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Generalized Method of Moments and Empirical Likelihood

1. Introduction

Generalized Method of Moments (henceforth GMM) estimation has become an important

unifying framework for inference in econometrics in the last twenty years. It can be thought

of as nesting almost all the common estimation methods such as maximum likelihood, or-

dinary least squares, instrumental variables and two–stage–least–squares and nowadays it is

an important part of all advanced econometrics text books (Gallant, 1987; Davidson and

McKinnon, 1993; Hamilton, 1994; Hayashi, 2000; Mittelhammer, Judge, and Miller, 2000;

Ruud, 2000; Wooldridge, 2002). Its formalization by Hansen (1982) centers on the presence

of known functions, labelled “moment functions”, of observable random variables and un-

known parameters that have expectation zero when evaluated at the true parameter values.

The method generalizes the “standard” method of moments where expectations of known

functions of observable random variables are equal to known functions of the unknown pa-

rameters. The “standard” method of moments can thus be thought of as a special case of

the general method with the unknown parameters and observed random variables entering

additively separable. The GMM approach links nicely to economic theory where orthogonal-

ity conditions that can serve as such moment functions often arise from optimizing behavior

of agents. For example, if agents make rational predictions with squared error loss, their

prediction errors should be orthogonal to elements of the information set. In the GMM

framework the unknown parameters are estimated by setting the sample averages of these

moment functions, the “estimating equations,” as close to zero as possible.

The framework is sufficiently general to deal with the case where the number of moment

functions is equal to the number of unknown parameters, the so–called “just–identified case”,

as well as the case where the number of moments exceeding the number of parameters to be

estimated, the “over–identified case.” The latter has special importance in economics where
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the moment functions often come from the orthogonality of potentially many elements of

the information set and prediction errors. In the just-identified case it is typically possible

to estimate the parameter by setting the sample average of the moments exactly equal to

zero. In the over-identified case this is not feasible. The solution proposed by Hansen

(1982) for this case, following similar approaches in linear models such as two– and three–

stage–least–squares, is to set a linear combination of the sample average of the moment

functions equal to zero, with the dimension of the linear combination equal to the number

of unknown parameters. The optimal linear combination of the moments depends on the

unknown parameters, and Hansen suggested to employ initial, possibly inefficient, estimates

to estimate this optimal linear combination. Chamberlain (1987) showed that this class of

estimators achieves the semiparametric efficient bound given the set of moment restrictions.

The Chamberlain paper is not only important for its substantive efficiency result, but also

as a precursor to the subsequent empirical likelihood literature by the methods employed:

Chamberlain uses a discrete approximation to the joint distribution of all the variables to

show that the information matrix based variance bound for the discrete parametrization is

equal to the variance of the GMM estimator if the discrete approximation is fine enough.

Th empirical likelihood literature developed partly in response to criticisms regarding

the small sample properties of the two-step GMM estimator. Researchers found in a number

of studies that with the degree of over-identification high, these estimators had substantial

biases, and confidence intervals had poor coverage rates. See among others, Altonji and

Segal (1996), Burnside and Eichenbaum (1996) , and Pagan and Robertson (1997). These

findings are related to the results in the instrumental variables literature that with many or

weak instruments two-stage-least squares can perform very badly (e.g., Bekker, 1994; Bound,

Jaeger, and Baker, 1995; Staiger and Stock, 1997). Simulations, as well as theoretical results,

suggest that the new estimators have LIML-like properties and lead to improved large sample

properties, at the expense of some computational cost.

2. Examples

First the generic form of the GMM estimation problem in a cross–section context is
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presented. The parameter vector θ∗ is a K dimensional vector, an element of Θ, which is

a subset of R
K . The random vector Z has dimension P , with its support Z a subset of

R
P . The moment function, ψ : Z × Θ → R

M , is a known vector valued function such that

E [ψ(Z, θ∗)] = 0, and E [ψ(Z, θ)] 6= 0 for all θ ∈ Θ with θ 6= θ∗. The researcher has available

an independent and identically distributed random sample Z1, Z2, . . . , ZN . We are interested

in the properties of estimators for θ∗ in large samples.

Many, if not most models considered in econometrics fit this framework. Below are some

examples, but this list is by no means exhaustive.

I. Maximum Likelihood

If one specifies the conditional distribution of a variable Y given another variable X as

fY |X(y|x, θ), the score function satisfies these conditions for the moment function:

ψ(Y,X, θ) =
∂ ln f

∂θ
(Y |X, θ).

By standard likelihood theory the score function has expectation zero only at the true value

of the parameter. Interpreting maximum likelihood estimators as generalized method of

moments estimators suggests a way of deriving the covariance matrix under misspecification

(e.g., White, 1982), as well as an interpretation of the estimand in that case.

II. Linear Instrumental Variables

Suppose one has a linear model

Y = X ′θ∗ + ε,

with a vector of instruments Z. In that case the moment function is

ψ(Y,X, Z, θ) = Z ′ · (Y −X ′θ).

The validity of Z as an instrument, together with a rank condition implies that θ∗ is the

unique solution to E[ψ(Y,X, Z, θ)] = 0. This is a case where the fact that the methods allow

for more moments than unknown parameters is of great importance as often instruments are

independent of structural error terms, implying that any function of the basic instruments

is orthogonal to the errors.



Imbens/Wooldridge, Cemmap Lecture Notes 17, June ’09 4

III. A Dynamic Panel Data Model

Consider the following panel data model with fixed effects:

Yit = ηi + θ · Yit−1 + εit,

where εit has mean zero given {Yit−1, Yit−2, . . .}. We have observations Yit for t = 1, . . . , T

and i = 1, . . . , N , with N large relative to T . This is a stylized version of the type of

panel data models studied in Keane and Runkle (1992), Chamberlain (1992), and Blundell

and Bond (1998). This specific model has previously been studied by Bond, Bowsher, and

Windmeijer (2001). One can construct moment functions by differencing and using lags as

instruments, as in Arellano and Bond (1991), and Ahn and Schmidt, (1995):

ψ1t(Yi1, . . . , YiT , θ) =











Yit−2

Yit−3

...
Yi1











·
(

(Yit − Yit−1 − θ · (Yit−1 − Yit−2)
)

.

This leads to t − 2 moment functions for each value of t = 3, . . . , T , leading to a total of

(T − 1) · (T − 2)/2 moments, with only a single parameter. One would typically expect

that the long lags do not necessarily contain much information, but they are often used to

improve efficiency. In addition, under the assumption that the initial condition is drawn

from the stationary long-run distribution, the following additional T − 2 moments are valid:

ψ2t(Yi1, . . . , YiT , θ) = (Yit−1 − Yit−2) · (Yit − θ · Yit−1).

Despite the different nature of the two sets of moment functions, which makes them poten-

tially very useful in the case that the autoregressive parameter is close to unity, they can all

be combined in the GMM framework.

3. Two-step GMM Estimation

3.1 Estimation and Inference

In the just-identified case where M , the dimension of ψ, and K, the dimension of θ are

identical, one can generally estimate θ∗ by solving

0 =
1

N

N
∑

i=1

ψ(Zi, θ̂gmm). (1)
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If the sample average is replaced by the expectation, the unique solution is equal to θ∗, and

under regularity conditions (e.g., Hansen, 1982, Newey and McFadden, 1994), solutions to

(1) will be unique in large samples and consistent for θ∗. If M > K the situation is more

complicated as in general there will be no solution to (1).

Hansen’s (1982) solution was to generalize the optimization problem to the minimization

of the quadratic form

QC,N (θ) =
1

N

[ N
∑

i=1

ψ(zi, θ)

]′

· C ·
[ N
∑

i=1

ψ(zi, θ)

]

, (2)

for some positive definite M × M symmetric matrix C . Under the regularity conditions

given in Hansen (1982) and Newey and McFadden (1994), the minimand θ̂gmm of (2) has the

following large sample properties:

θ̂gmm
p−→ θ∗,

√
N (θ̂gmm − θ∗)

d−→ N (0, (Γ′CΓ)−1Γ′C∆CΓ(Γ′CΓ)−1),

where

∆ = E [ψ(Zi, θ
∗)ψ(Zi, θ

∗)′] and Γ = E

[

∂

∂θ′
ψ(Zi, θ

∗)

]

.

In the just–identified case with the number of parameters K equal to the number of moments

M , the choice of weight matrix C is immaterial, as θ̂gmm will, at least in large samples, be

equal to the value of θ that sets the average moments exactly equal to zero. In that case

Γ is a square matrix, and because it is full rank by assumption, Γ is invertible and the

asymptotic covariance matrix reduces to (Γ′∆−1Γ)−1, irrespective of the choice of C . In the

overidentified case with M > K, however, the choice of the weight matrix C is important.

The optimal choice for C in terms of minimizing the asymptotic variance is in this case

the inverse of the covariance of the moments, ∆−1. Using the optimal weight matrix, the

asymptotic distribution is

√
N (θ̂gmm − θ∗)

d−→ N (0, (Γ′∆−1Γ)−1). (3)
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This estimator is generally not feasible because typically ∆−1 is not known to the researcher.

The feasible solution proposed by Hansen (1982) is to obtain an initial consistent, but gen-

erally inefficient, estimate of θ∗ by minimizing QC,N(θ) using an arbitrary positive definite

M ×M matrix C , e.g., the identity matrix of dimension M . Given this initial estimate, θ̃,

one can estimate the optimal weight matrix as

∆̂−1 =

[

1

N

N
∑

i=1

ψ(zi, θ̃) · ψ(zi, θ̃)
′

]−1

.

In the second step one estimates θ∗ by minimizing Q∆̂−1,N (θ). The resulting estimator θ̂gmm

has the same first order asymptotic distribution as the minimand of the quadratic form with

the true, rather than estimated, optimal weight matrix, Q∆−1,N (θ).

Hansen (1982) also suggested a specification test for this model. If the number of moments

exceeds the number of free parameters, not all average moments can be set equal to zero,

and their deviation from zero forms the basis of Hansen’s test, similar to tests developed by

Sargan (1958). See also Newey (1985a, 1985b). Formally, the test statistic is

T = Q∆̂,N(θ̂gmm).

Under the null hypothesis that all moments have expectation equal to zero at the true value of

the parameter, θ∗, the distribution of the test statistic converges to a chi-squared distribution

with degrees of freedom equal to the number of over-identifying restrictions, M −K.

One can also interpret the two–step estimator for over–identified GMM models as a just–

identified GMM estimator with an augmented parameter vector (e.g., Newey and McFadden,

1994; Chamberlain and Imbens, 1995). Define the following moment function:

h(x, δ) = h(x, θ,Γ,∆, β,Λ) =













Λ − ∂ψ
∂θ′

(x, β)
Λ′Cψ(x, β)

∆ − ψ(x, β)ψ(x, β)′

Γ − ∂ψ
∂θ′

(x, θ)
Γ′∆−1ψ(x, θ)













. (4)

Because the dimension of the moment function h(·), M×K+K+(M+1)×M/2+M×K+K =

(M +1)× (2K +M/2), is equal to the combined dimensions of its parameter arguments, the
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estimator for δ = (θ,Γ,∆, β,Λ) obtained by setting the sample average of h(·) equal to zero

is a just–identified GMM estimator. The first two components of h(x, δ) depend only on β

and Λ, and have the same dimension as these parameters. Hence β∗ and Λ∗ are implicitly

defined by the equations

E

[(

Λ − ∂ψ
∂θ′

(X, β)
Λ′Cψ(X, β)

)]

= 0.

Given β∗ and Λ∗, ∆∗ is defined through the third component of h(x, δ), and given β∗, Λ∗

and ∆∗ the final parameters θ∗ and Γ∗ are defined through the last two moment functions.

This interpretation of the over-identified two-step GMM estimator as a just-identified

GMM estimator in an augmented model is interesting because it also emphasizes that results

for just–identified GMM estimators such as the validity of the bootstrap can directly be

translated into results for over–identified GMM estimators. In another example, using the

standard approach to finding the large sample covariance matrix for just–identified GMM

estimators one can use the just-identified representation to find the covariance matrix for

the over–identified GMM estimator that is robust against misspecification: the appropriate

submatrix of

(

E

[

∂h

∂δ
(X, δ∗)

])−1

E[h(Z, δ∗)h(Z, δ∗)′]

(

E

[

∂h

∂δ
(Z, δ∗)

])−1

,

estimated by averaging at the estimated values. This is the GMM analogue of the White

(1982) covariance matrix for the maximum likelihood estimator under misspecification.

3.2 Efficiency

Chamberlain (1987) demonstrated that Hansen’s (1982) estimator is efficient, not just in

the class of estimators based on minimizing the quadratic form QN,C(θ), but in the larger

class of semiparametric estimators exploiting the full set of moment conditions. What is par-

ticularly interesting about this argument is the relation to the subsequent empirical likelihood

literature. Many semiparametric efficiency bound arguments (e.g., Newey, 1991; Hahn, 1994)

implicitly build fully parametric models that include the semiparametric one and then search

for the least favorable parametrization. Chamberlain’s argument is qualitatively different.
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He proposes a specific parametric model that can be made arbitrarily flexible, and thus

arbitrarily close to the model that generated the data, but does not typically include that

model. The advantage of the model Chamberlain proposes is that it is in some cases very

convenient to work with in the sense that its variance bound can be calculated in a straight-

forward manner. The specific model assumes that the data are discrete with finite support

{λ1, . . . , λL}, and unknown probabilities π1, . . . , πL. The parameters of interest are then

implicitly defined as functions of these points of support and probabilities. With only the

probabilities unknown, the variance bound on the parameters of the approximating model

are conceptually straightforward to calculate. It then sufficies to translate that into a vari-

ance bound on the parameters of interest. If the original model is over-identified, one has

restrictions on the probabilities. These are again easy to evaluate in terms of their effect on

the variance bound.

Given the discrete model it is straightforward to obtain the variance bound for the prob-

abilities, and thus for any function of them. The remarkable point is that one can rewrite

these bounds in a way that does not involve the support points. This variance turns out to

be identical to the variance of the two-step GMM estimator, thus proving its efficiency.

4. Empirical Likelihood

4.1 Background

To focus ideas, consider a random sample Z1, Z2, . . . , ZN , of size N from some unknown

distribution. If we wish to estimate the common distribution of these random variables, the

natural choice is the empirical distribution, that puts weight 1/N on each of the N sample

points. However, in a GMM setting this is not necessarily an appropriate estimate. Suppose

the moment function is

ψ(z, θ) = z,

implying that the expected value of Z is zero. Note that in this simple example this moment

function does not depend on any unknown parameter. The empirical distribution function

with weights 1/N does not satisfy the restriction EF [Z] = 0 as EF̂emp
[Z] =

∑

zi/N 6= 0.
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The idea behind empirical likelihood is to modify the weights to ensure that the estimated

distribution F̂ does satisfy the restriction. In other words, the approach is to look for

the distribution function closest to F̂emp, within the set of distribution functions satisfying

EF [Z] = 0. Empirical likelihood provides an operationalization of the concept of closeness

here. The empirical likelihood is

L(π1, . . . , πN) =
N
∏

i=1

πi,

for 0 ≤ πi ≤ 1,
∑N

i=1 πi = 1. This is not a likelihood function in the standard sense, and thus

does not have all the properties of likelihood functions. The empirical likelihood estimator

for the distribution function is

max
π

N
∑

i=1

πi subject to
N
∑

i=1

πi = 1, and
N
∑

i=1

πizi = 0.

Without the second restriction the π’s would be estimated to be 1/N , but the second restric-

tion forces them slightly away from 1/N in a way that ensures the restriction is satisfied. In

this example the solution for the Lagrange multiplier is the solution to the equation

N
∑

i=1

zi
1 + t · zi

= 0,

and the solution for πi is:

π̂i = 1/(1 + t · zi).

More generally, in the over-identified case a major focus is on obtaining point estimates

through the following estimator for θ:

max
θ,π

N
∑

i=1

lnπ, subject to
N
∑

i=1

πi = 1,
N
∑

i=1

πi · ψ(zi, θ) = 0. (5)

Qin and Lawless (1994) and Imbens (1997) show that this estimator is equivalent, to order

Op(N
−1/2), to the two-step GMM estimator. This simple discussion illustrates that for some,

and in fact many, purposes the empirical likelihood has the same properties as a parametric

likelihood function. This idea, first proposed by Owen (1988), turns out to be very powerful



Imbens/Wooldridge, Cemmap Lecture Notes 17, June ’09 10

with many applications. Owen (1988) shows how one can construct confidence intervals and

hypothesis tests based on this notion.

Related ideas have shown up in a number of places. Cosslett’s (1981) work on choice-

based sampling can be interpreted as maximizing a likelihood function that is the product

of a parametric part coming from the specification of the conditional choice probabilities,

and an empirical likelihood function coming from the distribution of the covariates. See

Imbens (1992) for a connection between Cosslett’s work and two-step GMM estimation. As

mentioned before, Chamberlain’s (1987) efficiency proof essentially consists of calculating

the distribution of the empirical likelihood estimator and showing its equivalence to the

distribution of the two-step GMM estimator. See Back and Brown (1990) and Kitamura

and Stutzer (1997) for a discussion of the dependent case.

4.2 Cressie-Read Discrepancy Statistics and Generalized Empirical Likeli-

hood

In this section we consider a generalization of the empirical likelihood estimators based

on modifications of the objective function. Corcoran (1998) (see also Imbens, Spady and

Johnson, 1998), focus on the Cressie-Read discrepancy statistic, for fixed λ, as a function of

two vectors p and q of dimension N (Cressie and Read 1984):

Iλ(p, q) =
1

λ · (1 + λ)

N
∑

i=1

pi

[

(

pi
qi

)λ

− 1

]

.

The Cressie-Read minimum discrepancy estimators are based on minimizing this difference

between the empirical distribution, that is, the N -dimensional vector with all elements equal

to 1/N , and the estimated probabilities, subject to all the restrictions being satisfied.

min
π,θ

Iλ(ι/N, π) subject to
N
∑

i=1

πi = 1, and
N
∑

i=1

πi · ψ(zi, θ) = 0.

If there are no binding restrictions, because the dimension of ψ(·) and θ agree (the just-

identified case), the solution for π is the empirical distribution it self, and πi = 1/N . More

generally, if there are over-identifying restrictions, there is no solution for θ to
∑

i ψ(zi, θ)/N =

0, and so the solution for πi is as close as possible to 1/N in a way that ensures there is
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an exact solution to
∑

i πiψ(zi, θ) = 0. The precise way in which the notion “as close as

possible” is implemented is reflected in the choice of metric through λ.

Three special cases of this class have received most attention. First, the empirical like-

lihood estimator itself, which can be interpreted as the case with λ → 0. This has the nice

interpretation that it is the exact maximum likelihood estimator if Z has a discrete distri-

bution. It does not rely on the discreteness for its general properties, but this interpretation

does suggest that it may have attractive large sample properties.

The second case is the exponential tilting estimator with λ → −1 (Imbens, Spady and

Johnson, 1998), whose objective function is equal to the empirical likelihood objective funtion

with the role of π and ι/N reversed. It can also be written as

min
π,θ

N
∑

i=1

πi lnπi subject to
N
∑

i=1

πi = 1, and
N
∑

i=1

πiψ(zi, θ) = 0.

Third, the case with λ = −2. This case was originally proposed by Hansen, Heaton and

Yaron (1996) as the solution to

min
θ

1

N

[ N
∑

i=1

ψ(zi, θ)

]′

·
[

1

N

N
∑

i=1

ψ(zi, θ)ψ(zi, θ)
′

]−1

·
[ N
∑

i=1

ψ(zi, θ)

]

,

where the GMM objective function is minimized over the θ in the weight matrix as well as the

θ in the average moments. Hansen, Heaton and Yaron (1996) labeled this the continuously

updating estimator. Newey and Smith (2004) pointed out that this estimator fits in the

Cressie-Read class.

Smith (1997) considers a more general class of estimators, which he labels generalized

empirical likelihood estimators, starting from a different perspective. For a given function

g(·), normalized so that it satisfied g(0) = 1, g′(0) = 1, consider the saddle point problem

max
θ

min
t

N
∑

i=1

g(t′ψ(zi, θ)).

This representation is more attractive from a computational perspective, as it reduces the

dimension of the optimization problem to M + K rather than a constrained optimization
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problem of dimension K + N with M + 1 restrictions. There is a direct link between the

t parameter in the GEL representation and the Lagrange multipliers in the Cressie-Read

representation. Newey and Smith (2004) how to choose g(·) for a given λ so that the

corresponding GEL and Cressie-Read estimators agree.

In general the differences between the estimators within this class is relatively small

compared to the differences between them and the two-step GMM estimators. In practice

the choice between them is largely driven by computational issues, which will be discussed in

more detail in Section 5. The empirical likelihood estimator does have the advantage of its

exact likelihood interpretation and the resulting optimality properties for its bias-corrected

version (Newey and Smith, 2004). On the other hand, Imbens, Spady and Johnson (1998)

argue in favor of the exponential tilting estimator as its influence function stays bounded

where as denominator in the probabilities in the empirical likelihood estimator can get large.

In simulations researcher have encountered more convergence problems with the continuously

updating estimator (e.g., Hansen, Heaton and Yaron, 1996; Imbens, Johnson and Spady,

1998).

4.3 Testing

Associated with the empirical likelihood estimators are three tests for over-identiyfing

restrictions, similar to the classical trinity of tests, the likelihood ratio, the Wald, and the

Lagrange multiplier tests. Here we briefly review the implementation of the three tests in

the empirical likelihood context. The leading terms of all three tests are identical to that of

the test developed by Hansen (1982) based on the quadratic form in the average moments.

The first test is based on the value of the empirical likelihood function. The test statistic

compares the value of the empirical likelihood function at the restricted estimates, the π̂i

with that at the unrestricted values, πi = 1/N :

LR = 2 · (L(ι/N) − L(π̂)), where L(π) =
N
∑

i=1

lnπi.

As in the parametric case, the difference between the restricted and unrestricted likelihood

function is multiplied by two to obtain, under regularity conditions, e.g., Newey and Smith
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(2004), a chi-squared distribution with degrees of freedom equal to the number of over-

identifying restrictions for the test statistic under the null hypothesis.

The second test, similar to Wald tests, is based on the difference between the average

moments and their probability limit under the null hypothesis, zero. As in the standard

GMM test for overidentifying restrictions (Hansen, 1982), the average moments are weighted

by the inverse of their covariance matrix:

Wald =
1

N

[

N
∑

i=1

ψ(zi, θ̂)

]′

∆̂−1

[

N
∑

i=1

ψ(zi, θ̂)

]

,

where ∆̂ is an estimate of the covariance matrix

∆ = E[ψ(Z, θ∗)ψ(Z, θ)′],

typically based on a sample average at some consistent estimator for θ∗:

∆̂ =
1

N

N
∑

i=1

ψ(zi, θ̂)ψ(zi, θ̂)
′,

or sometimes a fully efficient estimator for the covariance matrix,

∆̂ =
1

N

N
∑

i=1

π̂iψ(zi, θ̂)ψ(zi, θ̂)
′,

The standard GMM test uses an initial estimate of θ∗ in the estimation of ∆, but with

the empirical likelihood estimators it is more natural to substitute the empirical likelihood

estimator itself. The precise properties of the estimator for ∆ do not affect the large sample

properties of the test, and like the likelihood ratio test, the test statistic has in large samples

a chi-squared distribution with degrees of freedom equal to the number of over-identifying

restrictions.

The third test is based on the Lagrange multipliers t. In large samples their variance is

Vt = ∆−1 −∆−1Γ(Γ′∆−1Γ)−1Γ′∆−1.

This matrix is singular, with rank equal to M −K. One option is therefore to compare the

Lagrange multipliers to zero using a generalized inverse of their covariance matrix:

LM1 = t′
(

∆−1 − ∆−1Γ(Γ′∆−1Γ)−1Γ′∆−1
)−g

t.
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This is not very attractive, as it requires the choice of a generalized inverse. An alternative

is to use the inverse of ∆−1 itself, leading to the test statistic

LM2 = t′∆t.

Because

√
N · t = Vt

1√
N

N
∑

i=1

ψ(zi, θ
∗) + op(1),

and Vt∆Vt = VtV
−g
t Vt = Vt, it follows that

LM2 = LM1 + op(1).

Imbens, Johnson and Spady (1998) find in their simulations that tests based on LM2 perform

better than those based on LM1. In large samples both have a chi-squared distribution with

degrees of freedom equal to the number of over-identifying restrictions. Again we can use

this test with any efficient estimator for t, and with the Lagrange multipliers based on any

of the discrepancy measures.

Imbens, Spady and Johnson (1998), and Bond, Bowsher and Windmeijer (2001) inves-

tigate through simulations the small sample properties of various of these tests. It appears

that the Lagrange multiplier tests are often more attractive than the tests based on the

average moments, although there is so far only limited evidence in specific models. One can

use the same ideas for constructing confidence intervals that do not directly use the nor-

mal approximation to the sampling distribution of the estimator. See for discussions Smith

(1998) and Imbens and Spady (2002).

6. Computational Issues

The two-step GMM estimator requires two minimizations over a K-dimensional space.

The empirical likelihood estimator in its original likelihood form (5) requires maximization

over a space of dimension K (for the parameter θ) plus N (for the N probabilities), subject

to M+1 restrictions (on the M moments and the adding up restriction for the probabilities).

This is in general a much more formidable computational problem than two optimizations
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in a K-dimensional space. A number of approaches have been attempted to simplify this

problem. Here we disuss three of them in the context of the exponential tilting estimator,

although most of them directly carry over to other members of the Cressie-Read or GEL

classes.

6.1 Solving the First Order Conditions

The first approach we discuss is focuses on the first order conditions and then concentrates

out the probabilities π. This reduces the problem to one of dimension K + M , K for the

parameters of interest and M for the Lagrange multipliers for the restrictions, which is is

clearly a huge improvement, as the dimension of the problem no longer increases with the

sample size. Let µ and t be the Lagrange multipliers for the restrictions
∑

πi = 1 and
∑

πiψ(zi, θ) = 0. The first order conditions for the π’s and θ and the Lagrange multipliers

are

0 = lnπi − 1 − µ+ t′ψ(zi, θ),

0 =
N
∑

i=1

πi
∂ψ

∂θ′
(zi, θ),

0 = exp(µ − 1)
N
∑

i=1

exp (t′ψ(zi, θ) ,

0 = exp(µ − 1)
N
∑

i=1

ψ(zi, θ) · exp (t′ψ(zi, θ)) .

The solution for π is

πi = exp(µ− 1 + t′ψ(zi, θ)).

To determine the Lagrange multipliers t and the parameter of interest θ we only need πi up

to a constant of proportionality, so we can solve

0 =

N
∑

i=1

ψ(zi, θ) exp(t′ψ(zi, θ)), (6)

and

0 =
N
∑

i=1

t′
∂ψ

∂θ
(zi, θ) exp(t′ψ(zi, θ)) (7)
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Solving the system of equations (6) and (7) is not straightforward. Because the probability

limit of the solution for t is zero, the derivative with respect to θ of both first order conditions

converges zero. Hence the matrix of derivatives of the first order conditions converges to

a singular matrix. As a result standard approaches to solving systems of equations can

behave erratically, and this approach to calculating θ̂ has been found to have poor operating

characteristics.

6.2 Penalty Function Approaches

Imbens, Spady and Johnson (1998) characterize the solution for θ and t as

max
θ,t

K(t, θ) subject to Kt(t, θ) = 0, (8)

where K(t, θ) is the empirical analogue of the cumulant generating function:

K(t, θ) = ln

[

1

N

N
∑

i=1

exp(t′ψ(zi, θ)

]

.

They suggest solving this optimization problem by maximizing the unconstrained objective

function with a penalty term that consists of a quadratic form in the restriction:

max
θ,t

K(t, θ) − 0.5 · A ·Kt(t, θ)
′W−1Kt(t, θ), (9)

for some positive definite M × M matrix W , and a positive constant A. The first order

conditions for this problem are

0 = Kθ(t, θ) −A ·Ktθ(t, θ)W
−1Kt(t, θ),

0 = Kt(t, θ) − A ·Ktt(t, θ)W
−1Kt(t, θ).

For A large enough the solution to this unconstrained maximization problem is identical to

the solution to the constrained maximization problem (8). This follows from the fact that the

constraint is in fact the first order condition for K(t, θ). Thus, in contrast to many penalty

function approaches, one does not have to let the penalty term go to infinity to obtain the

solution to the constrained optimization problem, one only needs to let the penalty term



Imbens/Wooldridge, Cemmap Lecture Notes 17, June ’09 17

increase sufficiently to make the problem locally convex. Imbens, Spady and Johnson (1998)

suggest choosing

W = Ktt(t, θ) +Kt(t, θ)Kt(t, θ)
′,

for some initial values for t and θ as the weight matrix, and report that estimates are generally

not sensitive to the choices of t and θ.

6.3 Concentrating out the Lagrange Multipliers

Mittelhammer, Judge and Schoenberg (2001) suggest concentrating out both probabilities

and Lagrange multipliers and then maximizing over θ without any constraints. As shown

above, concentrating out the probabilities πi can be done analytically. Although it is not

in general possible to solve for the Lagrange multipliers t analytically, other than in the

continuously updating case, for given θ it is easy to numerically solve for t. This involves

solving, in the exponential tilting case,

min
t

N
∑

i=1

exp(t′ψ(zi, θ)).

This function is strictly convex as a function of t, with the easy to calculate first and second

derivatives equal to

N
∑

i=1

ψ(zi, θ) exp(t′ψ(zi, θ)),

and

N
∑

i=1

ψ(zi, θ)ψ(zi, θ)
′ exp(t′ψ(zi, θ)),

respectively. Therefore concentrating out the Lagrange multipliers is computationally fast

using a Newton-Raphson algorithm. The resulting function t(θ) has derivatives with respect

to θ equal to:

∂t

∂θ′
(θ) = −

(

1

N

N
∑

i=1

ψ(zi, θ)ψ(zi, θ)
′ exp(t(θ)′ψ(zi, θ)

)−1
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·
(

1

N

N
∑

i=1

∂ψ

∂θ′
(zi, θ) exp(t(θ)′ψ(zi, θ) + ψ(zi, θ)t(θ)

′∂ψ

∂θ′
(zi, θ) exp(t(θ)′ψ(zi, θ))

)

After solving for t(θ), one can solve

max
θ

N
∑

i=1

exp(t(θ)′ψ(zi, θ)). (10)

Mittelhammer, Judge, and Schoenberg (2001) use methods that do not require first deriva-

tives to solve (10). This is not essential. Calculating first derivatives of the concentrated

objective function only requires first derivatives of the moment functions, both directly and

indirectly through the derivatives of t(θ) with respect to θ. In general these are straightfor-

ward to calculate and likely to improve the performance of the algorithm.

In this method in the end the researcher only has to solve one optimization in a K-

dimensional space, with the provision that for each evaluation of the objective function one

needs to numerically evaluate the function t(θ) by solving a convex maximization problem.

The latter is fast, especially in the exponential tilting case, so that although the resulting op-

timization problem is arguably still more difficult than the standard two-step GMM problem,

in practice it is not much slower. In the simulations below I use this method for calculating

the estimates. After concentrating out the Lagrange multipliers using a Newton-Rahpson

algorithm that uses both first and second derivatives, I use a Davidon-Fletcher-Powell algo-

rithm to maximize over θ, using analytic first derivatives. Given a direction I used a line

search algoritm based on repeated quadratic approximations.

7. A Dynamic Panel Data Model

To get a sense of the finite sample properties of the empirical likelihood estimators we

compare some of the GMM methods in the context of the panel data model briefly discussed

in Section 2, using some simulation results from Imbens. The model is

Yit = ηi + θ · Yit−1 + εit,

where εit has mean zero given {Yit−1, Yit−2, . . .}. We have observations Yit for t = 1, . . . , T

and i = 1, . . . , N , with N large relative to T . This is a stylized version of the type of panel
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data models extensively studied in the literature. Bond, Bowsher and Windmeijer (2001)

study this and similar models to evaluate the performance of test statistics based on different

GMM and gel estimators. We use the moments

ψ1t(Yi1, . . . , YiT , θ) =











Yit−2

Yit−3

...
Yi1











·
(

(Yit − Yit−1 − θ · (Yit−1 − Yit−2)
)

.

This leads to t − 2 moment functions for each value of t = 3, . . . , T , leading to a total of

(T − 1) · (T − 2)/2 moments. In addition, under the assumption that the initial condition

is drawn from the stationary long-run distribution, the following additional T − 2 moments

are valid:

ψ2t(Yi1, . . . , YiT , θ) = (Yit−1 − Yit−2) · (Yit − θ · Yit−1).

It is important to note, given the results discussed in Section 4, that the derivatives of these

moments are stochastic and potentially correlated with the moments themselves. As a result

there is potentially a substantial difference between the different estimators, especially when

the degree of overidentification is high.

We report some simulations for a data generating process with parameter values estimated

on data from Abowd and Card (1989) taken from the PSID. See also Card (1994). This data

set contains earnings data for 1434 individuals for 11 years. The individuals are selected

on having positive earnings in each of the eleven years, and we model their earnings in

logarithms. We focus on estimation of the autoregressive coefficient θ.

We then generate artificial data sets to investigate the repeated sampling properties of

these estimators. Two questions are of most interest. First, how do the median bias and

median-absolute-error deteriorate as a function of the degree of over-identification? Here,

unlike in the theoretical discussion in Section 4, the additional moments, as we increase

the number of years in the panel, do contain information, so they may in fact increase

precision, but at the same time one would expect based on the theoretical calculations that

the accuracy of the asymptotic approximations for a fixed sample size deteriorates with the
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number of years. Second, we are interested in the performance of the confidence intervals for

the parameter of interest. In two-stage-least-squares settings it was found that with many

weak instruments the performance of standard confidence intervals varied widely between

liml and two-stage-least-squares estimators. Given the analogy drawn by Hansen, Heaton

and Yaron (1996) between the continuously updating estimator and liml, the question arises

how the confidence intervals differ between two-step GMM and the various Cressie-Read and

GEL estimators.

Using the Abowd-Card data we estimate θ and the variance of the fixed effect and the

idiosyncratic error term. The latter two are estimated to be around 0.3. We then consider

data generating processes where the individual effect ηi has mean zero and standard deviation

equal to 0.3, and the error term has mean zero and standard deviation 0.3. We θ = 0.9 in

the simulations. This is larger than the value in estimated from the Abowd-Card data. We

compare the standard Two-Step GMM estimator and the Exponential Tilting Estimator.

Table 1 contains the results. With the high autoregressive coefficient, θ = 0.9, the two-

step GMM estimator has substantial bias and poor coverage rates.The exponential tilting

estimator does much better with the high autoregressive coefficient. The bias is small, on

the order of 10% of the standard error, and the coverage rate is much closer to the nominal

one.
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Table 1: Simulations, θ = 0.9

Number of time periods
3 4 5 6 7 8 9 10 11

Two-Step GMM
median bias -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
relative median bias -0.02 0.08 0.03 0.08 0.03 0.11 0.08 0.13 0.11
median absolute error 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01
coverage rate 90% ci 0.88 0.85 0.82 0.80 0.80 0.79 0.78 0.79 0.76
covarage rate 95% ci 0.92 0.91 0.89 0.87 0.85 0.86 0.86 0.88 0.84

Exponential Tilting
median bias 0.00 0.00 0.00 -0.00 0.00 0.00 -0.00 0.00 0.00
relative median bias 0.04 0.09 0.02 -0.00 0.01 0.01 -0.02 0.08 0.13
median absolute error 0.05 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01
coverage rate 90% ci 0.87 0.86 0.84 0.86 0.88 0.86 0.87 0.88 0.87
covarage rate 95% ci 0.91 0.90 0.90 0.91 0.93 0.92 0.91 0.93 0.93

The relative median bias reports the bias divided by the large sample standard error. All results based on

10,000 replications.


