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1 INTRODUCTION

1. Introduction

� Assume that X is a Markov process.

� Does the process belong to the smaller class of di�usions? That is,

does it have continuous sample paths?

� How can we answer that question if we only sample X discretely, and,

to compound the problem, not necessarily at high frequency?
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1 INTRODUCTION

Transition function: p (�; yjx) is the conditional density of Xt+� = y

given Xt = x

 

 

 

 

 

 

 

 

Δ 2Δ 3Δ 0 

Δ Δ Δ 

rt 

t 

discrete observations
(sampled Δ apart) 

full sample path 
(unobservable) 

rΔ 

r0 
r2Δ 

r3Δ 

4



1 INTRODUCTION

 

 

 

t

xt

Δ

observation

Δ

t

xt

t t+Δ

p (Δ ,x | x )0

0x

x

  

5



2 EXAMPLE

2. Example

� Suppose that we have found empirically that discrete interest rate data
approximately follow:

rt+�jrt � N
�

0 + 
1rt; �

2
0

�

� We can then construct a continuous-time di�usion:

drt = � (�� rt) dt+ �dZt

� For which p(�; yjx) is Gaussian with:

E
�
rt+�jrt

�
= rt + (�� rt) e���

V
�
rt+�jrt

�
=
�2

2�

�
1� e�2��

�
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2 EXAMPLE

� Now set:

� = �Ln (1� 
1)=�
� = 
0=(1� 
1)
�2 = �2�20Ln (1� 
1) =

�
(1� 
1)2�

�

� The continuous-time di�usion drt = �(� � rt)dt + �dWt is fully de-

termined

� Unfortunately, such calculations are impossible to conduct in most
cases!
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS

3. Geometric Implication of the Continuity of Sam-

ple Paths

� Consider two processes frt; t � 0g and f~rt; t � 0g on R with the same
distribution, starting at rt = x and ~rt = ~x with x < ~x:

� If the process has continuous sample paths, then at any future date
t + �, the process r cannot be above ~r without their sample paths

having crossed at least once.
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS

� Immediately after they cross, they are indistinguishable by the Markov
property and we can interchange them.
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS

� We will see that this simple observation implies that the process is a
di�usion if and only if its transition function satis�es:

@2

@x@y
ln (p(�; yjx)) > 0

� For all (x; y) and � > 0. Not just for small �:
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS

� Sketch of proof of the necessary part

� Consider two sets Y and ~Y , with Y < ~Y (meaning each element of

Y and ~Y satisfy the inequality).

� Coincidence probability (Karlin and McGregor)

Pr
�
rt+� 2 Y; ~rt+� 2 ~Y ; f9s 2 [t; t+�] =rs = ~rsg jrt = x; ~rt = ~x

�
= Pr

�
~rt+� 2 Y; rt+� 2 ~Y ; f9s 2 [t; t+�] =rs = ~rsg jrt = x; ~rt = ~x

�
= Pr

�
~rt+� 2 Y; rt+� 2 ~Y jrt = x; ~rt = ~x

�
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS

� By independence of r and ~r;

Pr
�
rt+� 2 Y; ~rt+� 2 ~Y jrt = x; ~rt = ~x

�
= P (�; Y jx)P

�
�; ~Y j~x

�
Pr
�
~rt+� 2 Y; rt+� 2 ~Y jrt = x; ~rt = ~x

�
= P (�; Y j~x)P

�
�; ~Y jx

�

where

P (�; Y jx) �
Z
y2Y

p (�; yjx) dx

� The probability that rt+� 2 Y and ~rt+� 2 ~Y without their sample

paths having ever crossed between t and t+� is therefore

P (�; Y jx)P
�
�; ~Y j~x

�
� P (�; Y j~x)P

�
�; ~Y jx

�

� Since its a probability, it must be positive.
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS

� Therefore:

p (�; yjx) p (�; ~yj~x) > p (�; yj~x) p (�; ~yjx)

for all x < ~x and y < ~y in R:

� This is equivalent by taking limits as ~y ! y and ~x! x to

@2

@x@y
ln (p(�; yjx)) > 0:

� The su�ciency part is more involved (see paper).
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4 EXAMPLE: SDES DRIVEN BY BROWNIAN VS. CAUCHY

4. Example: SDEs driven by Brownian vs. Cauchy

� Let's distinguish:

drt = � (�� rt) dt+ �dWt

from:

drt = � (�� rt) dt+ �dCt
where W is a Brownian motion and C a Cauchy process.
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4 EXAMPLE: SDES DRIVEN BY BROWNIAN VS. CAUCHY

The two transition functions
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4 EXAMPLE: SDES DRIVEN BY BROWNIAN VS. CAUCHY

@2

@x@y ln p for the two transition functions
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5 EMPIRICAL RESULTS: SPX OPTIONS

5. Empirical Results: SPX Options

SPX Implied Volatility Smile
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5 EMPIRICAL RESULTS: SPX OPTIONS

SPX State-Price Density
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5 EMPIRICAL RESULTS: SPX OPTIONS

Time Series 
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5 EMPIRICAL RESULTS: SPX OPTIONS

@2

@x@y ln p for the data SPX
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5 EMPIRICAL RESULTS: SPX OPTIONS
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6 CONCLUSIONS

6. Conclusions

� Option prices say jumps are present.

� No need for jumps to be observed, the mere possibility that they hap-
pen is su�cient.

� No need for high frequency data.
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