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Difference-in-Differences Estimation

These notes provide an overview of standard difference-in-differences methods that have

been used to study numerous policy questions. We consider some recent advances in Hansen

(2007a,b) on issues of inference, focusing on what can be learned with various group/time

period dimensions and serial independence in group-level shocks. Both the repeated cross

sections and panel data cases are considered. We discuss recent work by Athey and Imbens

(2006) on nonparametric approaches to difference-in-differences, and Abadie, Diamond, and

Hainmueller (2007) on constructing synthetic control groups.

1. Review of the Basic Methodology
Since the work by Ashenfelter and Card (1985), the use of difference-in-differences

methods has become very widespread. The simplest set up is one where outcomes are observed

for two groups for two time periods. One of the groups is exposed to a treatment in the second

period but not in the first period. The second group is not exposed to the treatment during

either period. In the case where the same units within a group are observed in each time period,

the average gain in the second (control) group is substracted from the average gain in the first

(treatment) group. This removes biases in second period comparisons between the treatment

and control group that could be the result from permanent differences between those groups, as

well as biases from comparisons over time in the treatment group that could be the result of

trends. We will treat the panel data case in Section 4.

With repeated cross sections, we can write the model for a generic member of any of

groups as

1



Imbens/Wooldridge, Cemmap Lecture Notes 11, June ’09

y  0  1dB  0d2  1d2  dB  u     (1.1)

where y is the outcome of interest, d2 is a dummy variable for the second time period. The

dummy variable dB captures possible differences between the treatment and control groups

prior to the policy change. The time period dummy, d2, captures aggregate factors that would

cause changes in y even in the absense of a policy change. The coefficient of interest, 1,

multiplies the interaction term, d2  dB, which is the same as a dummy variable equal to one

for those observations in the treatment group in the second period. The

difference-in-differences estimate is

̂1  ȳB,2 − ȳB,1 − ȳA,2 − ȳA,1.     (1.2)

Inference based on even moderate sample sizes in each of the four groups is straightforward,

and is easily made robust to different group/time period variances in the regression framework.

In some cases a more convincing analysis of a policy change is available by further

refining the definition of treatment and control groups. For example, suppose a state

implements a change in health care policy aimed at the elderly, say people 65 and older, and

the response variable, y, is a health outcome. One possibility is to use data only on people in

the state with the policy change, both before and after the change, with the control group being

people under 65 (or, say, 55 to 64), and the treatment group being people 65 and older. The

potential problem with this DD analysis is that other factors unrelated to the state’s new policy

might affect the health of the elderly relative to the younger population, for example, changes

in health care emphasis at the federal level. A different DD analysis would be to use another

state as the control group and use the elderly from the non-policy state as the control group.

Here, the problem is that changes in the health of the elderly might be systematically different
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across states due to, say, income and wealth differences, rather than the policy change.

A more robust analysis than either of the DD analyses described above can be obtained by

comparing the DD estimate for the state where the policy was implemented with the same

estimate from a control state. If we again label the two time periods as one and two, let B

represent the state implementing the policy, and let E denote the group of elderly, then an

expanded verson of (1.1) is

y  0  1dB  2dE  3dB  dE  0d2  1d2  dB  2d2  dE  3d2  dB  dE  u     (1.3)

The coefficient of interest is now 3, the coefficient on the triple interaction term, d2  dB  dE.

The OLS estimate ̂3 can be expressed as

̂3  ȳB,E,2 − ȳB,E,1 − ȳB,N,2 − ȳB,N,1 − ȳA,E,2 − ȳA,E,1 − ȳA,N,2 − ȳA,N,1,     (1.4)

where the A subscript means the state not implementing the policy and the N subscript

represents the non-elderly. The estimate in (1.4) is usually called the

difference-in-difference-in-differences (DDD) estimate. The first term in  is the DD estimate

obtained by using the non-elderly as the control group and the time periods before and after the

policy change. To ensure that this DD estimate is not simply picking up different trends in

health outcomes between the old and young, the DDD estimate subtracts off the same

estimated difference in trends for the control state (the second term in ).

When implemented as a regression, a standard error for ̂3 is easily obtained, including a

heteroskedasticity-robust standard error. As in the DD case, it is straightforward to add

additional covariates to (1.3) and inference robust to heteroskedasticity.
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2. How Should We View Uncertainty in DD Settings?

The standard approach just described assumes that all uncertainty in inference enters

through sampling error in estimating the means of each group/time period combination. This

approach has a long history in statistics, as it is equivalent to analysis of variance. Recently,

different approaches have been suggest that focus on different kinds of uncertainty – perhaps

in addition to sampling error in estimating means. Recent work by Bertrand, Duflo, and

Mullainathan (2004), Donald and Lang (2007), Hansen (2007a,b), and Abadie, Diamond, and

Hainmueller (2007) argues for additional sources of uncertainty. In fact, in most cases the

additional uncertainty is assumed to swamp the sampling error in estimating group/time period

means. We already discussed the DL approach in the cluster sample notes, although we did not

explicitly introduce a time dimension. One way to view the uncertainty introduced in the DL

framework – and a perspective explicitly taken by ADH – is that our analysis should better

reflect the uncertainty in the quality of the control groups.

Before we turn to a general setting, it is useful to ask whether introducing more than

sampling error into DD analyses is necessary, or desirable. As we discussed in the cluster

sample notes, the DL approach does not allow inference in the basic comparison-of-mean case

for two groups. While the DL estimate is the usual difference in means, the error variance of

the cluster effect cannot be estimated, and the t distribution is degenerate. It is also the case

that the DL approach cannot be applied to the standard DD or DDD cases covered in Section 1.

We either have four different means to estimate or six, and the DL regression in these cases

produces a perfect fit with no residual variance. Should we conclude nothing can be learned in

such settings?

Consider the example from Meyer, Viscusi, and Durbin (1995) on estimating the effects of
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benefit generosity on length of time a worker spends on workers’ compensation. MVD have a

before and after period, where the policy change was to raise the cap on covered earnings. The

treatment group is high earners, and the control group is low earners – who should not have

been affected by the change in the cap. Using the state of Kentucky and a total sample size of

5,626, MVD find the DD estimate of the policy change is about 19.2% (longer time on

workers’ compensation). The t statistic is about 2.76, and the estimate changes little when

some controls are added. MVD also use a data set for Michigan. Using the same DD approach,

they estimate an almost identical effect: 19.1%. But, with “only” 1,524 observations, the t

statistic is 1.22. It seems that, in this example, there is plenty of uncertainty in estimation, and

one cannot obtain a tight estimate without a fairly large sample size. It is unclear what we gain

by concluding that, because we are just identifying the parameters, we cannot perform

inference in such cases. In this example, it is hard to argue that the uncertainty associated with

choosing low earners within the same state and time period as the control group somehow

swamps the sampling error in the sample means.

3. General Settings for DD Analysis: Multiple Groups
and Time Periods

The DD and DDD methodologies can be applied to more than two time periods. In the first

case, a full set of time-period dummies is added to (1.1), and a policy dummy replaces d2  dB;

the policy dummy is simply defined to be unity for groups and time periods subject to the

policy. This imposes the restriction that the policy has the same effect in every year, and

assumption that is easily relaxed. In a DDD analysis, a full set of dummies is included for each

of the two kinds of groups and all time periods, as well as all pairwise interactions. Then, a
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policy dummy (or sometimes a continuous policy variable) measures the effect of the policy.

See Gruber (1994) for an application to mandated maternity benefits.

With many time periods and groups, a general framework considered by BDM (2004) and

Hansen (2007b) is useful. The equation at the individual level is

yigt  t  g  xgt  zigtgt  vgt  uigt, i  1, . . . ,Mgt,     (3.1)

where i indexes individual, g indexes group, and t indexes time. This model has a full set of

time effects, t, a full set of group effects, g, group/time period covariates, xgt (these are the

policy variables), individual-specific covariates, zigt, unobserved group/time effects, vgt, and

individual-specific errors, uigt. We are interested in estimating . Equation (3.1) is an example

of a multilevel model.

One way to write (3.1) that is useful is

yigt  gt  zigtgt  uigt, i  1, . . . ,Mgt,     (3.2 )

which shows a model at the individual level where both the intercepts and slopes are allowed

to differ across all g, t pairs. Then, we think of gt as

gt  t  g  xgt  vgt.     (3.3)

Equation (3.3) is very useful, as we can think of it as a regression model at the group/time

period level.

As discussed by BDM, a common way to estimate and perform inference in (3.1) is to

ignore vgt, in which case the observations at the individual level are treated as independent.

When vgt is present, the resulting inference can be very misleading. BDM and Hansen (2007b)

allow serial correlation in vgt : t  1,2, . . . ,T and assume independence across groups, g.

A simple way to proceed is to view (3.3) as ultimately of interest. We observe xgt, t is
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handled with year dummies,and g just represents group dummies. The problem, then, is that

we do not observe gt. But we can use the individual-level data to estimate the gt, provided

the group/time period sizes,Mgt, are reasonably large. With random sampling within each

g, t, the natural estimate of gt is obtained from OLS on (3.2) for each g, t pair, assuming

that Ezigt′ uigt  0. (In most DD applications, this assumption almost holds by definition, as

the individual-specific controls are included to improve estimation of gt.) If a particular model

of heteroskedasticity suggests itself, and Euit|zigt  0 is assumed, then a weighted least

squares procedure can be used. Sometimes one wishes to impose some homogeneity in the

slopes – say, gt  g or even gt   – in which case pooling can be used to impose such

restrictions. In any case, we proceed as if theMgt are large enough to ignore the estimation

error in the ̂gt; instead, the uncertainty comes through vgt in (3.3). Hansen (2007b) considers

adjustments to inference that accounts for sampling error in the ̂gt, but the methods are more

complicated. The minimum distance approach we discussed in the cluster sampling notes,

applied in the current context, effectively drops vgt from (3.3) and views gt  t  g  xgt

as a set of deterministic restrictions to be imposed on gt. Inference using the efficient

minimum distance estimator uses only sampling variation in the ̂gt, which will be independent

across all g, t if they are separately estimated, or which will be correlated if pooled methods

are used.

Because we are ignoring the estimation error in ̂gt, we proceed simply by analyzing the

panel data equation

̂gt  t  g  xgt  vgt, t  1, . . . ,T,g  1, . . . ,G,     (3.4)

where we keep the error as vgt because we are treating ̂gt and gt interchangeably. If we
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assume that We can apply the BDM findings and Hansen (2007a) results directly to this

equation. Namely, if we estimate (3.4) by OLS – which means full year and group effects,

along with xgt – then the OLS estimator has satisfying properties as G and T both increase,

provided vgt : t  1,2, . . . ,T is a weakly dependent (mixing) time series for all g. The

simulations in BDM and Hansen (2007a) indicate that cluster-robust inference, where each

cluster is a set of time periods, work reasonably well when vgt follows a stable AR(1) model

and G is moderately large.

Hansen (2007b), noting that the OLS estimator (the fixed effects estimator) applied to (3.4)

is inefficient when vgt is serially uncorrelated (and possibly heteroskedastic), proposes feasible

GLS. As is well known, if T is not large, estimating parameters for the variance matrix

g  Varvg, where vg is the T  1error vector for each g, is difficult when group effects

have been removed. In other words, using the FE residuals, v̂gt, to estimate g can result in

severe bias for small T. Solon (1984) highlighted this problem for the homoskedastic AR(1)

model. Of course, the bias disappears as T → , and regression packages such as Stata, that

have a built-in command to do fixed effects with AR(1) errors, use the usual AR(1) coefficient

̂, obtained from

v̂gt on v̂g,t−1, t  2, . . . ,T,g  1, . . . ,G.     (3.5)

As discussed in Wooldridge (2003) and Hansen (2007b), one way to account for the bias in ̂

is to still use a fully robust variance matrix estimator. But Hansen’s simulations show that this

approach is quite inefficient relative to his suggestion, which is to bias-adjust the estimator ̂

and then use the bias-adjusted estimator in feasible GLS. (In fact, Hansen covers the general

ARp model.) Hansen derives many attractive theoretical properties of his the estimator.An

iterative bias-adjusted procedure has the same asymptotic distribution as ̂ in the case ̂ should
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work well: G and T both tending to infinity. Most importantly for the application to DD

problems, the feasible GLS estimator based on the iterative procedure has the same asymptotic

distribution as the GLS etsimator when G →  and T is fixed. When G and T are both large,

there is no need to iterated to achieve efficiency.

Hansen further shows that, even when G and T are both large, so that the unadjusted AR

coefficients also deliver asymptotic efficiency, the bias-adusted estimates deliver higher-order

improvements in the asymptotic distribution. One limitation of Hansen’s results is that they

assume xgt : t  1, . . . ,T are strictly exogenous. We know that if we just use OLS – that is,

the usual fixed effects estimate – strict exogeneity is not required for consistency as T → .

GLS, in exploiting correlations across different time periods, tends to exacerbate bias that

results from a lack of strict exogeneity. In policy analysis cases, this is a concern if the policies

can switch on and off over time, because one must decide whether the decision to implement

or remove a program is related to past outcomes on the response.

With large G and small T, one can estimate an unstricted variance matrix g and proceed

with GLS – this is the approach suggested by Kiefer (1980) and studied more recently by

Hausman and Kuersteiner (2005). It is equivalent to dropping a time period in the

time-demeaned equation and proceeding with full GLS (and this avoids the degeneracy in the

variance matrix of the time-demeaned errors). Hausman and Kuersteiner show that the Kiefer

approach works pretty well when G  50 and T  10, although substantial size distortions

exist for G  50 and T  20.

Especially if theMgt are not especially large, we might worry about ignoring the estimation

error in the ̂gt. One simple way to avoid ignoring the estimation error in ̂gt is to aggregate

equation (3.1) over individuals, giving
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ȳgt  t  g  xgt  z̄gt  vgt  ūgt, t  1, . . ,T,g  1, . . . ,G.     (3.6)

Of course, this equation can be estimated by fixed effects, too, and fully robust inference is

available using Hansen (2007a) because the composite error, rgt ≡ vgt  ūgt, is weakly

dependent. Fixed Effects GLS using an unrestricted variance matrix can be used with large G

and small T. The complication with using specific time series model for the error is the

presence of ūgt. With different Mgt, Varūgt is almost certainly heteroskedastic (and might be

with the sameMgt, of course). So, even if we specify, say, an AR(1) model vgt  vg,t−1  egt,

the variance matrix of rg is more complicated. One possibility is to just assume the composite

error, rgt, follows a simple model, implement Hansen’s methods, but then use fully robust

inference.

The Donald and Land (2007) approach applies in the current setting by using finite sample

analysis applied to the pooled regression (3.4). However, DL assume that the errors vgt are

uncorrelated across time, and so, even though for small G and T it uses small

degrees-of-freedom in a t distribution, it does not account for uncertainty due to serial

correlation in vgt : t  1, . . . ,T.

4. Individual-Level Panel Data
Individual-level panel data is a powerful tool for estimating policy effects. In the simplest

case we have two time periods and a binary program indicator, wit, which is unity if unit i

participates in the program at time t. A simple, effective model is

yit    d2t  wit  ci  uit, t  1,2,     (4.1)

where d2t  1 if t  2 and zero otherwise, ci is an observed effect, and uit are the idiosyncratic
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errors. The coefficient  is the treatment effect. A simple estimation procedure is to first

difference to remove ci :

yi2 − yi1    wi2 − wi1  ui2 − ui1     (4.2)

or

Δyi    Δwi  Δui.     (4.3)

If EΔwiΔui  0, that is, the change in treatment status is uncorrelated with changes in the

idiosyncratic errors, then OLS applied to (4.3) is consistent. The leading case is when wi1  0

for all i, so that no units we exposed to the program in the initial time period. Then the OLS

estimator is

̂  Δȳtreat − Δȳcontrol,     (4.4)

which is a difference-in-differences estimate except that we different the means of the same

units over time.This same estimate can be derived without introducing heterogeneity by simply

writing the equation for yit with a full set of group-time effects. Also, (4.4) is not the same

estimate obtained from the regression yi2 on 1,yi1, wi2 – that is, using yi1 as a control in a cross

section regression. The estimates can be similar, but their consistency is based on different

assumptions.

More generally, with many time periods and arbitrary treatment patterns, we can use

yit  t  wit  xit  ci  uit, t  1, . . . ,T,     (4.5)

which accounts for aggregate time effects and allows for controls, xit. Estimation by FE or FD

to remove ci is standard, provided the policy indicator, wit, is strictly exogenous: correlation

beween wit and uir for any t and r causes inconsistency in both estimators, although the FE

estimator typically has smaller bias when we can assume conteporaneous exogeneity,
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Covwit,uit  0. Strict exogeneity can be violated if policy assignment changes in reaction to

past outcomes on yit. In cases where wit  1 whenever wir  1 for r  t, strict exogeneity is

usually a reasonable assumption.

Equation (4.5) allows policy designation to depend on a level effect, ci, but wit might be

correlated with unit-specific trends in the response, too. This suggests the “correlated random

trend” model

yit  ci  git  t  wit  xit  uit, t  1, . . . ,T,     (4.6)

where gi is the trend for unit i. A general analysis allows arbitrary corrrelation between ci,gi

and wit, which requires at least T ≥ 3. If we first difference, we get

Δyit  gi  t  Δwit  Δxit  Δuit, t  2, . . . ,T,     (4.7)

where t  t − t−1 is a new set of time effects. We can estimate (4.7) by differencing again,

or by using FE. The choice depends on the serial correlation properties in Δuit (assume strict

exogeneity of treatment and covariates). If Δuit is roughly uncorrelated, FE is preferred. If the

original errors uit are essentially uncorrelated, applying FE to (4.6), in the general sense of

sweeping out the linear trends from the response, treatment, and covariates, is preferred. Fully

robust inference using cluster-robust variance estimators is straightforward. Of course, one

might want to allow the effect of the policy to change over time, which is easy by interacting

time dummies with the policy indicator.

We can derive standard panel data approaches using the counterfactural framework from

the treatment effects literature.For each i, t, let yit1 and yit0 denote the counterfactual

outcomes, and assume there are no covariates. One way to state the assumption of

unconfoundedness of treatment is that, for time-constant heterogeneity c i,
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Eyit0|wi,c i  Eyit0|c i
Eyit1|wi,c i  Eyit1|c i,

    (4.8)
    (4.9)

where wi  wi1, . . . ,wiT is the time sequence of all treatments. We saw this kind of strict

exogeneity assumption conditional on latent variables several times before. It allows treatment

to be correlated with time-constant heterogeneity, but does not allow treatment in any time

period to be correlated with idiosyncratic changes in the counterfactuals. Next, assume that the

expected gain from treatment depends at most on time:

Eyit1|c i  Eyit0|c i   t, t  1, . . . ,T.     (4.10)

Writing yit  1 − wityit0  wityit1, and using (4.8), (4.9), and (4.10) gives

Eyit|wi,c i  Eyit0|c i  witEyit1|c i − Eyit0|c i
 Eyit0|c i   twit.     (4.11)

If we now impose an additive structure on Eyit0|c i, namely,

Eyit0|c i   t0  ci0,     (4.12)

then we arrive at

Eyit|wi,c i   t0  ci0   twit,     (4.13)

an estimating equation that leads to well-known procedures. Because wit : t  1, . . . ,T is

strictly exogenous conditional on ci0, we can use fixed effects or first differencing, with a full

set of time period dummies. A standard analysis would use  t  , but, of course, we can

easily allow the effects of the policy to change over time.

Of course, we can add covariates xit to the conditioning sets and assume linearity, say

Eyit0|xit,c i   t0  xit0  ci0. If (4.8) becomes

Eyit0|wi,xi,c i  Eyit0|xit,c i,     (4.14)
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and similarly for (4.9), then the estimating equation simply adds xit0 to (4.13). More

interesting models are obtained by allowing the gain from treatment to depend on

heterogeneity. Suppose we assume, in addition to the ignorability assumption in (4.14) [and the

equivalent condition for yit1]

Eyit1 − yit0|xit,c i   t  ai  xit − t     (4.15)

where ai is a function of c i normalized so that Eai  0 and t  Exit. Equation (4.15)

allows the gain from treatment to depend on time, unobserved heterogeneity, and observed

covariates. Then

Eyit|wi,xi,c i   t0   twit  xit0

 witxit − t  ci0  aiwit.

    (4.16)

This is a correlated random coefficient model because the coefficient on wit is  t  ai, which

has expected value  t. Generally, we want to allow wit to be correlated with ai and ci0. With

small T and large N, we do not try to estimate the ai (nor the ci0). But an extension of the

within transformation effectively eliminates aiwit. Suppose we simplify a bit and assume

 t   and drop all other covariates. Then, a regression that appears to suffer from an

incidental parameters problem turns out to consistently estimate : Regress yit on year

dummies, dummies for each cross-sectional observation, and latter dummies interacted with

wit. In other words, we estimate

ŷ it  ̂ t0  ĉ i0  ̂ iwit.     (4.17)

While ̂ i is usually a poor estimate of  i    ai, their average is a good estimator of  :

̂  N−1∑
i1

N

̂ i.     (4.18)
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A standard error can be calculated using Wooldridge (2002, Section 11.2) or bootstrapping.

We can apply the results from the linear panel data notes to determine when the usual FE

estimator – that is, the one that ignores aiwit – is consistent for . In addition to the

unconfoundedness assumption, sufficient is

E i|ẅit  E i  , t  1, . . . ,T,     (4.19)

where ẅit  wit − w̄i. Essentially, the individual-specific treatment effect can be correlated

with the average propensity to recieve treatment, w̄i, but not the deviations for any particular

time period.

Assumption (4.19) is not completely general, and we might want a simple way to tell

whether the treatment effect is heterogeneous across individuals. Here, we an exploit

correlation between the  i and treatment. Recalling that  i    ai, a useful assumption (that

need not hold for obtaining a test) is

Eai|wi1, . . .wiT  Eai|w̄i  w̄i − w̄i,     (4.20)

where other covariates have been suppressed. Then we can estimate the equation (with

covariates)

yit   t0  wit  xit0  witxit−x̄t

 witw̄i − w̄  ci0  eit

    (4.21)

by standard fixed effects. Then, we use a simple t test on ̂, robust to heteroskedasticity and

serial correlation. If we reject, it does not mean the mean usual FE estimator is inconsistent,

but it could be.
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5. Semiparametric and Nonparametric Approaches
Return to the setting with two groups and two time periods. Athey and Imbens (2006)

generalize the standard DD model in several ways. Let the two time periods be t  0 and 1 and

label the two groups g  0 and 1. Let Yi0 be the counterfactual outcome in the absense of

intervention and Yi1 the counterfactual outcome with intervention. AI assume that

Yi0  h0Ui,Ti,     (5.1)

where Ti is the time period and

h0u, t strictly increasing in u for t  0,1     (5.2)

The random variable Ui represents all unobservable characteristics of individual i. Equation

(5.1) incorporates the idea that the outcome of an individual with Ui  u will be the same in a

given time period, irrespective of group membership. The strict monotonicity assumption in

(5.2) rules out discrete responses, but Athey and Imbens (2006) provide bounds under weak

monotonicity, and show how, with additional assumptions, point identification be be

recovered.

The distribution of Ui is allowed to vary across groups, but not over time within groups, so

that

DUi|Ti,Gi  DUi|Gi.     (5.3)

This assumption implies that, within group, the population distribution is stable over time.

The standard DD model can be expressed in this way, with

h0u, t  u    t     (5.4)

and
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Ui    Gi  Vi, Vi  Gi,Ti     (5.5)

although, because of the linearity, we can get by with the mean independence assumption

EVi|Gi,Ti  0. If the treatment effect is constant across individuals,   Yi1 − Yi0, then

we can write

Yi    Ti  Gi  GiTi  Vi,     (5.6)

where Yi  1 − GiTiYi0  GiTiYi1 is the realized outcome. Because EVi|Gi,Ti  0, the

parameters in (5.6) can be estimated by OLS.

Athey and Imbens call the extension of the usual DD model the changes-in-changes (CIC)

model. They show not only how to recover the average treatment effect, but also that the

distribution of the counterfactual outcome conditional on intervention, that is

DYi0|Gi  1,Ti  1,     (5.7)

is identified. The distribution of DYi1|Gi  1,Ti  1 is identified by the data because

Yi  Yi1 when Gi  Ti  1. The extra condition AI use is that the support of the distribution

of DUi|Gi  1 is contained in the support of DUi|Gi  0, written as

U1 ⊆ U0.     (5.8)

Let Fgt0 y the be cumulative distribution function of DYi0|Gi  g,Ti  t for g  1,2

and t  1,2, and let Fgty be the cdf for the observed outcome Yi conditional on Gi  g and

Ti  t. By definition, Fgty is generally identified from the data, assuming random sampling

for each g, t pair. AI show that, under (5.1), (5.2), (5.3), and (5.8),

F11
0y  F10F00

−1F01y,     (5.9)

where F00
−1 is the inverse function of F00

−1, which exists under the strict monotonicity
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assumption. Notice that all of the cdfs appearing on the right hand size of (5.9) are estimable

from the data; they are simply the cdfs for the observed outcomes conditional on different g, t

pairs. Because F11
1y  F11y, we can estimate the entire distributions of both

counterfactuals conditional on intervention, Gi  Ti  1.

The average treatment effect in the CIC framework as

CIC  EY1|G  1,T  1 − EY0|G  1,T  1.
 EY111 − EY110,

    (5.10)

where we drop the i subscript, Ygt1 is a random variable having distribution DY1|G  g, t,

and Ygt0 is a random variable having distribution DY0|G  g, t. Under the same

assumptions listed above,

CIC  EY11 − EF01
−1F00Y10     (5.11)

where Ygt is a random variable with distribution DY|G  g, t. Given random samples from

each subgroup, a generally consistent estimator of CIC is

̂CIC  N11
−1∑

i1

N11

Y11,i − N10
−1∑

i1

N10

F̂01
−1F̂00Y10, i,     (5.12)

for consistent estimators F̂00 and F̂01 of the cdfs for the control groups in the initial and later

time periods, respectively. Now, Y11,i denotes a random draw on the observed outcome for the

g  1, t  1 group and similarly for Y10,i. Athey and Imbens establish weak conditions under

which ̂CIC is N -asymptotically normal (where, naturally, observations must accumulate

within each of the four groups). In the case where the distributions of Y10 and Y00 are the same,

a simple difference in means for the treatment group over time.

The previous approach can be applied either with repeated cross sections or panel data.
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Athey and Imbens discuss how the assumptions can be relaxed with panel data, and how

alternative estimation strategies are available. In particular, if Ui0 and Ui1 represent

unobservables for unit i in the initial and later time periods, respectively, then (5.3) can be

modified to

DUi0|Gi  DUi1|Gi,     (5.13)

which allows for unobservd components structures Uit  Ci  Vit where Vit has the same

distribution in each time period.

As discussed by AI, with panel data there are other estimation approaches. As discussed

earlier, Altonji and Matzkin (2005) use exchangeability assumptions to identify average partial

effects. To illustrate how their approach might applie, suppose the counterfactuals satisfy the

ignorability assumption

EYitg|Wi1, . . . ,WiT,Ui  htgUi, t  1, . . . ,T,g  0,1.     (5.14)

The treatment effect for unit i in period t is ht1Ui − ht0Ui, and the average treatment effect

is

 t  Eht1Ui − ht0Ui, t  1, . . . ,T.     (5.15)

Suppose we make the assumption

DUi|Wi1, . . . ,WiT  DUi|W̄i,     (5.16)

which means that only the intensity of treatment is correlated with heterogeneity. Under (5.14)

and (5.16), it can be shown that

EYit|Wi  EEYit|Wi,Ui|Wi  EYit|Wit,W̄i.     (5.17)

The key is that EYit|Wi does not depend on Wi1, . . . ,WiT in an unrestricted fashion; it is a
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function only of Wit,W̄i. If Wit are continuous, or take on numerous values, we can use local

smoothing methods to estimate Eyit|Wit,W̄i. In the treatment effect case, estimation is very

simple because Wit,W̄i can take on only 2T. The average treatment effect can be estimated as

̂ t  N−1∑
i1

n

̂tY1,W̄i − ̂tY0,W̄i.     (5.18)

If we pool across t (as well as i) and use a linear regression, Yit on

1,d2t, . . . ,dTt,Wit,W̄i, t  1, . . . ,T; i  1, . . . ,N, we obtain the usual fixed effects estimate ̂FE

as the coefficient onWit. Wooldridge (2005) describes other scenarios and compares this

strategy to other approaches. As we discussed earlier, a condtional MLE logit can estimate

parameters by not generally ATEs, and require conditional independence. Chamberlain’s

correlated random effects probit models the heterogeneity as

Ui|Wi  Normal0  1Wi1 . . .TWiT,2, which identifies the ATEs without assuming

exchangeability but maintaining a distributional assumption (and functional form for the

response probability).

For the leading case of two time periods where treatment does not occur in the initial time

period for any unit, but does for some units in the second time period, Heckman, Ichimura, and

Todd (1997) and Abadie (2005) provide methods for both repeated cross sections and panel

data that use unconfoundedness assumptions on changes over time. Let Ytw denote the

counterfactual outcome at time t, t  0,1 for treatment status w, w  0,1. Because there is no

possibililty of treatment at time zero, take Y01  Y00, which just says there are no

counterfactuals in the inital time period.

As in HIT (1997) and Abadie (2005), we first consider estimating

att  EY11 − Y10|W  1.     (5.19)
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Because no units are treated in the initial time period,W  1 means treatment in the second

time period. For estimating att, the key unconfoundedness assumpton is

EY10 − Y00|X,W  EY10 − Y00|X,     (5.20)

so that, conditional on X, treatment status is not related to the gain over time in the absense of

treatment. In addition, we make the overlap assumption,

0  PW  1|X  x  1     (5.21)

for all x. [For estimating att, we can relax (5.21) to PW  1|X  x  1.] Using a regression

approach, we can estimate att by first estimating EY11 − Y10|X,W  1. As shown by HIT

(1997), this expection is identified under (5.20). Let Y1  1 − W  Y10  W  Y11 be the

observed response for t  1, and let Y0  Y00  Y01 be the response at t  0. Then

EY1|X,W  1 − EY1|X,W  0 − EY0|X,W  1 − EY0|X,W  0
 EY11|X,W  1 − EY10|X,W  0

− EY01|X,W  1 − EY00|X,W  0
 EY11|X,W  1 − EY10|X,W  1

 EY10|X,W  1 − EY10|X,W  0
− EY01|X,W  1 − EY00|X,W  0

 EY11 − Y10|X,W  1 − EY01 − Y00|X,W  1
 EY10 − Y00|X,W  1 − EY10 − Y00|X,W  0

 EY11 − Y10|X,W  1 − EY01 − Y00|X,W  1,

where the last equality holds by (5.20). But Y01  Y00, and so we have shown

EY1|X,W  1 − EY1|X,W  0 − EY0|X,W  1 − EY0|X,W  0
 EY11 − Y10|X,W  1.

    (5.22)

Each of the four expected values on the left hand side of (5.22) is estimable given random

samples from the two time periods. For example, we can use flexible parametric models, or
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even nonparametric estimation, to estimate EY1|X,W  1 using the data on those receiving

treatment at t  1.

The analysis for

ate  EY11 − Y10     (5.23)

is similar. Now, we add to (5.20) the additional unconfoundedness assumption

EY11 − Y01|X,W  EY11 − Y01|X,     (5.24)

which means that treatment status is unconfounded with respect to the gain under treatment.

Under (5.20) and (5.24),

EY1|X,W  1 − EY1|X,W  0 − EY0|X,W  1 − EY0|X,W  0
 EY11 − Y10|X,

    (5.25)

and so now the ATE conditional on X can be estimated using the estimates of the conditional

means for the four time period/treatment status groups. If we want ate, we simply average the

differences is fitted values across the covariates. (Remember, we have different random

samples in each time period.) Our estimate would look like

̂ate,reg  N1
−1∑

i1

N1

̂11Xi − ̂10Xi − N0
−1∑

i1

N0

̂01Xi − ̂00Xi,     (5.26)

where ̂twx is the estimated regression function for time period t and treatment status w, N1 is

the total number of observations for t  1, and N0 is the total number of observations for time

period zero. The basic DD approach with covariates simply assumes linear functional forms

and constant coefficients across t and treatment status. Of course, these can easily be relaxed in

the context of the usual linear regression analysis. Strictly speaking, (5.25) leads to ate (after

averaging out the distribution of X) only when the distribution of the covariates does not
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change over time. Of course, one reason to include covariates is to allow for compositional

changes in the relevant populations over time. The usual DD approach avoids the issue by

assuming the treatment effect does not depend on the covariates. Equation (5.26) allows for

treatment effects to differ by X, but the two averages are necessarily for different time periods.

Abadie (2005) shows how propensity score weighting can recover att with repeated cross

sections under a stationarity condition. The estimator can be written in a way similar to (5.26).

In particular,

̂att,ps  N1
−1∑

i1

N1 Wi − p̂XiYi1
̂1 − p̂Xi

− N0
−1∑

i1

N0 Wi − p̂XiYi0
̂1 − p̂Xi

,     (5.27)

where Yi1 : i  1, . . . . ,N1 are the data for t  1 and Yi0 : i  1, . . . . ,N0 are the data for

t  0. Equation (5.27) has a straightforward interpretation. The first average would be the

standard propensity score weighted estimator if we used only t  1 and assumed

unconfoundedness in levels; see, for example, Dehejia and Wahba (1999) and Wooldridge

(2002, Chapter 18). The second average is the same estimate but using the t  0 data. (Of

course, this estimate by itself would make little sense because no units are treated at t  0.)

Like (5.26), the estimated treatment effect is the difference in the two estimates across the time

periods.

If we have panel data we can difference the same units across time. For example, (5.25)

can be written in the useful form

EΔY|X,W  1 − EΔY|X,W  0  EY11 − Y10|X,     (5.28)

where ΔY  Y1 − Y0 is the change in the observed outcome for a generic member of the

population. But this simply means that we can apply regression adjustment or propensity score
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methods to the changes in Y. Regression adjustment involves estimating

1
ΔX ≡ EΔY|X,W  1 and 0

ΔX ≡ EΔY|X,W  0 using the treatment and control groups,

respectively, and then estimating ate by

N−1∑
i1

N

̂1
ΔXi − ̂0

ΔXi,     (5.29)

where N is the total number of individuals in the panel. Abadie (2005) shows that

att  PW  1−1E W − pXΔY
1 − pX ,     (5.30)

where pX  PW  1|X is the propensity score. quantities in (5.30) are observed or, in the

case of the pX and   PW  1, can be estimated. As in Hirano, Imbens, and Ridder

(2003), a flexible logit model can be used for pX; the fraction of units treated would be used

for ̂. Then

̂att,ps  N−1∑
i1

N
Wi − p̂XiΔYi
̂1 − p̂Xi

    (5.31)

is consistent and N -asymptotically normal. HIR discuss variance estimation. Imbens and

Wooldridge (2007) provide a simple adjustment available in the case that p̂ is treated as a

parametric model.

When we add (5.24) we get the inverse probability weighted expression

ate  E
W − pXΔY
pX1 − pX ,     (5.32)

which dates back to Horvitz and Thompson (1952). To estimate the ATE over the specified

population, the full overlap assumption in (5.21) is needed, and
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̂ate,ps  N−1∑
i1

N
Wi − p̂XiΔYi
p̂Xi1 − p̂Xi

.     (5.33)

Hirano, Imbens, and Ridder (2003) study this estimator in detail where p̂x is a series logit

estimator. If we treat this estimator parametrically, a simple adjustment makes valid inference

on ̂ate simple. Let K̂i be the summand in (5.33) less ̂ate, and let D̂i  hXiWi − hXi̂

be the gradient (a row vector) from the logit estimation. Compute the residuals, R̂i from the

OLS regression K̂i on D̂i, i  1, . . . ,N. Then, a consistent estimator of Avar N ̂ate,ps − ate is

just the sample variance of the R̂i. This is never greater than if we ignore the estimation of px

and just use the sample variance of the K̂i themselves.

Methods that combine regression adjustment and propensity score weighting can also be

applied to the differences when we have panel data. See Imbens (2004) and Wooldridge (2007)

for details.

6. Synthetic Control Methods for Comparative Case
Studies

In Section 3 we discussed difference-in-differences methods that ignore sampling uncertain

in the group/time period means (more generally, regression coefficients). Abadie, Diamond,

and Hainmueller (2007), building on the work of Abadie and Gardeazabal (2003), argue that in

policy analysis at the aggregate leve, there is no estimation uncertainty: the goal is to

determine the effect of a policy on an entire population – say, a state – and the aggregate is

measured without error (or very little error). The application in ADH is the effects of

California’s tobacco control program on state-wide smoking rates.

Of course, one source of uncertainty in any study using data with a time series dimension is
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the change in outcomes over time, even if the outcomes are aggregates measured without error.

Event study methodology is one such example: often, time series regressions for a single

entity, such as a state, are used to determine the effect of a policy (speed limit change, tobacco

control program, and so on) on an aggregate outcome. But such event studies can suffer

because they do not use a control group to account for aggregate effects that have nothing to

do with the specific state policy.

In the context of case control studies, where a time series is available for a particular unit –

the treatment group – there are often many potential control groups. For example, in the

tobacco control example, each state in the U.S. is a potential control for California (provided a

state did not undergo a similar policy). ADH study this setup and emphasize the uncertainty

associated with choosing suitable control groups. They point out that, even in the absense of

sampling error, surely someone analyzing a state-level policy must nevertheless seal with

uncertainty.

The approach of ADH is to allow one to select a synthetic control group out of a collection

of possible controls. For example, in the California tobacco control case, ADH identify 38

states that did not implement such programs during the time period in question. Rather than

just use a standard fixed effects analysis – which effectively treats each state as being of equal

quality as a control group – ADH propose choosing a weighted average of the potential

controls. Of course, choosing a suitable control group or groups is often done informally,

including matching on pre-treatment predictors. ADH formalize the procedure by optimally

choosing weights, and they propose methods of inference.

Consider a simple example, with only two time periods: one before the policy and one

after. Let yit be the outcome for unit i in time t, with i  1 the (eventually) treated unit.
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Suppose there are J possible controls, and index these as 2, . . . ,J  1. Let xi be observed

covariates for unit i that are not (or would not be) affected by the policy; xi may contain period

t  2 covariates provided they are not affected by the policy. Generally, we can estimate the

effect of the policy as

y12 −∑
j2

J1

wjyj2,

where wj are nonnegative weights that add up to one. The question is: how can we choose the

weights – that is, the synthetic control – to obtain the best estimate of the intervention effect?

ADH propose choosing the weights so as to minimize the distance between, in this simple

case, y11,x1 and∑ j2
J1wj  yj1,xj, or some linear combinations of elements of y11,x1 and

yj1,xj. The optimal weights – which differ depending on how we define distance – produce

the synthetic control whose pre-intervention outcome and predictors of post-intervention

outcome are “closest.” With more than two time periods, one can use averages of

pre-intervention outcomes, say, or weighted averages that give more weight to more recent

pre-intervention outcomes.

ADH propose permutation methods for inference, which require estimating a placebo

treatment effect for each region (potential control), using the same synthetic control method as

for the region that underwent the intervention. In this way, one can compare the estimated

intervention effect using the synthetic control method is substantially larger than the effect

estimated from a region chosen at random. The inference is exact even in the case the

aggregate outcomes are estimated with error using individual-level data.
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