
1 Exercises and Complements
In this section we give some further worked examples on priors, likelihoods and
posterior distributions and ways to study them and we suggest some exercises.
T

1.0.1 Bayesian Bootstrap

Exercise: The Bayesian bootstrap for the mean can be applied by simulating
the probabilities in the moment equation

Σni=1pixi − µ = 0.
Under the multinomial model for the data the {pi} can be simulated as the ratio
of unit exponential variates to their sum. This leads to

µ ∼ Σgixi
Σigi

where the {gi} are n independent unit exponentials. In R this can be imple-
mented as

g = rexp(n)

mu=sum(g*x)/sum(g).

Generate some data and simulate from the posterior distribution of µ 10,000
times. Study the resulting distribution graphically. Is it nearly normal? Where
is it centered? What is an hpd region? The following commands show an R
session implementing this exercise.
> n=30;nrep=10000;m=rep(0,nrep)
> x=rgamma(n,0.5,0.1); # mean = 0.5/0.1 = 5
> for(i in 1:nrep){g=rexp(n);m[i]=sum(g*x)/sum(g)}
> summary(x) # look at x
Min. 1st Qu. Median Mean 3rd Qu. Max.
5.438e-05 3.000e-01 1.256e+00 3.148e+00 4.365e+00 1.799e+01
> summary(m) # look at m
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.122 2.601 3.049 3.143 3.604 7.497
> hist(m,nclass=40) # inspect the posterior

1.0.2 Bayesian Bootstrapping the Linear Model — page 144

It’s easy to BB the linear model by using the “weights” facility normally supplied
with pachaged software. For example, in R the function lm — look at it by doing
?lm – allows for weighted regression in which Σni=1wie

2
i is minimized with

respect to variation in β. But the coefficients in such a regression are precisely
what is needed for a BB realization. So to do a single BB realization the
command
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g<-rexp(n); b <- lm(y ~ x,weights=g)$coef
will do the trick.
Exercise: Find or generate some y, x data with x an n×k matrix (without

the unit vector) and form nrep BB realizations of the β posterior and compare
the coefficient distribution with the normal linear model result.

1.0.3 Gibbs Sampler

Exercise: Sample from a bivariate normal distribution with moments

µ =

∙
1
3

¸
; Σ =

∙
1 0.7
0.7 1

¸
using the component conditionals

f(y|x) = µy + (σxy/σxx)(x− µx),σyy(1− ρ2xy)

f(x|y) = µx + (σxy/σyy)(y − µy),σxx(1− ρ2yx).

Hint: Start from, say, x = µx, then sample from y|x then sample x|y. Repeat.
Run the chain through 2000 steps; discard the first 200; plot the output. Are
the X(Y ) realizations marginally normal?
Exercise: Sample from a normal n(1, 1) distribution truncated on the left

at zero using the fact that the distribution function is

G(x) =
Φ(x− 1)− Φ(−1)

1− Φ(−1) , x > 0

and that G(X) is distributed uniformly on (0, 1).

1.0.4 Prediction

Suppose the data follow a normal linear model y = x0β + ε with ε ∼ n(0, τ).
To predict the value of Y when x = xf a Bayesian would use the predictive
distribution

p(yf |xf , x, y).
where x, y are the sample data. But this is equal to

p(yf |xf , x, y) =

Z
p(yf ,β, τ |xf , x, y)dβdτ

=

Z
p(yf |β, τ , xf , x, y)p(β, τ |xf , x, y)dβdτ .

This is the normal conditional distribution of Yf averaged with respect to the
posterior distribution of β, τ . You can do this integral analytically but its far
easier to sample from the predictive distribution. This would be done in 3
steps.
1. Sample τ from its (gamma) posterior.
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2. Sample a β from its normal (b, τ(X 0X)) distribution given τ . (Use
mvrnorm in library(MASS)).
3. Sample yf from its normal x0fβ, τ distribution given β, τ .
Exercise: Choose a value xf at which to predict Y. Then use the β, τ

values simulated in the second exercise of section 1 to sample from the predictive
distribution of Y when x = xf .

1.0.5 Schennach’s Method.

For a description of the method see my paper Bayesian Quantile Regression on
the course web page (or on mine).
To experiment with it consider a posterior distribution for the mean µ using

the single moment
gi = yi − µ

The Lagrange multiplier satisfies

λ = argmin
η
Σni=1 exp{ηγi}

and the posterior density of µ is

p(µ|y) ∝ Πni=1eλgi/(Σni=1eλgi)n

So the steps might be:
1. Generate some data e.g. y<-rnorm(30,1,1).
2. Define a function, e.g. fun<-function(l){g<-y-mu;return(sum(exp(l*g)))}
3. To evaluate the posterior at some point mu set mu as, say, mu<-1.0;

then use the R function nlm as, say l<-nlm(fun,0)$est which gives you the
minimizing λ for that value of µ. (The 0 is the start value for the iterative
minimization).
4. Calculate the log posterior as, say, g<-y-mu; lp<- l*g-n*log(sum(exp(l*g))).
5. If you do this repeatedly for different values of mu and store the results

in, say, val you can then plot exp(val) to see the posterior.
Two practical points here: You have to watch for overflow in calculating

exp(val). And you must choose a sensible set of mu values at which to calculate
the posterior. To decide on the latter you might look at mean(y)±3 standard
deviations.

Here is a transcript of an R session that compares the Bayesian bootstrap
and the Betel posteriors with each other and with the asymptotic normal form:
n<-40;val<-rep(0,100);y<-rnorm(n); # normal data; smallish sample
m<-seq(mean(y)-3/sqrt(n),mean(y)+3/sqrt(n),length=100); # plot the pos-

terior over a reasonable range
> for(i in 1:100){mu<-m[i];g<-y-mu;l<-nlm(fun,0)$est;val[i]<-sum(l*g)-n*log(sum(exp(l*g)))}

#evaluate the log BETEL posterior
> d<-m[7]-m[6];s<-sum(d*exp(val));plot(m,exp(val)/s); # normalize and

plot the BETEL posterior

3



> lines(m,dnorm(m,mean(y),1/sqrt(n)),col=”red”) # superimpose the as-
ymptotic distribution
> abline(v=mean(y)) # indicate the sample mean
> nval<-rep(0,10000);for(i in 1:10000){g<-rexp(n);nval[i]<-sum(y*g)/sum(g)}

# 10000 realizations from the BB posterior
> lines(density(nval),col=”blue”) # superimpose a kernel smooth of these

realizations.
Conclusion: for n=40 and normal data BETEL and BB are the same and

equal to their asymptotic form.
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