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Abstract

Many econometric models used in applied work integrate over unobserved

heterogeneity. We show that a class of these models that includes many random

coefficients demand systems can be approximated by a “small-σ” expansion

that yields a straightforward 2SLS estimator. We study in detail the models of

market shares popular in empirical IO (“macro BLP”). Our estimator is only

approximately correct, but it performs very well in practice. It is extremely

fast and easy to implement, and it is robust to misspecifications in the higher

moments of the distribution of the random coefficients. At the least, it provides

excellent starting values for more commonly used estimators.
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Introduction

Many econometric models are estimated from moment conditions that express the

orthogonality of a random unobservable term η and instruments Z:

E (ηZ) = 0.

In structural models, the unobservable term is usually obtained by inverting the set

of equations that describe the underlying economic model. That is, we start from

G(y, η, θ0) = 0 (1)

where y stands for the observed data and θ0 for the unknown parameters, while the

function G is supposed to be known. Then (assuming that the solution exists and is

unique) we invert this system into

η = F (y, θ0)

and we seek an estimator of θ0 by minimizing an empirical analog of a norm

‖E (F (y, θ)Z)‖.

Inversion often is a step fraught with difficulties. Even when a simple algorithm exists,

inversion is still costly: it must be done with a high degree of numerical precision,

as errors may jeopardize the “outer” minimization problem. One alternative is to

minimize an empirical analog of the norm

‖E (ηZ)‖

under the structural constraints (1). This “MPEC approach” has met with some suc-

cess in dynamic programming and empirical industrial organization (Su–Judd 2012,

Dubé et al 2012), but it still requires constrained minimization.

We propose here an alternative that derives a linear model from a very simple

series expansion. To fix ideas, suppose that θ0 can be decomposed into a pair (β0, s0),

where s0 is a scalar that we have reasons to think is not too far from zero. We

rewrite (1) as

G(y, F (y, β0, s0), β0, s0) = 0.
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We expand s→ F (y, β0, s) around 0:

F (y, β0, s0) = F (y, β0, 0) + Fs(y, β0, 0)s0 + . . .+ Fss...s(y, β0, 0)
sL0
L!

+O(sL+1
0 ),

where the subscript s denotes a partial derivative with respect to the argument s0.

This suggests a sequence of “approximate estimators” that minimize the analogs

of the following norms

‖E (F (y, β, 0)Z)‖
‖E ((F (y, β, 0) + Fs(y, β, 0)s)Z)‖

‖E
((

F (y, β, 0) + Fs(y, β, 0)s+ Fss(y, β, 0)
s2

2

)
Z

)
‖

. . .

If the true value s0 is not too large, one may hope to obtain a satisfactory estimator

with the third of these “approximate estimators.” In general, this is still requires

solving a nonlinear minimization problem. However, suppose the function F satisfies

the following three conditions:

1. Fs(y, β0, 0) ≡ 0

2. F (y, β, 0) ≡ f0(y)− f1(y)β is affine in β

3. and the second derivative Fss(y, β, 0) does not depend on β.

Denote f2(y) = −Fss(y, β, 0). Then we would minimize

‖E
((

f0(y)− f1(y)β − f2(y)
s2

2

)
Z

)
‖.

The optimal instruments Z∗ for the parameters (β0, s
2
0) in this problem are simply

(Amemiya 1974)

Z∗ = (E (f1(y)|Z) , E (f2(y)|Z))

which can be estimated directly from the data. Since the optimal instruments just

identify the parameters, all that is left is to run two-stage least squares, that is regress

f0(y) on f1(y) and f2(y)/2 with instruments Z∗.
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The resulting estimators of β0 and s20 are only approximately correct, because

they consistently estimate an approximation of the original model. On the other

hand, they can be estimated in closed form using linear 2SLS. Moreover, because

they only rely on limited features of the data generating process, they are robust in

interesting and useful ways that we will explore later.

Conditions 1–3 extend directly to a multivariate parameter s0. They may seem

very demanding. Yet as we will show, under very weak conditions the “macro-BLP”

model that is the workhorse of empirical IO satisfies all three. In this application,

s0 is taken to be the square root of the variance–covariance matrix Σ of the random

coefficients in the mixed demand model. More generally, we will characterize in

section 6.4 a class of models with unobserved heterogeneity to which conditions 1–3

apply.

Our approach builds on “small-Σ” approximations to construct successive approx-

imations to the inverse mapping (from market shares to product effects). Kadane

(1971) pioneered the “small-σ” method. He applied it to a linear, normal simulta-

neous equation system and studied the asymptotics of k-class estimators1 when the

number of observations n is fixed and σ goes to zero. He showed that when the num-

ber of observations is large, under these “small-σ asymptotics” the k-class estimators

have biases in σ2, and that their mean-squared errors differ by terms of order σ4.

Kadane argued that small σ, fixed n asymptotics are often a good approximation to

finite-sample distributions when the sample is large enough.

The small-σ approach was used by Chesher (1991) in models with measurement

error. Most directly related to us, Chesher and Santos-Silva (2002) used a second-

order approximation argument to reduce a mixed multinomial logit model to a “het-

erogeneity adjusted” unmixed multinomial logit model in which mean utilities have

additional terms. They suggested estimating the unmixed logit and using a score

statistic based on these additional covariates to test for the null of no random vari-

ation in preferences. Like them, we introduce additional covariates. Unlike them,

we develop a method to estimate jointly the mean preference coefficients and their

random variation; and we only use basic linear estimators.

Section 1 presents the model popularized by Berry–Levinsohn–Pakes (1995) and

1Which include OLS and 2SLS.
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discusses some of the difficulties that practitioners have encountered when taking it

to data. We give a detailed description of our algorithm in section 2; readers who are

not interested in the derivation of our formulæ in fact needn’t read further. The rest

of the paper justifies our algorithm; studies its properties; and discusses extensions.

1 The macro-BLP model

Our leading example is taken from empirical IO. Much work in this area is based

on market share and price data. It has followed Berry et al (1995—hereafter BLP)

in specifying a mixed multinomial logit model with product-level random effects,

and dealing with the possible endogeneity of prices by using GMM with appropriate

instruments.

To fix ideas, we define “the standard model” as follows2. Let J products be

available on each of T markets. Each market contains an infinity of consumers who

choose one of J products. Consumer i on market t derives utility

Xjt (β0 + εi) + ξjt + uijt

from choosing product j. There is also a good 0, the “outside good”, whose utility

for consumer i is simply ui0t. The error terms ε and u are independent of each other,

and of the covariates X and product effects ξ. The vector uit = (ui0t, ui1t, . . . , uiJt)

is independently and identically distributed (iid) as standard type-I Extreme Value

(EV); the product effects ξjt are unknown mean zero random variables, and the

random variation in preferences εi has a mean-zero distribution which is known up

to its variance-covariance matrix Σ0.

Some of the covariates in Xjt may be correlated to the product fixed effects.

The usual example is a model of imperfect price competition where the prices pjt

j = 1, 2, ..., J for market t, which firms set depend on the value of the vector of

unobservable product characteristics, ξt.

The parameters to be estimated are the mean coefficients β0 and the variance-

covariance matrix Σ0. We collect them in θ0 = (β0,Σ0). The data available consists

2While some of our exposition relies on it for simplicity, our methods apply to a more general

model— see section 6.4.
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of the market shares (s1t, . . . , sJt) and prices (p1t, . . . , pJt) of the J varieties of the

good, of the covariates Xt, and of additional instruments Zt. Note that the market

shares do not include information on the proportion S0t of consumers who choose to

buy good 0. Typically the analyst estinates this from other sources. Let us assume

that this is done, so that we can deal with the augmented vector of market shares

(S0t, S1t, . . . , SJt), with Sjt = (1− S0t)sjt for j = 1, . . . , J .

The augmented market shares on market t are obtained by integration over the

variation in preferences: for j = 1, . . . , J

Sjt = Eε
exp (Xjt (β + ε) + ξjt)

1 + ΣJ
k=1 exp (Xkt (β + ε) + ξkt)

(2)

and S0t = 1−
∑J

j=1 Sjt.

Berry et al. (1995) assume that

E (ξjt|Zjt) = 0

for all j ≥ 1 and t. The instruments Zjt may for instance be the characteristics

of competing products, or cost-side variables. The procedure is operationalized by

showing that for given values of θ, the system (2) defines an invertible mapping3 in

IRJ . Call Ξ(St,Xt,θ) its inverse; a GMM estimator obtains by choosing functions

Z∗jt of the instruments and minimizing a well-chosen quadratic norm of

E
(
Ξ(St,Xt,θ)Z∗jt

)
over θ.

These models have proved very popular; but their implementation has faced a

number of problems. Much recent literature has focused on the sensitivity of the

estimates to the instruments used in GMM estimation of the mixed multinomial

logit model. Reynaert–Verboven (2014) showed that using linear combinations of

the instruments can lead to unreliable estimates of the parameters of interest. They

recommend using the optimal instruments given by the Amemiya formula (1974):

Z∗jt = E

(
∂Ξ

∂θ
(St,Xt,θ0)|Zjt

)
.

3See Berry (1994).
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Since the Amemiya formula relies on a consistent first-step estimate of the param-

eters, this is still problematic. Gandhi-Houde (2016) propose “differentiation IVs”

to approximate the optimal instruments for the parameters Σ of the distribution

of the random preferences ε. They also suggest a simple regression to detect weak

instruments. Armstrong (2016) pointed out that instruments based on the character-

istics of competing products achieve identification through correlation with markups.

But when there are a large number of products, many models of supply predict that

markups just do not have enough variation, relative to sampling error. This can give

inconsistent or just uninformative estimates4.

Computation has also been a serious issue. The original BLP approach used a

“nested fixed point” (NFP) approach: every time the objective function to be mini-

mized was evaluated for the current parameter values, a contraction mapping/fixed

pointed algorithm must be employed to compute the implied product effects ξt from

the observed market shares St and current value of θ. This was both very costly

and prone to numerical errors that propagate from the nested fixed point algorithm

to the minimization algorithm. Dubé et al (2012) proposed to resort to constrained

optimization instead. Their simulations suggest that this “MPEC” approach often

outperforms the NFP method, sometimes by a large factor. Lee–Seo (2015) pro-

posed an “approximate BLP” method that inverts a linearized approximation of the

mapping from ξt to St. They argue that this can be even faster than MPEC.

Petrin and Train (2010) have proposed a maximum likelihood estimator that re-

places endogeneous regressors with a control function. This circumvents the need to

compute the implied value of ξ for each value of θ, but still requires solving a nonlinear

optimization problem to compute an estimate of θ0. Solving a nonlinear optimization

problem for a potentially large set of parameters is time-consuming and typically

requires starting values in the neighborhood of the optimal solution, closed-form gra-

dients, and careful monitoring of optimization algorithm by the analyst because the

objective function is not globally concave. The method we propose in this paper

completely circumvents the need to solve a nonlinear optimization problem.

Our estimator relies on an approximate model that is exactly valid when there

4Instruments that shift marginal cost directly (if available) do not need variation in the markup

to shift prices, and therefore do not suffer from these issues. Variation in the number of products

per market may also be used to restore identification, data permitting.
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is no random variation in preferences, and becomes a coarser approximation as the

amplitude of random variation grows. As such, our estimator is not a consistent

estimator of the parameters of the BLP model. On the other hand, it has some very

real advantages that may tip the scale in its favor. Most obviously, it requires a

single linear 2SLS regression that can be computed in microseconds with off-the-shelf

software. Moreover, it need assume very little on the distribution of the random

variation in preferences ε (beyond its limited amplitude), justifying the “robust” in

our title. Since our estimating equation is linear, computing the optimal instruments

is also straightforward.

For those who find the “approximate correctness” of our estimator unsatisfying, it

at least yields “nearly consistent” starting values for the classical nested-fixed point

and MPEC nonlinear optimization procedures at a minimal cost. It also provides use-

ful diagnoses about how well different parameters can be identified with a particular

model and dataset; and a very simple way to select between models.

2 2SLS Estimation in the Standard BLP Model

For the reader in a hurry, we give in this section a step-by-step guide to implementing

our estimator in the standard model. This requires some notation. The dimensions

of the vectors and matrices are as follows:

• for each j ≥ 1 and t, Xjt is a row vector with nX components

• β is a column vector with nX components

• for each i, εi is a row vector with ne components; in the standard model, ne ≤ nX

• v is a row vector with nv components

• B is an ne × nv matrix.

We denote I the set of pairs of indices (m,n) such that the variance-covariance

element Σmn = cov(εim, εin) is not restricted to be zero5. We also assume that we use

5E.g. if ne = nX and Σ is assumed to be diagonal, I = {(1, 1), . . . , (nX , nX)}.
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all moment conditions

E (ξt|Zjt)

for j = 1, . . . , J and t = 1, . . . , T .

Our procedure runs as follows:

Algorithm 1. FRAC estimation of the standard BLP model

1. on every market t, augment the market shares from (s1t, . . . , sJt) to (S0t, S1t, . . . , SJt)

2. for every product-market pair (j ≥ 1, t) :

(a) compute the market-share weighted covariate vector et =
∑J

k=1 SktXkt;

(b) for every (m,n) in I, compute the “artificial regressor”

Kjt
mn =

(
Xjtm

2
− etm

)
Xjtn.

3. (recommended) for every j ≥ 1, regress flexibly Xjt on Zjt

4. (recommended) for every j ≥ 1 and every (m,n) in I, regress flexibly Kjt
mn on

Zjt

5. (recommended) take as instruments Ẑjt the fitted variables in the previous flex-

ible regressions

6. for every j = 1, . . . , J , define yjt = log(Sjt/S0t)

7. run a two-stage least squares regression of y on X with instruments Z, or Ẑ

if using steps 3–5

8. (optional) run a three-stage least squares (3SLS) regression across the T markets

stacking the J equations for each product with a weighting matrix equal to the

inverse of the sample variance of the residuals from step 6.

Steps 3–5 above are meant to compute the optimal instruments for our approx-

imate model. The optimal (Amemiya) instruments are given by a nonparametric

regression; but given the curse of dimensionality, a regression that allows for a rea-

sonably flexible specification is more realistic. It could be combined with a model
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selection process such as Lasso. Steps 3–5 could also be skipped, with the analyst us-

ing Ẑ = Z. Given earlier findings in Reynaert–Verboven 2014, we do not recommend

it. Because of the well-known property of the 3SLS estimator, that misspecification

of one equation of the model can lead to inconsistency in parameter estimates of all

equations of the model, it is unclear whether Step 8 is worth the additional effort.

We intend to explore it in further work.

3 Second-order Expansions

The rest of the paper justifies algorithm 1 and discusses extensions. We start in this

section by deriving the small-σ expansions of the introduction.

We start from a specification of the utility of variety j for consumer i on market

t as

Xjtβ + g (Xjt, εi) + ξjt + uijt (3)

for j = 1, . . . , J ; and Ui0t = ui0t. Define the vectors uit = (ui0t, ui1t, . . . , uiJt); Xt =

(X1t, . . . ,XJt); and ξt = (ξ1t, . . . , ξJt). We assume that

1. the random terms εi are i.i.d. across i;

2. they are distributed independently of (Xt, ξt);

3. Eg(Xjt, εi) = 0 for all Xjt;

4. the random vectors uit are i.i.d. across i and t; and they are distributed inde-

pendently of (εi,Xt, ξt).

These assumptions are all standard, except for the third one which is only a mild

extension of the usual normalization Eεi = 0. They allow for any type of codepen-

dence between the product effects ξt and the covariates Xt. Note that the additive

separability between β and ε is not as strict as it seems. If for instance we start from

a multiplicative model with utilities

nX∑
k=1

Xjtkβkζki + ξjt + uijt

we can always redefine εki = βk(ζki − 1) to recover (3).
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Our crucial assumption, which we maintain throughout, is that the utilities are

affine in β, and additive in the product effects ξ and in the idiosyncratic terms u. On

the other hand, we allow for any kind of distribution for εi and uit. This encompasses

most empirical specifications used, as well as many more. We will refer to three special

cases for illustrative purposes:

1. The standard model, also known as the mixed multinomial logit model, has

g (X, ε) = Xε; and the vector uit is distributed as standard type-I EV iid.

2. The standard binary model (or mixed logit model) further imposes J = 1.

3. The standard symmetric model is a standard model with ε distributed symmet-

rically around 0;

4. The standard Gaussian model is a standard model with ε jointly normal. It is

probably the most commonly used in applications of the macro-BLP method.

5. Finally, the standard Gaussian binary model imposes both 2 and 4.

In order to do small-σ expansions, we need to introduce a scale parameter σ.

We do this with Assumption 1, which fits the usual understanding of what a scale

parameter does6 and also imposes that all moments of ε are finite-valued. The most

common specification has a Gaussian ε and of course obeys Assumption 1.

Assumption 1. For some integer L ≥ 2, all moments of order 1 ≤ l ≤ L + 1 of

the vector ε are finite; they are of order l in some non-negative scalar σ. The first

moment is zero: Eε = 0.

It will be convenient to write ε ≡ σBv with v a random vector of mean zero and

variance identity, so that σB is a square root of the variance-covariance matrix of ε:

Σ = σ2BB′. We only use this decomposition for intermediate results; our expansions

will not depend on how σ and B are normalized. Note that the dimensions of these

vectors and matrices are as follows:

• Xj is a row vector with nX components

6In principle it should be possible to use several scale parameters, say σ1 for one part of the

variance-covariance matrix and σ2 for another one.
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• β is a column vector with nX components

• ε is a row vector with ne components

• v is a row vector with nv components

• B is an ne × nv matrix.

Moreover, we drop the index t from the notation in most of this section as we will

only need to deal with one market at a time.

3.1 Second-order Expansions in the Standard Model

Much of the rest of the remainder of the paper focuses on the standard model, where

the u’s have iid Type I extreme value distributions. We will show in section 6.1 how

to extend our results to more general distributions.

Recall that in the standard model, market shares are given by (2). If the scale

parameter σ was zero, inverting (2) would simply give us

ξj = log
Sj
S0

−Xjβ for j ≥ 1. (4)

This is the starting point of the contraction algorithm described in Berry et al (1995).

Now let σ be positive. With ε = σBv, a Taylor expansion of (4) at σ = 0 would

give (assuming that the expansion is valid7)

ξj = log
Sj
S0

−Xjβ + ΣL
l=1alj(S,X,β)

σl

l!
+O(σL+1). (5)

In this equation, X regroups the covariates of all products and S is the vector of

market shares. Market-share weighted sums will play a crucial role in what follows:

Definition 1. For any J-dimensional vector T of J components, we define the scalar

eST =
J∑
k=1

SkTk.

7We return to this point in section 3.
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By extension, if m is a matrix with J columns (m1, . . . ,mJ), we define the vector

eSm =
J∑
k=1

Skmk.

Finally, we denote T̂j = Tj − eST and m̂j = mj − eSm.

Note that we are using the observed market shares of the J goods, so that these

weighted sums are very easy to compute from the data. It is important to emphasize

that the operator eS is not an expectation, as the augmented market shares Sk for

k ≥ 1 do not sum to one but to (1 − S0). Similarly, the T̂j terms are not residuals,

and eST̂ 6= 0 in general.

Our first goal is to find explicit formulæ for the coefficients alj in (5). While this

can be done at a high level of generality, let us start with a result that covers a large

majority of applications.

In the standard model, g (Xj, ε) is simply Xjε. Denote xj = (XjB)′, a vector of

nv components; and x the matrix whose J columns are (x1, . . . ,xJ). Then

g (Xj, ε) = σx′jv.

We first derive the second-order expansion in σ in the standard model.

Theorem 1 (Intermediate expansion in the standard model). In the standard model,

(i) the alj coefficients only depend on S and on x;

(ii) the first-order coefficients are zero: a1j ≡ 0 for all j;

(iii) the second-order coefficients are given by

a2j = 2xj · eSx− ‖xj‖2 = −xj ·

(
xj − 2

J∑
k=1

Skxk

)
; (6)

(iv) in the standard symmetric model, alj = 0 for all j and odd l ≤ L. Therefore if

L ≥ 3,

ξj = log
Sj
S0

−Xjβ +
a2j
2
σ2 +O(σ4). (7)

Proof. See Appendix ??.
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3.2 The Artificial Regressors in the Standard Model

When truncated of its remainder term, equation (7) becomes linear in the parame-

ters (β, σ2). The coefficients a2j, however, are quadratic combinations of the vectors

xj, which are themselves linear in the unknown coefficients of the matrix B. Fortu-

nately, the formula that gives a2j can be transformed so that it becomes linear in the

coefficients of the variance-covariance matrix Σ of ε.

To see this, note that since xk = B′X ′k,

x′kxl = XkBB
′X ′l .

But since Σ = σ2BB′, we have

σ2x′kxl =

nX∑
m,n=1

ΣmnXkmXln = Tr (ΣXlX
′
k)

where Tr(·) is the trace operator.

Plugging this into (6) gives

σ2a2j
2

= Tr

(
Σ

(
eSX −

Xj

2

)
X ′j

)
.

Define the nX × nX matrices Kj by

Kj =

(
Xj

2
− eSX

)
X ′j

so that we can also write σ2 a2j
2

= −Tr[ΣKj]. The matrices Kj can be constructed

straightforwardly from the covariates X and the market shares S. We call their

elements the “artificial regressors”, for reasons that will soon become clear. Given

that Σ is symmetric,

Tr[ΣKj] =

nX∑
m=1

ΣmmK
j
mm +

∑
m<n

Σmn

(
Kj
mn +Kj

mn

)
.

Additional a priori restrictions can be accommodated very easily. It is for instance

common to restrict Σ to be diagonal. Then only nX artificial regressors enter in this

sum; moreover,

Kj
mm =

(
Xjm

2
−

K∑
k=1

SkXkm

)
Xjm.
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If Σ is not diagonal, then we need to also use the artificial regressors

Kj
mn =

(
Xjm

2
−

K∑
k=1

SkXkm

)
Xjn.

To summarize, we have:

Theorem 2 (Final expansion in the standard model). In the standard model,

ξj = log
Sj
S0

−Xjβ −
nX∑
m=1

ΣmmK
j
mm −

∑
m<n

Σmn

(
Kj
mn +Kj

mn

)
+O(‖Σ‖k/2), (8)

where k = 4 if the model is symmetric, and k ≥ 3 otherwise; and the artificial

regressors are given by

Kj
mm =

(
Xjm

2
−

J∑
k=1

SkXkm

)
Xjm

Kj
mn +Kj

nm = XjmXjn −

(
J∑
k=1

SjXkm

)
Xjn −

(
J∑
k=1

SjXkn

)
Xjm.

4 2SLS Estimation

Equation (8) is linear in the parameters of interest θ = (β,Σ), up to the remainder

term. This immediately suggests neglecting the remainder term and estimating the

approximate model ξj = log
Sj

S0
−Xjβ − Tr[ΣKj].

More precisely, assume we are given a sample of T markets, and instruments

Zjt such that E (ξjt|Zjt) for all j and t. Then our proposed estimator θ̂ fits the

approximate linear set of moment conditions

E

(
log

Sjt
S0t

−
(
Xjtβ + Tr[ΣKjt]

)
|Zjt

)
= 0

which only differs from the original model by a term of order σ3 (or σ4 if the model

is symmetric). This can simply be done by choosing vector functions Z∗jt of the

instruments and running two-stage least squares: for each j = 1, . . . , J , on the sample

t = 1, . . . , T ,
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• linearly regress Xjt and the relevant8 variables Kjt on Z∗jt

• then linearly regress log(Sjt/S0t) on the fitted values.

These are just steps 2 and 6–7 of algorithm 1. Steps 3–5 follow the advice in Reynaert–

Verboven (2014) by computing the optimal instruments. Since the model is linear,

these are simply the nonparametric regressions of the covariates Xjt and of the ar-

tificial regressors Kjt on the instruments Zjt. Since both the covariates (obviously)

and the artificial regressors can be constructing without estimating the BLP model,

the computation of the optimal instruments is straightforward.

5 Properties of the 2SLS Estimation Approach

5.1 Pros and Cons

The drawback of our method is obvious: since this is only an approximate model, the

resulting estimator θ̂ will not converge to the true values as the number of markets

T goes to infinity. We discuss this in much more detail in section 5.2. For now, let

us note that this drawback is tempered by several considerations. First, asymptotics

are not that relevant in empirical IO, as the number of markets available is typically

small; finite-sample peformance matters more, and we will test that in section 7.

More importantly, our estimator has several useful features. Let us list five of them:

1. because the estimator is linear 2SLS, computing it is extremely fast and can be

done in microseconds with any of-the-shelf software.

2. we did not have to assume any distributional form for the random variation

in preferences v. This is a notable advantage on other methods: while they

yield inconsisent estimates if the distribution of v is misspecified, our estimator

remains consistent for the parameters of the approximate model.

3. computing the optimal instruments does not require any first-step estimate since

the estimating equation is linear; they are given by the nonparametric regression

8E.g. only the nX variables Kjt
mm if Σ is restricted to be diagonal, or even a subset if some

coefficients are non random.
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of the elements of Xjt and Kjt on Zjt. That is, the optimal set of instruments

Z∗jt is simply (
E (Xjt|Zjt) , E

(
Kjt|Zjt

))
.

4. even if the econometrician decides to go for a different estimation method, our

proposed 2SLS estimates obtained should provide a set of very good initial

parameter values for an optimization algorithm.

5. the confidence regions on the estimates will give useful diagnoses about the

strength of identification of the parameters, both mean coefficients β and their

random variation Σ. This would be very hard to obtain otherwise, except by

trying different specifications. With our method any number of variants can be

tried in seconds, and model selection is drastically simplified.

5.2 The Quality of the Approximation

Ideally, we would be able to bound the approximation error in the expansion of ξj,

and use this bound to majorize the error in our estimator. While we have not gone

that far, we can justify the local-to-zero validity of the expansion in the usual way.

We are taking a mapping

S = G (ξ,X, σ)

that is differentiable in both ξ and σ; inverting it to ξ = Ξ (S,X, σ); and taking

an expansion to the right of σ = 0 for fixed market shares S and covariates X. The

validity of the expansion for small σ and fixed (X,S) depends on the invertibility of

the Jacobian Gξ.

First consider the standard model. It follows from Berry 1994 that Gξ is invertible

if no observed market share hits zero or one. Applying the Implicit Function Theorem

repeatedly shows that in fact the Taylor series of ξ converges over some interval [0, σ̄]

if ε has all moments finite; and that the expansion is valid at order L if the moments

of ε are bounded to order (L + 1). Characterizing this range of validity is trickier.

Figure ?? in Appendix ?? plots the first four coefficients of the expansion in (σX1)
2

for the standard Gaussian binary model (that is, the Gaussian mixed logit) with one

covariate X1 as market shares vary between zero and one. While this simple example
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can only be illustrative, we find the figure encouraging as to the practical range of

validity of the approximation.

5.3 Robustness

Our expansions rely on the properties of the derivatives of L(t) and on the first two

moments of ε. This has a distinct advantage over competing methods: the lower-

order moments of ε can be estimated by 2SLS, and nothing more needs to be known

about its distribution.

Suppose for instance that the analyst does not want to assume that ε has a

symmetric distribution. Then the coefficients a1j are still zero, and the coefficients

a2j are unchanged. In the absence of symmetry, the approximate model is only valid

up to O(σ3); but running Algorithm 1 may still provide very useful estimators of the

elements of Σ.

6 Extensions

Our technique can easily be extended to different models as long as the utility remains

additive in the product effects ξ. Morerover, the calculations of these and higher-order

terms can easily be automated with the help of a symbolic algebra system.

6.1 Generalized Extreme Values

6.2 Higher-order terms

In Appendix ??, we study in more detail the standard binary model, where calcula-

tions are easily done by hand or using symbolic software to any order of approxima-

tion.

More generally, return to the standard model and assume (as is often done in

practice) that the εm are independent across the covariates m = 1, . . . , nX ; let µlm

denote the (unknown) expected value of εlm. Tedious calculations9 show that the

9Available from the authors.
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second- to fourth-order terms of the expansion in σ (or, equivalently, in ‖Σ‖1/2) are

ξj = log
Sj
S0

−Xjβ +
4∑
l=2

Alj +O(σ5)

with

A2j =
∑
m

Xjm (eSXm −Xjm/2)µ2m;

A3j =
∑
m

Xjm

(
Xjm (eSXm) /2 +

∑
k

SkX
2
km/2−X2

jm/6− (eSXm)2
)
µ3m;

and

A4j =
∑
m

µ4mXjm

(
(eSXm)3 −

∑
k

SkX
2
km(eSXm)−Xjm(eSXm)2/2−X3

jm/24

+
∑
k

X3
km/6 +

∑
k

SkXjmX
2
km/4 +X2

jm(eSXm)

)
+ A2

2j/2 +
∑
m

µ2mXjmeS(A2Xm) + (eSA2)
∑
m

µ2mXjm (Xjm/2− 2(eSXm)) .

First consider the third-order term A3j. It is a linear function of the unknown skew-

nesses µ3m; in fact it can be rewritten as

−
∑
m

T jmµ3m

where we introduced new artificial regressors

T jm ≡ −Xjm

(
Xjm (eSXm) /2 +

∑
k

SkX
2
km/2−X2

jm/6− (eSXm)2
)
.

Algorithm 1 can be adapted in the obvious way to take possible skewness of ε into

account. Note that the procedure remains linear in the parameters (β,µ2,µ3), for

which it generates approximate estimates by 2SLS.

The fourth-order term, on the other hand, contains terms that are linear in the

µ4m (the first two lines of the formula) as well as terms that are quadratic in µ2 (the
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last line). The first group suggests introducing more artificial regressors

Qj
m ≡ −Xjm

(
(eSXm)3 −

∑
k

SkX
2
km(eSXm)−Xjm(eSXm)2/2−X3

jm/24

+
∑
k

X3
km/6 +

∑
k

SkXjmX
2
km/4 +X2

jm(eSXm)

)
,

whose coefficients are the µ4m. The second group can only be dealt with by a nonlinear

estimation method (albeit a very simple one).

6.3 Bias correction

Another way to use the third- and fourth-order terms is as a corrective term: that is,

we run 2SLS on the second-order expansion and we use the formulæ for the higher-

order terms to evaluate the bias due to the approximation.

Denote θ = (Σ,β), and θ0 its true value. Let θ̂2 be our 2SLS estimator based on

a second-order expansion. That is, we estimate the approximate model E(ξ2Z) = 0

with instruments Z and weighting matrix W , where

ξ2j = log
Sj
S0

−Xjβ − Tr ΣKj .

As the number of markets T gets large, θ̂2 converges to the solution θ2 of Ef2(θ2) =

0, with

f2(θ) ≡ ∂ξ2
∂θ

(θ,X,S)ZWZ ′ξ2(θ,X,S).

Alternatively, we could have estimated the model using inversion or MPEC, with an

“exact” ξ. Since E (Z ′ξ(θ0,X,S) = 0, a fortiori Ef∞(θ0) = 0 with

f∞(θ) ≡ ∂ξ

∂θ
(θ,X,S)ZWZ ′ξ(θ,X,S).

The dominant term in the asymptotic bias is given by expanding Ef∞(θ) around

θ = θ2; it is

θ2 − θ0 '
(
E
∂f∞
∂θ

(θ2)

)−1
Ef∞(θ2).

The term in the inverse is easy to approximate:

E
∂f∞
∂θ

(θ2) ' E
∂f2
∂θ

(θ2).
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As for its factor:

Ef∞(θ2) = E(f∞ − f2)(θ2)

' E

(
∂e2
∂θ

(θ2)ZWZ ′ξ2(θ2)

)
+ E

(
∂ξ2
∂θ

(θ2)ZWZ ′(e2)(θ2)

)
.

where e2 = ξ − ξ2. It is easy to approximate since we know how to compute the

higher-order terms ξ3 and ξ4, under any assumption about the skewness and kurtosis

of ε.

6.4 Other Models with Random Coefficients

Let us return to our original structural equations (1). Now assume that the depen-

dence of G in s comes from unobserved heterogeneity ε with scale parameter s, and

that it takes the following form:

G(y, η, β, s) ≡ G∗ (y, EεA
∗(y, η − f1(y)β, sε)) (9)

where ε is unobserved heterogeneity distributed independently of y and η and nor-

malized by Eε = 0 and Eε2 = 1. Note that the macro–BLP model takes this form,

with y = (S,X), η = ξ, s = σ, ε = v, and

A∗j ≡ Pr

(
j = arg max

K=0,1,...,J
(Xkβ + ξk + σx′k · v)

)
and G∗j ≡ Sj − EvA∗j .

Remember thatG(y, F (y, β, s), β, s) = 0, so thatG(y, F (y, β, 0), β, 0) = 0. Given (9),

this gives G∗(y, A∗(y, F (y, β, 0) − f1(y)β, 0) =)0. This can only hold if F (y, β, 0) −
f1(y)β does not depend on β, which implies condition 2.

Now writing G∗(y, EεA
∗(y, F (y, β, s) − f1(y)β, sε)) = 0 and taking derivatives

with respect to s, we get

G∗2Eε (A∗2Fs + A∗3ε) = 0

G∗22 (Eε (A∗2Fs + A∗3ε))
2 +G∗2Eε

(
A∗2Fss + A∗22(Fs)

2 + 2A∗23Fsε+ A∗33ε
2
)

= 0
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Fortunately, this simplifies greatly at s = 0. The first equation gives

G∗2Eε (A∗2Fs(y, β, 0) + A∗3ε) = 0,

where the derivatives A∗ do not depend on ε since s = 0. It follows that Fs(y, β0, 0) =

0 since Eε = 0. Therefore condition 2 also holds. Using the second equation at s = 0,

and given that Fs(y, β0, 0) = 0, we get

G∗2Eε
(
A∗2Fss + A∗33ε

2
)

= 0

so that

Fss(y, β, 0) = − A∗2
A∗33

(y, F (y, β, 0)− f1(y)β)

But (9) satisfies condition 1, so that F (y, β, 0) − f1(y)β = f0(y) and the right hand

side is independent of β. Hence condition 3 holds, and any model that generates (9)

can be easily estimated (approximately) by 2SLS.

Since the macro–BLP model belongs to this class, this confirms that conditions

1–3 hold in the BLP model; we had shown it implicitly in section 3 by deriving

the expansions. Note also that we did not use any distributional assumption on

the random coefficients and the idiosyncratic shocks—although of course the terms

in the expansions do depend on these distributions. We give an illustration for a

one-covariate Gaussian mixed model without the logit assumption in Appendix ??.

7 Simulations

This section presents the results of a Monte Carlo study of an aggregate discrete choice

demand system with random coefficients. It compares the finite sample performance

of our estimator of the parameters to estimators computed using the mathematical

programming with equilibrium constraints (MPEC) approach recommended by Dubé,

Fox and Su (2012) and the control function approach of Petrin and Train (2010). We

also show results demonstrating some of the robustness of our estimation procedure

to assumptions about the distribution of the random coefficients. Specifically, we find

that even if the distribution of random coefficients is misspecified, our procedure still

yields “approximately correct” estimates of the means and variances of the random

coefficients.
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The basic set-up of our Monte Carlo study follows that in Dubé, Fox and Su

(2012). It is a standard static aggregate discrete choice random coefficient demand

system with T = 50 markets and J = 25 products in each market, andK = 3 observed

product characteristics. In the terms of this paper, this is a standard Gaussian model.

Following Dubé, Fox, and Su (2012), let Mt denote the mass of consumers in

market t = 1, 2, . . . , T . Each product is characterized by the vector (X ′jt, ξjt, pjt)
′,

where Xjt is a K × 1 vector of observable attributes of product j = 1, 2, . . . , J in

market t, ξjt is the vertical product characteristic of product j in market t that is

observed by producers and consumers, but unobserved by the econometrician, and

pjt is the price of product j in market t. Collect these variables for each product into

the following market-specific variables: Xt = (X ′1t, . . . ,X
′
Jt)
′, ξt = (ξ1t, ξ2t, . . . , ξJt)

′,

and pt = (p1t, p2t, . . . , pJt)
′.

The conditional indirect utility of consumer i in market t from purchasing product

j is

uijt = β0 +X ′jtβ
x
i − β

p
i pjt + ξjt + εijt

The utility of the j = 0 good, the “outside” good, is equal to u0jt = εi0t. Each

element of βxi = (βxi1, . . . , β
x
iK)′ is assumed to be drawn independently from N(β̄xk , σ

2
k)

distributions, and each βpi is assumed to be drawn independently from N(β̄p, σ
2
p). We

denote βi = (βxi
′, βpi )

′.

We collect all parameters into

θ = (β̄x1 , . . . , β̄
x
K , β̄p, σ

2
1, . . . , σ

2
K , σ

2
p)
′.

The market share for product j is computed assuming that the εijt are independently

and identically distributed Type I extreme value random variables, so that the prob-

ability that consumer i with random preferences βi purchases good j in market t is

equal to

sijt(Xt,pt, ξt|βi) =
exp(β0 +X ′jtβ

x
i − β

p
i pjt + ξjt)

1 +
∑J

k=1 exp(β0 +X ′ktβ
x
i − β

p
i pkt + ξkt)

We compute the observed market share for all goods in market t by drawing ns =

1, 000 draws (zikt) from four N(0, 1) random variables and constructing 1, 000 draws

from βi|θ as follows:

βxikt = β̄xk + σkzikt and βpit = β̄p + σpzipt.
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We then use these draws to compute the observed market share of good j in market

t as:

sjt(Xt,pt, ξt|θ) =
1

ns

ns∑
i=1

sijt(Xt,pt, ξt|βi)

given the vectors Xt, pt, and ξt for each market t.

The values of Xt, pt, ξt and the D× 1 vector of instruments Zjt are generated as

follows. First we draw Xt for all markets t = 1, 2, . . . , T from a multivariate normal

distribution: x1jx2j
x3j

 ∼ N


0

0

0

 ,
 1 −0.8 0.3

−0.8 1 0.3

0.3 0.3 1




The price of good j in market t is equal to:

pjt = |0.5ξjt + ejt + 1.1(x1j + x2j + x3j)|,

where ejt ∼ N(0, 1), distributed independently across products and markets. The

ξjt are N(0, σ2
ξ ) random variables drawn independently across products and markets

for different values of σ2
ξ described below. The data generating process for the vector

of instruments is:

zjtd ∼ U(0, 1) + 0.25(ejt + 1.1(x1j + x2j + x3j))

where d = 1, 2, . . . , D.

For a specified value of the parameter vector θ, following this process for T = 50

markets yields the dataset for one Monte Carlo draw.

7.1 MPEC Approach

The MPEC approach solves a nonlinear minimization problem subject to nonlinear

equilibrium constraints. The first step of the estimation process constructs the fol-

lowing instrumental variables for all the products in all the markets. There are 42

instruments in total constructed from product characteristics xj and excluded instru-

ments zjt:

1, xkj, x
2
kj, x

3
kj, x1jx2jx3j, zjtd, z

2
jtd, z

3
jtd, zjtdx1j, zjtdx2j,

6∏
d=1

zjtd
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Let W denote this (J ∗ T ) × 42 matrix of instruments. In our case (J ∗ T ) = 1, 250

since J = 25 and T = 50.

The MPEC approach solves for θ by minimizing

η′W (W ′W )−1W ′η

subject to

s(η, θ) = S

where S is the vector of observed market shares computed as described above given

the values of xt, pt and ξt and η is a (J ∗ T ) × 1 vector defined by the following

equation:

sjt(η, θ) =
1

Ns

Ns∑
i=1

exp(θ1 + x1jβ
x
1i + x2jβ

x
2i + x3jβ

x
3i + pjtβ

p
i + ηjt)

1 +
∑J

k=1 exp(β
0 + x1kβx1i + x2kβx2i + x3kβx3i + pktβ

p
i + ηkt)

where each (βxi , β
p
i ) is a random draw from the following normal distribution:

N



θ2

θ3

θ4

θ5

 ,

θ6 0 0 0

0 θ7 0 0

0 0 θ8 0

0 0 0 θ9




Note that β0 is not allowed to be random. For purposes of estimation we set Ns =

1, 000. For each Monte Carlo simulation, we start the optimization with the following

initial point: true values for θ, and a vector of zeros for the η vector.

7.2 A Control Function Approach

To implement the Petrin and Train (2010) control function approach, we first run a

linear regression of the price p on all 42 instruments. We denote the residuals from

this regression by ε̂jt.

We then solve the following maximum likelihood problem:

max
θ,ρ

J∑
j=0

T∑
t=1

Sjt · log(s′jt(θ, ρ))
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where j = 0 refers to the outside product, Sjt is the observed market share, and s′jt
is defined by

s′jt(θ, ρ) =
1

NS

NS∑
i=1

exp(β0 + x1jβ
x
1i + x2jβ

x
2i + x3jβ

x
3i + pjtβ

p
i + ρε̂jt)

1 +
∑J

k=1 exp(β0 + x1kβx1i + x2kβx2i + x3kβx3i + pktβ
p
i + ρε̂kt)

where β0 and the (βxi , β
p
i ) are generated as we did with MPEC.

7.3 Our 2SLS Approach

Our 2SLS approach resorts to a slight modification of the standard linear 2SLS esti-

mator to account for the fact that the estimates of the σk and σp cannot be negative.

First, we construct the instrumental variables as the MPEC approach. We then con-

struct the artificial regressors K1 to K4 of Theorem 2 for each product in each market

by applying

X̄it =
J∑
k=1

xikSkt, i = 1, 2, 3, 4

Kjt
i = xij(xij/2− X̄it), i = 1, 2, 3, 4

Note that x4 in the above notation is the price of the product.

The next step performs an instrumental variable regression of log(
Sjt

S0t
) on 1, x1,

x2, x3, x4, D1, D2, D3, D4 using all 42 instruments. If any coefficients for the last four

variables is negative, we set that coefficient to 0 and rerun the regression without that

variable. Keep this process until all the coefficients are positive, or all four variables

are excluded from the instrumental variables regression.

7.4 Monte Carlo Simulation Results

The nonlinear optimization problems for the MPEC estimator and the control func-

tion estimator were solved using the SNOPT optimization package available from the

Stanford Systems Optimization Laboratory. The software employs a sparse sequential

quadratic programming (SQP) algorithm with limited-memory quasi-Newton approx-

imations to the Hessian of the Lagrangian.

Here we run the simulations for 9 scenarios obtained by varying the variance of

the product effects: σ2
ξ = V ar(ξ) = 0.1, 0.5, 1 and the vector of variances of the
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coefficients βi = (β0, βx1i, β
x
2i, β

x
3i, β

p
i )
′:

V ar(βi) = (0, 0.1, 0.1, 0.1, 0.05), (0, 0.2, 0.2, 0.2, 0.1), (0, 0.5, 0.5, 0.5, 0.2).

Note that the square roots of the elements of V ar(βj) represent the relative values of

the scale paraneter σ of models 1, 2, and 5.

All the other parameter specifications are as described above. We group the re-

sults for the same parameters together. The results are in Tables 1–16.

7.5 Pseudo True Value for 2SLS Approach

As explained earlier, the 2SLS estimator is not consistent for the true parameter

values, as it estimates an approximate model. We constructed estimates of the pseudo

true value to which our 2SLS estimator converges by simulating its probability limit.

The first approach increases the number of markets and computes our 2SLS estimates

for this large number of markets. The second approach computes estimates of the

population values of the moments of our 2SLS estimator.

7.5.1 Increasing-number-of-markets Approach

For each simulation, we keep the size and distribution of product characteristics for

each market fixed, but increase the number of markets. For each scenario, we calcu-

late the pseudo true value (and its standard error) by 20 simulations, each simulation

with 100,000 markets. Note that across different simulations, we generate different

product characteristics. Also, when calculating market shares, we use different ran-

dom draws of βi across different simulations, but the same random draws of βi within

a simulation. The results are in table 10. Estimates are calculated by the sample

mean of the 20 simulations. Standard errors are calculated by the sample standard

errors of the 20 simulations.

7.5.2 Moment-based Approach

Here we calculate the pseudo true value in a different way. We first run the first

stage projection: Π̂ = (W ′W )−1W ′X for each simulation, where W is our matrix of
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instruments and X is our matrix of regressors. We then take the average across all

the simulations to get our estimate of the population value of Π. Then in the second

stage, we calculate (WΠ)′X and (WΠ)′Y for each simulation, and then take averages

across all the simulations to get two matrices A and B. The final estimate is then

A−1B. In short, we have

Π = Eall simulations[(W
′W )−1W ′X]

A = Eall simulations[(WΠ)′X]

B = Eall simulations[(WΠ)′Y ]

Estimate = A−1B

With this method, we only have the estimates but cannot get the standard errors.

The estimates under the 9 scenarios are in table 11. There are 1000 simulations and

10,000 markets in each simulation.

7.5.3 Computation Time Comparison

We compared the two MPEC approaches, one starting from the true value, one start-

ing from the results of our 2SLS regression. For the MPEC starting from the true

value, the average number of iterations is 1027.1. The average CPU time is 111.5 sec-

onds to complete the estimation. For the MPEC starting from the 2SLS regression

result, the average number of iterations is 1280.8. The average CPU time is 125.3

seconds. Both approaches have a 100% success rate. As for the estimates, most of

them are very close: the difference is between 10−6 and 10−7.

These results are encouraging for the use of our approach as a method for find-

ing “approximately consistent” starting values for the MPEC and nested-fixed point

estimation procedures. Given the difficulty in finding plausible starting values for

these nonlinear estimation procedures, our 2SLS approach can at least serve this role,

because our estimator simply involves a linear 2SLS estimation.

7.5.4 Impact of Price Elasticity

We performed a set of simulations to determine if changing the value of the price

coefficient, E(βp) changes the distribution of the estimators. The results are in table

12.
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7.6 Lognormal Distribution for β

Here instead of using a normal distribution for the consumer preference parameter,

we assume a lognormal distribution for the consumer preference parameter βi.

βi = β̄iεi

β̄i = [1, 1.5, 1.5, 0.5, 1]

ln(εi) ∼ N(−0.5σ2, σ2)

We study several cases, with σ = 0.3, 0.4, 0.5 and ξjt ∼ N(0,
√

0.1). The rest of the

specification is as before.

Besides the 2SLS approach for second moment, we also introduce the third mo-

ment estimates here. Tables 13-15 plot the distributions of the estimators of the first,

second, and third moments of β1 − βp. Each plot shows the distributions when we

consider only the first two moments and when we consider the first three moments.

Table 16 provides the corresponding summary statistics.

7.6.1 Conclusions from Monte Carlo Analysis

A number of conclusions emerge from the Monte Carlo analysis. Most are expected,

but others point to directions for future research. The results presented in Tables 1

to 9 are consistent with the conclusion that if the researcher is interested in a precise

estimate of the mean of the random coefficients, then using our 2SLS approach does

not imply any significant bias or loss in efficiency relative to the MPEC approach.

In constrast, the control function approach appears to lead to substantial bias in the

estimate of the means of the random coefficients and this bias is larger, the larger is

the variance of ξjt.

The MPEC approach appears to dominate the 2SLS approach for the variance

of the random coefficients. The 2SLS approach seems to be downward biased and

this downward bias appears to be larger, the larger is the variance of the random

coefficients. However, larger values of the variance of ξjt do seem to improve the

performance of the 2SLS estimator of the variance of the random coefficients. In

general, the control function estimator of the variance of the random coefficients is

significantly less biased than the control function estimate of the mean of the random
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coefficients. However, distributions of control function estimate of the variance of

the random coefficients general have a larger spread than the distributions of these

coefficient estimates from the MPEC estimation procedure or our 2SLS estimation

procedure.

Tables 10 and 11 demonstrate that the pseudo true values from applying our 2SLS

procedure are typically not substantially different from the true values for the data

generation process. Based on these results it is difficult to argue that a researcher

would draw economically or even statistically meaningfully different conclusions from

parameters estimates obtained from our 2SLS approach relative to the MPEC ap-

proach.

Table 13 reinforces our previous conclusion about our 2SLS approach. For a range

of values for the expected value of the price coefficient, our approach introduces min-

imal bias in the estimates of the mean of the random coefficients. In constrast, the

control function approach continues to lead to significant bias in the estimates of the

means of the random coefficients. The estimates of the variances of the random coef-

ficients for our 2SLS estimate continue to be downwarded biased in general, but there

are combinations of the variance of ξjt and the variance of the random coefficients

that reduces the magnitude of these biases.

Table 13 compare the performance of our estimator assuming lognormally dis-

tributed random coefficients. This induces significant skewness and kurtosis into the

distribution of the random coefficients. We compare the performance of our 2SLS

estimator that only relies on the first two moments of the random coefficients to a

2SLS estimator that uses information for the third moment of our random coefficients.

We find that for a variety of values for our one parameter lognormal distribution, the

additional information in the third moment of the random coefficients does not appre-

ciably increase the precision in our estimates of the mean and variance of the random

coefficients. In fact, for some of the coefficients, we find that our procedure that uses

third moment information leads to significantly less efficient estimates of the both the

mean and variance of the random coefficients. This is likely due to the fact that our

procedure has a difficult time precisely estimating the third moment of the random

coefficients, as shown in Table 15.
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Table 1: Estimator Distribution for E(β1)

var(ξ)=0.1 var(ξ)=0.1 var(ξ)=0.1
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=0.5 var(ξ)=0.5 var(ξ)=0.5
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=1.0 var(ξ)=1.0 var(ξ)=1.0
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)
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Table 2: Estimator Distribution for E(β2)

var(ξ)=0.1 var(ξ)=0.1 var(ξ)=0.1
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=0.5 var(ξ)=0.5 var(ξ)=0.5
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=1.0 var(ξ)=1.0 var(ξ)=1.0
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)
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Table 3: Estimator Distribution for var(β2)

var(ξ)=0.1 var(ξ)=0.1 var(ξ)=0.1
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=0.5 var(ξ)=0.5 var(ξ)=0.5
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=1.0 var(ξ)=1.0 var(ξ)=1.0
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)
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Table 4: Estimator Distribution for E(β3)

var(ξ)=0.1 var(ξ)=0.1 var(ξ)=0.1
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=0.5 var(ξ)=0.5 var(ξ)=0.5
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=1.0 var(ξ)=1.0 var(ξ)=1.0
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)
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Table 5: Estimator Distribution for var(β3)

var(ξ)=0.1 var(ξ)=0.1 var(ξ)=0.1
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=0.5 var(ξ)=0.5 var(ξ)=0.5
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=1.0 var(ξ)=1.0 var(ξ)=1.0
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)
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Table 6: Estimator Distribution for E(β4)

var(ξ)=0.1 var(ξ)=0.1 var(ξ)=0.1
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=0.5 var(ξ)=0.5 var(ξ)=0.5
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=1.0 var(ξ)=1.0 var(ξ)=1.0
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)
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Table 7: Estimator Distribution for var(β4)

var(ξ)=0.1 var(ξ)=0.1 var(ξ)=0.1
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=0.5 var(ξ)=0.5 var(ξ)=0.5
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=1.0 var(ξ)=1.0 var(ξ)=1.0
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)
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Table 8: Estimator Distribution for E(β5)

var(ξ)=0.1 var(ξ)=0.1 var(ξ)=0.1
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=0.5 var(ξ)=0.5 var(ξ)=0.5
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=1.0 var(ξ)=1.0 var(ξ)=1.0
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)
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Table 9: Estimator Distribution for var(β5)

var(ξ)=0.1 var(ξ)=0.1 var(ξ)=0.1
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=0.5 var(ξ)=0.5 var(ξ)=0.5
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)

var(ξ)=1.0 var(ξ)=1.0 var(ξ)=1.0
var(β)=(0,0.1,0.1,0.1,0.05) var(β)=(0,0.2,0.2,0.2,0.1) var(β)=(0,0.5,0.5,0.5,0.2)
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Table 10: Increasing-number-of-market Approach Pseudo True Value

Parameter Scenarios
True var(β) : (0, 0.1, 0.1, 0.1, 0.05) (0, 0.2, 0.2, 0.2, 0.1) (0, 0.5, 0.5, 0.5, 0.2)
True var(ξ) : 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1

E(β1) = −1
-1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.02 -1.03 -1.03

(.0043) (.0050) (.0058) (.011) (.012) (.013) (.032) (.035) (.038)

E(β2) = 1.5
1.51 1.51 1.51 1.53 1.53 1.53 1.56 1.57 1.57

(.022) (.023) (.024) (.050) (.050) (.050) (.13) (.13) (.13)

E(β3) = 1.5
1.51 1.51 1.51 1.52 1.52 1.52 1.55 1.56 1.56

(.023) (.024) (.025) (.048) (.049) (.049) (.12) (.12) (.12)

E(β4) = 0.5
0.487 0.487 0.487 0.465 0.465 0.464 0.403 0.400 0.398
(.022) (.022) (.022) (.048) (.047) (.047) (.12) (.12) (.11)

E(β5) = −1
-0.999 -0.999 -0.999 -0.990 -0.990 -0.990 -0.954 -0.955 -0.956
(.0086) (.0088) (.0090) (.0184) (.0186) (.0188) (.043) (.044) (.045)

var(β2)
0.0857 0.0856 0.0856 0.152 0.152 0.152 0.288 0.290 0.291
(.011) (.011) (.011) (.028) (.027) (.027) (.078) (.076) (.075)

var(β3)
0.0863 0.0865 0.0866 0.152 0.152 0.153 0.284 0.286 0.288
(.0086) (.0086) (.0087) (.0205) (.020) (.020) (.059) (.057) (.056)

var(β4)
0.0952 0.0949 0.0946 0.182 0.181 0.181 0.400 0.399 0.397
(.0097) (.010) (.010) (.024) (.023) (.023) (.063) (.063) (.062)

var(β5)
0.0480 0.0479 0.0478 0.0888 0.088 0.088 0.148 0.147 0.147
(.0056) (.0057) (.0059) (.013) (.013) (.014) (.031) (.032) (.033)
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Table 11: Moment-based Approach Pseudo True Value

Parameter Scenarios
True var(β) : (0, 0.1, 0.1, 0.1, 0.05) (0, 0.2, 0.2, 0.2, 0.1) (0, 0.5, 0.5, 0.5, 0.2)
True var(ξ) : 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1
E(β1) = −1 -1.01 -1.01 -1.01 -1.04 -1.04 -1.04 -1.11 -1.11 -1.12
E(β2) = 1.5 1.49 1.49 1.49 1.48 1.48 1.48 1.43 1.43 1.43
E(β3) = 1.5 1.49 1.49 1.49 1.48 1.48 1.48 1.43 1.43 1.43
E(β4) = 0.5 0.496 0.496 0.496 0.486 0.486 0.486 0.455 0.455 0.455
E(β5) = −1 -0.989 -0.988 -0.988 -0.958 -0.957 -0.955 -0.873 -0.869 -0.864
var(β2) 0.0854 0.0855 0.0855 0.149 0.149 0.149 0.275 0.275 0.276
var(β3) 0.0855 0.0855 0.0856 0.149 0.149 0.149 0.273 0.274 0.274
var(β4) 0.0938 0.0938 0.0937 0.176 0.175 0.175 0.369 0.368 0.366
var(β5) 0.0421 0.0421 0.0419 0.0685 0.0681 0.0676 0.0920 0.0906 0.0888
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Table 12: First Moment Estimator Distribution with different E(β5)

E(β5) = −1 E(β5) = −2 E(β5) = −3
Distribution of E(β1) Distribution of E(β1) Distribution of E(β1)

Distribution of E(β2) Distribution of E(β2) Distribution of E(β2)

Distribution of E(β3) Distribution of E(β3) Distribution of E(β3)

Distribution of E(β4) Distribution of E(β4) Distribution of E(β4)

Distribution of E(β5) Distribution of E(β5) Distribution of E(β5)
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Table 13: Second Moment Estimator Distribution with different E(β5)

E(β5) = −1 E(β5) = −2 E(β5) = −3
Distribution of var(β2) Distribution of var(β2) Distribution of var(β2)

Distribution of var(β3) Distribution of var(β3) Distribution of var(β3)

Distribution of var(β4) Distribution of var(β4) Distribution of var(β4)

Distribution of var(β5) Distribution of var(β5) Distribution of var(β5)
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Table 14: First Moment Estimator Distribution for log normal case

σ = 0.3 σ = 0.4 σ = 0.5
Distribution of E(β1) Distribution of E(β1) Distribution of E(β1)

Distribution of E(β2) Distribution of E(β2) Distribution of E(β2)

Distribution of E(β3) Distribution of E(β3) Distribution of E(β3)

Distribution of E(β4) Distribution of E(β4) Distribution of E(β4)

Distribution of E(β5) Distribution of E(β5) Distribution of E(β5)
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Table 15: Second Moment Estimator Distribution for log normal case

σ = 0.3 σ = 0.4 σ = 0.5
Distribution of β2 2ndM Distribution of β2 2ndM Distribution of β2 2ndM

Distribution of β3 2ndM Distribution of β3 2ndM Distribution of β3 2ndM

Distribution of β4 2ndM Distribution of β4 2ndM Distribution of β4 2ndM

Distribution of β5 2ndM Distribution of β5 2ndM Distribution of β5 2ndM
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Table 16: Third Moment Estimator Distribution for log normal case

σ = 0.3 σ = 0.4 σ = 0.5
Distribution of β2 3rdM Distribution of β2 3rdM Distribution of β2 3rdM

Distribution of β3 3rdM Distribution of β3 3rdM Distribution of β3 3rdM

Distribution of β4 3rdM Distribution of β4 3rdM Distribution of β4 3rdM

Distribution of β5 3rdM Distribution of β5 3rdM Distribution of β5 3rdM
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Table 17: Summary Statistics for log normal case

Parameter Scenarios
σ σ = 0.3 σ = 0.4 σ = 0.5

Moments included: 2 3 2 3 2 3

E(β1) = −1
-1.03 -1.01 -1.06 -1.03 -1.10 -1.06

(0.0126) (0.0801) (0.0208) (0.0915) (0.0310) (0.107)

E(β2) = 1.5
1.49 1.49 1.47 1.48 1.44 1.45

(0.0321) (0.0568) (0.0557) (0.0723) (0.0861) (0.0960)

E(β3) = 1.5
1.49 1.49 1.47 1.47 1.44 1.45

(0.0331) (0.0540) (0.0572) (0.0698) (0.0879) (0.0929)

E(β4) = 0.5
0.499 0.502 0.497 0.502 0.496 0.501

(0.0201) (0.0385) (0.0358) (0.0471) (0.0560) (0.0599)

E(β5) = −1
-0.976 -0.991 -0.946 -0.972 -0.906 -0.940

(0.0138) (0.0761) (0.0201) (0.0844) (0.0273) (0.0951)

var(β2) = 0.212/0.390/0.639
0.153 0.159 0.229 0.241 0.295 0.316

(0.0201) (0.0306) (0.0390) (0.0476) (0.0620) (0.0721)

var(β3) = 0.212/0.390/0.639
0.153 0.160 0.228 0.244 0.294 0.319

(0.0200) (0.0280) (0.0382) (0.0448) (0.0604) (0.0674)

var(β4) = 0.0235/0.0434/0.0710
0.0248 0.0197 0.0446 0.0357 0.0681 0.0564

(0.0141) (0.0327) (0.0248) (0.0406) (0.0376) (0.0595)

var(β5) = 0.0942/0.174/0.284
0.0579 0.0768 0.0811 0.115 0.0994 0.145

(0.00707 ) (0.0951) (0.0112) (0.106) (0.0162) (0.120)

3rdM(β2) = 0.0926/0.322/0.894
0.0437 0.0961 0.160

(0.0672) (0.0908) (0.135)

3rdM(β3) = 0.0926/0.322/0.894
0.0433 0.0973 0.161

(0.0823) (0.101) (0.130)

3rdM(β4) = 0.00343/0.0119/0.0331
-0.00729 -0.0120 -0.0151
(0.0699) (0.0838) (0.120)

3rdM(β5) = −0.0274/− 0.0955/− 0.265
-0.00950 -0.0177 -0.0244
(0.0499) (0.0576) (0.0664)
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