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Abstract

Ordinary least squares provides the optimal linear approximation to the true regression function

under misspecification. This paper investigates the Instrumental Variables (IV) version of this prob-

lem. The resulting population parameter is called the Optimal Linear IV Approximation (OLIVA).

This paper shows that a necessary condition for regular identification of the OLIVA is also sufficient

for existence of an IV estimand in a linear IV model. The necessary condition holds for the important

case of a binary endogenous treatment, leading also to a LATE interpretation with positive weights.

The instrument in the IV estimand is unknown and is estimated in a first step. A Two-Step IV

(TSIV) estimator is proposed. We establish the asymptotic normality of a debiased TSIV estimator

based on locally robust moments. The TSIV estimator does not require neither completeness nor

identification of the instrument. As a by-product of our analysis, we robustify the classical Hausman

test for exogeneity against misspecification of the linear model. Monte Carlo simulations suggest

excellent finite sample performance for the proposed inferences.
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1 Introduction

The Ordinary Least Squares (OLS) estimator has an appealing nonparametric interpretation—it pro-

vides the optimal linear approximation (in a mean-square error sense) to the true regression function.

That is, the OLS estimand is a meaningful and easily interpretable parameter even under misspec-

ification of the linear model. Unfortunately, except in special circumstances (such as with random

assignment), this parameter does not have a causal interpretation. Commonly used estimands based

on Instrumental Variables (IV) do have a causal interpretation, but do not share with OLS the ap-

pealing nonparametric interpretation (see Imbens, Angrist and Graddy (2000)). The main goal of our

paper is to fill this gap and propose an IV analog to OLS.

The parameter of interest is thus the vector of slopes in the optimal linear approximation of the

structural regression function. We call this parameter the Optimal Linear IV Approximation (OLIVA).

We first investigate regular identification of the OLIVA, i.e. identification with a finite efficiency bound,

based on the results in Severini and Tripathi (2012). The main contribution of our paper is to show

that the necessary condition for regular identification of the OLIVA is also sufficient for existence of

an IV estimand in a linear IV regression. That is, we show that under a minimal condition for regular

estimation, it is possible to obtain an IV version of OLS.

The identification result is constructive and leads to a two-step estimation strategy. The necessary

condition for regular identification is a conditional moment restriction that is used to estimate a suitable

instrument in a first step. The second step is simply a standard linear IV estimator with the estimated

instrument from the first step. The situation is analogous to optimal IV (see, e.g., Robinson (1976)

and Newey (1990)), but technically more difficult due to the possible lack of identification of the first

step and the first step problem being statistically harder than a nonparametric regression problem. We

overcome these difficulties combining two ingredients: a Penalized Sieve Minimum Distance (PSMD)

first step estimator of the type discussed in Chen and Pouzo (2012) (to address the lack of identification)

and the use of locally robust moments that have zero derivatives with respect to first steps (to obtain

asymptotic normality under weak assumptions). The combination of these two ingredients for obtaining

asymptotic normality appears to be new in the literature, and is of independent interest.

Locally robust moments in a general GMM setting have been discussed in Chernozhukov, Escan-

ciano, Ichimura, Newey and Robins (2018), including linear functionals of structural functions identified

by conditional moment restrictions, such as the OLIVA . These authors provide a general asymptotic

theory based on sample splitting. We complement their theory with an asymptotic theory that does

not require neither sample splitting nor identification of the first steps. The proposed TSIV estimator

has an excellent finite sample performance in simulations, being competitive with the oracle standard

IV under linearity of the structural model, while robustifying it otherwise.

An important by-product of our approach is a Hausman test for exogeneity that is robust to

misspecification of the linear model. This robustness comes from our TSIV being nonparametrically

comparable to OLS under exogeneity. We establish the asymptotic null distribution for the robust

Hausman test. Lochner and Moretti (2015) consider a different exogeneity test comparing the classical

IV estimator with a weighted OLS estimator when the endogenous variable is discrete. In contrast,
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our test compares the standard OLS with our IV estimator, allowing for general endogenous variables

(continuous, discrete or mixed), more in the spirit of the original Hausman (1978)’s exogeneity test.

Monte Carlo simulations confirm the robustness of the proposed Hausman test, and the inability of the

standard Hausman test to control the empirical size under misspecification of the linear model.

Our paper contributes to two different strands of the literature. The first strand is the nonparamet-

ric IV literature; see, e.g., Newey and Powell (2003), Ai and Chen (2003), Hall and Horowitz (2005),

Blundell, Chen and Kristensen (2007), Horowitz (2007), Horowitz (2011), Darolles, Fan, Florens and

Renault (2011) and Santos (2012), among others. Severini and Tripathi (2006, 2012) discuss regular

and irregular identification of linear functionals of the structural function without completeness, and

their results on regular identification are adapted to the OLIVA below. Santos (2011) establishes reg-

ular asymptotic normality for weighted integrals of the structural function in nonparametric IV, also

allowing for lack of nonparametric identification of the structural function. The OLIVA functional was

not discuss in neither Severini and Tripathi (2006, 2012) nor Santos (2011). The implementation and

asymptotic normality proof for the OLIVA based local robustness can be also applied to the functionals

considered in Santos (2011) and to other problems involving linear functionals of structural functions

defined by conditional moment restrictions.

Our paper is also related to the Causal IV literature that interprets IV nonparametrically as a

Local Average Treatment Effect (LATE); see Imbens and Angrist (1994). A forerunner of our paper is

Abadie (2000). He defines the Complier Causal Response Function and its best linear approximation

in the presence of covariates. He also develops two-step inference for the resulting linear approximation

coefficients. Like in much of this literature, the endogenous variable is binary and the instrument is also

binary. In this case, we show that our IV estimator also has a LATE interpretation with non-negative

weights; see Section 2.3.

The main contributions of this paper are thus the interpretation of the regular identification of

the OLIVA as existence of an IV estimand, the asymptotic normality of a TSIV estimator, and the

robust Hausman test. The identification, estimation and exogeneity test of this paper are all robust to

the lack of the identification of the structural function (i.e. lack of completeness) and the instrument.

Importantly, the proposed methods are also robust to misspecification of linear model, sharing the

nonparametric interpretation of OLS, but in a setting with endogenous regressors.

The rest of the paper is organized as follows. Section 2 defines formally the parameter of interest and

its regular identification. Section 3 proposes a PSMD first step and establish the asymptotic normality

of the TSIV. Section 4 derives the asymptotic properties of the robust Hausman test for exogeneity.

The finite sample performance of the TSIV and the robust Hausman test is investigated in Section

5. Appendix A presents notation, assumptions and some preliminary results that are needed for the

main proofs in Appendix B. Appendix C discusses different implementations of first steps. Appendix

D reports tables for simulation results on sensitivity analysis.
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2 Optimal Linear Instrumental Variables Approximations

2.1 Nonparametric Interpretation

Let the dependent variable Y be related to the p−dimensional vector X through the equation

Y = g(X) + ε, (1)

where E[ε|Z] = 0 almost surely (a.s), for a q−dimensional vector of instruments Z.

The OLIVA parameter β solves, for g satisfying (1),

β = arg min
γ∈Rp

E[
(
g(X)− γ′X

)2
], (2)

where henceforth A′ denotes the transpose of A. If E[XX ′] is positive definite, then

β ≡ β(g) = E[XX ′]−1E[Xg(X)]. (3)

When X is exogenous, i.e. E[ε|X] = 0 a.s., the function g(·) is the regression function E[Y |X = ·]
and β is identified and consistently estimated by OLS under mild conditions. In many economic

applications, however, X is endogenous, i.e. E[ε|X] 6= 0, and identification and estimation of (2)

becomes a more difficult issue than in the exogenous case, albeit less difficult than identification and

estimation of the structural function g in (1).

We first investigate regular identification of β in (1)-(2). The terminology of regular identification

is proposed in Khan and Tamer (2010), and refers to identification with a finite efficiency bound.

Regular identification of a parameter is desirable because it means possibility of standard inference

(see Chamberlain (1986)). The necessary condition for regular identification of β is

E[h(Z)|X] = X a.s, (4)

for an squared integrable h(·); see Lemma 2.1, which builds on Severini and Tripathi (2012). We show

that this condition is sufficient for existence of an IV estimand identifying β. That is, we show that β

is identified from a linear IV regression

Y = X ′β + U, E[Uh(Z)] = 0.

The IV estimand uses the unknown, possibly not unique, transformation h(·) of Z as instruments. We

propose below a Two-Step IV (TSIV) estimator that first estimates the instruments from (4) and then

applies IV with the estimated instruments. The proposed IV estimator has the same nonparametric

interpretation as OLS, but under endogeneity.

If the nonparametric structural function g is identified, then β is of course identified. Conditions

for point identification and consistent estimation of g are given in the references on the nonparametric

IV literature cited above. Asymptotic normality for continuous functionals of a point-identified g has

been analyzed in Ai and Chen (2003), Ai and Chen (2007), Carrasco, Florens and Renault (2006),

Carrasco, Florens and Renault (2014), Chen and Pouzo (2015) and Breunig and Johannes (2016), and

we could adapt these results to obtain asymptotic normality for the OLIVA when g is identified.
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Nonparametric identification of g is, however, not necessary for identification of the OLIVA; see also

Severini and Tripathi (2006, 2012). It is indeed desirable to obtain identification of β without requiring

completeness assumptions, which are known to be impossible to test (cf. Canay, Santos and Shaikh

(2013)). In this paper we focus on regular identification of the OLIVA without assuming completeness.

Inference under irregular identification is known to be less stable and non-standard, see Chamberlain

(1986), and it is beyond the scope of this paper.

2.2 Regular Identification

We observe a random vector W = (Y,X,Z) satisfying (1), or equivalently,

r(z) := E[Y |Z = z] = E[g(X)|Z = z] := T ∗g, (5)

where T ∗ denotes the adjoint operator of T . Let G denote the parameter space for g, with g ∈ G ⊆
L2(X). Assume T ∗ : G → L2(Z) and r ∈ L2(Z), where henceforth, for a generic random variable V,

L2(V ) denotes the space of (measurable) square integrable functions of V, i.e. f ∈ L2(V ) if ‖f‖2 :=

E
[
|f(V )|2

]
<∞, and where |A| = trace (A′A)1/2 is the Euclidean norm.1

The next result, which follows from an application of Lemma 4.1 in Severini and Tripathi (2012),

provides a necessary condition for regular identification of the OLIVA. Define g0 := arg ming:r=T ∗g ‖g‖ .
Correct specification of the model guarantees that g0 is uniquely defined; see Engl, Hanke and Neubauer

(1996). Define ξ = Y − g0(X), Ω(z) = E[ξ2
∣∣Z = z], and let SZ denote the support of Z. We consider

the following assumptions.

Assumption 1: The model (1) holds with E[XX ′] finite and positive definite.

Assumption 2: 0 < infz∈SZ Ω(z) ≤ supz∈SZ Ω(z) <∞ and T is compact.

Assumption 3: There exists h(·) ∈ L2(Z) such that (4) holds.

Lemma 2.1 Let Assumptions 1-2 hold. If β is n1/2-regularly estimable, then Assumption 3 holds.

The proof of Lemma 2.1 and other results in the text are gathered in Appendix B. The concept of

n1/2-regular estimation is defined in e.g. Chamberlain (1986). Another way to state Lemma 2.1 is

that Assumption 3 is necessary for the OLIVA to be identified with a finite efficiency bound, i.e. to be

regularly identified. Assumption 3 may hold when completeness fails (see Newey and Powell (2003) for

discussion of completeness). If Z has discrete support, then Assumption 3 can be tested. We expect

that this condition is also testable when Z and X are continuous and the distribution of X given Z

is not complete (see Chen and Santos (2015)). When X is binary, Assumption 3 holds under a mild

condition, as shown below. More generally, for X discrete, (4) becomes a finite system of equations,

which makes the condition more likely to hold, provided the support of Z is large enough relative to

that of X.

1When f is vector-valued, by f(V ) ∈ L2(V ) we mean that its components are all in L2(V ).
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The main observation of this paper is that the necessary condition for n1/2-estimability of β is also

sufficient for existence of an IV estimand. This follows because by the law of iterated expectations,

Assumption 3 and E[ε|Z] = 0 a.s.,

β = E[XX ′]−1E[Xg(X)]

= E[E[h(Z)|X]X ′]−1E[E[h(Z)|X]g(X)]

= E[h(Z)X ′]−1E[h(Z)Y ],

which is the IV estimand using h(Z) as instruments for X. The following Proposition summarizes this

finding and shows that, although there are potentially many solutions to (4), the corresponding β is

unique.

Proposition 2.2 Let Assumptions 1-3 hold. Then, β is identified by the IV with instruments h(Z).

Remark 2.1 By (4), E[h(Z)X ′] = E[XX ′]. Thus, non-singularity of E[h(Z)X ′] follows from that of

E[XX ′]. Thus, the strength of the instruments h(Z) is measured by the level of multicollinearity in X.

2.3 LATE Interpretation

As an important example, consider the case where the endogenous variable X is binary, like an endoge-

nous treatment indicator. In this case Assumption 3 is satisfied under a mild condition. Furthermore,

a unique minimum norm solution to (4) can be easily characterized (see the proof of Proposition 2.3).

Such minimum norm solutions will also play an important role in our implementation of the continuous

case as well.

Proposition 2.3 If X is binary, and the propensity score p(Z) = E[X|Z] is not constant, with

0 < E[p(Z)] < 1, then Assumption 3 holds. Moreover, there exists a unique solution of (4) of the form

h0(Z) = α+ γp(Z), and this h0 is the unique minimum norm solution among all solutions of (4).

The last part of Proposition 2.3 is particularly important, as it implies that Condition 3 in Imbens

and Angrist (1994) holds. This condition states that (i) for all z1, z2 in the support of Z, it follows

that p(z1) ≤ p(z2) implies either h0(z1) ≤ h0(z1) or h0(z1) ≥ h0(z1); and (ii) Cov(X,h0(Z)) 6= 0.

Both conditions are satisfied by h0 in Proposition 2.3 (note Cov(X,h0(Z)) = V ar(X) > 0). Hence,

when other standard assumptions in Imbens and Angrist (1994) are satisfied (Conditions 1 and 2),

their Theorem 2 implies that our IV estimator has a LATE interpretation as a weighted average of

local average treatment effects with nonnegative weights. More generally, for continuous endogenous

variables and continuous instruments our estimator, being an IV estimator, has a LATE interpretation

as described in Imbens, Angrist and Graddy (2000).

3 Two-Step Instrumental Variables Estimation

Proposition 2.2 suggests a TSIV estimation method where, first, an h is estimated from (4) and then,

an IV estimator is considered using the estimated h as instrument. To describe the estimator, let
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{Yi, Xi, Zi}ni=1 be an independent and identically distributed (iid) sample of size n satisfying (1). The

TSIV estimator follows the steps:

Step 1. Estimate a function h satisfying E[h(Z)|X] = X a.s., say ĥn, as defined in (9) below.

Step 2. Run linear IV using instruments ĥn(Z) for X in Y = X ′β + U, i.e.

β̂ =

(
1

n

n∑
i=1

ĥn(Zi)X
′
i

)−1(
1

n

n∑
i=1

ĥn(Zi)Yi

)
, (6)

where ĥn is the first-step estimator given in Step 1.

For ease of exposition, we consider first the case where X and Z have no overlapping components

and are continuous. We also analyze below the case of overlapping components and discrete variables.

3.1 First-Step Estimation

To deal with the problem of lack of uniqueness of h, we consider a Tikhonov-type estimator. This

approach is commonly used in the inverse problem literature, and is also popular in econometrics, see

Hall and Horowitz (2005), Carrasco, Florens and Renault (2006), Florens, Johannes and Van Bellegem

(2011), Chen and Pouzo (2012) and Gagliardini and Scaillet (2012), among others. Chen and Pouzo

(2012) propose a PSMD estimator of g and show the L2−consistency of a solution identified via a

strict convex penalty. These authors also obtain rates in Banach norms under point identification. Our

first-step estimator ĥn is a PSMD estimator of the form considered in Chen and Pouzo (2012) when

identification is achieved with an L2-penalty. Their results are used below to establish consistency of

our TSIV, but they are not applicable to establish asymptotic normality, for which rates are required,

due to the possible lack of identification of h.

Defining m(X;h) := E[h(Z)−X|X], we estimate the unique h0 satisfying h0 = limλ↓0 h0(λ), where

h0(λ) = arg min{||m(·;h)||2 + λ||h||2 : h ∈ L2(Z)},

and λ > 0. Assumption 3 guarantees the existence and uniqueness of h0. The function h0 is the

minimum norm solution of (4), as in Proposition 2.3. For the case where X is continuous, we propose

to estimate h0 by a PSMD estimator.

Let En[g(W )] denote the sample mean operator, i.e. En[g(W )] = n−1
∑n

i g(Wi), let ||g||n =(
En[|g(W )|2]

)1/2
be the empirical L2 norm, and let Ê[h(Z)|X] be a series-based estimator for the

conditional mean E[h(Z)|X], which is given as follows. Consider a vector of approximating functions

pKn(x) = (p1(x), ..., pKn(x))′,

having the property that a linear combination can approximate E[h(Z)|X = x]. Then,

Ê[h(Z)|X = x] = pKn
′
(x)(P ′P )−1

n∑
i=1

pKn(Xi)h(Zi),
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where P = [pKn(X1), ..., pKn(Xn)]′ and Kn →∞ as n→∞.

Let H ⊂ L2(Z) denote the parameter space for h. Then, define the estimator

ĥn := arg min{||m̂(X;h)||2n + λn||h||2n : h ∈ Hn}, (7)

where Hn ⊂ H ⊆ L2(Z) is a linear sieve parameter space whose complexity grows with sample size,

m̂(Xi;h) = Ê(h(Z) − X|Xi), and λn is a sequence of positive numbers satisfying that λn ↓ 0 as

n ↑ ∞, and some further conditions given in the Appendix A. In our implementation Hn is the finite

dimensional linear sieve given by

Hn =

h : h =

Jn∑
j=1

ajqj(·)

 (8)

where qJn(z) = (q1(z), ..., qJn(z))′ is a vector containing a linear sieve basis, with Jn →∞ as n→∞.

The proposed TSIV estimator uses ĥn in (7) with Hn as in (8), and has a simple closed-form

expression given as follows. Define q̂(X) = Ê[qJ(Z)
∣∣X], Dn = En[q̂(X)X ′], Q2n = En[qJ(Z)qJ(Z)′],

and

Aλn = En[q̂(X)q̂(X)′] + λnQ2n.

Then, the closed form solution to (7) is given by

ĥn(·) = D′nA
−1
λn
qJ(·). (9)

An alternative minimum norm approach requires choosing two sequences of positive numbers an and

bn and solving the program

h̃n := arg min{||h||2n : h ∈ Hn, ||m̂(X;h)||2n ≤ bn/an}.

This is the approach used in Santos (2011) for his two-step setting. Appendix C shows the equivalence

between Tikhonov-type estimators and minimum norm-type estimators, in the sense that there exists

λn such that ĥn = h̃n, and more importantly, we provide bounds for such λn in terms of bn/an.

This result is of independent interest. We prefer our implementation, since we only need one tunning

parameter rather than two, and data driven methods to choose this parameter are available; see Section

3.3. We could combine this equivalence result with the uniform consistency result in Santos (2011) to

show consistency of β̂, but this would require compactness of the parameter space H with respect the

supremum norm. Alternatively, the general L2−consistency result for ĥn in Chen and Pouzo (2012)

can be used to establish the consistency of our TSIV estimator under more general conditions on the

parameter space, as the following result shows.

Proposition 3.1 Let Assumptions 1-3 and A1-A3 in Appendix A hold. Then, β̂ is consistent for β.
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3.2 Second-Step Estimation and Inference

The moments that define the IV estimand are

E[(Y −X ′β)h0(Z)] = 0.

These moments are not locally robust in the sense of Chernozhukov, Escanciano, Ichimura, Newey and

Robins (2018), meaning that the derivative of the moments with respect to h0 is in general not zero,

and hence the first step will have an impact in the asymptotic distribution of the TSIV. Chernozhukov,

Escanciano, Ichimura, Newey and Robins (2018) derive locally robust moments for linear functionals

of structural functions defined by conditional moment restrictions, which include the OLIVA as special

case. The locally robust moments are given by

m(W,β, h, g) = (Y −X ′β)h(Z)− (g(X)−X ′β)(h(Z)−X).

These moments are also doubly robust in the sense of Scharfstein, Rotnitzky and Robins (1999) and

Robins, Rotnitzky and van der Laan (2000). However, the double robustness here holds even when

first-steps are not identified, since for any h̄ satisfying E[ h̄(Z)
∣∣X] = X a.s. and any ḡ satisfying

E[Y − ḡ(X)|Z] = 0 a.s., and for all h and g,

E[m(W,β, h, ḡ)] = 0 and E[m(W,β, h̄, g)] = 0. (10)

That is, the moments continue to hold if one first step component is in the identified set and the

identified set is not singleton. Estimators based on doubly robust moments have several advantages

in terms of bias and mean squared error finite-sample performance, as illustrated in the context of

treatment effects by Bang and Robins (2005) and Firpo and Rothe (2016).

Doubly robust moments can be also used to derive parametric inference for β that is robust to

misspecification of g or h. That is, if gθ and hδ are parametric specifications of g and h, respectively,

we only need either gθ or hδ to be correctly specified for consistent estimation of β with the doubly

robust moments. For example, if Y and X are binary we could specify gθ and the propensity score as

parametric Probit models, and estimate β as the solution of the doubly robust moments with plugged in

parametric estimates of gθ and hδ(z) = α+ γpη(z), δ = (α, γ, η′)′. More generally, we can use standard

GMM inference for any parametric estimates based on doubly robust moments. Since parametric

inference is standard, we leave the details to the reader, and rather focus on the more complicated

semiparametric case.

In the semiparametric two-step setting the locally robust or doubly robust moment leads to

β = E[h(Z)X ′]−1E[h(Z)Y ]− E[h(Z)X ′]−1E[(g(X)−X ′β)(h(Z)−X)]

≡ βIV − b,

which suggests the debiased TSIV estimator

β̃ = β̂ − b̂,

9



where b̂ = En[ĥn(Zi)X
′
i]
−1En[(ĝn(Xi)−X ′β̂)(ĥn(Zi)−Xi)] and ĝn(·) denotes a PSMD estimator of g0

given by

ĝn(·) = G′nB
−1
λn
pK(·), (11)

with Gn = En[p̂(Z)Y ], p̂(Z) = Ê[pK(X)
∣∣Z], Ê[g(X)|Z = z] = qJn

′
(z)(Q′Q)−1

∑n
i=1 q

Jn(Zi)g(Xi),

Q = [qJn(Z1), ..., qJn(Zn)]′, P2n = En[pK(X)pK(X)′], and Bλn = En[p̂(Z)p̂(Z)′] + λnP2n. For ease of

presentation, we use the same penalization parameter λn for ĥn and ĝn, although it is possible to use

two different parameters in the theory. Similarly, although we do not make it explicit in the notation,

we will use different tuning parameters Kn and Jn for estimating ĥn or ĝn, see Section 3.3 for issues of

implementation.

The following result establishes the asymptotic normality of β̃. Its proof relies on new L2−rates of

convergence for ĥn and ĝn under partial identification of h and g. Santos (2011) obtained related rates

but for a weak norm, which are not enough for our asymptotic normality. Although we focus on PSMD,

the asymptotic normality proof applies to any first step estimators satisfying
∥∥∥ĥn − h0

∥∥∥ = oP (n−1/4)

and ‖ĝn − g0‖ = oP (n−1/4) under some entropy conditions for the parameter spaces. This genericity of

the proof holds true by virtue of the double robustness of moments. These conditions can be further

weakened to a simple rate condition (without entropy conditions) by means of sample splitting, as

shown in Chernozhukov, Escanciano, Ichimura, Newey and Robins (2018).

Theorem 3.2 Let Assumptions 1-3 above and Assumptions A1-A5 in the Appendix A hold. Then,

√
n(β̃ − β) −→d N(0, V ),

where V = E[XX ′]−1E[ss′]E[XX ′]−1 and s = h0(Z)U−g0(X) (h0(Z)−X). Furthermore, a consistent

estimator for V is given by

V̂ = En[XiX
′
i]
−1En[ŝniŝ

′
ni]En[XiX

′
i]
−1, (12)

where

ŝni = ĥn(Zi)Û − ĝn(Xi)(ĥn(Zi)−Xi)

and Û = Y −X ′β̃.

Remark 3.1 When h is identified, and λn is set to zero, the TSIV becomes asymptotically first order

equivalent to β̃, and hence asymptotically doubly robust. This follows from Escanciano and Song (2010),

whose results imply that under these conditions
√
nb̂ = oP (1) (note g need not be identified).

Theorem 3.2 can be then used to construct confidence regions for β and testing hypotheses about

β following standard procedures.

3.3 Implementation

For implementation one has to choose the basis {pKn(X), qJn(Z)} and the tuning parameters {Kn, Jn, λn}.
The theory for estimating h0 requires that Kn ≥ Jn (for Aλn to be invertible). In the simulations we
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study rules of the form Kn = cJn for several values of c such as 2 or 3. In practice, we recommend

choosing first Jn, then set Kn = 2Jn and choose λn by Generalized Cross-validation (cf. Wahba (1990)),

λn = arg minλ>0GCVn(λ), as follows. Note that

β̂ =
(
D′nA

−1
λn
Q′X

)−1
D′nA

−1
λn
Q′Y, (13)

where X = [X1, ..., Xn]′ and Y = [Y1, ..., Yn]′. Similarly, define Lλ = X
(
D′nA

−1
λ Q′X

)−1
D′nA

−1
λ Q′,

Ŷλ = LλY = (Ŷλ1, ..., Ŷλn)′ and vλ = tr(Lλ). Then, the Generalized Cross-validation criteria for

estimating β̂ is

GCVn(λ) =
1

n

n∑
i=1

(
Yi − Ŷλi

1− (vλ/n)

)2

.

We then propose the following algorithm for implementation:

Step 1. Choose {pKn(X), qJn(Z)} (e.g. B-splines or power series). Set Jn to small value (e.g. 4), set

Kn = 2Jn and compute λn = arg minλ>0GCVn(λ). Compute ĥn following (9).

Step 2. Switch the values of Jn and Kn (so now Jn = 2Kn) and compute ĝn as in (11).

Step 3. Compute β̂ as in (13) and b̂ = En[ĥn(Zi)X
′
i]
−1En[(ĝn(·)− β̂′Xi)(ĥn(Zi)−Xi)].

Step 4. Compute β̃ = β̂ − b̂ and V̂ = En[ĥn(Zi)X
′
i]
−1En[ŝniŝ

′
ni]En[Xiĥn(Zi)

′]−1.

In practice, we recommend to carry out sensitivity analysis with respect to {Kn, Jn, λn} in the

implementation above. Extensive simulations in Appendix D show that our methods are not sensitive

to the tuning parameters {Kn, Jn, λn}.2

3.4 Overlapping components and Discrete Variables

Suppose now that there are exogenous variables included in the structural equation g. This means

X and Z have common components. Specifically, define X = (X1, X2) and Z = (Z1, Z2) where

X1 = Z1 denote the overlapping components of X and Z, with dimension p1 = q1. This is a very

common situation in applications, where exogenous controls are often used. In this setting a solution

of E[h(Z)|X] = X a.s. has the form h(Z) = (Z ′1, h
′
2(Z))′, where

E[h2(Z)|X] = X2 a.s.

Following the arguments above, we obtain an estimator given by ĥn = (Z ′1, ĥ
′
2n)′, where

ĥ2n(·) = D′2nA
−1
λn
qJ(·), (14)

and D2n := En[q̂(X)X ′2]. This setting also covers the case of an intercept with no other common

components, where X1 = Z1 = 1 and q1 = 1. The asymptotic normality for β̃ continues to hold, with

no changes in the asymptotic distribution, due to the fact that the theory is the same with estimated

h than for known h (thanks to the double robustness).

2Matlab and R code to implement our TSIV is available at the first author’s website.
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When Z is discrete, the theory above is applicable but we do not need Jn diverging to infinity. In

that case, the linear sieve Hn is saturated and qJ(Z) could be a saturated basis for it. For example, if

Z takes J discrete values, {z1, ..., zJ}, we can take qj(z) = 1(z = zj). Similarly, if X is discrete we do

not need Kn → ∞, and we can choose pK as a saturated basis. For example, if X = (1, X2) with X2

binary (a treatment indicator), we can take Kn = 2, p1(x) = 1, p2(x) = x2, h(z) = α + γp(z), where

the propensity score (and then α, γ) can be estimated by sieves, and g0(z) = β0 + β1x2 ≡ β′x. The

formulas for the asymptotic variance of β̃ are the same for discrete or continuous variables.

4 A Robust Hausman Test

Applied researchers are concerned about the presence of endogeneity, and have traditionally used tools

such as the Hausman (1978)’s exogeneity test for its measurement. This test, however, is uninformative

under misspecification; see Lochner and Moretti (2015). The reason for this lack of robustness is that in

these cases OLS and IV estimate different objects under exogeneity, with the estimand of IV depending

on the instrument itself. As an important by-product of our analysis, we robustify the classic Hausman

test of exogeneity against nonparametric misspecification of the linear regression model.

The classical Hausman test of exogeneity (cf. Hausman (1978)) compares OLS with IV. If we use

the TSIV as the IV estimator, we obtain a robust version of the classical Hausman test, robust to the

misspecification of the linear model. For implementation purposes it is convenient to use a regression-

based test (see Wooldridge (2015), pg. 481). We illustrate the idea in the case of one potentially

endogenous variable X2 and several exogenous variables X1, with X1 including an intercept.

In the model

Y = β′1X1 + β2X2 + U, E[Uh(Z)] = 0,

the variable X2 is exogenous if Cov(X2, U) = 0. If we write the first-stage as

X2 = α′1X1 + α2h2(Z) + V,

then exogeneity of X2 is equivalent to Cov(V,U) = 0. This in turn is equivalent to ρ = 0 in the least

squares regression

U = ρV + ξ.

A simple way to run a test for ρ = 0 is to consider the augmented regression

Y = β′X + ρV + ξ,

estimated by OLS and use a standard t− test for ρ = 0.

Since V is unobservable, we first need to obtain residuals from a regression of the endogenous

variable X2 on X1 and ĥ2n(Z), say V̂ . Then, run the regression of Y on X and V̂ . The new Hausman

test is a standard two-sided t-test for the coefficient of V̂ , or its Wald version in the multivariate

endogenous case. Denote the t-test statistic by tn. The benefit of this regression approach is that under

some regularity conditions given in Appendix A no correction is necessary in the OLS standard errors

because V̂ is estimated. Denote S = (X,V )′.
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Assumption 4: The matrix E[SS′] is finite and non-singular.

Theorem 4.1 Let Assumptions 1-4 above and Assumptions A1-A6 in the Appendix A hold. Then,

under the the null of exogeneity of X2,

tn −→d N(0, 1).

5 Monte Carlo

This section studies the finite sample performance of the proposed methods. Consider the following

Data Generating Process (DGP):
Y =

∑p
j=1Hj(X) + ε,

Z = m(D),

ε = ρεV + ζ,

(
X

D

)
∼ N

((
0

0

)
,

(
1 γ

γ 1

))
,

where Hj(x) is the j − th Hermite polynomial, with the first four given by H0(x) = 1, H1(x) = x,

H2(x) = x2− 1 and H3(x) = x3− 3x; V = X −E[X|Z], ζ is a standard normal, drawn independently

of X and D, and m is a monotone function given below. The DGP is indexed by p and the function

m. To generate V note

E[X|Z] = E[E[X|D]|Z] = γE[D|Z] = γm−1(Z),

wherem−1 is the inverse ofm. Thus, by construction Z is exogenous, E[ε|Z] = 0, whileX is endogenous

because E[ε|X] = ρX, with ρ = ρε(1− γ2).

The structural function g is given by

g(x) =

p∑
j=1

Hj(X),

and is therefore linear for p = 1, but nonlinear for p > 1. It follows from the orthogonality of Hermite

polynomials that the true value for OLIVA is β = 1.

Note also that the OLIVA is regularly identified, because h(Z) = m−1(Z)/γ solves

E[h(Z)|X] = X.

We consider three different DGPs, corresponding to different values of p and functional forms for m:

DGP1: p = 1 and m(D) = D (linear; m−1(Z) = Z);

DGP2: p = 2 and m(D) = D3 (nonlinear; m−1(Z) = Z1/3);

DGP3: p = 3 and m(D) = exp(D)/(1 + exp(D)) (nonlinear; m−1(Z) = log(Z)− log(1− Z));
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Several values for the parameters (γ, ρ) will be considered: γ ∈ {0.4, 0.8} and ρ ∈ {0, 0.3, 0.9}. We

will compare the TSIV with OLS and standard IV (using instrument Z). For DGP1, h(Z) = γ−1Z

and hence the standard IV estimator with instrument Z is a consistent estimator for the OLIVA. The

standard IV then can be seen as an oracle (infeasible version of our TSIV) under DGP1, where h is

known rather than estimated. This allows us to see the effect of estimating h0 on inferences. For DGP2

and DGP3, IV is expected not to be consistent for the OLIVA. The number of Monte Carlo replications

is 5000. The sample sizes considered are n = 100, 500 and 1000.

Tables 1-3 report the Bias and MSE for OLS, IV and the TSIV for DGP1-DGP3, respectively.

Our estimator is implemented with B-splines, following the GCV described in (3.3) with Jn = 6 and

Kn = 2Jn. Remarkably, for DGP1 in Table 1 our TSIV implemented with GCV performs comparably

or even better than IV (which does not estimate h and uses the true h). Thus, our estimator seems

to have an oracle property, performing as well as the method that uses the correct specification of the

model. As expected, OLS is best under exogeneity, but it leads to large biases under endogeneity. For

the nonlinear models DGP2 and DGP3, IV deteriorates because the linear model is misspecified. Our

TSIV performs well, with a MSE that converges to zero as n increases. The level of endogeneity does

not seem to have a strong impact on the performance of the TSIV estimator.

Table 1: Bias and MSE for DGP 1.

ρ γ n BIAS OLS BIAS IV BIAS TSIV MSE OLS MSE IV MSE TSIV

0.0 0.4 100 -0.0021 -0.0019 0.0010 0.0109 0.0829 0.0554

500 0.0017 0.0025 0.0020 0.0021 0.0127 0.0105

1000 -0.0001 0.0018 0.0020 0.0010 0.0067 0.0054

0.8 100 -0.0030 -0.0040 -0.0040 0.0102 0.0163 0.0159

500 0.0001 -0.0004 -0.0004 0.0019 0.0030 0.0030

1000 0.0019 0.0025 0.0026 0.0010 0.0016 0.0016

0.3 0.4 100 0.2950 -0.0101 0.0841 0.0968 0.0908 0.0729

500 0.2993 0.0026 0.0347 0.0915 0.0145 0.0168

1000 0.3006 -0.0003 0.0189 0.0914 0.0071 0.0080

0.8 100 0.2956 -0.0107 0.0061 0.0987 0.0207 0.0216

500 0.2991 0.0009 0.0038 0.0918 0.0039 0.0039

1000 0.2987 -0.0023 -0.0012 0.0904 0.0019 0.0019

0.9 0.4 100 0.8993 -0.0827 0.1753 0.8213 0.1990 0.1569

500 0.9028 -0.0145 0.0421 0.8173 0.0295 0.0296

1000 0.8998 -0.0066 0.0231 0.8108 0.0130 0.0140

0.8 100 0.8965 -0.0186 0.0287 0.8270 0.0573 0.0571

500 0.8980 -0.0036 0.0030 0.8114 0.0108 0.0109

1000 0.8993 0.0031 0.0058 0.8111 0.0049 0.0050
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Table 2: Bias and MSE for DGP 2.

ρ γ n BIAS OLS BIAS IV BIAS TSIV MSE OLS MSE IV MSE TSIV

0.0 0.4 100 0.0131 -0.0030 -0.0037 0.1009 0.6321 0.2226

500 0.0083 0.0216 0.0126 0.0213 0.1319 0.0479

1000 0.0021 0.0005 0.0034 0.0115 0.0764 0.0228

0.8 100 -0.0012 0.0001 -0.0001 0.0990 0.4559 0.1286

500 0.0015 0.0056 0.0032 0.0211 0.1261 0.0275

1000 0.0019 0.0084 0.0030 0.0113 0.0689 0.0154

0.3 0.4 100 0.2932 -0.0472 0.0605 0.1859 0.6167 0.2342

500 0.2874 -0.0325 0.0302 0.1023 0.1417 0.0594

1000 0.3008 -0.0135 0.0402 0.1013 0.0778 0.0331

0.8 100 0.3064 0.0083 0.0318 0.1987 0.4554 0.1400

500 0.3020 0.0078 0.0208 0.1114 0.1226 0.0289

1000 0.3046 0.0076 0.0248 0.1040 0.0647 0.0168

0.9 0.4 100 0.9053 -0.1359 0.2155 0.9270 1.0165 0.3615

500 0.8968 -0.0093 0.0794 0.8260 0.1619 0.0914

1000 0.8974 -0.0122 0.0493 0.8159 0.0817 0.0449

0.8 100 0.9095 -0.0117 0.0491 0.9425 0.5482 0.1921

500 0.8969 -0.0013 0.0226 0.8290 0.1405 0.0435

1000 0.8981 -0.0021 0.0271 0.8185 0.0753 0.0220

Table 3: Bias and MSE for DGP 3.

ρ γ n BIAS OLS BIAS IV BIAS TSIV MSE OLS MSE IV MSE TSIV

0.0 0.4 100 -0.0570 -1.5268 -0.0717 0.5023 381.7332 0.6817

500 -0.0021 -0.5039 -0.0346 0.1000 155.9296 0.1326

1000 -0.0014 -0.0365 -0.0378 0.0550 0.6179 0.0681

0.8 100 -0.0418 -0.4112 -0.1106 0.4795 2.6703 0.4935

500 -0.0096 -0.2270 -0.0411 0.1072 0.4192 0.1084

1000 -0.0113 -0.2150 -0.0330 0.0527 0.2452 0.0543

0.3 0.4 100 0.2899 -5.4825 0.0227 0.6475 28179.2626 0.8182

500 0.2882 -0.1335 0.0060 0.1878 1.5707 0.1571

1000 0.2887 -0.0822 0.0199 0.1351 0.6518 0.0926

0.8 100 0.2693 -0.3815 -0.0857 0.5906 11.1463 0.5498

500 0.3062 -0.1985 -0.0249 0.2061 0.4885 0.1221

1000 0.2951 -0.2166 -0.0246 0.1395 0.2512 0.0570

0.9 0.4 100 0.8470 1.4445 0.1675 1.1993 1772.3946 0.8970

500 0.8888 -0.3336 0.0449 0.9098 4.8599 0.2103

1000 0.8914 -0.1313 0.0158 0.8473 0.8558 0.0982

0.8 100 0.8341 -0.5724 -0.0917 1.1833 4.3735 0.6045

500 0.8749 -0.2933 -0.0566 0.8668 0.6084 0.1301

1000 0.8863 -0.2466 -0.0401 0.8380 0.2861 0.0681

Unreported simulations with other DGPs confirm the overall good performance of the proposed

TSIV under different scenarios, including cases where h and g are not identified. The sensitivity of the

estimator to different choices of tuning parameters, Jn, Kn and λ is presented in Tables 6-8. In each
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cell, the top element is for n = 100 and the bottom element is for n = 1000. From these results, we see

that the TSIV estimator is not sensitive to the choice of these parameters, within the wide ranges for

which we have experimented. This is consistent with the regular identification, which means that the

estimator should be robust to local perturbations of the tuning parameters.

We now turn to the Hausman test. Practitioners often use the Hausman test to empirically evaluate

the presence of endogeneity. As mentioned above, the standard Hausman test is not robust to misspefi-

cation of the linear model, because in that case OLS and IV estimate different parameters (Lochner

and Moretti (2015)). We confirm this by simulating data from DGP1-DGP3 and reporting rejection

frequencies for the standard Hausman test for γ ∈ {0.4, 0.8} under the null hypothesis of ρ = 0. Table

4 contains the results. For DGP1, the rejection frequencies are close to the nominal level of 5% across

the different sample sizes, confirming the validity of the test under correct specification. However, for

DGP2 and DGP3 we observe large size distortions, as large as 82.2%. This shows that the standard

Hausman test is unreliable under misspecification of the linear model.

Table 4: Empirical Size of standard Hausman Test.

γ n DGP1 DGP2 DGP3

0.4 100 0.070 0.109 0.046

500 0.046 0.064 0.053

1000 0.064 0.072 0.059

0.8 100 0.067 0.223 0.094

500 0.065 0.134 0.524

1000 0.060 0.105 0.872

Table 5: Empirical Size and Power of robust Hausman Test.

ρ γ n DGP1 DGP2 DGP3

0.0 0.4 100 0.055 0.037 0.013

500 0.035 0.018 0.008

1000 0.038 0.007 0.016

0.8 100 0.059 0.015 0.013

500 0.050 0.004 0.003

1000 0.052 0.003 0.002

0.3 0.4 100 0.176 0.062 0.041

500 0.649 0.153 0.107

1000 0.915 0.290 0.222

0.8 100 0.929 0.324 0.519

500 1.000 0.710 0.993

1000 1.000 0.793 1.000

0.9 0.4 100 0.785 0.336 0.249

500 0.999 0.877 0.825

1000 0.999 0.974 0.985

0.8 100 0.993 0.923 0.991

500 1.000 0.934 1.000

1000 1.000 0.919 1.000
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Table 5 reports rejection probabilities for the proposed robust Hausman test. In contrast to previous

results based on the standard IV, we observe that the empirical size is now controlled, with a type-I error

that is smaller for nonlinear models than for the linear model. We also report rejection probabilities

under the alternative. We observe an empirical power that increases with the sample size and the level

endogeneity, suggesting consistency for the proposed Hausman test.

Overall, these simulations confirm the robustness of the proposed methods to mispecification of

the linear IV model and their adaptive behaviour when correct specification holds. Furthermore, the

TSIV estimator seems to be not too sensitive to the choice of tuning parameters. Finally, the proposed

Hausman test is indeed robust to the misspecification of the linear model, which makes it a reliable

tool for economic applications. These finite sample robustness results confirm the claims made for the

TSIV estimator as a nonparametric analog to OLS under endogeneity.

6 Appendix A: Notation, Assumptions and Preliminary Results

6.1 Notation

Define the kernel subspace N ≡ {f ∈ L2(X) : T ∗f = 0} of the operator T ∗f(z) := E[f(X)|Z = z].

Let Ts(x) := E[s(Z)|X = x] denote the adjoint operator of T ∗ and let R(T ) := {f ∈ L2(X) :

∃s ∈ L2(Z), T s = f} its range. For a subspace V, V ⊥, V and PV denote, respectively, its orthogonal

complement, its closure and its orthogonal projection operator. Let ⊗ denote Kronecker product and

let Ip denote the identity matrix of order p.

Define the Sobolev norm ‖·‖∞,η as follows. Define for any vector a of p integers the differential

operator ∂ax := ∂|a|1/∂xa11 . . . ∂x
ap
p , where |a|1 :=

∑p
i=1 ai. Let X denote a finite union of convex,

bounded subsets of Rp, with non-empty interior. For any smooth function h : X ⊂ Rp → R and some

η > 0, let η be the largest integer smaller than η, and

‖h‖∞,η := max
|a|1≤η

sup
x∈X
|∂axh(x)|+ max

|a|1=η
sup
x 6=x′

|∂axh(x)− ∂axh(x′)|
|x− x′|η−η

.

Let H denote the parameter space for h, and define the identified set H0 = {h ∈ H : m(X,h) = 0 a.s.}.
The operator Th(x) := E[h(Z)|X = x] is estimated by

T̂ h(x) := Ê[h(Z)|X = x] =

n∑
i=1

(
pKn

′
(x)(P ′P )−1pKn(Xi)⊗ h(Zi)

)
.

The operator T̂ is considered as an operator from Hn to Gn ⊆ L2(X), where Gn is the linear span

of {pKn(·)}. Let En[g(W )] denote the sample mean operator, i.e. En,W [g(W )] = n−1
∑n

i g(Wi), let

||g||2n,W = En[|g(W )|2], and let 〈f, g〉n,W = n−1
∑n

i=1 f(Wi)g(Wi) be the empirical L2 inner product.

We drop the dependence on W for simplicity of notation. Denote by T̂ ∗ the adjoint operator of T̂ with
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respect to the empirical inner product. Simple algebra shows for p = 1,〈
T̂ h, g

〉
n

= n−1
n∑
i=1

h(Zi)p
Kn
′
(Xi)(P

′P )−1
n∑
j=1

pKn(Xj)g(Xj)

=
〈
h, T̂ ∗g

〉
n
,

so T̂ ∗g = PHnÊ[g(X)|X = ·] = PHn T̂ g. A similar expression holds for p > 1.

With this operator notation, the first-step has the expression (where I denotes the identity operator)

ĥn =
(
T̂ ∗T̂ + λnI

)−1
T̂ ∗X̂, (15)

where X̂ = Ê[X|X = ·]. Similarly, define the Tikhonov approximation of h0

hλn = (T ∗T + λnI)−1 T ∗X. (16)

With some abuse of notation, denote the operator norm by

‖T‖ = sup
h∈H,‖h‖≤1

‖Th‖ .

Let G ⊆ L2(X) denote the parameter space for g. An envelop for G is a function G such that |g(x)| ≤
G(x) for all g ∈ G. Given two functions l, u, a bracket [l, u] is the set of functions f ∈ G such that

l ≤ f ≤ u. An ε-bracket with respect to ‖·‖ is a bracket [l, u] with ‖l − u‖ ≤ ε, ‖l‖ <∞ and ‖u‖ <∞
(note that u and l not need to be in G). The covering number with bracketing N[·](ε,G, ‖·‖) is the

minimal number of ε-brackets with respect to ‖·‖ needed to cover G. Define the bracketing entropy

J[·](δ,G, ‖·‖) =

∫ δ

0

√
logN[·](ε,G, ‖·‖)dε

Similarly, we define J[·](δ,H, ‖·‖). Finally, throughout C denotes a positive constant that may change

from expression to expression.

6.2 Assumptions

The following assumptions are standard in the literature of sieve estimation; see, e.g., Newey (1997),

Chen (2007), Santos (2011), and Chen and Pouzo (2012).

Assumption A1: (i) {Yi, Xi, Zi}ni=1 is an iid sample, satisfying (1) with E[ε|Z] = 0 a.s and E[Y 2] <

∞; (ii) X has a compact support; (iii) Z has a compact support; (iv) the densities of X and Z are

bounded and bounded away from zero.

Assumption A2: (i) The eigenvalues of E[pKn(X)pKn(X)′] are bounded above and away from zero;

(ii) max1≤k≤Kn ‖pk‖ ≤ C and ξ2
n,pKn = o(n), for ξn,p = supx

∣∣pKn(x)
∣∣ ; (iii) there is πn,p(h) such

that suph∈H
∥∥E[h(Z)|X = ·]− π′n,p(h)pKn(·)

∥∥ = O(K−αT
n ); (iv) there is a finite constant C, such that

suph∈H,‖h‖≤1 |h(Z)− E[h(Z)|X]| ≤ ρn,p(Z,X) with E[ |ρn,p(Z,X)|2
∣∣∣X] ≤ C.
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Assumption A3: (i) The eigenvalues of E[qJn(Z)qJn(Z)′] are bounded above and away from zero;

(ii) there is a sequence of closed subsets satisfying Hj ⊆ Hj+1 ⊆ H, H is closed, bounded and convex,

h0 ∈ H0, and there is a Πn(h0) ∈ Hn such that ‖Πn(h0)− h0‖ = o(1); (iii) suph∈Hn

∣∣∣‖h‖2n − ‖h‖2∣∣∣ =

oP (1); (iv) λn ↓ 0 and max{‖Πn(h0)− h0‖2 , c2
n,T } = o(λn), where cn,T =

√
Kn/n+K−αT

n ; (v) Aλn is

non-singular.

Assumption A4: (i) h0 ∈ R((T ∗T )αh/2) and g0 ∈ R((TT ∗)αg/2), αh, αg > 0; (ii) max1≤j≤Jn ‖qj‖ ≤ C
and ξ2

n,jJn = o(n), for ξn,j = supz
∣∣qJn(z)

∣∣ ; (iii) supg∈G
∥∥E[g(X)|Z = ·]− π′n,q(g)qJn(·)

∥∥ = O(J
−αT∗
n ) for

some πn,q(g); (iv) supg∈G,‖g‖≤1 |g(X)− E[g(X)|Z]| ≤ ρn,q(Z,X) with E[ |ρn,q(Z,X)|2
∣∣∣Z] ≤ C; (v)

λncn = o(n−1/4), where cn = cn,T + cn,T ∗ and cn,T ∗ =
√
Jn/n+ J

−αT∗
n ; (vi) Bλn is non-singular.

Assumption A5: (i) J[·](δ,G, ‖·‖) < ∞ and J[·](δ,H, ‖·‖) < ∞ for some δ > 0, and G and H have

bounded envelopes; (ii) P (ĥn ∈ H)→ 1 and P (ĝn ∈ G)→ 1.

Assumption A6: (i) E[U |Z] = 0; (ii)
√
nλ

min(αh,2)
n = o(1) and

√
ncnλ

min(αh−1,1)
n = o(1); (iii) h0 ∈

R(T ∗), E
[
|X − h0(Z)|4

∣∣∣X] is bounded and V ar[h0(Z)|X] is bounded and bounded away from zero;

and (iv) E
[
(ĥ2n(Z)− h20(Z))V

]
= OP (n−1/2).

For regression splines ξ2
n,p = O(Kn), and hence A2(ii) requires K2

n/n → 0, see Newey (1997). As-

sumptions A2(iii-iv) are satisfied if suph∈H ‖Th‖∞,ηh < ∞ with αT = ηh/q. Assumption A3(iii) holds

under mild conditions if for example suph∈H ‖h‖ < C. Assumption A4(i) is a regularity condition that

is well discussed in the literature, see e.g. Florens, Johannes and Van Bellegem (2011). A sufficient

condition for Assumption A5(i) is that for some ηh > q/2 and ηg > p/2 we have suph∈H ‖h‖∞,ηh <∞
and supg∈G ‖g‖∞,ηg < ∞; see Theorems 2.7.11 and 2.7.1 in van der Vaart and Wellner (1996). The

bounded envelop assumption can be easily relaxed. Assumption A5(ii) is satisfied for sieve estimators.

Assumptions A6(i-iii) are standard. Assumption A6(iv) is a high-level condition. If Z is independent

of V this assumption trivially holds. More general, primitive conditions for Assumption A6(iv) to hold

can be shown along the lines of the proof of E
[
(ĥ2n(Z)− h20(Z))h20(Z)

]
= OP (n−1/2) in Theorem

4.1.

6.3 Preliminary Results

In all the preliminary results Assumptions 1-3 in the text are assumed to hold.

Lemma A1: Let Assumptions A1-A3 hold. Then,
∥∥∥ĥn − h0

∥∥∥ = oP (1).

Proof of Lemma A1: We proceed to verify the conditions of Theorem A.1 in Chen and Pouzo

(2012). Recall H0 = {h ∈ H : m(X,h) = 0 a.s.}. By Assumption A3, H0 is non-empty. The penalty

function P (h) = ||h||2 is strictly convex and continuous and ||m(·;h)||2 is convex and continuous. Their

Assumption 3.1(i) trivially holds since W = Ip. Their Assumption 3.1(iii) is A3(i-ii). Their Assumption

3.1(iv) follows from A3(ii) since

||m(·; Πn(h0))||2 ≤ ‖Πn(h0)− h0‖2 = o(1).
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To verify their Assumption 3.2(c) we need to check

sup
h∈Hn

∣∣∣‖h‖2n − ‖h‖2∣∣∣ = oP (1) (17)

and ∣∣∣‖Πn(h0)‖2 − ‖h0‖2
∣∣∣ = o(1).

The last equality follows because
∣∣∣‖Πn(h0)‖2 − ‖h0‖2

∣∣∣ ≤ C ‖Πn(h0)− h0‖ = o(1). Condition (17) is

our Assumption A3(iii). Assumption 3.3 in Chen and Pouzo (2012) follows from their Lemma C.2 and

our Assumption A2. Assumption 3.4 in Chen and Pouzo (2012) is satisfied for the L2 norm. Finally,

Assumption A3(iv) completes the conditions of Theorem A.1 in Chen and Pouzo (2012), and hence

implies that
∥∥∥ĥn − h0

∥∥∥ = oP (1). �

Lemma A2: Let Assumptions A1-A4 hold. Then,
∥∥∥ĥn − h0

∥∥∥ = oP (n−1/4) and ‖ĝn − g0‖ = oP (n−1/4).

Proof of Lemma A2: For simplicity of exposition we consider the case p = q = 1. The proof for

p > 1 or q > 1 follows the same steps. By the triangle inequality, with hλn defined in (16),∥∥∥ĥn − h0

∥∥∥ ≤ ∥∥∥ĥn − hλn∥∥∥+ ‖hλn − h0‖ .

Under h0 ∈ R((T ∗T )αh/2), Lemma A1(1) in Florens, Johannes and Van Bellegem (2011) yields

‖hλn − h0‖ = O(λmin(αh,2)
n ). (18)

With some abuse of notation, denote Âλn =
(
T̂ ∗T̂ + λnI

)−1
. Then, arguing as in Proposition 3.14 of

Carrasco, Florens and Renault (2006), it is shown that

ĥn − hλn = Âλn T̂
∗(X̂ − T̂ h0) + Âλn(T̂ ∗T̂ − T ∗T )(hλn − h0), (19)

and thus, ∥∥∥ĥn − hλn∥∥∥ ≤ ∥∥∥Âλn∥∥∥∥∥∥T̂ ∗(X̂ − T̂ h0)
∥∥∥+

∥∥∥Âλn∥∥∥∥∥∥T̂ ∗T̂ − T ∗T∥∥∥ ‖hλn − h0‖ . (20)

As in Carrasco, Florens and Renault (2006),∥∥∥Âλn∥∥∥ = OP (λ−1
n ).

Since T̂ ∗ is a bounded operator ∥∥∥T̂ ∗(X̂ − T̂ h0)
∥∥∥ = OP

(∥∥∥(X̂ − T̂ h0)
∥∥∥)

= OP (cn,T ) ,

where recall cn,T = Kn/n + K−2αT
n , and where the second equality follows from an application of

Theorem 1 in Newey (1997) with y = x−h0(z) there. Note that Assumption 3 and Assumption A2(iv)

imply that V ar[y|X] is bounded (which is required in Assumption 1 in Newey (1997)). Also note

that the supremum bound in Assumption 3 in Newey (1997) can be replaced by our L2−bound in

Assumption A2(iii) when the goal is to obtain L2−rates.
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On the other hand, ∥∥∥T̂ ∗T̂ − T ∗T∥∥∥ ≤ OP (∥∥∥T̂ ∗ − T ∗∥∥∥)+OP

(∥∥∥T̂ − T∥∥∥) (21)

and ∥∥∥T̂ ∗ − T ∗∥∥∥ ≤ ‖PHn‖
∥∥∥T̂ − T∥∥∥+ ‖PHn − T ∗‖

= OP

(∥∥∥T̂ − T∥∥∥)+OP (cn,T ∗). (22)

We now proceed to establish rates for
∥∥∥T̂ − T∥∥∥ . As in Newey (1997), we can assume without loss of

generality that E[qJn(Z)qJn(Z)′] is the identity matrix. Then, by the triangle inequality,∥∥∥T̂ − T∥∥∥ = sup
h∈H,‖h‖≤1

∥∥∥T̂ h− Th∥∥∥
≤ sup

h∈H,‖h‖≤1

∥∥∥T̂ h− πn,p(h)pKn(·)
∥∥∥+ sup

h∈H,‖h‖≤1

∥∥E[h(Z)|X = ·]− πn,p(h)pKn(·)
∥∥

≤ sup
h∈H,‖h‖≤1

‖π̂n,p(h)− πn,p(h)‖+O(K−αT
n ),

where

π̂n,p(h) = (P ′P )−1
n∑
i=1

pKn(Xi)h(Zi).

Write

π̂n,p(h)− πn,p(h) = Q−1
2nP

′εh/n+Q−1
2nP

′(Gh − Pπn,p(h))/n,

where εh = H − Gh, H = (h(Z1), ..., h(Zn))′, and Gh = (Th(X1), ..., Th(Xn))′. Similarly to the proof

of Theorem 1 in Newey (1997), it is shown that

sup
h∈H,‖h‖≤1

∥∥Q−1
2nP

′εh/n
∥∥2

= OP (Kn/n),

where we use Assumption A2(iv) to show that

sup
h∈H,‖h‖≤1

E[εhε
′
h

∣∣X] ≤ CIn.

That is,

sup
h∈H,‖h‖≤1

E

[∣∣∣Q−1/2
2n P ′εh/n

∣∣∣2∣∣∣∣X] = sup
h∈H,‖h‖≤1

E
[
εhP (P ′P )−1P ′εh

∣∣X] /n
= sup

h∈H,‖h‖≤1
E
[
tr{P (P ′P )−1P ′εhε

′
h}
∣∣X] /n

= sup
h∈H,‖h‖≤1

tr{P (P ′P )−1P ′E[εhε
′
h

∣∣X]}/n

≤ Ctr{P (P ′P )−1P ′}/n

≤ CK/n
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Similarly, by A2(iii)

sup
h∈H,‖h‖≤1

∥∥Q−1
2nP

′(Gh − Pπn,p(h))/n
∥∥ = OP (K−αT

n ).

Then, conclude
∥∥∥T̂ − T∥∥∥ = OP (cn,T ),

∥∥∥T̂ ∗T̂ − T ∗T∥∥∥ = OP (cn), where cn = cn,T + cn,T ∗ , and by (20),

(21) and (22) ∥∥∥ĥn − hλn∥∥∥ = OP
(
λ−1
n cn

)
= oP

(
n−1/4

)
,

where the last equality follows from A4(v).

The proof of ‖ĝn − g0‖ = oP (n−1/4) is the same and hence omitted. �

Lemma A3: Let H and G be classes of functions with a bounded envelope F and G, respectively, and

let ξ be a squared integrable random variable, then:

(i) N[·](ε,H·ξ, ‖·‖2) ≤ N[·](Cε,H, ‖·‖2).

(ii) N[·](ε,H·G, ‖·‖2) ≤ N[·](Cε,H, ‖·‖2)×N[·](Cε,G, ‖·‖2).

(iii) N[·](ε,H+G, ‖·‖2) ≤ N[·](Cε,H, ‖·‖2) +N[·](Cε,G, ‖·‖2).

Proof of Lemma A3: Follows from standard arguments in empirical processes theory, and hence is

omitted. �

7 Appendix B: Proofs of Main Results

Proof of Lemma 2.1: The n1/2-estimability of the OLIVA implies the n1/2-estimability of the vector-

valued functional

E[Xg(X)],

which in turn implies that of the functional

E[Xjg(X)],

for each component Xj of X (i.e. X = (X1, ..., Xp)
′). By Lemma 4.1 in Severini and Tripathi (2012),

the latter implies existence of hj ∈ L2(Z) such that

E[hj(Z)|X] = Xj a.s.

This implies Assumption 3 with h(Z) = (h1(Z), ..., hp(Z))′. �

Proof of Proposition 2.2: We shall show that for any h(Z) ∈ L2(Z) such that

E[h(Z)|X] = X a.s.
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the parameter β = E[h(Z)X ′]−1E[h(Z)Y ] is uniquely defined. First, it is straightforward to show that

for any such h, E[h(Z)X ′]−1 = E[XX ′]−1. Second, we can substitute Y = g0(X) + PN g(X) + ε, and

note that for all h, E[h(Z)PN g(X)] = 0, so that

E[h(Z)Y ] = E[h(Z)g0(X)]

= E[Xg0(X)],

for all h satisfying E[h(Z)|X] = X a.s. �

Proof of Proposition 2.3: We shall show that under the conditions of the proposition there exists a

h(Z) ∈ L2(Z) such that

E[h(Z)|X] = X a.s.

Denote p̄ = E[p(Z)]. For a binary X, and since 0 < p̄ < 1, the last display is equivalent to the system

E[Xh(Z)] = p̄ and E[(1−X)h(Z)] = 0,

or

E[h(Z)] = p̄ and E[p(Z)h(Z)] = p̄.

Each equation from the last display defines a hyperplane in h. Since p(Z) is not constant, the normal

vectors 1 and p(Z) are linearly independent (not proportional). Hence, the two hyperplanes have an

non-empty intersection, showing that there is at least one h satisfying E[h(Z)|X] = X a.s.

Moreover, by Theorem 2, pg. 65, in Luenberger (1997) the minimum norm solution is the linear

combination of 1 and p(Z) that satisfies the linear constraints, that is, h0(Z) = α+ γp(Z) such that α

and γ satisfy the 2× 2 system {
α+ γp̄ = p̄

αp̄+ γE[p2(Z)] = p̄.

Note that this system has a unique solution, since the determinant of the coefficient matrix is V ar(p(Z)) >

0. Then, the unique solution is given by[
α

γ

]
=

[
1 p̄

p̄ E[p2(Z)]

]−1 [
p̄

p̄

]

=

 p̄
(

1− p̄(1−p̄)
var(p(Z))

)
p̄(1−p̄)
var(p(Z))

 .
�

Proof of Proposition 3.1: By Markov’s inequality and Lemma A1

1

n

n∑
i=1

ĥn(Zi)Yi =
1

n

n∑
i=1

h0(Zi)Yi + oP (1),

and similarly,

1

n

n∑
i=1

ĥn(Zi)X
′
i =

1

n

n∑
i=1

h0(Zi)X
′
i + oP (1).
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Then, conclude by the continuous mapping theorem. �

Proof of Theorem 3.2: Define the class of functions

F = {f(y, x, z) = h(z)y − g(x)(h(z)− x) : h ∈ H, g ∈ G}.

By several applications of Lemma A3 we conclude that

logN[·](ε,F , ‖·‖2) ≤ logN[·](Cε,H, ‖·‖2) + logN[·](Cε,G, ‖·‖2).

Assumption A5 and Theorem 2.5.6 in van der Vaart and Wellner (1996) then imply that F is a Donsker

class. By Lemma A1
∥∥∥ĥn − h0

∥∥∥ = oP (1), and similarly by Lemma A2 ‖ĝn − g0‖ = oP (1). Then, by a

standard empirical processes argument, since P (ĥn ∈ H) = 1 and P (ĝn ∈ G) = 1, and Assumption 3,

it holds that

1√
n

n∑
i

ĥn(Zi)Yi − ĝn(Xi)(ĥn(Zi)−Xi) =
1√
n

n∑
i

h0(Zi)Yi − g0(Xi)(h0(Zi)−Xi)

+
√
nE[(ĥn(Z)− h0(Z))(Y − g0(X))]

−
√
nE[(ĝn(X)− g0(X))(ĥn(Z)− h0(Z))]

+ oP (1)

≡ I + II + III + oP (1),

where the expectations in the right hand side are with respect to (Y,X,Z), which is a copy of the

(Yi, Xi, Zi), independent of the original sample.

It is straightforward to prove that II = oP (1), since for all squared integrable h,

E[(Y − g0(X))h(Z)] = 0.

The rate conditions
∥∥∥ĥn − h0

∥∥∥ = oP (n−1/4) and ‖ĝn − g0‖ = oP (n−1/4) of Lemma A2 imply by Cauchy-

Schwarz inequality

|III| ≤
√
n
∥∥∥ĥn − h0

∥∥∥ ‖ĝn − g0‖ = oP (1).

On the other hand, β̃ is the unique solution to the empirical equation En[m(W, β̃, ĥn, ĝn)] = 0, which

yields

β̃ =

(
1

n

n∑
i

XiX
′
i

)−1(
1√
n

n∑
i

ĥn(Zi)Yi − ĝn(Xi)(ĥn(Zi)−Xi)

)
.

Thus, by the invariance principle above

√
n
(
β̃ − β

)
=

(
1

n

n∑
i

XiX
′
i

)−1(
1√
n

n∑
i

ĥn(Zi)Yi − ĝn(Xi)(ĥn(Zi)−Xi)

)
−
√
nβ

= E
[
XiX

′
i

]−1

(
1√
n

n∑
i

h0(Zi)Yi − g0(Xi)(h0(Zi)−Xi)

)
−
√
nβ + oP (1)

= E
[
XiX

′
i

]−1

(
1√
n

n∑
i

si

)
+ oP (1),
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The asymptotic normality then follows from the last equality and the central limit theorem.

The consistency of V̂ = En[ĥn(Zi)X
′
i]
−1En[ŝniŝ

′
ni]En[ĥn(Zi)X

′
i]
−1 follows from

∥∥∥ĥn − h0

∥∥∥ = oP (1),

‖ĝn − g0‖ = oP (1) and the consistency of β̂. �

Proof of Theorem 4.1: We first show that the OLS first-stage estimator α̂ = (α̂′1, α̂2)′ of α0 =

(α′1, α2)′ in the regression

X2 = α′1X1 + α2ĥ2n(Z) + e,

satisfies
√
n(α̂− α0) = OP (1). Note e = V − α2(ĥ2n(Z)− h20(Z)), and denote ĥn(Z) = (X ′1, ĥ2n(Z))′

and h0(Z) = (X ′1, h20(Z))′. Then,

√
n(α̂− α0) =

(
En

[
ĥ′nĥ

′
n

])−1√
nEn

[
ĥne
]
.

Lemma A2 and Markov’s inequality imply En

[
ĥ′nĥ

′
n

]
= En [h0(Z)h′0(Z)] + oP (1) = OP (1).

By
∥∥∥ĥ2n − h20

∥∥∥ = oP (n−1/4), it holds

√
nEn

[
ĥn(Z)e

]
=
√
nEn

[
ĥn(Z)V

]
− α2

√
nEn

[
ĥn(Z)(ĥ2n(Z)− h20(Z))

]
=
√
nEn [h0(Z)V ]− α2

√
nEn

[
h0(Z)(ĥ2n(Z)− h20(Z))

]
+
√
nEn

[
(ĥn(Z)− h0(Z))V

]
+ oP (1)

≡ A1 − α2A2 +A3 + oP (1).

The standard central limit theorem implies A1 = OP (1).

An empirical processes argument shows

A2 =
√
nE
[
h0(Z)(ĥ2n(Z)− h20(Z))

]
+ oP (1).

By A6(ii),

√
nE
[
h0(Z)(ĥ2n(Z)− h20(Z))

]
=
√
nE
[
h0(Z)(ĥ2n(Z)− hλn(Z))

]
+
√
nE [h0(Z)(hλn(Z)− h20(Z))]

=
√
nE
[
h0(Z)(ĥ2n(Z)− hλn(Z))

]
+ oP (1).

While (19) and A6(ii) yield

A2 =
√
nE
[
h0(Z)Âλn T̂

∗(X̂ − T̂ h0)(Z)
]

+ oP (1)

=
√
nE
[
h0(Z)AλnT

∗(X̂ − T̂ h0)(Z)
]

+ oP (1)

≡
√
nE
[
v(Z)(X̂ − T̂ h0)(Z)

]
+ oP (1),

where v(Z) = TAλnh0(Z). By h0 ∈ R(T ∗), h0 = T ∗ψ for some ψ with ‖ψ‖ < ∞, then by Lemma

A1(A.4) in Florens, Johannes and Van Bellegem (2011)

‖v‖ ≤ ‖TAλnT ∗‖ ‖ψ‖

≤ ‖ψ‖ <∞.
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Then, by Theorem 3 in Newey (1997), A2 = OP (1). Similarly, an empirical processes argument and

A6(iv) show A3 = OP (1). Thus, combining the previous bounds we obtain
√
n(α̂− α0) = OP (1).

We proceed now with second step estimator. Denote Ŝ = (X, V̂ )′ and θ = (β′, ρ)′. Let θ̂ denote the

OLS of Y on Ŝ. Since, since under the null ρ = 0, then

θ̂ =
(
En

[
ŜŜ′

])−1
En

[
ŜY
]

= θ +
(
En

[
ŜŜ′

])−1
En

[
ŜU
]

= θ +
(
E
[
SS′

])−1
En [SU ] +

(
E
[
SS′

])−1
En

[
(Ŝ − S)U

]
+ oP (n−1/2)

= θ +
(
E
[
SS′

])−1
En [SU ] + oP (n−1/2),

where the last equality follows because

√
nEn

[
(V̂ − V )U

]
=
√
n(α̂− α0)′

√
nEn [h0(Z)U ] + α̂2

√
nEn

[
U(ĥ2n(Z)− h20(Z))

]
= OP (1)× oP (1) +OP (1)× oP (1),

with the term
√
nEn

[
U(ĥ2n(Z)− h20(Z))

]
being oP (1) because of A6(i), and

√
nEn

[
U(ĥ2n(Z)− h20(Z))

]
=
√
nE
[
U(ĥ2n(Z)− h20(Z))

]
+ oP (1)

= oP (1).

Thus, the standard asymptotic normality for the OLS estimator applies. �

8 Appendix C: Penalized and Minimum Norm Solutions

The following result shows that our PSMD estimator is equivalent to a minimum norm estimator. This

result is of independent interest. Define the optimization problem

min{||h||2n : h ∈ Hn, ||m̂(X;h)||2n ≤ bn/an}, (23)

for positive constants an and bn. Define X̂ = Ê[X|X].

Lemma A1: Assume that bn/an ↓ 0 and ||X̂||2n > 0. Then, (7) is equivalent to (23), in the sense that

for large n, we can find a solution for (7) that also solves (23) for a certain choice of λn. Moreover,

λ2
n = O (bn/an) .

Proof of Lemma A1: Let ĥλ(·) = D′nA
−1
λ qJ(·) denote the solution to (7) corresponding to λ > 0, see

(9). We shall show that there is λn such that

||m̂(X; ĥλn)||2n = bn/an

and that ĥλn is a solution of (23).
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Note that (23) is a convex optimization problem, whose necessary and sufficient condition for a

solution ĥλn is that 〈
ĥλn , ĥλn − h

〉
n
≤ 0,

for all h ∈ Hn with ||m̂(X;h)||2n ≤ bn/an (where 〈·, ·〉n is the inner product corresponding to || · ||n).

Define the linear operator K̂h = Ê[h(Z)|X] on Hn, and let K̂∗ denote its adjoint (with respect to

〈·, ·〉n). The optimal solution satisfies the equation

λnĥλn + K̂∗K̂ĥλn = K̂∗X̂.

Then, for all h ∈ Hn such that ||K̂h− X̂||n ≤ bn/an,

λn

〈
ĥλn , ĥλn − h

〉
n
≤
〈
K̂∗(K̂ĥλn − X̂), h− ĥλn

〉
n

≤
〈
K̂ĥλn − X̂, K̂(h− ĥλn)

〉
n

≤
〈
K̂ĥλn − X̂, K̂h− X̂

〉
n
−
〈
K̂ĥλn − X̂, K̂ĥλn − X̂

〉
n

≤ ||K̂ĥλn − X̂||n||K̂h− X̂||n − ||K̂ĥλn − X̂||2n
≤ bn/an − bn/an
= 0.

It remains to show that there exists a positive λn such that ||m̂(X; ĥλn)||2n = bn/an and λn = O (bn/an) .

Existence follows from Bolzano’s Theorem, since λ → ||m̂(X; ĥλ)||2n is continuous, ||m̂(X; ĥλ)||2n −
bn/an → ||X̂||2n − bn/an > 0 as λ→∞ and ||m̂(X; ĥλ)||2n − bn/an → −bn/an < 0 as λ→ 0.

Define rλn = X̂ − K̂ĥλn , and note that K̂∗rλn = λnĥλn and ||rλn ||2n = bn/an. Then,

||X̂||n −
(
bn
an

)1/2

= ||X̂||n − ||rλn ||n

≤ ||K̂ĥλn ||n

≤ 1

λn
||K̂K̂∗rλn ||n

≤ 1

λn
||K̂||2n

(
bn
an

)1/2

,

or, equivalently

λn ≤
(
bn
an

)1/2 λn + ||K̂||2n
||X̂||n

,

which shows λ2
n = O (bn/an) . �
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9 Appendix D: Tables for Simulations

Table 6: Sensitivity analysis of MSE(×10−2) for DGP1.

λ

Kn = 2Jn Kn = 3Jn

Jn ρ γ 0 0.001 0.01 0.1 0.2 0.3 0.6 0 0.001 0.01 0.1 0.2 0.3 0.6

4 0 0.4 10.58 9.84 8.37 7.05 6.38 6.62 6.54 8.93 8.67 7.65 6.98 6.42 6.61 6.59

0.77 0.77 0.66 0.65 0.64 0.64 0.65 0.71 0.76 0.67 0.65 0.64 0.64 0.65

0.8 1.89 1.62 1.60 1.67 1.56 1.65 1.60 1.87 1.62 1.60 1.67 1.55 1.65 1.60

0.16 0.16 0.16 0.15 0.16 0.16 0.17 0.16 0.16 0.16 0.15 0.16 0.16 0.17

0.3 0.4 11.25 10.95 9.82 7.35 7.32 8.24 6.65 8.85 8.73 8.67 7.45 7.22 8.30 6.63

0.80 0.82 0.72 0.69 0.68 0.69 0.73 0.73 0.80 0.71 0.69 0.68 0.69 0.73

0.8 2.07 2.17 2.09 2.01 2.00 1.88 2.03 2.05 2.14 2.10 2.02 2.00 1.89 2.03

0.18 0.20 0.21 0.20 0.20 0.20 0.20 0.18 0.20 0.21 0.20 0.20 0.20 0.20

0.9 0.4 17.70 19.46 15.45 13.49 12.37 12.04 12.33 15.17 16.57 14.92 13.47 12.57 12.04 12.37

1.67 1.47 1.33 1.21 1.14 1.24 1.31 1.59 1.39 1.34 1.21 1.14 1.24 1.31

0.8 5.84 5.72 5.34 5.35 5.52 5.18 5.13 5.53 5.62 5.35 5.39 5.52 5.18 5.13

0.51 0.54 0.57 0.50 0.54 0.50 0.49 0.51 0.54 0.57 0.50 0.54 0.50 0.49

5 0 0.4 9.94 9.82 8.47 6.72 6.26 6.18 6.39 7.97 8.21 7.75 6.71 6.29 6.19 6.41

0.86 0.84 0.66 0.65 0.63 0.64 0.64 0.76 0.80 0.67 0.65 0.63 0.64 0.64

0.8 1.91 1.67 1.63 1.70 1.55 1.64 1.59 1.86 1.65 1.65 1.70 1.54 1.64 1.59

0.16 0.16 0.16 0.15 0.15 0.16 0.17 0.16 0.16 0.16 0.15 0.16 0.16 0.17

0.3 0.4 11.94 10.82 10.17 7.22 6.86 7.39 6.58 9.16 8.55 8.90 7.24 6.79 7.42 6.60

0.89 0.87 0.71 0.69 0.69 0.68 0.73 0.78 0.83 0.72 0.69 0.69 0.68 0.73

0.8 2.10 2.19 2.14 2.03 2.01 1.86 2.02 2.05 2.13 2.12 2.02 2.00 1.86 2.02

0.19 0.20 0.21 0.20 0.20 0.20 0.20 0.18 0.20 0.21 0.20 0.20 0.20 0.20

0.9 0.4 18.46 18.10 15.73 12.94 11.57 12.10 12.01 15.23 16.08 14.60 12.83 11.51 12.13 12.04

1.77 1.55 1.35 1.21 1.13 1.24 1.30 1.59 1.47 1.35 1.22 1.13 1.23 1.30

0.8 5.85 5.79 5.44 5.34 5.48 5.17 5.14 5.57 5.65 5.39 5.29 5.49 5.18 5.14

0.53 0.55 0.57 0.50 0.54 0.50 0.49 0.52 0.55 0.57 0.50 0.54 0.50 0.49

6 0 0.4 9.69 10.05 8.21 6.27 6.20 5.67 6.02 7.84 7.94 7.26 6.32 6.22 5.65 6.04

0.92 0.85 0.67 0.64 0.63 0.63 0.64 0.80 0.80 0.68 0.65 0.63 0.63 0.64

0.8 1.96 1.78 1.70 1.69 1.55 1.62 1.58 1.91 1.66 1.63 1.68 1.54 1.62 1.58

0.16 0.16 0.16 0.15 0.15 0.16 0.17 0.16 0.16 0.16 0.15 0.15 0.16 0.17

0.3 0.4 11.08 10.10 9.65 7.02 6.80 7.22 6.51 8.80 8.23 8.77 7.14 6.91 7.19 6.50

1.04 0.91 0.73 0.69 0.69 0.68 0.73 0.82 0.87 0.73 0.69 0.69 0.68 0.73

0.8 2.23 2.22 2.19 2.03 2.01 1.85 2.02 2.04 2.11 2.17 2.02 2.00 1.84 2.01

0.19 0.20 0.21 0.20 0.19 0.20 0.20 0.19 0.20 0.21 0.20 0.20 0.20 0.20

0.9 0.4 19.37 18.72 15.26 12.61 11.74 12.03 12.69 14.26 14.86 13.95 12.51 11.56 11.93 12.61

1.92 1.58 1.34 1.19 1.13 1.23 1.29 1.60 1.46 1.34 1.20 1.13 1.23 1.29

0.8 5.92 5.90 5.55 5.29 5.45 5.10 5.13 5.55 5.70 5.48 5.28 5.47 5.07 5.13

0.53 0.56 0.57 0.51 0.54 0.50 0.49 0.52 0.55 0.57 0.51 0.54 0.50 0.49

7 0 0.4 10.71 8.60 7.32 5.86 5.88 5.43 5.56 7.95 7.71 6.88 5.93 5.92 5.46 5.61

0.95 0.85 0.68 0.65 0.63 0.63 0.63 0.82 0.80 0.69 0.65 0.63 0.63 0.63

0.8 2.07 1.74 1.68 1.69 1.54 1.63 1.58 1.92 1.66 1.64 1.68 1.54 1.62 1.58

0.16 0.16 0.16 0.15 0.15 0.16 0.17 0.16 0.16 0.16 0.15 0.15 0.16 0.17

0.3 0.4 11.22 9.43 9.12 6.88 6.72 7.02 6.25 8.70 7.85 8.21 6.87 6.74 6.95 6.21

1.03 0.96 0.74 0.68 0.68 0.68 0.72 0.83 0.87 0.75 0.68 0.68 0.68 0.72

0.8 2.37 2.24 2.27 2.04 1.99 1.84 2.02 2.11 2.13 2.19 2.02 2.00 1.84 2.00

0.19 0.20 0.21 0.20 0.19 0.20 0.20 0.19 0.20 0.21 0.20 0.20 0.20 0.20

0.9 0.4 19.78 18.28 15.58 13.06 12.13 12.53 13.02 14.80 15.07 14.24 12.95 12.12 12.52 13.07

1.98 1.66 1.31 1.21 1.12 1.23 1.31 1.62 1.51 1.34 1.21 1.12 1.23 1.30

0.8 6.04 6.07 5.48 5.21 5.42 5.09 5.13 5.71 5.76 5.31 5.23 5.46 5.10 5.14

0.53 0.56 0.57 0.51 0.54 0.50 0.49 0.53 0.56 0.57 0.50 0.54 0.50 0.49
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Table 7: Sensitivity analysis of MSE(×10−2) for DGP2.

λ

Kn = 2Jn Kn = 3Jn

Jn ρ γ 0 0.001 0.01 0.1 0.2 0.3 0.6 0 0.001 0.01 0.1 0.2 0.3 0.6

4 0 0.4 36.49 34.99 31.23 32.82 36.11 36.04 38.73 33.99 34.41 32.02 33.59 35.61 35.98 38.43

3.49 3.13 3.32 4.86 5.26 5.30 6.15 3.66 3.38 3.55 4.86 5.22 5.24 6.11

0.8 13.80 15.88 15.68 17.08 16.79 17.37 17.46 14.79 17.27 16.49 18.05 17.41 17.91 17.74

2.25 2.22 2.45 2.58 2.68 2.95 2.87 2.42 2.37 2.63 2.78 2.81 3.06 2.93

0.3 0.4 41.70 34.96 34.40 36.76 37.38 38.83 37.93 39.48 31.79 34.65 37.43 37.12 38.59 37.64

3.64 3.36 3.14 4.72 5.43 5.42 6.02 3.88 3.58 3.30 4.69 5.35 5.36 5.93

0.8 15.21 16.66 15.59 17.44 17.60 18.77 20.40 16.19 17.29 16.70 18.43 18.17 19.27 20.63

2.50 2.41 2.33 2.57 2.68 2.93 3.16 2.62 2.58 2.50 2.77 2.83 3.06 3.22

0.9 0.4 51.43 56.95 41.81 43.76 41.78 48.76 48.29 43.82 49.86 42.62 44.71 42.08 48.78 48.02

4.30 4.56 4.44 5.28 6.07 6.09 6.29 4.05 4.62 4.67 5.26 6.05 6.02 6.23

0.8 23.87 22.37 20.47 20.34 19.39 21.47 24.11 23.58 22.94 20.95 21.22 19.69 22.05 24.62

3.28 2.91 2.74 3.09 3.56 3.28 3.48 3.21 2.96 2.90 3.27 3.71 3.40 3.54

5 0 0.4 32.80 36.47 29.03 31.08 32.71 32.21 34.81 30.60 32.29 29.12 31.74 32.92 32.35 34.69

3.46 3.10 3.08 4.46 4.72 5.27 5.52 3.46 3.22 3.26 4.46 4.67 5.16 5.46

0.8 12.60 14.56 13.88 15.41 15.28 15.86 15.66 13.05 15.26 14.59 16.41 15.77 16.34 15.91

1.62 1.54 1.70 1.74 1.90 2.04 2.26 1.75 1.62 1.84 1.83 1.97 2.07 2.29

0.3 0.4 46.68 32.80 32.50 32.72 32.27 36.03 35.73 43.05 32.18 33.01 33.73 32.99 35.84 35.78

3.77 3.19 2.94 4.31 4.76 5.24 5.77 3.49 3.42 3.14 4.28 4.70 5.19 5.69

0.8 13.90 15.09 14.25 16.12 15.98 16.98 18.18 14.54 15.85 14.93 16.86 16.60 17.28 18.46

1.84 1.83 1.69 1.79 1.93 2.19 2.19 1.81 1.90 1.78 1.90 1.99 2.23 2.22

0.9 0.4 49.09 54.26 38.87 38.62 38.08 44.49 42.72 41.66 42.61 38.63 39.38 38.44 45.13 42.81

4.62 4.37 4.09 4.82 5.33 5.57 6.04 4.04 4.33 4.29 4.80 5.24 5.48 5.97

0.8 21.56 20.61 18.54 18.11 18.29 20.63 22.32 21.22 20.74 18.80 18.96 18.62 21.05 22.91

2.54 2.37 2.26 2.30 2.56 2.57 2.64 2.42 2.29 2.32 2.38 2.65 2.65 2.67

6 0 0.4 53.93 29.47 27.59 28.54 29.66 30.13 32.74 33.06 27.94 29.22 29.64 30.07 30.51 33.01

3.34 2.99 2.92 4.19 4.52 4.77 5.21 3.01 3.24 3.17 4.14 4.47 4.69 5.12

0.8 12.60 14.28 13.17 15.08 14.98 15.34 14.86 12.88 14.92 13.97 15.90 15.39 15.81 15.12

1.71 1.48 1.62 1.74 1.86 2.06 2.10 1.62 1.55 1.74 1.82 1.89 2.11 2.12

0.3 0.4 40.03 29.34 29.99 30.17 29.78 33.68 33.86 35.84 27.83 31.29 31.79 30.68 33.82 34.03

3.62 3.14 2.67 4.05 4.60 4.70 5.21 3.47 3.11 2.83 4.00 4.57 4.67 5.14

0.8 13.62 14.06 13.98 15.77 15.40 16.48 17.31 14.11 14.52 14.67 16.34 15.92 16.83 17.53

1.83 1.64 1.54 1.78 1.85 2.10 2.27 1.73 1.71 1.64 1.85 1.89 2.13 2.30

0.9 0.4 60.72 46.57 35.46 36.41 35.46 40.62 41.88 42.88 38.53 35.39 37.34 36.13 41.08 42.29

4.39 4.33 3.84 4.62 5.21 5.24 5.61 3.87 4.20 4.05 4.64 5.14 5.19 5.53

0.8 20.90 20.27 17.87 17.85 17.71 19.02 21.84 20.17 20.08 18.06 18.60 18.12 19.42 22.26

2.41 2.22 1.94 2.19 2.59 2.45 2.50 2.27 2.12 1.98 2.24 2.64 2.49 2.54

7 0 0.4 117.41 29.85 26.96 27.86 28.58 28.32 31.52 33.51 28.19 27.72 29.50 29.26 28.74 31.74

3.25 3.05 2.79 4.05 4.24 4.62 5.09 3.38 3.09 3.05 4.05 4.22 4.56 5.01

0.8 12.54 14.01 12.92 14.70 14.49 14.82 14.59 12.75 14.55 13.54 15.36 14.91 15.23 14.85

1.46 1.36 1.54 1.58 1.74 1.87 1.95 1.44 1.37 1.63 1.63 1.77 1.91 1.97

0.3 0.4 43.41 29.13 30.90 29.18 29.03 32.56 33.17 31.83 28.27 31.45 30.96 29.74 33.54 33.57

3.43 2.90 2.67 3.90 4.14 4.46 5.16 3.35 3.02 2.84 3.84 4.08 4.42 5.10

0.8 14.24 14.29 13.88 15.25 15.23 15.98 16.62 14.43 14.31 14.37 15.98 15.67 16.34 16.84

1.59 1.54 1.44 1.59 1.76 1.98 1.94 1.57 1.55 1.51 1.65 1.79 2.01 1.97

0.9 0.4 77.30 44.87 34.52 34.60 34.92 38.92 40.54 53.12 37.77 34.27 35.77 35.30 39.87 40.83

4.78 4.18 3.84 4.28 4.85 5.06 5.35 3.95 4.21 3.96 4.30 4.83 5.01 5.30

0.8 20.53 19.65 16.80 17.38 16.84 18.61 21.06 19.57 19.96 17.00 18.32 17.28 18.87 21.40

2.29 2.12 2.00 2.00 2.27 2.29 2.43 2.09 2.07 2.03 2.03 2.30 2.33 2.45
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Table 8: Sensitivity analysis of MSE(×10−2) for DGP3.

λ

Kn = 2Jn Kn = 3Jn

Jn ρ γ 0 0.001 0.01 0.1 0.2 0.3 0.6 0 0.001 0.01 0.1 0.2 0.3 0.6

4 0 0.4 89.50 79.24 86.87 85.35 89.05 93.34 107.17 90.67 82.94 89.85 87.03 89.82 94.38 107.13

7.64 7.80 7.65 9.97 9.82 9.73 11.02 7.96 8.21 7.92 9.91 9.81 9.68 11.00

0.8 53.60 47.34 51.40 48.01 53.19 54.75 49.33 53.39 47.18 50.88 48.33 52.86 54.43 49.25

5.00 4.96 4.73 5.25 5.27 5.64 5.80 5.04 5.04 4.80 5.27 5.30 5.64 5.82

0.3 0.4 82.01 81.80 77.76 87.58 89.50 106.04 90.46 82.71 83.17 81.33 89.08 89.96 105.42 90.14

7.68 8.17 8.88 9.52 11.00 10.64 10.21 7.89 8.46 9.06 9.47 10.94 10.56 10.19

0.8 55.98 51.81 52.21 52.12 56.89 55.73 49.28 55.34 51.92 52.10 52.34 56.79 55.43 48.96

5.80 5.85 5.38 5.47 6.11 6.14 6.09 5.85 5.92 5.46 5.52 6.13 6.18 6.09

0.9 0.4 97.77 96.58 101.87 102.88 106.35 122.48 126.38 102.13 98.56 104.74 104.85 107.05 122.36 124.53

9.99 8.99 9.52 10.55 11.78 12.66 12.69 9.93 9.09 9.76 10.53 11.72 12.61 12.65

0.8 64.62 62.55 66.26 61.41 63.56 63.49 60.79 63.63 62.49 65.04 60.96 63.21 62.92 60.36

6.17 6.03 6.79 7.14 7.44 7.18 7.60 6.24 6.08 6.88 7.16 7.46 7.18 7.61

5 0 0.4 88.84 79.45 87.03 80.84 84.82 94.25 105.07 91.18 83.15 91.48 83.97 86.96 96.56 105.12

7.58 7.96 7.72 10.00 9.97 9.85 11.45 8.16 8.20 7.94 9.91 9.94 9.79 11.41

0.8 53.51 47.52 51.81 48.51 53.95 55.35 50.87 53.70 46.67 52.31 48.97 53.81 54.85 50.42

5.07 5.03 4.79 5.32 5.36 5.76 5.91 5.12 5.13 4.86 5.39 5.37 5.76 5.91

0.3 0.4 81.37 74.98 75.92 81.46 87.46 103.16 92.33 85.74 79.16 79.95 85.07 88.91 104.55 92.32

7.46 7.77 8.69 9.43 11.13 10.78 10.40 7.99 8.13 8.98 9.37 11.06 10.71 10.36

0.8 55.68 51.65 52.02 51.98 57.78 56.88 50.81 55.93 51.62 51.85 52.42 57.58 56.71 50.72

5.86 5.95 5.44 5.58 6.24 6.21 6.26 5.91 6.03 5.53 5.62 6.25 6.24 6.26

0.9 0.4 96.89 94.77 96.32 99.18 104.32 119.06 123.94 96.91 95.00 97.44 102.57 105.87 119.05 123.89

9.59 8.78 9.24 10.47 11.90 12.90 12.97 9.66 9.28 9.60 10.43 11.85 12.83 12.91

0.8 63.97 62.13 65.43 61.15 63.98 63.78 61.76 63.33 62.07 64.64 60.71 64.02 63.28 61.24

6.29 6.15 6.86 7.28 7.57 7.31 7.75 6.36 6.21 6.99 7.29 7.58 7.31 7.77

6 0 0.4 86.06 77.41 71.12 79.02 81.58 90.28 102.63 86.40 80.97 81.00 81.98 84.73 92.78 103.54

7.69 7.76 7.75 9.91 9.97 9.84 11.74 7.98 8.18 7.97 9.84 9.89 9.76 11.67

0.8 53.87 46.98 51.86 48.59 54.17 55.23 51.42 54.67 46.77 52.37 49.05 54.67 54.88 51.14

5.09 5.10 4.86 5.41 5.44 5.88 6.05 5.14 5.19 4.91 5.48 5.48 5.88 6.05

0.3 0.4 76.92 74.25 75.31 80.21 86.00 99.48 87.68 83.40 79.15 80.89 83.99 88.55 103.19 87.78

7.67 7.90 8.48 9.37 11.09 10.83 10.60 8.24 8.22 8.83 9.27 10.97 10.77 10.53

0.8 55.46 51.27 51.85 51.97 57.86 57.62 51.55 56.03 50.96 51.81 52.06 58.13 57.56 51.55

5.90 6.05 5.51 5.68 6.34 6.33 6.41 5.95 6.09 5.62 5.72 6.33 6.35 6.39

0.9 0.4 95.32 94.26 92.09 98.61 99.25 115.32 122.08 95.61 92.97 95.75 100.82 100.28 115.61 123.20

9.42 8.98 9.19 10.48 11.96 13.03 13.20 9.69 9.15 9.49 10.30 11.86 12.91 13.11

0.8 63.90 61.49 65.11 60.39 63.88 63.52 61.84 63.14 61.26 64.76 60.31 63.73 63.42 61.50

6.39 6.25 7.01 7.40 7.68 7.45 7.91 6.44 6.31 7.08 7.38 7.67 7.43 7.90

7 0 0.4 84.62 75.74 69.21 76.80 78.68 89.40 98.63 85.16 80.13 77.55 80.96 82.60 91.46 100.63

7.72 7.71 7.62 9.82 9.94 9.85 11.80 8.13 8.05 7.97 9.80 9.85 9.73 11.68

0.8 54.26 47.25 52.15 48.55 54.52 55.30 51.60 54.84 46.79 52.37 49.09 55.11 55.00 51.47

5.08 5.14 4.87 5.47 5.46 5.91 6.10 5.19 5.22 4.98 5.53 5.50 5.90 6.10

0.3 0.4 72.10 74.49 73.88 79.47 85.55 100.92 85.44 78.83 77.45 81.06 82.28 87.01 103.07 85.78

7.86 7.70 8.40 9.33 11.04 10.74 10.62 8.03 8.09 8.78 9.26 10.93 10.66 10.54

0.8 55.32 51.55 51.33 51.80 58.06 57.40 51.56 55.42 50.94 51.98 52.07 58.23 57.67 51.71

5.88 6.06 5.51 5.70 6.37 6.36 6.47 5.98 6.11 5.63 5.75 6.36 6.39 6.45

0.9 0.4 90.60 90.58 91.68 98.10 98.24 111.18 119.73 91.37 91.41 92.91 101.61 100.15 113.37 121.70

9.62 9.17 8.97 10.35 11.92 13.01 13.11 9.86 9.26 9.24 10.18 11.76 12.85 12.99

0.8 62.05 60.28 65.22 59.96 63.60 63.41 62.21 62.24 60.52 65.19 60.12 63.37 63.10 61.89

6.43 6.23 7.02 7.37 7.70 7.51 7.98 6.43 6.28 7.10 7.36 7.69 7.48 7.95
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