most productive uses, for
example by helping companies with good ideas raise money. But
it’s hard to see how traders who place their orders one-thirtieth
of a second faster than anyone else do anything to improve that
social function ... we’ve become a society in which the big bucks
go to bad actors, a society that lavishly rewards those that make
us poorer” .
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System latency following Moores law or even more

System Implementation Date Latency (Microseconds)

SETS <2000 600000
SETS1 Nov 2001 250000
SETS2 Jan 2003 100000
SETS3 Oct 2005 55000
TradElect June 18, 2007 15000
TradElect 2 October 31, 2007 11000
TradElect 3 September 1, 2008 6000
TradElect 4 May 2, 2009 5000
TradElect 4.1 July 20, 2009 3700
TradElect 5 March 20, 2010 3000
Millenium February 14, 2011 113

Transactions and quote updating related to this and speeded up likewise.
Capacity also increased.
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Costs of speed↓ Benefits? Limit orders give options to trade to other
traders. Black and Scholes (1973, JPE) call option price

f (S ,X , τ, rf , σ) = S ·Φ(d+)− X · e−rf ·τ ·Φ(d−)

where

d± =
log SX +

(
rf ± σ2

2

)
· τ

σ ·
√

τ

and Φ is the standard normal cdf. At the money, S = X , as τ → 0

f (S ,X , τ, rf , σ) =
1√
2π
S · σ
√

τ +O(τ).

There is a positive albeit small value in an order that only sits for small
time.
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Market Fragmentation

We investigate the effects of equity trading market fragmentation (aka
competition) on market quality in the UK.
In 2007, the implementation of the “Markets in Financial Instruments
Directive (MiFID)" ended the monopoly of primary exchanges across
Europe. Market participants can now execute their trades on traditional
primary exchanges or on new exchanges known as Multilateral Trading
Facilities (MTF) or Systematic Internalizers (SI).
Since the implementation of MiFID, fragmentation of trading flows
increased significantly. In February 2012, the volume of FTSE100 stocks
traded via the London Stock Exchange had declined to 50%, and the
volume of DAX stocks traded via the German Stock Exchange had
decreased to 63%.
Computer-based High Frequency Trading enabled by and almost required
in Fragmented environment.
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Competition between venues for market share is different from price
competition between traders. However, higher competition between
trading venues can improve market quality: technological innovation,
improves effi ciency and reduces the fees that have to be paid by
investors. Foucault and Menkveld (2008).

On the other hand, might think that security exchanges are natural
monopolies. Consolidated exchanges enjoy economies of scale
because establishing a new exchange requires the payment of a high
fixed cost. Every additional trade lowers the average cost of the
exchange. In addition, a single, consolidated exchange market creates
network externalities. The larger the market, the more trading
opportunities exist that attract even more traders.

On the other other hand, smart order routers may create a virtual
consolidated market place. [although in Europe no reg NMS so trade
throughs and crossed markets allowed and observed].
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It is an empirical question. Some evidence

O’Hara and Ye (2009) US markets. Matching methodology. Negative
effects of fragmentation on illiquidity and transaction costs and
positive effects on effi ciency.

Gresse (2011) uses data on stocks listed on the LSE and Euronext
exchanges in Amsterdam, Paris and Brussels to examine the effect of
market fragmentation on liquidity. In her study, fragmentation is
measured by the reciprocal of the Herfindahl index. Gresse measures
liquidity by the sum of quantities market participants are willing to
trade at the best bid and ask prices. Using a linear panel model, she
finds that market fragmentation improves liquidity both locally and
globally.

Local liquidity is available to investors that trade only on primary
exchanges, while global liquidity can be accessed by investors that are
connected to different exchanges via, for example, Smart Order
Routing Technologies.
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Degryse et al. (2011) investigate the same question using a data set of
Dutch stocks and their analysis is methodologically similar to Gresse
(2011). In contrast to Gresse (2011), however, the authors distinguish
between fragmentation in visibleand darktrading platforms. This
distinction is based on the pre-trade transparency requirements. They find
that

visible fragmentation improves global liquidity, but has a negative
effect on local liquidity.

Dark fragmentation has a negative effect on both local and global
liquidity.

All use linear (in parameter) panel specifications and DID method
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Data

Weekly UK data (Fidessa): volume traded for the all the stocks in the
FTSE-100 index and the FTSE-250 index, as well as where that volume
was traded over the period 2008-2011. The data distinguish between lit
(public exchanges with visible order book), dark pools (invisible order
book), otc (over the counter), and si (systematic internalizer) venues.
Bloomberg daily data for prices and volumes.
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Results presented for individual stocks of FTSE350 May 2008- June
2011 (n ∼ 350 and T ∼ 150)
Measure fragmentation Xit using Fidessa weekly data by

I Percentage volume traded off the LSE lit venue
I Herfindahl index of the trading volumes ∑w2i ; equals to one if all
concentrated in one venue (measures competition between venues).

I Same for the lit versus dark

Market Quality Outcome variables Yit using Bloomberg daily data:
I log of volatility (high-low and realized vol over week)
I log of liquidity (1/Amihud return per unit vol averaged over week and
log of bid-ask spreads)

I Market effi ciency ACF(1)

Time period coincides with financial crisis so many reasons why
market quality should drop absolutely. Our panel model tries to
control for this using cross section and time series variation in the
fragmentation.
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Pesaran Model

Yit = µ0 + βiXit + δiX 2it + ρiX t + ϑiVIXt + εit
Volatility Liquidity Bid-ask spread

Intercept -4.80∗∗∗ -10.72∗∗∗ -7.87∗∗∗

(0.07) (0.17) (0.12)
Herf. 0.88∗∗∗ -2.06∗∗∗ 1.85∗∗∗

(0.21) (0.34) (0.31)
Herf. squared -0.85∗∗∗ 1.14∗∗∗ -2.20∗∗∗

(0.22) (0.42) (0.35)
VIX 0.02∗∗∗ 0.01∗∗∗ 0.02∗∗∗

(0.00) (0.00) (0.00)
Cross-sect. mean of Herf. 1.05∗∗∗ 1.23∗∗∗ 1.75∗∗∗

(0.11) (0.19) (0.18)
Num. obs. 34220 34253 34363
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Nonparametric pooled Volatility against Herf (Average of mi )
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This seems to be saying that as fragmentation increases, first volatility
rises and then it falls. It may reach a lower bound where further
improvement is not evident.
However, note that there is in our sample relatively few observations in the
region where quality falls, since we are nearly a year after Chi-X launch.
Perfect competition case better than monopoly case, but the road there is
not easy.
There are a lot of different shapes in individual curves; average effect
disguises that.
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Our model. Volatility against Herf common functions K = 3
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Also tried K = 5 and K = 10 but curves not significant and doesn’t
change the main curve
Main curve similar to average effect; second curve shows downward slope
but less significance; third curve pretty flat relatively
Individual stocks have some variation in response due to different loadings
on µ1, µ2, and µ3.
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Individual effects αi against market capitalization rank. There is not much
relationship (at the LSE, tick size is related to market cap, price level, and
segment)
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Common trend γt against time
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Conclusions and extensions

Empirical results suggest that overall competition between trading
venues has improved the performance of equity markets according to
volatility and liquidity but not in a simple way.

Both heterogeneity and nonlinearity important here

Körber, Linton, and Vogt (2013). Extensive parametric results based
on quadratic Pesaran model with multiple common factors. Quantile
estimation. Variance regression estimation (variability of market
quality). Control for market cap. Split into permanent and temporary
volatility. Split into overnight and within day volatility. Split into
common and idiosyncratic volatility and jump versus continuous
component. Split into visible frag and dark. Instrumental variables.
Differences in differences. Fixed effect transformation. Similar results,
mostly.
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Fixed effect in covariate

Suppose that the regressors have the structure

Xit = δi + ct + Uit ,

where δi and ct are independent of the process
{(εit ,Uit ), i = 1, . . . , n, t = 1, . . . ,T} which obeys either of 1-4 above.
This causes inconsistency (but asymptotic unbiasedness) of the estimator
m̂i (x). This is because

Y feit = mi (Xit ) + εit − E [mi (Xit ) |δi ]− E [mi (Xit ) |ct ]
+Op(n−1/2) +Op(T−1/2)

' mi (Xit )−mi (δi )−m(ct ) + εit
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However, note that

X i − X = δi +Op(T−1/2)

X t − X = ct +Op(n−1/2)

so that these quantities are approximately observable. Therefore, we have
essentially

Y feit = mi (Xit )−mi (X i )−m(X t ) + εit + Rem∗it ,

where Rem∗it is a small error term. This is an additive panel regression but
with covariates Xit ,X i ,X t .
Körber, Linton, and Vogt (2013, in progress) show that backfitting
(pooled, then cross-section, then time series) works in the homogeneous
case (mi = m)
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Interactive Fixed effects

Suppose model is

Yit = Qi (ft ) +mi (Xit ) + εit

Xit = Ri (ft ) + vit

Then
1
n

n

∑
i=1
Xit ' R(ft )

for some R. If R is monotonic, then can fit the additive model

Yit = Q i (X t ) +mi (Xit ) + εit
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Restrictions on the loadings

There are K × n loading parameters to estimate and describe. In practice,
too many.
Random coeffi cient assumptions

βi ∼ fθ

Estimate the parameters θ by sp qmle
Shrinkage (assumes that many βij are small or zero)

LS(β) + λ ∑
i ,j

∣∣∣βij ∣∣∣
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