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1 INTRODUCTION

1. Introduction

e Assume that X is a Markov process.

e Does the process belong to the smaller class of diffusions? That is,
does it have continuous sample paths?

e How can we answer that question if we only sample X discretely, and,
to compound the problem, not necessarily at high frequency?
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2 EXAMPLE

2. Example

e Suppose that we have found empirically that discrete interest rate data
approximately follow:

2
riralre ~ N (Yo + 7t 6)

e \We can then construct a continuous-time diffusion:

dry = B (o — r¢) dt + odZy

e For which p(A, y|z) is Gaussian with:

E[ripalre] = re + (@ — rg) e PA
,
o —28A
Virepalrd = 25 (1 —e 2P )



2 EXAMPLE

e Now set:

B=—-Ln(l-")/A
a=7/(1—"1)
0® = —203Ln(1-m)/ ((1—n)*L)

e The continuous-time diffusion dry = B(a — r¢)dt + odWy is fully de-

termined

e Unfortunately, such calculations are impossible to conduct in most

cases!
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3.

Geometric Implication of the Continuity of Sam-
ple Paths

e Consider two processes {r,t > 0} and {7;,t > 0} on R with the same
distribution, starting at r+ = x and 7y = ¥ with = < Z.

e If the process has continuous sample paths, then at any future date
t + A, the process r cannot be above © without their sample paths
having crossed at least once.
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS

e Immediately after they cross, they are indistinguishable by the Markov
property and we can interchange them.

time

t T t+A
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS

e We will see that this simple observation implies that the process is a
diffusion if and only if its transition function satisfies:

82
OxOy

In (p(A, ylz)) >0

e For all (xz,y) and A > 0. Not just for small A.
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS

e Sketch of proof of the necessary part

e Consider two sets Y and f/, withY <Y (meaning each element of
Y and Y satisfy the inequality).

e Coincidence probability (Karlin and McGregor)

Pr(recna €Y, fipn €V, {3s € [t,t + A /rs = s} |re = o, 7 = &)
=Pr(fyon €Y, reap €Y, {3s € [t,t + Al Jrs = Fs} re = x, 7 = 5:)
=Pr(fiin €Y, reapn € Yirg =x, 7 = :73)
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: time
t T +A
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS

e By independence of r and 7,
Pr(rica €Y, fipn €Vre =g, ft =) = P(A,Y|z) P (A, V]3)
Pr(frna €Y, repn € Vrg =, 7y =) = P(A,Y|3) P (A, V]z)

where

P(A,Y|z) z/

A, ylx)dx
yeyp( ylx)

e The probability that 1,y A € Y and 7 A € Y without their sample
paths having ever crossed between ¢t and t + A is therefore

P(AY|z) P (A,Y]E) - P(A,Y]E) P (A, V]2)

e Since its a probability, it must be positive.
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3 GEOMETRIC IMPLICATION OF THE CONTINUITY OF SAMPLE PATHS

e [ herefore:

p(A,yle)p (A, §lE) > p(A,y|Z)p (A, i)

forall x <z and y < g in R.

e This is equivalent by taking limits as § — y and £ — x to

82
O0x 0y

In (p(4, y|x)) > 0.

e The sufficiency part is more involved (see paper).
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4 EXAMPLE: SDES DRIVEN BY BROWNIAN VS. CAUCHY

4. Example: SDEs driven by Brownian vs. Cauchy

e Let's distinguish:
dry = B (o — 7r¢) dt + odWy
from:
dry = B (a — r¢) dt + odCY

where W is a Brownian motion and C a Cauchy process.
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The two transition functions
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5. Empirical Results: SPX Options
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5 EMPIRICAL RESULTS: SPX OPTIONS
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6 CONCLUSIONS

6. Conclusions

e Option prices say jumps are present.

e No need for jumps to be observed, the mere possibility that they hap-
pen is sufficient.

e No need for high frequency data.
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