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Abstract: Consider a finite data set where each observation consists of a bundle

of contingent consumption chosen from a constraint set of contingent consumption

bundles. We develop a general procedure for testing the consistency of such a data set

with a broad class of models of choice under risk or uncertainty. Unlike previous tests,

we do not require that the agent has a concave Bernoulli utility function.
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1. Introduction

Let O “ tppt, xtqutPT be a finite set of T elements, where pt P Rs̄
`` and xt P Rs̄

`. We

interpret O as a set of observations, where xt is the observed bundle of s̄ goods chosen by

an agent (the demand bundle) at the price vector pt. A function U : Rs̄
` Ñ R is said to

rationalize the set O if, at all t P T , xt is the bundle that maximizes U in the budget set

Bt
“ tx P Rs̄

` : pt ¨ x ď pt ¨ xtu. (1)

For any data set that is rationalizable by a locally non-satiated utility function, its revealed

preference relations must satisfy a no-cycling condition called the generalized axiom of re-

vealed preference (GARP). The famous theorem of Afriat (1967) shows that any data set

that obeys GARP will in turn be rationalizable by a continuous, strictly increasing, and

concave utility function. Afriat’s result is very useful because it gives a nonparametric test

of utility maximization that can be easily implemented in observational and experimental
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use of the ALICE High Performance Computing Facility at the University of Leicester. Part of this research
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like to thank the Economics Department at NUS for its hospitality and support. John Quah would also like
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settings. It is known that GARP holds if and only if there is a solution to a set of linear

inequalities constructed from the data; much applied work using Afriat’s Theorem checks

for GARP by checking for a solution to this linear program.1

It is both useful and natural to develop tests, similar to the one developed by Afriat,

for alternative hypotheses on agent behavior. Our objective in this paper is to develop a

procedure that is useful for testing models of choice under risk or uncertainty. Retaining

the formal setting described in the previous paragraph, we can interpret s̄ as the number

of states of the world, with xt a bundle of contingent consumption, and pt the state prices

faced by the agent. In a setting like this, we can ask what conditions on the data set are

necessary and sufficient for it be consistent with an agent maximizing an expected utility

(EU) function (in the case where probabilities are objective and known to both observer

and agent and also in the case where it is subjective). This means that (for all observations

t) the choice xt maximizes the agent’s expected utility, compared to other bundles in the

budget set. Assuming that probability of state s is commonly known to be πs, this involves

recovering a Bernoulli utility function u : R` Ñ R, which we require to be increasing and

continuous, such that, for each t P T ,

s̄
ÿ

s“1

πsupx
t
sq ě

s̄
ÿ

s“1

πsupxsq for all x P Bt. (2)

In the case where the state probabilities are subjective and not known to the observer, it

would be necessary to recover both u and πs such that (2) holds.

In fact, tests of this sort have already been developed by Varian (1983) and Green and

Srivastava (1986). In these papers, the realization within each state is allowed to be multi-

dimensional (in other words, it can be a bundle of goods rather than a monetary payoff), so it

is even more general than our description above. As in Afriat’s Theorem, the tests developed

by these authors involve solving a set of inequalities that are derived from the data; there

is consistency with EU maximization if and only if a solution to these inequalities exists.2

More recently, Bayer et al. (2013) have developed similar tests for a broader class of models,

1 For proofs of Afriat’s Theorem, see Afriat (1967), Varian (1982), and Fostel et al. (2004). The term

GARP is from Varian (1982); Afriat refers to the same property as cyclical consistency.
2 More intuitive characterizations of expected utility maximization, closer in flavor to GARP, have been

developed by Kubler et al. (2013, for objective EU) and Echenique and Saito (2013, for subjective EU).

These papers require the concavity of the Bernoulli utility function and that there be one good in each state.
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including maxmin expected utility and variational preferences. Common to all of these tests

is the assumption that the Bernoulli utility function is concave, so risk aversion is assumed

as part of the test. Furthermore, it is assumed that the budget set Bt has the classic linear

form we defined earlier, so prices are linear and markets are complete.

Our contribution in this paper is to develop a testing procedure that has the following

features: (i) it is potentially adaptable to test for different models of choice under uncertainty

and not just the expected utility model; (ii) it is a ‘pure’ test of the model as such and does

not require risk aversion or the concavity of the agent’s objective function for its validity;

and (iii) it is applicable to situations with more complex budgetary constraints and so can

be employed even when there is market incompleteness or when there are non-convexities in

the budget set because of non-linear pricing or other practices.3 In the case of objective EU

maximization, the test we develop takes the form of a linear program; a data set is consistent

with this model if and only if there is a solution to a particular linear program. In the case

of subjective EU, rank dependent EU, or maxmin EU, our test involves solving a finite set

of bilinear inequalities that is constructed from the data. These problems are decidable, in

the sense that there is a known algorithm that can determine in a finite number of steps

whether or not a set of bilinear inequalities has a solution.

Nonlinear tests are not new to the revealed preference literature: for example, they ap-

pear in tests of weak separability (Varian, 1983), in tests of maxmin EU and other models

developed in Bayer et al. (2013), and also in Brown and Matzkin’s (1996) test of the Wal-

rasian model of general equilibrium. The computational demands of solving these problems

can in general be a serious obstacle to implementation, but some of these problems are

computationally manageable if they possess certain special features and/or if the number of

observations of each subject is small.4 In the case of the tests that we develop, they simplify

dramatically when there are just two states (though they remain nonlinear). The two state

case, while special, is common in theoretical modeling and in laboratory experiments.

3 For an extension Afriat’s Theorem to nonlinear budget constraints, see Forges and Minelli (2009).
4 It is not uncommon to perform tests on fewer than 20 observations. This is partly because revealed pref-

erence tests do not in general account for errors and these are unavoidable when there are many observations

of the same subject.
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Figure 1: Example 1

Brief description of the test and its implementation

Given the data O “ tppt, xtqutPT , we define the set

X “ tx1 P R` : there is xt such that xts “ x1u Y t0u. (3)

Besides zero, X consists of those levels of consumption that were chosen at some observation

and at some state. Since O is finite, so is X , and its product L “ X s̄ forms a finite grid

of points in Rs̄
`; in formal terms, L is a finite lattice. For example, consider the data set

depicted in Figure 1, where x1 “ p2, 5q at p1 “ p5, 2q, x2 “ p6, 1q at p2 “ p1, 2q, and

x3 “ p4, 3q at p3 “ p4, 3q. In this case, X “ t0, 1, 2, 3, 4, 5, 6u and the lattice L consists of

the points depicted with ˝.

Suppose we would like to test whether the data set is consistent with expected utility

maximization with objective probabilities tπsu
s̄
s“1 that are known to us. Clearly, a necessary

condition for this to hold is that we can find a set of numbers tuprqurPX with the following

properties: (i) upr2q ą upr1q whenever r2 ą r1, and (ii) for all t P T ,

s̄
ÿ

s“1

πsūpx
t
sq ě

s̄
ÿ

s“1

πsūpxsq for all x P Bt X L, (4)
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with the inequality strict whenever x P Bt X L and x is in the interior of Bt. (In this case,

Bt is given by (1).) Notice that because X is finite, the existence or otherwise of tūprqurPX

with properties (i) and (ii) can be straightforwardly ascertained by solving a family of linear

inequalities. Our main result says that if a solution can be found, then there is a continuous

and strictly increasing utility function u : R` Ñ R that extends tūprqurPX and satisfies (2).

Returning to the example depicted in Figure 1, suppose we know that π1 “ π2 “ 0.5. Our

test requires that we find ūprq, for r “ 0, 1, 2, ..., 6, such that the expected utility of the chosen

bundle pxt1, x
t
2q is greater than that of the lattice points within the corresponding budget set

Bt. One could check that these requirements are satisfied for ūprq “ r, for r “ 0, 1, ..., 6, so

we conclude that the data set is consistent with expected utility maximization.

A general description of the testing procedure we have just outlined, together with a

proof of its validity, can be found in Section 2. In Section 3, we show how this procedure

can applied to test for different models of choice behavior, including EU-maximization and

also the maximization of rank dependent EU and maxmin EU. As an illustration of how

these tests can be used, we implement them on a data set obtained from the portfolio

choice experiment in Choi et al. (2007). In this experiment, each subject was asked to

purchase Arrow-Debreu securities under different budget constraints. There were two states

of the world and it is commonly known that each state occurred with probability 1/2.

We tested these subjects for utility-maximization and for EU-maximization with a concave

Bernoulli utility function, using the standard tests. We then tested the same subjects for EU-

maximization and for rank dependent EU-maximization, using the tests we have developed.

While most subjects exhibited behavior that is consistent (or close to consistent) with utility-

maximization, pass rates for all the different models of EU-maximization were very much

lower. However, a significant number of subjects did display behavior broadly consistent

with EU-maximization, though virtually none were consistent with EU-maximization once

concavity was imposed.

2. Testing the model on a lattice

We assume that there is a finite set of states, denoted by S “ t1, 2, ..., s̄u. The contingent

consumption space is Rs̄
`; for a typical consumption bundle x P Rs̄

`, the sth entry, xs,
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specifies the consumption level in state s. We assume that there are T observations in the

data set O, where O “ tpxt, BtquTt“1. This means that the agent is observed to choose the

bundle xt from the set Bt Ă Rs̄
`. We assume that Bt is compact and that xt P BBt, where

BBt denotes the upper boundary of Bt. An element y P Bt is in BBt if there is no x P Bt such

that x ą xt. The most important example of Bt is the standard budget set when markets

are complete, i.e., when Bt is given by (1), with pt " 0 the vector of state prices. We also

allow for the market to be incomplete. Suppose that the agent’s contingent consumption is

achieved through a portfolio of securities and that the asset prices do not admit arbitrage;

then the budget set is compact since there is pt " 0 such that

Bt
“ tx P Rs

` : pt ¨ x ď pt ¨ xtu X tZ ` ωu,

where Z is the span of the assets available to the agent and ω is his endowment of contingent

consumption. Note that the budget set Bt and the contingent consumption bundle xt will

both be known to the observer so long as he can observe the asset prices and the agent’s

holding of securities, knows the asset payoffs in every state and the agent’s endowment of

contingent consumption, ω.

Let tφp¨, tquTt“1 be a collection of functions, where φp¨, tq : Rs̄
` Ñ R is increasing in all its

arguments. The data set O “ tpxt, BtquTt“1 is said to be rationalizable by tφp¨, tqutPT if there

exists a continuous and increasing function u : R` Ñ R` (which we shall call the Bernoulli

utility function) such that

φpupxtq, tq ě φpupxq, tq for all x P Bt, (5)

where upxq “ pupx1q, upx2q, ..., upxs̄qq. In other words, there is some Bernoulli utility function

u under which xt is an optimal choice in Bt, assuming that the agent is maximizing φpupxq, tq.

Many of the basic models of choice under risk and uncertainty can be described within this

framework, with different models leading to different functional forms for φp¨, tq. We shall

explore some of these models later; for now, it suffices to point out, as a basic example, that

expected utility is captured by this form.

Example: Suppose that both the observer and the agent knows that the probability of
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state s in observation t is πts ą 0. If the agent is maximizing expected utility, then

φpu1, u2, ..., us̄, tq “
s̄
ÿ

s“1

πtsus (6)

so (5) requires that
s̄
ÿ

s“1

πtsupx
t
sq ě

s̄
ÿ

s“1

πtsupxsq for all x P Bt, (7)

i.e., the expected utility of the bundle xt is greater than that of any other bundle in Bt.

When there exists a continuous and increasing function u such that (7) holds, we say that

the data set is EU-rationalizable with probability weights pπtqTt“1, where πt “ pπt1, π
t
2, ..., π

t
s̄q.

If O is rationalizable by tφp¨, tqutPT then, since the objective function φpup¨q, tq is strongly

increasing in x, we must have

φpupxtq, tq ě φpupxq, tq for all x P Bt (8)

where Bt
“ ty P Rs̄

` : y ď x for some x P Btu. Furthermore, the inequality in (8) is strict

whenever x P Bt
zBBt (where BBt refers to the upper boundary of Bt). We define

X “ tx1 P R` : there is xt such that xts “ x1u Y t0u.

Besides zero, X consists of those levels of consumption that were chosen at some observation

and at some state. Since the data set is finite, so is X . Given X , we may construct

L “ X s̄, which consists of a finite grid of points in Rs̄
`; in formal terms, L is a finite lattice.

Let ū : X Ñ R` be the restriction of the Bernoulli utility function u to X . Given our

observations, the following must hold:

φpūpxtq, tq ě φpūpxq, tq for all x P Bt
X L and (9)

φpūpxtq, tq ą φpūpxq, tq for all x P
`

Bt
zBBt

˘

X L, (10)

where ūpxq “ pūpx1q, ūpx2q, ..., ūpxs̄q. Our main theorem says that the converse is also true.

Theorem 1. Suppose that for some data set O “ tpxt, BtquTt“1 and collection of strongly

increasing and continuous functions tφp¨, tquTt“1, there is an increasing function ū : X Ñ R`

that satisfy the conditions (9) and (10). Then there is an increasing and continuous function

u : R` Ñ R` that extends ū and guarantees the rationalizability of O by tφp¨, tquTt“1.
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To proof this result, we use the following lemma.

Lemma 1. Let tCtuTt“1 be a finite collection of constraint sets in Rs̄
` that are compact and

downward closed (i.e., if x P Ct then so is y P Rs̄
` such that y ă x) and let tφp¨, tquTt“1 be a

collection of strongly increasing and continuous functions. Suppose that there is a finite set

X of R`, an increasing function ū : X Ñ R`, and tM tutPT such that the following holds:

M t
ě φpūpxq, tq for all x P Ct X L and (11)

M t
ą φpūpxq, tq for all x P pCtzBCtq X L, (12)

where L “ X s̄ and ūpxq “ pūpx1q, ūpx2q, ..., ūpxs̄qq. Then there is a continuous and increasing

function u : R` Ñ R` that extends ū such that

M t
ě φpupxq, tq for all x P Ct and (13)

if x P Ct and M t “ φpupxq, tq, then x P BCt X L and M t “ φpūpxq, tq. (14)

Remark: The property (14) needs some explanation. Conditions (11) and (12) allow for

the possibility that M t “ φpūpx1q, tq for some x1 P BCt X L; we denote the set of points in

BCt X L with this property by X 1. Clearly any extension u will preserve this property, i.e.,

M t “ φpupx1q, tq for all x1 P X 1. Property (14) says that we can choose u such that for all

x P CtzX 1, we have M t ą φpūpxq, tq.

Proof: We shall prove this result by induction on the dimension of the space containing

the constraint sets. It is trivial to check that the claim is true if s̄ “ 1. In this case, L

consists of a finite set of points on R` and each Ct is a closed interval with 0 as its lowest

point. Now let us suppose that the claim holds for s̄ “ m and we shall prove it for s̄ “ m`1.

If, for each t, there is an increasing and continuous utility function ut : R` Ñ R` extending

ū such that (13) and (14) hold, then the the same conditions will hold for the increasing and

continuous function u “ mintPT u
t. So we can focus our attention on constructing ut for a

single constraint set Ct.

Suppose X “ t0, r1, r2, r3, ..., rIu, with r0 “ 0 ă ri ă ri`1, for i “ 1, 2, ..., I ´ 1. Let

r̄ “ maxtr P R` : pr, 0, 0, ..., 0q P Ctu and suppose that pri, 0, 0, ..., 0q P Ct if and only

if i ď N . Consider the collection of sets of the form Di “ ty P Rm
` : pri, yq P Ctu (for
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i “ 1, 2, ..., N); this is a finite collection of compact and downward closed sets in Rm
` . By

the induction hypothesis there is a function u˚ : R` Ñ R` that extends ū such that

M t
ě φpūpriq,u˚pyq, tq for all pri, yq P Ct and (15)

if pri, yq P Ct and M t “ φpūpriq,u˚pyq, tq, then pri, yq P BCt X L and M t “ φpūpri, yq, tq.

(16)

For each r P r0, r̄s, define

Uprq “ tu ď u˚prq : maxtφpu,u˚pyq, tq : pr, yq P Ct
u ďM t

u.

This set is nonempty; indeed ūprkq “ u˚prkq P Uprq, where rk is the largest element in X

that is weakly smaller than r. This is because, if pr, yq P Ct then so is prk, yq, and (15)

guarantees that φpūprkq,u˚pyq, tq ď M t. The downward closedness of Ct also guarantees

that Uprq Ď Upr1q whenever r ă r1. Now define ũprq “ supUprq; the function ũ has a

number of significant properties. (i) For r P X , ũprq “ u˚prq “ ūprq (by the induction

hypothesis). (ii) ũ is a nondecreasing function since U is nondecreasing. (iii) ũprq ą ūprkq if

r ą rk and the latter is largest element in X smaller than r. If instead, ũprq “ ūprkq, then the

compactness of Ct guarantees that there is ŷ such that φpūprkq,u˚pŷq, tq “M t, with pr, ŷq P

Ct. Consequently, prk, ŷq P Ct and, since ūprkq “ u˚prkq, we have φpu˚prk, ŷq, tq “M t. This

can only occur if prk, ŷq P BCt X L (because of (16)), but it is clear that prk, ŷq R BCt since

prk, ŷq ă pr, ŷq. (iv) If rn Ñ ri P X , then ũprnq Ñ u˚priq. Suppose to the contrary, that the

limit is û ă u˚priq “ ūpriq. We can assume, without loss of generality, that ũprnq ă u˚prnq.

By the compactness of Ct, there is prn, ynq P C
t such that φpũprnq,u

˚pynq, tq “ M t. This

leads to φpû,u˚py1q, tq “ M t, where y1 is an accumulation point of yn and pri, y1q P Ct. But

since φ is strictly increasing, we obtain φpu˚priq,u˚py1q, tq ąM t, which contradicts (15).

Given the properties of ũ, we can find a continuous and increasing function ut such that

ut extends ū, utprq ă u˚prq for all r P R`zX and utprq ă ũprq ď u˚prq for all r P r0, r̄szX .

Then the conditions (13) and (14) are satisfied for Ct. QED

Proof of Theorem 1: This follows immediately from Lemma 1 if we set Ct “ Bt, and

M t “ φpūpxtq, tq. If ū obeys conditions (9) and (10) then it obeys conditions (11) and (12).

The rationalizability of O by tφp¨, tqutPT then follows from (13). QED
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3. Applications of our testing procedure

Theorem 1 can be used to test different models of choice under risk and uncertainty, with

each model requiring different functional forms for φp¨, tq.

3.1 Testing for objective expected utility

Suppose that for a data set O “ tpxt, BtquTt“1, there are ` ` 1 elements in X ; we denote

the typical element in X by ri, with r0 “ 0 and ri´1 ă ri for i “ 1, 2, ..., `. We wish to check

whether O is EU-rationalizable with probability weights tπtuTt“1, in the sense defined in the

Example in the previous section. By Theorem 1, EU-rationalizability holds if and only if

there is a collection of real numbers tūprqurPX such that

0 ď ūpri´1q ă ūpriq for i “ 1, 2, ..., ` (17)

and the inequalities (9) and (10) hold, where φp¨, tq is defined by (6). This is a linear program

and it is both solvable (in the sense that there is an algorithm that can decide within a known

number of steps whether or not a solution exists) and computationally feasible.

While Theorem 1 guarantees that there is a continuous function u that extends ū : X Ñ R

when the required conditions are satisfied, this function is not necessarily smooth. For

example, suppose that it is commonly known that states 1 and 2 occur with equal probability

and we observe the agent choosing the bundle p1, 1q at price pp1, p2q, with p1 ‰ p2. It is trivial

to check that this observation is EU-rationalizable in our sense. In fact, one could even find

a concave u : R` Ñ R for which p1, 1q maximizes expected utility. However, any continuous

and increasing function u that EU-rationalizes the data cannot be smooth. This is because,

if it is smooth and given that the two states are equiprobable, the slope of the indifference

curve at p1, 1q must equal 1; thus it will not be tangential to the budget line and will not be

a local optimum.

Note also that the utility function guaranteed by Theorem 1 need not be a concave

function. Consider the example given in Figure 2 and suppose that π1 “ π2 “ 1{2. In this

case, X “ t0, 1, 2, 7u, and one could check that (9) and (10) are satisfied, where φp¨, tq is

defined by (6), if ūp0q “ 0, ūp1q “ 2, ūp2q “ 3, and ūp7q “ 6. Thus we know that the

10
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Figure 2: Example 2

data is consistent with EU-maximization. However any Bernoulli utility function that EU-

rationalizes the data cannot be concave. Indeed, since p3, 1q is strictly within the budget set

when p2, 2q was chosen, 2up2q ą up1q`up3q. By the concavity of u, up3q´up2q ě up7q´up6q

and thus we obtain up6q ` up2q ą up7q ` up1q, contradicting the optimality of p1, 7q.

3.2 Testing for subjective expected utility (SEU)

We now consider a setting where no objective probabilities could be attached to each

state. The data set O “ tpxt, BtquTt“1 is said to be SEU-rationalizable if there is π “

pπ1, π2, ..., πs̄q " 0 and an increasing function u : R` Ñ R such that, for all t “ 1, 2, ..., T

s̄
ÿ

s“1

πsupx
t
sq ě

s̄
ÿ

s“1

πsupxsq for all x P Bt.

In other words, at every observation t, the agent is acting as though he attributes a proba-

bility of πs to state s and is maximizing expected utility. In this case, φ is independent of t,

with φpuq “
řs̄
s“1 πsus. The conditions (9) and (10) can be written as

s̄
ÿ

s“1

πsūpx
t
sq ě

s̄
ÿ

s“1

πsūpxsq for all x P Bt
X L and (18)
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s̄
ÿ

s“1

πsūpx
t
sq ą

s̄
ÿ

s“1

πsūpxsq for all x P
`

Bt
zBBt

˘

X L. (19)

In other words, a necessary and sufficient condition for SEU-rationalizability is that we can

find real numbers tπsu
s̄
s“1 and tuprqurPX such that πs ą 0 for all s P S,

řs̄
s“1 πs “ 1, and

(17), (18), and (19) are satisfied. This set of conditions form a finite system of bilinear

inequalities. The Tarski-Seidenberg Theorem tells us that such systems are decidable.

3.3 Testing for rank dependent expected utility (RDEU)

We now return to a setting where there is an objective probability πs ą 0 attached to

state s that is known to both the agent and the observer. We would like to test whether the

agent’s behavior is consistent with maximizing a rank dependent expected utility (RDEU)

function. Given a vector x, we can rank the entries of x from the smallest to the largest, with

ties broken by the rank of the state. We denote by rpx, sq, the rank of xs in x. For example,

if there are five states and x “ p1, 4, 4, 3, 5q, we have rpx, 1q “ 1, rpx, 2q “ 3, rpx, 3q “ 4,

rpx, 4q “ 2, and rpx, 5q “ 5. A rank dependent expected utility function gives to the bundle

x the utility

V px, πq “
s̄
ÿ

s“1

ρpx, s, πqupxsq (20)

where u : R` Ñ R is an increasing and continuous function,

ρpx, s, πq “ g
´

ř

ts1:rpx,s1qďrpx,squ πs1
¯

´ g
´

ř

ts1:rpx,s1qărpx,squ πs1
¯

, (21)

and g : r0, 1s Ñ R is an increasing and continuous function. (If ts1 : rpx, s1q ă rpx, squ is

empty, we let g
´

ř

ts1:rpx,s1qărpx,squ πs1
¯

“ gp0q.) If g is the identity function (or, more generally

when g is affine), we simply recover the expected utility model. When it is nonlinear, the

function g distorts the cumulative distribution of the lottery x, so that an agent maximizing

RDEU can behave as though the probability he attaches to a state depends on the relative

attractiveness of the outcome in that state. Since u is increasing, ρpx, s, πq “ ρpupxq, s, πq.

It follows that we can write V px, πq “ φpupxq, πq, where for any vector u “ pu1, u2, ..., uSq,

φpu, πq “
s̄
ÿ

s“1

ρpu, s, πqus. (22)

The function φ is a continuous and strictly increasing in u.

12



Suppose we wish to check whether O “ tpxt, BtquTt“1 is RDEU-rationalizable with proba-

bility weights tπtuTt“1. (Recall that πt P Rs̄
`` gives the objective probability weights attached

to each state at observation t.) RDEU-rationalizability holds if and only if there are increas-

ing functions g : r0, s Ñ R and u : R` Ñ R such that, for each t P T , V pxt, πtq ě V px, πtq

for all x P Bt, where V is given by (20). To develop a necessary and sufficient test for this

property, we first define the set

Γ “
!

γ : there is s P S, t P T , and x P L such that γ “
ř

ts1:rpx,s1qďrpx,squ π
t
s1

)

Y t0u.

Note that the set Γ is a finite subset of r0, 1s and includes both 0 and 1. We may denote the

elements of Γ by γj, where γj´1 ă γj, with γ0 “ 0 and γm̄ “ 1 (so Γ has m̄` 1 elements).

If O is RDEU-rationalizable, there must be increasing functions ḡ : Γ Ñ R and ū : X Ñ R

such that
s̄
ÿ

s“1

ρ̄pxt, s, πtqūpxtsq ě
s̄
ÿ

s“1

ρ̄px, s, πtqupxsq for all x P Bt
X L and (23)

s̄
ÿ

s“1

ρ̄pxt, s, πtqūpxtsq ą
s̄
ÿ

s“1

ρ̄px, s, πtqūpxsq for all x P
`

Bt
zBBt

˘

X L, (24)

where

ρ̄px, s, πq “ ḡ
´

ř

ts1:rpx,s1qďrpx,squ πs1
¯

´ ḡ
´

ř

ts1:rpx,s1qărpx,squ πs1
¯

. (25)

This is clear since we can simply take ḡ and ū to be the restriction of g and u respectively.

Conversely, suppose there are increasing functions ḡ : Γ Ñ R and ū : X Ñ R such that (23),

(24), and (25) are satisfied, and let g : r0, 1s Ñ R be any continuous and increasing extension

of ḡ. Defining φpu, πq by (22), the properties (23) and (24) may be re-written as

φpupxtq, πtq ě φpupxq, πtq for all x P Bt
X L and

φpupxtq, πtq ą φpupxq, πtq for all x P
`

Bt
zBBt

˘

X L.

By Theorem 1, these properties guarantee that there exists u : R` Ñ R that extends ū such

that the data set O can be rationalized by V px, πq “ φpupxq, πq.

To recap, we have shown that O “ tpxt, BtquTt“1 is RDEU-rationalizable with probability

weights tπtuTt“1 if and only if there exist real numbers tḡpγquγPΓ and tūprqurPX that satisfy

ḡpγj´1
q ă ḡpγjq for j “ 1, 2, ..., m̄, (26)

13



(17), (23), (24), and (25). As in the test for SEU-rationalizability, this test involves finding

a solution to a finite set of bilinear inequalities (with unknowns tūprqurPX and tḡpγquγPΓ).

Notice also that it is straightforward to modify the test to include restrictions on the

shape of g. For example, we may wish to test that O is RDEU-rationalizable with a convex

function g. Then we need to specify that ḡ obeys

ḡpγjq ´ ḡpγj´1q

γj ´ γj´1
ď
ḡpγj`1q ´ ḡpγjq

γj`1 ´ γj
for j “ 1, ..., m̄´ 1. (27)

It is clear that this condition is necessary for the convexity of g. It is also sufficient for

the extension of ḡ to a convex and increasing function g : r0, 1s Ñ R. Thus O is RDEU-

rationalizable with probability weights tπtuTt“1 and a convex function g if and only if there

exist real numbers tḡpγquγPΓ and tūprqurPX that satisfy (17), (23), (24), (25), (26), and (27).

We now turn to special case which is relevant to our application of this test in Section 4.

Suppose there are two equiprobable states of the world. Then Γ “ t0, 1{2, 1u. For a bundle

px1, x2q, the weight attached to the state with the higher outcome is ρ̄
˚˚
“ ḡp1q´ ḡp1{2q and

the weight attached to the lower outcome is ρ̄
˚
“ ḡp1{2q ´ ḡp0q. With no loss of generality,

we may assume that ḡp0q “ 0 and ḡp1q “ 1, so then ρ̄
˚
“ ḡp1{2q and ρ̄

˚˚
“ 1 ´ ḡp1{2q. In

short, for a bundle px1, x2q P L

φ ppūpx1q, ūpx2qq, p1{2, 1{2qq “ ρ̄
˚
ūpx1q ` p1´ ρ̄˚qūpx2q if x1 ď x2 and (28)

φ ppūpx1q, ūpx2qq, p1{2, 1{2qq “ ρ̄
˚
ūpx2q ` p1´ ρ̄˚qūpx1q if x2 ą x1. (29)

In this case, a data set is RDEU-rationalizable if and only if we can find ρ̄
˚
P p0, 1q and

tūprqurPX such that (23) and (24) are satisfied. Note that this test is clearly more permissive

than the test for objective expected utility; in the latter, we effectively require ρ̄
˚
“ 1{2

rather than allowing it to take some other value.

3.4 Testing for maxmin expected utility (MEU)

We now consider a setting where no objective probabilities could be attached to each

state. An agent with maxmin expected utility behaves as though he evaluates each bundle

x P Rs̄
` using the formula

V pxq “ min
πPΠ

#

s̄
ÿ

s“1

πsupxsq

+

(30)
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where u : R` Ñ R is increasing and continuous and Π is a nonempty, closed, and convex

set of probability weights. For our purpose, we shall make two more assumptions about Π.

First, we assume that πs is uniformly bounded away from zero in Π. Second, we assume

that Π is the solution to a finite set of linear inequalities, i.e., there are vectors an P R
S and

scalars cn (for n “ 1, 2, ...N) such that

Π “
N
č

n“1

tπ P 4 : an ¨ π ě cnu , (31)

where 4 “ tπ P Rs̄
` :

řs̄
s“1 πs “ 1u. It is clear that V pxq “ φpupxqq, where φpuq “

minπPΠ
řs̄
s“1 πsus. The function φ is continuous and strictly increasing (the latter because of

our first assumption on Π). We denote by π̃puq the value of π P Π that minimizes
řs̄
s“1 πsus.

Therefore, we can write φpuq “
řs̄
s“1 π̃spuqus.

We wish to develop a test for the hypothesis that the data set O “ tpxt, BtquTt“1 is

rationalizable by a maxmin expected utility function, for a given Π defined by (31). This

means finding u : R` Ñ R such that for each t P T , V pxt, πtq ě V px, πtq for all x P Bt,

where V is given by (30). By Theorem 1, it is necessary and sufficient to find an increasing

function ū : X Ñ R such that (9) and (10) holds. In this context, those conditions take the

following form:

s̄
ÿ

s“1

π̃spūpx
t
qqūpxtsq ě

s̄
ÿ

s“1

π̃spūpxqqūpxsq for all x P Bt
X L and (32)

s̄
ÿ

s“1

π̃spūpx
t
qqūpxtsq ą

s̄
ÿ

s“1

π̃spūpxqqūpxsq for all x P
`

Bt
zBBt

˘

X L. (33)

For each x̂ P L, π̃pūpx̂q minimizes
řs̄
s“1 πsūpx̂sq subject to π P Π. This minimization problem

is linear and so it is necessary and sufficient that π̃pūpx̂q obeys the Kuhn-Tucker conditions.

The conditions require that there are λnpx̂q P R for n “ 0, 1, 2, .., N such that

ūpx̂sq “ λ0px̂q `
N
ÿ

n“1

λnpx̂qans for all s P S, (34)

λnpx̂q ě 0 for all n “ 1, 2, ..., N , (35)

λnpx̂qpan ¨ π̃pūpx̂qq ´ cnq “ 0 for all n “ 1, 2, ..., N , and (36)

s̄
ÿ

s“1

π̃spūpx̂qq “ 1 for all n “ 1, 2, ..., N . (37)
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(Note that λ0 is the Kuhn-Tucker multiplier of the constraint
řs̄
s“1 πs “ 1 and λn is the

Kuhn-Tucker multiplier of the constraint an ¨ π ě cn.) To sum up, the data set O is MEU-

rationalizable with respect to the set of probability weights Π if and only if there are real

numbers tūprqurPX and, for each x̂ P L, tπ̃spūpx̂qqu
s̄
s“1 and tλnpx̂qu

N
n“0, such that (17) and

(32) — (37) are satisfied. Notice that this is again a set of bilinear inequalities.

While this looks like a very complicated test, it simplifies dramatically when there are two

states. In that case, we may assume without loss of generality we may assume that π1 varies

between π˚1 P p0, 1q and π˚˚1 P p0, 1q, with π˚1 ă π˚˚, so that Π “ tpπ1, 1´π1q : π˚1 ě π1 ě π˚˚1 u.

Then it is clear that φpu1, u2q “ π˚1u1`p1´π
˚
1 qu2 if u1 ě u2 and φpu1, u2q “ π˚˚1 u1`p1´π

˚˚
1 qu2

if u1 ă u2. In other words, independently of the choice of ū, we know π̃spūpx̂1q, ūpx̂2qq (for

s “ 1, 2) for every x̂ P L. Thus all that needs to be done is to find tūprqurPX that solve

the linear conditions (17), (32), and (33); a solution exists if and only if the data set is

MEU-rationalizable with respect to Π.

4. Implementation

We implement our tests using data from the portfolio choice experiment in Choi et al.

(2007), which was performed on undergraduate subjects at the University of California,

Berkeley. Each subject was asked to make consumption choices across 50 decision prob-

lems under risk. To be specific, each subject was asked to divide a budget between two

Arrow-Debreu securities, with each security paying one token if the corresponding state was

realized, and zero otherwise. In a symmetric treatment, each state of the world occurred

with probability 1/2, and this was known to the subjects. Income was normalized to one,

and the state prices were chosen at random and differed across subjects.5 Further details on

the experiment and the data can be found in Choi et al. (2007) and the data appendices.

Analysis6

The results are shown in Table 1. The first row of the table shows that across 50 de-

cision problems, 12 out of 47 subjects were obey GARP and were thus rationalizable by a

5 Subjecting different subjects to different choice problems was critical for identification in the econometric

analysis in that paper. This variation in the data across subjects plays no role in our empirical analysis,

which is maximally heterogeneous.
6 Data and programs are available from the authors upon request.
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GARP RDEU EU EU˚

Drop 0 12/47 (26%) 2/47 (4%) 2/47 (4%) 0/47 (0%)

Drop 1 14/47 (30%) 7/47 (15%) 5/47 (11%) 0/47 (0%)

Drop 2 27/47 (57%) 9/47 (19%) 7/47 (15%) 2/47 (4%)

Drop 3 32/47 (68%) 12/47 (26%) 10/47 (21%) 2/47 (4%)

Table 1: Results

continuous and strongly monotone utility function, but none were consistent with expected

utility maximization when concavity of the Bernoulli utility function was imposed (EU˚).7

When concavity is dropped, 2 of the 12 subjects obeying GARP were also rationalizable by

expected utility (EU), and hence, by rank dependent expected utility (RDEU). The tests for

GARP, EU, and EU˚ are computationally straightforward since they involve solving linear

programs. The test for RDEU requires us to solve a set of inequalities that is bilinear in ū

and ρ̄˚ (see the formula for φ in (28) and (29)). To get round this difficulty, we let ρ̄˚ take

different values in p0, 1q that are multiples of 0.01; for each value, we check for a solution to

tūprqurPX in the corresponding linear program. (In other words, we do a grid search for ρ̄˚,

using a grid width of 0.01.)

Since revealed preference tests are exact, it is useful to perform a sensitivity analysis that

allows for some degree of flexibility. To this end, we examined subsets of the data from each

subject. For example, if we exclude a single observation, then there are 50 subsets of the

data from each subject, with each subset containing 49 observations; if one or more of these

50 subsets admits a rationalization, then we record that subject as rationalizable, allowing

for a single exclusion. The results, after excluding up to 3 observations, are displayed in

Table 1.8

Naturally, more subjects became rationalizable as we successively dropped observations.

The pass rates for GARP increased fairly steeply, with nearly 68% of the sample becoming

rationalizable by some preference once we allowed for the exclusion of three observations.

Conditional on passing GARP, what emerges is that roughly one third of the subjects were

7We use the test formulated by Varian (1983) and Green and Srivastava (1986).
8 If we exclude 2 and 3 observations, then there are 1,225 and 19,600 subsets of the data, respectively.
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EU-rationalizable (and hence RDEU-rationalizable), which suggests that there is support for

the EU-maximization hypothesis. The RDEU model provided enough flexibility to rational-

ize a few additional subjects that could not be explained by EU.9 The pass rates remain low

for EU˚, i.e., for expected utility maximization with a concave Bernoulli utility function.
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