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The Goal

Help simplify estimation of a class of models that integrate over
unobserved heterogeneity

including the standard models of empirical IO that only use
information on market shares:

macro BLP.

Several questions:

1 How much information is there really in the data? (practical
identification)

2 Can we diagnose/anticipate problems and alleviate them?
(specification)

3 Are there simpler ways than GMM or MLE to estimate the
parameters? (estimation)
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With FRAC

The answers are Yes, yes, and yes

We use approximate models, leading to

Fast 2SLS estimates of the parameters
that are Approximately Correct
and (approximately) Robust to misspecification of higher
moments
and provide simple diagnoses of underdentification.
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The Starting Point

Start with a structural parametric model G(y , η, θ0) (omitting
covariates)
with a (unique) inverse η = F(y , θ0)

and we assume moment conditions E(ηZ) = 0.

Usually estimated by GMM, minimizing∥∥∥∥∥∥∥∑
i

F(yi , θ)Zi

∥∥∥∥∥∥∥
Ŵ

.

Often tricky: model overspecified, badly identified, numerical
difficulties. . .
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The Idea

If the underlying model integrates over unobserved
heterogeneity with unknown parameters s0, split

θ0 = (β0, s0)

and take Taylor expansions around s = 0 for fixed β: small-σ
analysis

stop at a reasonable order and estimate the resulting
(hopefully) simple approximate model.

Cf Kadane 1971, Chesher 1991, and especially Chesher and
Santos–Silva 2002 (MLE in mixed multinomial logit with
exogenous covariates).
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Empirical IO: the standard model

Since Berry–Levinsohn–Pakes 1995: demand and loosely
specified supply

demand = mixed multinomial logit:
the classic demand side in many empirical investigations
(IO, transport, demand systems . . . )
circumvents well-known limitations of unmixed logit
(typically) aggregate version: we observe choice
probabilities for groups of consumers (markets)
supply: product effects are orthogonal to well-chosen
instruments.

Gives a GMM estimator.

Bernard Salanié, Frank Wolak FRAC



Plus Notation

Utility of variety j = 1, . . . , J for consumer i in market
t = 1, . . . ,T is

Xjt (β0 + εi) + ξjt + uij

with
ui a vector of iid standard type I EV (parameter-free)
εi iid across consumers, distribution known up to
parameters Σ0.

ξt is a vector of product effects that shift the demand of all
consumers in market t ,
and we assume

E
(
ξjt |Zjt

)
= 0.

We observe the market shares

Sjt = Eε
exp

(
Xjt (β + ε) + ξjt

)
1 + ΣJ

k=1 exp (Xkt (β + ε) + ξkt )

and S0t = 1 −
∑J

j=1 Sjt .Bernard Salanié, Frank Wolak FRAC



Macro-BLP and our General Framework

Define yjt = log(Sjt/S0t )

and artificial regressors (m,n index components of the
covariate vectors)

K jt
mn =

(
Xjtm

2
− etm

)
Xjtn

with etm =
∑J

j=1 Xjtm/J.

Estimate the optimal instruments

Ẑjt = E
(
Xjt ,Kjt |Zjt

)
.
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Approximate Estimation

Run a Fast two-stage least squares regression of yjt on Xjt ,Kjt

with instruments Ẑjt

The estimators β̂, Σ̂ are Approximately Correct.
More precisely: the error is OP(‖Σ‖3/2), and in fact OP(‖Σ‖2) if
the randomness in the coefficients is symmetric.

The 2SLS estimators are also Robust in that they are equally
Approximately Correct independently of other features of the
distribution of ε.

They can also be adapted to different specifications of the
idiosyncratic u (e.g. nested logit—then we need NL2SLS.)
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When it Works

Suppose the structural form of the model G(y , η, θ) = 0 is

G(y , η, β, s) ≡ G∗ (y ,EεA ∗(y , η − f1(y)β, sε))

Here ε is the unobserved heterogeneity, with Eε = 0; and y has
all observables (or functions of).

E.g. for macro-BLP: y =
(
Sj ,Xj

)
)j and η = ξ and s = Σ1/2 gives

Gj = Sj − EεA ∗j (X , ξ + Xβ, sε)

with

A ∗j (a,b ,c) =
exp(bj + cj)

1 +
∑J

k=1 exp(bk + ck )
.
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Why it Works

With this form, the inverse η = F(y , β, s) given by
G(y ,F(y , β, s), β, s) = 0
has three properties:

1 Fs(y , β,0) ≡ 0
2 F(y , β,0) − f1(y)β does not depend on β; call it f0(y)

3 Fss(y , β,0) does not depend on β; call it −f2(y).

Then F(y , β, s) ' f0(y) − f1(y)β − f2(y)s2/2 and writing
E(ηZ) = 0 gives

E(f0(y)Z) ' E(f1(y)Z)β+
E(f2(y)Z)

2
s2

nicely linear in (β, s2).
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How it Works in a Given Model

f1(y) is from the structural form (e.g. it is X in macro BLP)

for f0(y), need to solve

G∗(y ,EεA ∗(y , f0(y),0)) = 0

e.g. in macro BLP:

Sj =
exp(f0j)

1 +
∑J

k=1 exp(f0k )

gives f0j = log(Sj/S0)
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How it Works, 2

The hardest part:

f2(y) ≡
((

A ∗33

)−1
A ∗2

)
(y , f0(y),0)

It generates the artificial regressors K j in macro BLP;
in general it depends on the properties of A ∗ and on f0

not those of ε; (again, Robustness)
and only via f0 for G∗.
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Optimal approximate instruments

In BLP, we need to compute

W = E
(
∂ξ
∂θ
|Z

)
which requires a prior estimate of θ, including the distribution of
the random coefficients.

Here, at order 2
∂ξ

∂β,Σ
= (X ,K )

makes it very easy:

Ẑ = (E(X |Z),E(K |Z)) .
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How are the parameters identified?

Much easier to answer in the approximate 2SLS framework,
say at order 2:

The identification of (β,Σ) relies on the variance covariance of(
E(X |Z)
E(K |Z)

)
being well-conditioned.

Easy to compute with standard software.
Can suggest how hard it will be to identify a given parameter of
interest,
even without running any estimation.
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How it Extends

1 higher order expansions: give better approximations
(within a radius) and

third order s3 allow to recover the skewness of ε; still 2SLS
fourth order gives kurtosis, with NL2SLS

2 models with more complex A ∗ (e.g. some nested logits
give rise to NL2SLS)
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But Does it Work?

Teaser: for the mixed normal logit (J = 1) with one covariate,
define d = σX ; then

log
S

1 − S
= β0 + β1X +

∞∑
i=1

ti(S)d2i
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Robustness in the Mixed Normal Logit

We did not use much of the properties of the logistic cdf L and
normal cdf Φ: only

the fact that L−1(S) = log(S/(1 − S))

the form of the Pk in L (k)(t) = Pk (L(t))

Eε = 0 and Vε = 1
and Eε3 = 0 and Eε4 = 3 (for t2 and above)
and Eε5 = 0 and Eε6 = 15 (for t3 and above), etc
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Robustness in the Mixed Non-Normal Non-Logit

For any L and Φ,
if we normalize Eε = 0 and Vε = 1:

ξ = L−1(S) − (β0 + β1X)

+
P2(S)

2P1(S)
E(Xε)2

+
P3(S)

6P1(S)
E(Xε)3 + . . .

A third order 2SLS method would regress log(S/(1 − S)) on

X ≡

(
1,X ,X2 P2(S)

2P1(S)
,X3 P3(S)

6P1(S)

)
with instruments = the projections E(X|Z).
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ξ4 and beyond

Using higher order approximations makes things a tiny bit
harder:

1 successive powers of σ2
ε make it nonlinear IV

2 optimal instruments depend on value of σ2
ε

But we can build on lower order approximations.
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How good are the approximations?

Define a function u(S , β) by∫
L(u(S , β) − βε)φ(ε)dε ≡ S .

We have ξ = u(S , σεp) − (a + bp) with

1 u1(S , β) = log S/(1 − S)

2 u2 = u1 + (S − 1/2)β2

3 u3 = u2 − S(1 − S)(S − 1/2)β4

4 uI = from Berry inversion.
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Comparing the uk ’s: β = 1
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Comparing the errors uk − uI: β = 1
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Comparing the errors uk − uI: β = 2
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Monte Carlo on Standard Macro BLP

Dubé, Fox and Su (2012) design.

T = 50 markets and J = 25 products in each market

3 observed product characteristics; one (price) is endogenous.

42 instruments (including also covariates and prices in other
markets.)

We compare:
MPEC (Su and Judd, Dubé–Fox–Su) starting from the true
values of the parameters
the “control function” aproach of Petrin–Train 2010 same
our 2SLS estimators no need for starting values.

for various values of Vξ,Vβ
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Basic Findings

estimators of the means Eβ of the random coefficients:
2SLS ' MPEC� PT
PT has a large bias that grows with Vξ

Estimates of means

estimators of the variances Vβ:
MPEC > 2SLS >< PT
2SLS has a downward bias that increases with Vβ and
decreases with Vξ
PT has less bias but more variance

Estimates of variances
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Mean of price coefficient

Findings
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Variance of price coefficient

Findings
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More findings, and conclusion

experiments with lognormal ε show that

the second order approach is quite robust to skewness in ε
using the third order expansion does not help (not enough
information to estimate skewness)

2SLS provides great starting values for MPEC:
convergence to the same estimates
at a very minimal cost, +10% over (infeasible) true values.
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