
Chapter 20

Insurance Versus Incentives

20.1. Insurance with recursive contracts

This chapter studies a planner who designs an efficient contract to supply insur-

ance in the presence of incentive constraints imposed by his limited ability either

to enforce contracts or to observe households’ actions or incomes. We pursue

two themes, one substantive, the other technical. The substantive theme is a

tension that exists between offering insurance and providing incentives. A plan-

ner can overcome incentive problems by offering “carrots and sticks” that adjust

an agent’s future consumption and thereby provide less insurance. Balancing

incentives against insurance shapes the evolution of distributions of wealth and

consumption.

The technical theme is how memory can be encoded recursively and how

incentive problems can be managed with contracts that retain memory and

make promises. Contracts issue rewards that depend on the history either of

publicly observable outcomes or of an agent’s announcements about his privately

observed outcomes. Histories are large-dimensional objects. But Spear and

Srivastava (1987), Thomas and Worrall (1988), Abreu, Pearce, and Stacchetti

(1990), and Phelan and Townsend (1991) discovered that the dimension can be

contained by using an accounting system cast solely in terms of a “promised

value,” a one-dimensional object that summarizes relevant aspects of an agent’s

history. Working with promised values permits us to formulate the contract

design problem recursively.

Three basic models are set within a single physical environment but assume

different structures of information, enforcement, and storage possibilities. The

first adapts a model of Thomas and Worrall (1988) and Kocherlakota (1996b)

that focuses on commitment or enforcement problems and has all information

being public. The second is a model of Thomas and Worrall (1990) that has

an incentive problem coming from private information but that assumes away

commitment and enforcement problems. Common to both of these models is

that the insurance contract is assumed to be the only vehicle for households
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to transfer wealth across states of the world and over time. The third model,

by Allen (1985) Cole and Kocherlakota (2001), extends Thomas and Worrall’s

(1990) model by introducing private storage that cannot be observed publicly.

Ironically, because it lets households self-insure as in chapters 17 and 18, the

possibility of private storage reduces ex ante welfare by limiting the amount of

social insurance that can be attained when incentive constraints are present.

20.2. Basic environment

Imagine a village with a large number of ex ante identical households. Each

household has preferences over consumption streams that are ordered by

E−1

∞∑

t=0

βtu(ct), (20.2.1)

where u(c) is an increasing, strictly concave, and twice continuously differen-

tiable function, β ∈ (0, 1) is a discount factor, and E−1 is the mathematical

expectation not conditioning on any information available at time 0 or later.

Each household receives a stochastic endowment stream {yt}∞t=0 , where for each

t ≥ 0, yt is independently and identically distributed according to the discrete

probability distribution Prob(yt = ys) = Πs, where s ∈ {1, 2, . . . , S} ≡ S

and ys+1 > ys . The consumption good is not storable. At time t ≥ 1, the

household has experienced a history of endowments ht = (yt, yt−1, . . . , y0). The

endowment processes are independently and identically distributed both across

time and across households.

In this setting, if there were a competitive equilibrium with complete mar-

kets as described in chapter 8, at date 0 households would trade history- and

date-contingent claims before the realization of endowments. Since all house-

holds are ex ante identical, each household would end up consuming the per

capita endowment in every period, and its lifetime utility would be

vpool =

∞∑

t=0

βt u

(
S∑

s=1

Πsys

)
=

1

1− β
u

(
S∑

s=1

Πsys

)
. (20.2.2)

Households would thus insure away all of the risk associated with their individual

endowment processes. But the incentive constraints that we are about to specify



Basic environment 789

make this allocation unattainable. For each specification of incentive constraints,

we shall solve a planning problem for an efficient allocation that respects those

constraints.

Following a tradition started by Green (1987), we assume that a “moneylen-

der” or “planner” is the only person in the village who has access to a risk-free

loan market outside the village. The moneylender can borrow or lend at a con-

stant risk-free gross interest rate R = β−1 . The households cannot borrow or

lend with one another, and can trade only with the moneylender. Furthermore,

we assume that the moneylender is committed to honor his promises. We will

study three types of incentive constraints.

(a) Both the money lender and the household observe the household’s history

of endowments at each time t . Although the moneylender can commit to

honor a contract, households cannot commit and at any time are free to

walk away from an arrangement with the moneylender and live in perpetual

autarky thereafter. They must be induced not to do so by the structure

of the contract. This is a model of “one-sided commitment” in which the

contract is “self-enforcing” because the household prefers to conform to it.

(b) Households can make commitments and enter into enduring and binding

contracts with the moneylender, but they have private information about

their own incomes. The moneylender can see neither their income nor their

consumption. It follows that any exchanges between the moneylender and

a household must be based on the household’s own reports about income

realizations. An incentive-compatible contract must induce a household to

report its income truthfully.

(c) The environment is the same as in b except for the additional assumption

that households have access to a storage technology that cannot be observed

by the moneylender. Households can store nonnegative amounts of goods at

a risk-free gross return of R equal to the interest rate that the moneylender

faces in the outside credit market. Since the moneylender can both borrow

and lend at the interest rate R outside of the village, the private storage

technology does not change the economy’s aggregate resource constraint,

but it does substantially affect the set of incentive-compatible contracts

between the moneylender and the households.

When we compute efficient allocations for each of these three environments,

we shall find that the dynamics of the implied consumption allocations differ
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Figure 20.2.1.a: Typical consumption

path in environment a.
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Figure 20.2.1.b: Typical consumption

path in environment b.
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Figure 20.2.2: Typical consumption path in environment c.

dramatically. As a prelude, Figures 20.2.1 and 20.2.2 depict the different con-

sumption streams that are associated with the same realization of a random

endowment stream for households living in environments a, b, and c, respec-

tively. For all three of these economies, we set u(c) = −γ−1 exp(−γc) with
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γ = .8, β = .92, [y1, . . . , y10] = [6, . . . , 15], and Πs =
1−λ

1−λ10 λ
s−1 with λ = 2/3.

As a benchmark, a horizontal dotted line in each graph depicts the constant

consumption level that would be attained in a complete markets equilibrium

where there are no incentive problems. In all three environments, prior to date

0, the households have entered into efficient contracts with the moneylender.

The dynamics of consumption outcomes evidently differ substantially across the

three environments, increasing and then flattening out in environment a, head-

ing “south” in environment b, and heading “north” in environment c. This

chapter explains why the sample paths of consumption differ so much across

these three settings.

20.3. One-sided no commitment

Our first incentive problem is a lack of commitment. A moneylender is com-

mitted to honor his promises, but villagers are free to walk away from their

arrangement with the moneylender at any time. The moneylender designs a

contract that the villager wants to honor at every moment and contingency.

Such a contract is said to be self-enforcing. In chapter 21, we shall study an-

other economy in which there is no moneylender, only another villager, and

when no one is able to keep prior commitments. Such a contract design prob-

lem with participation constraints on both sides of an exchange represents a

problem with two-sided lack of commitment, in contrast to the problem with

one-sided lack of commitment treated here.1

1 For an earlier two-period model of a one-sided commitment problem, see Holmström

(1983).
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20.3.1. Self-enforcing contract

A moneylender can borrow or lend resources from outside the village but the

villagers cannot. A contract is a sequence of functions ct = ft(ht) for t ≥ 0,

where ht = (yt, . . . , y0). The sequence of functions {ft} assigns a history-

dependent consumption stream ct = ft(ht) to the household. The contract

specifies that each period, the villager contributes his time t endowment yt to

the moneylender who then returns ct to the villager. From this arrangement,

the moneylender earns an ex ante expected present value

P = E−1

∞∑

t=0

βt(yt − ct). (20.3.1)

By plugging the associated consumption process into expression (20.2.1), we

find that the contract assigns the villager an expected present value of v =

E−1

∑∞
t=0 β

tu (ft(ht)) .

The contract must be self-enforcing. At any point in time, the household

is free to walk away from the contract and thereafter consume its endowment

stream. Thus, if the household walks away from the contract, it must live in

autarky evermore. The ex ante value associated with consuming the endowment

stream, to be called the autarky value, is

vaut = E−1

∞∑

t=0

βtu(yt) =
1

1− β

S∑

s=1

Πsu(ys). (20.3.2)

At time t , after having observed its current-period endowment, the household

can guarantee itself a present value of utility of u(yt) + βvaut by consuming its

own endowment. The moneylender’s contract must offer the household at least

this utility at every possible history and every date. Thus, the contract must

satisfy

u[ft(ht)] + βEt

∞∑

j=1

βj−1u[ft+j(ht+j)] ≥ u(yt) + βvaut, (20.3.3)

for all t ≥ 0 and for all histories ht . Equation (20.3.3) is called the participation

constraint for the villager. A contract that satisfies equation (20.3.3) is said to

be sustainable.
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20.3.2. Recursive formulation and solution

A difficulty with constraints like equation (20.3.3) is that there are so many of

them: the dimension of the argument ht grows exponentially with t . Fortu-

nately, there is a recursive way to describe some history-dependent contracts.

We can represent the sequence of functions {ft} recursively by finding a state

variable xt such that the contract takes the form

ct = g(xt, yt),

xt+1 = ℓ(xt, yt).

Here g and ℓ are time-invariant functions. Notice that by iterating the ℓ(·)
function t times starting from (x0, y0), one obtains

xt = mt(x0; yt−1, . . . , y0), t ≥ 1.

Thus, xt summarizes histories of endowments ht−1 . In this sense, xt is a

“backward-looking” variable.

A remarkable fact is that the appropriate state variable xt is a promised

expected discounted future value vt = Et−1

∑∞
j=0 β

ju(ct+j). This “forward-

looking” variable summarizes a stream of future utilities. We shall formulate

the contract recursively by having the moneylender arrive at t , before yt is

realized, with a previously made promised value vt . He delivers vt by letting

ct and the continuation value vt+1 both respond to yt .

Thus, we shall treat the promised value v as a state variable, then formulate

a functional equation for a moneylender. The moneylender gives a prescribed

value v by delivering a state-dependent current consumption c and a promised

value starting tomorrow, say v′ , where c and v′ each depend on the current

endowment y and the preexisting promise v . The moneylender chooses c and

v′ to let him provide v in a way that maximizes his profits (20.3.1).

Each period, the household must be induced to surrender the time t endow-

ment yt to the moneylender, who possibly gives some of it to other households

and invests the rest of it outside the village at a constant one-period gross in-

terest rate of β−1 . In exchange, the moneylender delivers a state-contingent

consumption stream to the household that keeps it participating in the arrange-

ment every period and after every history. The moneylender wants to do this

in the most efficient way, that is, the profit-maximizing way. Let v be the

promised expected discounted future utility promised to a villager. Let P (v) be
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the expected present value of the “profit stream” {yt − ct} for a moneylender

who delivers value v in the optimal way. The optimum value P (v) obeys the

functional equation

P (v) = max
{cs,ws}

S∑

s=1

Πs[(ys − cs) + βP (ws)] (20.3.4)

where the maximization is subject to the constraints

S∑

s=1

Πs[u(cs) + βws] ≥ v, (20.3.5)

u(cs) + βws ≥ u(ys) + βvaut, s = 1, . . . , S; (20.3.6)

cs ∈ [cmin,cmax], (20.3.7)

ws ∈ [vaut,v̄]. (20.3.8)

Here ws is the promised value with which the consumer enters next period,

given that y = ys this period; [cmin, cmax] is a bounded set to which we restrict

the choice of ct each period. We restrict the continuation value ws to be in the

set [vaut, v̄] , where v̄ is a very large number. Soon we’ll compute the highest

value that the moneylender would ever want to set ws . All we require now is

that v̄ exceed this value. Constraint (20.3.5) is the promise-keeping constraint.

It requires that the contract deliver at least promised value v . Constraints

(20.3.6), one for each state s , are the participation constraints. Evidently, P

must be a decreasing function of v because the higher the consumption stream

of the villager, the lower must be the profits of the moneylender.

The constraint set is convex. The one-period return function in equation

(20.3.4) is concave. The value function P (v) that solves equation (20.3.4)

is concave. In fact, P (v) is strictly concave as will become evident from our

characterization of the optimal contract that solves this problem. Form the

Lagrangian

L =

S∑

s=1

Πs[(ys − cs) + βP (ws)]

+ µ

{
S∑

s=1

Πs[u(cs) + βws]− v

}

+

S∑

s=1

λs

{
u(cs) + βws − [u(ys) + βvaut]

}
.

(20.3.9)
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For each v and for s = 1, . . . , S , the first-order conditions for maximizing L

with respect to cs, ws , respectively, are
2

(λs + µΠs)u
′(cs) = Πs, (20.3.10)

λs + µΠs = −ΠsP
′(ws). (20.3.11)

By the envelope theorem, if P is differentiable, then P ′(v) = −µ . We will

proceed under the assumption that P is differentiable but it will become evident

that P is indeed differentiable when we learn about the optimal contract that

solves this problem.

Equations (20.3.10) and (20.3.11) imply the following relationship between

cs and ws :

u′(cs) = −P ′(ws)
−1. (20.3.12)

This condition states that the household’s marginal rate of substitution between

cs and ws , given by u′(cs)/β , should equal the moneylender’s marginal rate of

transformation as given by −[βP ′(ws)]
−1 . The concavity of P and u means

that equation (20.3.12) traces out a positively sloped curve in the c, w plane,

as depicted in Figure 20.3.1. We can interpret this condition as making cs a

function of ws . To complete the optimal contract, it will be enough to find how

ws depends on the promised value v and the income state ys .

Condition (20.3.11) can be written

P ′(ws) = P ′(v)− λs/Πs. (20.3.13)

How ws varies with v depends on which of two mutually exclusive and exhaus-

tive sets of states (s, v) falls into after the realization of ys : those in which the

participation constraint (20.3.6) binds (i.e., states in which λs > 0) or those in

which it does not (i.e., states in which λs = 0).

States where λs > 0

When λs > 0, the participation constraint (20.3.6) holds with equality. When

λs > 0, (20.3.13) implies that P ′(ws) < P ′(v), which in turn implies, by the

2 Please note that the λs ’s depend on the promised value v . In particular, which λs ’s

are positive and which are zero will depend on v , with more of them being zero when the

promised value v is higher. See figure 20.3.1.
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Figure 20.3.1: Determination of consumption and promised

utility (c, w ). Higher realizations of ys are associated with

higher indifference curves u(c) + βw = u(ys) + βvaut . For

a given v , there is a threshold level ȳ(v) above which the

participation constraint is binding and below which the mon-

eylender awards a constant level of consumption, as a func-

tion of v , and maintains the same promised value w = v .

The cutoff level ȳ(v) is determined by the indifference curve

going through the intersection of a horizontal line at level v

with the “expansion path” u′(c)P ′(w) = −1.

concavity of P , that ws > v . Further, the participation constraint at equality

implies that cs < ys (because ws > v ≥ vaut ). Taken together, these results

say that when the participation constraint (20.3.6) binds, the moneylender in-

duces the household to consume less than its endowment today by raising its

continuation value.

When λs > 0, cs and ws solve the two equations

u(cs) + βws = u(ys) + βvaut, (20.3.14)

u′(cs) = −P ′(ws)
−1. (20.3.15)

The participation constraint holds with equality. Notice that these equations

are independent of v . This property is a key to understanding the form of the
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optimal contract. It imparts to the contract what Kocherlakota (1996b) calls

amnesia: when incomes yt are realized that cause the participation constraint

to bind, the contract disposes of all history dependence and makes both con-

sumption and the continuation value depend only on the current income state

yt . We portray amnesia by denoting the solutions of equations (20.3.14) and

(20.3.15) by

cs = g1(ys), (20.3.16a)

ws = ℓ1(ys). (20.3.16b)

Later, we’ll exploit the amnesia property to produce a computational algorithm.

States where λs = 0

When the participation constraint does not bind, λs = 0 and first-order condi-

tion (20.3.11) imply that P ′(v) = P ′(ws), which implies that ws = v . There-

fore, from (20.3.12), we can write u′(cs) = −P ′(v)−1 , so that consumption in

state s depends on promised utility v but not on the endowment in state s .

Thus, when the participation constraint does not bind, the moneylender awards

cs = g2(v), (20.3.17a)

ws = v, (20.3.17b)

where g2(v) solves u′[g2(v)] = −P ′(v)−1 .

The optimal contract

Combining the branches of the policy functions for the cases where the partici-

pation constraint does and does not bind, we obtain

c = max{g1(y), g2(v)}, (20.3.18)

w = max{ℓ1(y), v}. (20.3.19)

The optimal policy is displayed graphically in Figures 20.3.1 and 20.3.2. To

interpret the graphs, it is useful to study equations (20.3.6) and (20.3.12) for

the case in which ws = v . By setting ws = v , we can solve these equations for

a “cutoff value,” call it ȳ(v), such that the participation constraint binds only
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when ys ≥ ȳ(v). To find ȳ(v), we first solve equation (20.3.12) for the value cs

associated with v for those states in which the participation constraint is not

binding:

u′[g2(v)] = −P ′(v)−1,

and then substitute this value into (20.3.6) at equality to solve for ȳ(v):

u[ȳ(v)] = u[g2(v)] + β(v − vaut). (20.3.20)

By the concavity of P , the cutoff value ȳ(v) is increasing in v .

g   (v)2

y (v)

c

y
_

Figure 20.3.2: The shape of consumption as a function of

realized endowment, when the promised initial value is v .

Associated with a given level of vt ∈ (vaut, v̄), there are two numbers g2(vt),

ȳ(vt) such that if yt ≤ ȳ(vt) the moneylender offers the household ct = g2(vt)

and leaves the promised utility unaltered, vt+1 = vt . The moneylender is thus

insuring against the states ys ≤ ȳ(vt) at time t . If yt > ȳ(vt), the participation

constraint is binding, prompting the moneylender to induce the household to sur-

render some of its current-period endowment in exchange for a raised promised

utility vt+1 > vt . Promised values never decrease. They stay constant for low-y

states ys < ȳ(vt) and increase in high-endowment states that threaten to violate

the participation constraint. Consumption stays constant during periods when

the participation constraint fails to bind and increases during periods when it
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threatens to bind. Whenever the participation binds, the household makes a

net transfer to the money lender in return for promised continuation utility. A

household that realizes the highest endowment yS is permanently awarded the

highest consumption level with an associated promised value v̄ that satisfies

u[g2(v̄)] + βv̄ = u(yS) + βvaut.

20.3.3. Recursive computation of contract

Suppose that the initial promised value v0 is vaut . We can compute the optimal

contract recursively by using the fact that the villager will ultimately receive a

constant welfare level equal to u(yS) + βvaut after ever having experienced the

maximum endowment yS . We can characterize the optimal policy in terms of

numbers {cs, ws}Ss=1 ≡ {g1(ys), ℓ1(ys)}Ss=1 where g1(ys) and ℓ1(s) are given by

(20.3.16). These numbers can be computed recursively by working backward as

follows. Start with s = S and compute (cS , wS) from the nonlinear equations:

u(cS) + βwS = u(yS) + βvaut, (20.3.21a)

wS =
u(cS)

1− β
. (20.3.21b)

Working backward for j = S− 1, . . . , 1, compute cj , wj from the two nonlinear

equations

u(cj) + βwj = u(yj) + βvaut, (20.3.22a)

wj = [u(cj) + βwj ]

j∑

k=1

Πk +
S∑

k=j+1

Πk[u(ck) + βwk]. (20.3.22b)

These successive iterations yield the optimal contract characterized by {cs, ws}Ss=1 .

Ex ante, before the time 0 endowment has been realized, the contract offers the

household

v0 =

S∑

k=1

Πk[u(ck) + βwk] =

S∑

k=1

Πk[u(yk) + βvaut] = vaut, (20.3.23)

where we have used (20.3.22a) to verify that the contract indeed delivers v0 =

vaut .
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Some additional manipulations will enable us to express {cj}Sj=1 solely in

terms of the utility function and the endowment process. First, solve for wj

from (20.3.22b),

wj =
u(cj)

∑j
k=1 Πk +

∑S
k=j+1 Πk[u(yk) + βvaut]

1− β
∑j

k=1 Πk
, (20.3.24)

where we have invoked (20.3.22a) when replacing [u(ck) + βwk] by [u(yk) +

βvaut] . Next, substitute (20.3.24) into (20.3.22a) and solve for u(cj),

u(cj) =

[
1− β

j∑

k=1

Πk

]
[
u(yj) + βvaut

]
− β

S∑

k=j+1

Πk [u(yk) + βvaut]

= u(yj) + βvaut − βu(yj)

j∑

k=1

Πk − β2vaut − β
S∑

k=j+1

Πku(yk)

= u(yj) + βvaut − βu(yj)

j∑

k=1

Πk − β2vaut − β

[
(1 − β)vaut −

j∑

k=1

Πku(yk)

]

= u(yj)− β

j∑

k=1

Πk
[
u(yj)− u(yk)

]
. (20.3.25)

According to (20.3.25), u(c1) = u(y1) and u(cj) < u(yj) for j ≥ 2. That is, a

household that realizes a record high endowment of yj must surrender some of

that endowment to the moneylender unless the endowment is the lowest possible

value y1 . Households are willing to surrender parts of their endowments in

exchange for promises of insurance (i.e., future state-contingent transfers) that

are encoded in the associated continuation values, {wj}Sj=1 . For those unlucky

households that have so far realized only endowments equal to y1 , the profit-

maximizing contract prescribes that the households retain their endowment,

c1 = y1 and by (20.3.22a), the associated continuation value is w1 = vaut .

That is, to induce those low-endowment households to adhere to the contract,

the moneylender has only to offer a contract that assures them an autarky

continuation value in the next period.

Contracts when v0 > w1 = vaut

We have shown how to compute the optimal contract when v0 = w1 = vaut by

computing quantities (cs, ws) for s = 1, . . . , S . Now suppose that we want to
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construct a contract that assigns initial value v0 ∈ [wk−1, wk) for 1 < k ≤ S .

Given v0 , we can deduce k , then solve for c̃ satisfying

v0 =



k−1∑

j=1

Πj


 [u(c̃) + βv0] +

S∑

j=k

Πj [u(cj) + βwj ] . (20.3.26)

The optimal contract promises (c̃, v0) so long as the maximum yt to date is less

than or equal to yk−1 . When the maximum yt experienced to date equals yj
for j ≥ k , the contract offers (cj , wj).

It is plausible that a higher initial expected promised value v0 > vaut can

be delivered in the most cost-effective way by choosing a higher consumption

level c̃ for households that experience low endowment realizations, c̃ > cj for

j = 1, . . . , k−1. The reason is that those unlucky households have high marginal

utilities of consumption. Therefore, transferring resources to them minimizes the

resources that are needed to increase the ex ante promised expected utility. As

for those lucky households that have received relatively high endowment real-

izations, the optimal contract prescribes an unchanged allocation characterized

by {cj , wj}Sj=k .
If we want to construct a contract that assigns initial value v0 ≥ wS , the

efficient solution is simply to find the constant consumption level c̃ that delivers

lifetime utility v0 :

v0 =
S∑

j=1

Πj [u(c̃) + βv0] =⇒ v0 =
u(c̃)

1− β
.

This contract trivially satisfies all participation constraints, and a constant con-

sumption level maximizes the expected profit of delivering v0 .

Summary of optimal contract

Define

s(t) = {j : yj = max{y0, y1, . . . , yt}}.

That is, ys(t) is the maximum endowment that the household has experienced

up until period t .

The optimal contract has the following features. To deliver promised value

v0 ∈ [vaut, wS ] to the household, the contract offers stochastic consumption and



802 Insurance Versus Incentives

continuation values, {ct, vt+1}∞t=0 , that satisfy

ct = max{c̃, cs(t)}, (20.3.27a)

vt+1 = max{v0, ws(t)}, (20.3.27b)

where c̃ is given by (20.3.26).

20.3.4. Profits

We can use (20.3.4) to compute expected profits from offering continuation

value wj , j = 1, . . . , S . Starting with P (wS), we work backward to compute

P (wk), k = S − 1, S − 2, . . . , 1:

P (wS) =

S∑

j=1

Πj

(
yj − cS

1− β

)
, (20.3.28a)

P (wk) =

k∑

j=1

Πj(yj − ck) +

S∑

j=k+1

Πj(yj − cj)

+ β




k∑

j=1

ΠjP (wk) +

S∑

j=k+1

ΠjP (wj)


 . (20.3.28b)

Strictly positive profits for v0 = vaut

We will now demonstrate that a contract that offers an initial promised value of

vaut is associated with strictly positive expected profits. In order to show that

P (vaut) > 0, let us first examine the expected profit implications of the following

limited obligation. Suppose that a household has just experienced yj for the first

time and that the limited obligation amounts to delivering cj to the household in

that period and in all future periods until the household realizes an endowment

higher than yj . At the time of such a higher endowment realization in the

future, the limited obligation ceases without any further transfers. Would such

a limited obligation be associated with positive or negative expected profits?

In the case of yj = y1 , this would entail a deterministic profit equal to zero,

since we have shown above that c1 = y1 . But what is true for other endowment

realizations?
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To study the expected profit implications of such a limited obligation for

any given yj , we first compute an upper bound for the obligation’s consumption

level cj by using (20.3.25):

u(cj) =

[
1− β

j∑

k=1

Πk

]
u(yj) + β

j∑

k=1

Πku(yk)

≤ u

([
1− β

j∑

k=1

Πk

]
yj + β

j∑

k=1

Πkyk

)
,

where the weak inequality is implied by the strict concavity of the utility func-

tion, and evidently the expression holds with strict inequality for j > 1. There-

fore, an upper bound for cj is

cj ≤
[
1− β

j∑

k=1

Πk

]
yj + β

j∑

k=1

Πkyk. (20.3.29)

We can sort out the financial consequences of the limited obligation by

looking separately at the first period and then at all future periods. In the first

period, the moneylender obtains a nonnegative profit,

yj − cj ≥ yj −
([

1− β

j∑

k=1

Πk

]
yj + β

j∑

k=1

Πkyk

)

= β

j∑

k=1

Πk
[
yj − yk

]
, (20.3.30)

where we have invoked the upper bound on cj in (20.3.29). After that first pe-

riod, the moneylender must continue to deliver cj for as long as the household

does not realize an endowment greater than yj . So the probability that the

household remains within the limited obligation for another t number of peri-

ods is (
∑j

i=1 Πi)
t . Conditional on remaining within the limited obligation, the

household’s average endowment realization is (
∑j

k=1 Πkyk)/(
∑j

k=1 Πk). Conse-

quently, the expected discounted profit stream associated with all future periods

of the limited obligation, expressed in first-period values, is

∞∑

t=1

βt

[
j∑

i=1

Πi

]t [∑j
k=1 Πkyk∑j
k=1 Πk

− cj

]
=

[
β
∑j

i=1 Πi

]

1− β
∑j

i=1 Πi

[∑j
k=1 Πkyk∑j
k=1 Πk

− cj

]

≥ −β
j∑

k=1

Πk
[
yj − yk

]
, (20.3.31)
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where the inequality is obtained after invoking the upper bound on cj in (20.3.29).

Since the sum of (20.3.30) and (20.3.31) is nonnegative, we conclude that the

limited obligation at least breaks even in expectation. In fact, for yj > y1 we

have that (20.3.30) and (20.3.31) hold with strict inequalities, and thus, each

such limited obligation is associated with strictly positive profits.

Since the optimal contract with an initial promised value of vaut can be

viewed as a particular constellation of all of the described limited obligations,

it follows immediately that P (vaut) > 0.

Contracts with P (v0) = 0

In exercise 20.2 , you will be asked to compute v0 such that P (v0) = 0. Here

is a good way to do this. After computing the optimal contract for v0 = vaut ,

suppose that we can find some k satisfying 1 < k ≤ S such that for j ≥
k, P (wj) ≤ 0 and for j < k , P (wk) > 0. Use a zero-profit condition to find an

initial c̃ level:

0 =

k−1∑

j=1

Πj(yj − c̃) +

S∑

j=k

Πj
[
yj − cj + βP (wj)

]
.

Given c̃ , we can solve (20.3.26) for v0 .

However, such a k will fail to exist if P (wS) > 0. In that case, the efficient

allocation associated with P (v0) = 0 is a trivial one. The moneylender would

simply set consumption equal to the average endowment value. This contract

breaks even on average, and the household’s utility is equal to the first-best

unconstrained outcome, v0 = vpool , as given in (20.2.2).
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20.3.5. P (v) is strictly concave and continuously differentiable

Consider a promised value v0 ∈ [wk−1, wk) for 1 < k ≤ S . We can then use

equation (20.3.26) to compute the amount of consumption c̃(v0) awarded to a

household with promised value v0 , as long as the household is not experiencing

an endowment greater than yk−1 :

u[c̃(v0)] =

[
1− β

∑k−1
j=1 Πj

]
v0 −

∑S
j=k Πj [u(cj) + βwj ]

∑k−1
j=1 Πj

≡ Φk(v0), (20.3.32)

that is,

c̃(v0) = u−1 [Φk(v0)] . (20.3.33)

Since the utility function is strictly concave, it follows that c̃(v0) is strictly

convex in the promised value v0 :

c̃′(v0) =

[
1− β

∑k−1
j=1 Πj

]

∑k−1
j=1 Πj

u−1′ [Φk(v0)] > 0, (20.3.34a)

c̃′′(v0) =

[
1− β

∑k−1
j=1 Πj

]2

[∑k−1
j=1 Πj

]2 u−1′′ [Φk(v0)] > 0. (20.3.34b)

Next, we evaluate the expression for expected profits in (20.3.4) at the optimal

contract,

P (v0) =

k−1∑

j=1

Πj
[
yj − c̃(v0) + βP (v0)

]
+

S∑

j=k

Πj
[
yj − cj + βP (wj)

]
,

which can be rewritten as

P (v0) =

∑k−1
j=1 Πj

[
yj − c̃(v0)

]
+
∑S

j=k Πj
[
yj − cj + βP (wj)

]

1− β
∑k−1

j=1 Πj
.

We can now verify that P (v0) is strictly concave for v0 ∈ [wk−1, wk),

P ′(v0) = −
∑k−1
j=1 Πj

1− β
∑k−1
j=1 Πj

c̃′(v0) = −u−1′ [Φk(v0)] < 0, (20.3.35a)
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P ′′(v0) = −
∑k−1
j=1 Πj

1− β
∑k−1
j=1 Πj

c̃′′(v0)

= −

[
1− β

∑k−1
j=1 Πj

]

∑k−1
j=1 Πj

u−1′′ [Φk(v0)] < 0, (20.3.35b)

where we have invoked expressions (20.3.34).

To shed light on the properties of the value function P (v0) around the

promised value wk , we can establish that

lim
v0↑wk

Φk(v0) = Φk(wk) = Φk+1(wk), (20.3.36)

where the first equality is a trivial limit of expression (20.3.32) while the second

equality can be shown to hold because a rearrangement of that equality becomes

merely a restatement of a version of expression (20.3.22b). On the basis of

(20.3.36) and (20.3.33), we can conclude that the consumption level c̃(v0) is

continuous in the promised value which in turn implies continuity of the value

function P (v0). Moreover, expressions (20.3.36) and (20.3.35a) ensure that the

value function P (v0) is continuously differentiable in the promised value.

20.3.6. Many households

Consider a large village in which a moneylender faces a continuum of such

households. At the beginning of time t = 0, before the realization of y0 , the

moneylender offers each household vaut (or maybe just a small amount more).

As time unfolds, the moneylender executes the contract for each household.

A society of such households would experience a “fanning out” of the distri-

butions of consumption and continuation values across households for a while,

to be followed by an eventual “fanning in” as the cross-sectional distribution

of consumption asymptotically becomes concentrated at the single point g2(v̄)

computed earlier (i.e., the minimum c such that the participation constraint

will never again be binding). Notice that early on the moneylender would on

average, across villagers, be collecting money from the villagers, depositing it

in the bank, and receiving the gross interest rate β−1 on the bank balance.

Later he could be using the interest on his account outside the village to finance

payments to the villagers. Eventually, the villagers are completely insured, i.e.,

they experience no fluctuations in their consumptions.
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For a contract that offers initial promised value v0 ∈ [vaut, wS ] , constructed

as above, we can compute the dynamics of the cross-section distribution of

consumption by appealing to a law of large numbers of the kind used in chapter

18. At time 0, after the time 0 endowments have been realized, the cross-section

distribution of consumption is evidently

Prob{c0 = c̃} =

(
k−1∑

s=1

Πs

)
(20.3.37a)

Prob{c0 ≤ cj} =

(
j∑

s=1

Πs

)
, j ≥ k. (20.3.37b)

After t periods,

Prob{ct = c̃} =

(
k−1∑

s=1

Πs

)t+1

(20.3.38a)

Prob{ct ≤ cj} =

(
j∑

s=1

Πs

)t+1

, j ≥ k. (20.3.38b)

From the cumulative distribution functions (20.3.37) and (20.3.38), it is

easy to compute the corresponding densities

fj,t = Prob(ct = cj) (20.3.39)

where here we set cj = c̃ for all j < k . These densities allow us to compute

the evolution over time of the moneylender’s bank balance. Starting with initial

balance β−1B−1 = 0 at time 0, the moneylender’s balance at the bank evolves

according to

Bt = β−1Bt−1 +




S∑

j=1

Πjyj −
S∑

j=1

fj,tcj


 (20.3.40)

for t ≥ 0, where Bt denotes the end-of-period balance in period t . Let β−1 =

1 + r . After the cross-section distribution of consumption has converged to a

distribution concentrated on cS , the moneylender’s bank balance will obey the

difference equation

Bt = (1 + r)Bt−1 + E(y)− cS , (20.3.41)

where E(y) is the mean of y .
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A convenient formula links P (v0) to the tail behavior of Bt , in particular,

to the behavior of Bt after the consumption distribution has converged to cS .

Here we are once again appealing to a law of large numbers so that the expected

profits P (v0) becomes a nonstochastic present value of profits associated with

making a promise v0 to a large number of households. Since the moneylender

lets all surpluses and deficits accumulate in the bank account, it follows that

P (v0) is equal to the present value of the sum of any future balances Bt and the

continuation value of the remaining profit stream. After all households’ promised

values have converged to wS , the continuation value of the remaining profit

stream is evidently equal to βP (wS). Thus, for t such that the distribution of

c has converged to cs , we deduce that

P (v0) =
Bt + βP (wS)

(1 + r)t
. (20.3.42)

Since the term βP (wS)/(1 + r)t in expression (20.3.42) will vanish in the

limit, the expression implies that the bank balances Bt will eventually change at

the gross rate of interest. If the initial v0 is set so that P (v0) > 0 (P (v0) < 0),

then the balances will eventually go to plus infinity (minus infinity) at an expo-

nential rate. The asymptotic balances would be constant only if the initial v0 is

set so that P (v0) = 0. This has the following implications. First, recall from our

calculations above that there can exist an initial promised value v0 ∈ [vaut, wS ]

such that P (v0) = 0 only if it is true that P (wS) ≤ 0, which by (20.3.28a)

implies that E(y) ≤ cS . After imposing P (v0) = 0 and using the expression for

P (wS) in (20.3.28a), equation (20.3.42) becomes Bt = −βE(y)−cS
1−β , or

Bt =
cS − E(y)

r
≥ 0,

where we have used the definition β−1 = 1+r . Thus, if the initial promised value

v0 is such that P (v0) = 0, then the balances will converge when all households’

promised values converge to wS . The interest earnings on those stationary

balances will equal the one-period deficit associated with delivering cS to every

household while collecting endowments per capita equal to E(y) ≤ cS .

After enough time has passed, all of the villagers will be perfectly insured

because according to (20.3.38), limt→+∞ Prob(ct = cS) = 1. How much time

it takes to converge depends on the distribution Π. Eventually, everyone will

have received the highest endowment realization sometime in the past, after
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which his continuation value remains fixed. Thus, this is a model of temporary

imperfect insurance, as indicated by the eventual “fanning in” of the distribution

of continuation values.

20.3.7. An example

Figures 20.3.3 and 20.3.4 summarize aspects of the optimal contract for a version

of our economy in which each household has an i.i.d. endowment process that

is distributed as

Prob(yt = ys) =
1− λ

1− λS
λs−1

where λ ∈ (0, 1) and ys = s + 5 is the sth possible endowment value, s =

1, . . . , S . The typical household’s one-period utility function is u(c) = (1 −
γ)−1c1−γ , where γ is the household’s coefficient of relative risk aversion. We

have assumed the parameter values (β, S, γ, λ) = (.5, 20, 2, .95). The initial

promised value v0 is set so that P (v0) = 0.

The moneylender’s bank balance in Figure 20.3.3, panel d, starts at zero.

The moneylender makes money at first, which he deposits in the bank. But as

time passes, the moneylender’s bank balance converges to the point that he is

earning just enough interest on his balance to finance the extra payments he

must make to pay cS to each household each period. These interest earnings

make up for the deficiency of his per capita period income E(y), which is less

than his per period per capita expenditures cS .

20.4. A Lagrangian method

Marcet and Marimon (1992, 1999) have proposed an approach that applies

to most of the contract design problems of this chapter. They form a La-

grangian and use the Lagrange multipliers on incentive constraints to keep track

of promises. Their approach extends the work of Kydland and Prescott (1980)

and is related to Hansen, Epple, and Roberds’ (1985) formulation for linear

quadratic environments.3 We can illustrate the method in the context of the

preceding model.

3 Marcet and Marimon’s method is a variant of the method used to compute Stackelberg

or Ramsey plans in chapter 19. See chapter 19 for a more extensive review of the history of
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Figure 20.3.3: Optimal contract when P (v0) = 0. Panel

a: cs as function of maximum ys experienced to date. Panel

b: ws as function of maximum ys experienced. Panel c:

P (ws) as function of maximum ys experienced. Panel d:

The moneylender’s bank balance.

Marcet and Marimon’s approach would be to formulate the problem directly

in the space of stochastic processes (i.e., random sequences) and to form a

Lagrangian for the moneylender. The contract specifies a stochastic process for

consumption obeying the following constraints:

u(ct) + Et

∞∑

j=1

βju(ct+j) ≥ u(yt) + βvaut , ∀t ≥ 0, (20.4.1a)

E−1

∞∑

t=0

βtu(ct) ≥ v, (20.4.1b)

the ideas underlying Marcet and Marimon’s approach, in particular, some work from Great

Britain in the 1980s by Miller, Salmon, Pearlman, Currie, and Levine.
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Figure 20.3.4: Cumulative distribution functions Ft(ct) for

consumption for t = 0, 2, 5, 10, 25, 100 when P (v0) = 0 (later

dates have c.d.f.s shifted to right).

where E−1(·) denotes the conditional expectation before y0 has been realized.

Here v is the initial promised value to be delivered to the villager starting in

period 0. Equation (20.4.1a) gives the participation constraints.

The moneylender’s Lagrangian is

J = E−1

∞∑

t=0

βt
{
(yt − ct) + αt

[
Et

∞∑

j=0

βju(ct+j)− [u(yt) + βvaut]
]}

+ φ
[
E−1

∞∑

t=0

βtu(ct)− v
]
,

(20.4.2)

where {αt}∞t=0 is a stochastic process of nonnegative Lagrange multipliers on the

participation constraint of the villager and φ is the strictly positive multiplier

on the initial promise-keeping constraint that states that the moneylender must

deliver v . It is useful to transform the Lagrangian by making use of the following

equality, which is a version of the “partial summation formula of Abel” (see

Apostol, 1975, p. 194):

∞∑

t=0

βtαt

∞∑

j=0

βju(ct+j) =
∞∑

t=0

βtµtu(ct), (20.4.3)
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where

µt = µt−1 + αt, with µ−1 = 0. (20.4.4)

Formula (20.4.3) can be verified directly. If we substitute formula (20.4.3) into

formula (20.4.2) and use the law of iterated expectations to justify E−1Et(·) =
E−1(·), we obtain

J = E−1

∞∑

t=0

βt {(yt − ct) + (µt + φ)u(ct)

−(µt − µt−1) [u(yt) + βvaut]} − φv. (20.4.5)

For a given value v , we seek a saddle point: a maximum with respect to {ct} ,
a minimum with respect to {µt} and φ . The first-order condition with respect

to ct is

u′(ct) =
1

µt + φ
, (20.4.6a)

which is a version of equation (20.3.12). Thus, −(µt+φ) equals P
′(w) from the

previous section, so that the multipliers encode the information contained in the

derivative of the moneylender’s value function. We also have the complementary

slackness conditions

u(ct) + Et

∞∑

j=1

βju(ct+j)− [u(yt) + βvaut] ≥ 0, = 0 if αt > 0; (20.4.6b)

E−1

∞∑

t=0

βtu(ct)− v = 0. (20.4.6c)

Equation (20.4.6) together with the transition law (20.4.4) characterizes the

solution of the moneylender’s maximization problem.

To explore the time profile of the optimal consumption process, we now

consider some period t ≥ 0 when (yt, µt−1, φ) are known. First, we tentatively

try the solution αt = 0 (i.e., the participation constraint is not binding). Equa-

tion (20.4.4) instructs us then to set µt = µt−1 , which by first-order condition

(20.4.6a) implies that ct = ct−1 . If this outcome satisfies participation con-

straint (20.4.6b), we have our solution for period t . If not, it signifies that the

participation constraint binds. In other words, the solution has αt > 0 and

ct > ct−1 . Thus, equations (20.4.4) and (20.4.6a) immediately show us that ct
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is a nondecreasing random sequence, that ct stays constant when the participa-

tion constraint is not binding, and that it rises when the participation constraint

binds.

The numerical computation of a solution to equation (20.4.5) is compli-

cated by the fact that slackness conditions (20.4.6b) and (20.4.6c) involve condi-

tional expectations of future endogenous variables {ct+j} . Marcet and Marimon

(1992) handle this complication by resorting to the parameterized expectation

approach; that is, they replace the conditional expectation by a parameterized

function of the state variables.4 Marcet and Marimon (1992, 1999) describe a

variety of other examples using the Lagrangian method. See Kehoe and Perri

(2002) for an application to an international trade model.

20.5. Insurance with asymmetric information

The moneylender-villager environment of section 20.3 has a commitment

problem because agents are free to choose autarky each period; but there is

no information problem. We now study a contract design problem where the

incentive problem comes not from a commitment problem, but instead from

asymmetric information. As before, the moneylender or planner can borrow or

lend outside the village at the constant risk-free gross interest rate of β−1 , and

each household’s income yt is independently and identically distributed across

time and across households. However, we now assume that both the planner and

households can enter into enduring and binding contracts. At the beginning of

time, let vo be the expected lifetime utility that the planner promises to deliver

to a household. The initial promise vo could presumably not be less than vaut ,

since a household would not accept a contract that gives a lower utility than

he could attain at time 0 by choosing autarky. We defer discussing how vo

is determined until the end of the section. The other new assumption here is

that households have private information about their own income, and that the

planner can see neither their income nor their consumption. It follows that any

transfers between the planner and a household must be based on the household’s

4 For details on the implementation of the parameterized expectation approach in a simple

growth model, see den Haan and Marcet (1990).
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own reports about income realizations. An incentive-compatible contract makes

households choose to report their incomes truthfully.

Our analysis follows the work by Thomas and Worrall (1990), who make

a few additional assumptions about the preferences in expression (20.2.1): u :

(a,∞) → R is twice continuously differentiable with supu(c) < ∞ , inf u(c) =

−∞ , limc→a u
′(c) = ∞ . Thomas and Worrall also use the following special

assumption:

Condition A: −u′′/u′ is nonincreasing.

This is a sufficient condition to make the value function concave, as we will

discuss. The roles of the other restrictions on preferences will also be revealed.

An efficient insurance contract solves a dynamic programming problem.5

A planner maximizes expected discounted profits, P (v), where v is the house-

hold’s promised utility from last period. The planner’s current payment to the

household, denoted b (repayments from the household register as negative num-

bers), is a function of the state variable v and the household’s reported current

income y . Let bs and ws be the payment and continuation utility awarded to

the household if it reports income ys . The optimum value function P (v) obeys

the functional equation

P (v) = max
{bs,ws}

S∑

s=1

Πs[−bs + βP (ws)] (20.5.1)

where the maximization is subject to the constraints

S∑

s=1

Πs [u(ys + bs) + βws] = v (20.5.2)

Cs,k ≡ u(ys + bs) + βws −
[
u(ys + bk) + βwk

]
≥ 0, s, k ∈ S× S (20.5.3)

bs ∈ [a− ys, ∞] , s ∈ S (20.5.4)

ws ∈ [−∞, vmax] , s ∈ S (20.5.5)

where vmax = supu(c)/(1 − β). Equation (20.5.2) is the “promise-keeping”

constraint guaranteeing that the promised utility v is delivered. Note that

5 It is important that the endowment is independently distributed over time. See Fernandes

and Phelan (2000) for a related analysis that shows complications that arise when the iid

assumption is relaxed
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our earlier weak inequality in (20.3.5) is replaced by an equality. The planner

cannot award a higher utility than v because that could violate an incentive-

compatibility constraint for telling the truth in earlier periods. The set of con-

straints (20.5.3) ensures that the households have no incentive to lie about their

endowment realization in each state s ∈ S . Here s indexes the actual income

state, and k indexes the reported income state. We express the incentive com-

patibility constraints when the endowment is in state s as Cs,k ≥ 0 for k ∈ S .

Note also that there are no “participation constraints” like expression (20.3.6)

from our earlier model, an absence that reflects the assumption that both parties

are committed to the contract.

It is instructive to establish bounds on the value function P (v). Consider

first a contract that pays a constant amount b̄ = b̄(v) in all periods, where

b̄(v) satisfies
∑S

s=1 Πsu(ys + b̄)/(1− β) = v . It is trivially incentive compatible

and delivers the promised utility v . Therefore, the discounted profits from this

contract, −b̄/(1−β), provide a lower bound on P (v). In addition, P (v) cannot

exceed the value of the unconstrained first-best contract that pays c̄− ys in all

periods, where c̄ satisfies
∑S

s=1 Πsu(c̄)/(1 − β) = v . Thus, the value function

is bounded by

−b̄(v)/(1− β) ≤ P (v) ≤
S∑

s=1

Πs[ys − c̄(v)]/(1 − β) . (20.5.6)

The bounds are depicted in Figure 20.5.1, which also illustrates a few other prop-

erties of P (v). Since limc→a u
′(c) = ∞ , it becomes very cheap for the planner

to increase the promised utility when the current promise is very low, that is,

limv→−∞ P ′(v) = 0. The situation is different when the household’s promised

utility is close to the upper bound vmax where the household has a low marginal

utility of additional consumption, which implies that both limv→vmax P
′(v) =

−∞ and limv→vmax P (v) = −∞ .
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v

P(v)

P(v)

0 v
max

Figure 20.5.1: Value function P (v) and the two dashed

curves depict the bounds on the value function. The vertical

solid line indicates vmax = supu(c)/(1− β).

20.5.1. Efficiency implies bs−1 ≥ bs, ws−1 ≤ ws

An incentive-compatible contract must satisfy bs−1 ≥ bs (insurance) and ws−1 ≤
ws (partial insurance). This can be established by adding the “downward con-

straint” Cs,s−1 ≥ 0 and the “upward constraint” Cs−1,s ≥ 0 to get

u(ys + bs) − u(ys−1 + bs) ≥ u(ys + bs−1) − u(ys−1 + bs−1) ,

where the concavity of u(c) implies bs ≤ bs−1 . It then follows directly from

Cs,s−1 ≥ 0 that ws ≥ ws−1 . Thus, for any v , a household reporting a lower

income receives a higher transfer from the planner in exchange for a lower future

utility.
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20.5.2. Local upward and downward constraints are enough

Constraint set (20.5.3) can be simplified. We can show that if the local down-

ward constraints Cs,s−1 ≥ 0 and upward constraints Cs,s+1 ≥ 0 hold for each

s ∈ S , then the global constraints Cs,k ≥ 0 hold for each s, k ∈ S . The argu-

ment goes as follows: Suppose we know that the downward constraint Cs,k ≥ 0

holds for some s > k ,

u(ys + bs) + βws ≥ u(ys + bk) + βwk . (20.5.7)

From above we know that bs ≤ bk , so the concavity of u(c) implies

u(ys+1 + bs) − u(ys + bs) ≥ u(ys+1 + bk) − u(ys + bk) . (20.5.8)

By adding expressions (20.5.7) and (20.5.8) and using the local downward con-

straint Cs+1,s ≥ 0, we arrive at

u(ys+1 + bs+1) + βws+1 ≥ u(ys+1 + bk) + βwk,

that is, we have shown that the downward constraint Cs+1,k ≥ 0 holds. In this

recursive fashion we can verify that all global downward constraints are satisfied

when the local downward constraints hold. A symmetric reasoning applies to

the upward constraints. Starting from any upward constraint Ck,s ≥ 0 with

k < s , we can show that the local upward constraint Ck−1,k ≥ 0 implies that

the upward constraint Ck−1,s ≥ 0 must also hold, and so forth.

20.5.3. Concavity of P

Thus far, we have not appealed to the concavity of the value function, but

henceforth we shall have to. Thomas and Worrall showed that under condition

A, P is concave.

Proposition: The value function P (v) is concave.

We recommend just skimming the following proof on first reading:

Proof: Let T (P ) be the operator associated with the right side of equation

(20.5.1). We could compute the optimum value function by iterating to con-

vergence on T . We want to show that T maps strictly concave P to strictly

concave function T (P ). Thomas and Worrall use the following argument:
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Let Pk−1(v) be the k − 1 iterate on T . Assume that Pk−1(v) is strictly

concave. We want to show that Pk(v) is strictly concave. Consider any vo and

v′ with associated contracts (bos, w
o
s)s∈S , (b

′
s, w

′
s)s∈S . Let w

∗
s = δwos +(1− δ)w′

s

and define b∗s by u(b∗s + ys) = δu(bos + ys) + (1− δ)u(b′s + ys) where δ ∈ (0, 1).

Therefore, (b∗s, w
∗
s )s∈S gives the borrower a utility that is the weighted aver-

age of the two utilities, and gives the lender no less than the average utility

δPk(v
o) + (1 − δ)Pk(v

′). Then C∗
s,s−1 = δCos,s−1 + (1 − δ)C′

s,s−1 + [δu(bos−1 +

ys) + (1 − δ)u(b′s−1 + ys) − u(b∗s−1 + ys)] . Because the downward constraints

Cos,s−1 and C′
s,s−1 are satisfied, and because the third term is nonnegative

under condition A, the downward incentive constraints C∗
s,s−1 ≥ 0 are satis-

fied. However, (b∗s, w
∗
s )s∈S may violate the upward incentive constraints. But

Thomas and Worrall use the following argument to construct a new contract

from (b∗s, w
∗
s )s∈S that is incentive compatible and that offers both the lender

and the borrower no less utility. Thus, keep w1 fixed and reduce w2 until

C2,1 = 0 or w2 = w1 . Then reduce w3 in the same way, and so on. Add

the constant necessary to leave
∑

sΠsws constant. This step will not make

the lender worse off, by the concavity of Pk−1(v). Now if w2 = w1 , which

implies b∗2 > b∗1 , reduce b2 until C2,1 = 0, and proceed in the same way for

b3 , and so on. Since bs + ys > bs−1 + ys−1 , adding a constant to each bs to

leave
∑
sΠsbs constant cannot make the borrowers worse off. So in this new

contract, Cs,s−1 = 0 and bs−1 ≥ bs . Thus, the upward constraints also hold.

Strict concavity of Pk(v) then follows because it is not possible to have both

bos = b′s and wos = w′
s for all s ∈ S and vo 6= v′ , so the contract (b∗s, w

∗
s ) yields

the lender strictly more than δPk(v
o) + (1 − δ)Pk(v

′). To complete the induc-

tion argument, note that starting from P0(v) = 0, P1(v) is strictly concave.

Therefore, limk=∞ Pk(v) is concave.

We now turn to some properties of the optimal allocation that require strict

concavity of the value function. Thomas and Worrall derive these results for the

finite horizon problem with value function Pk(v), which is strictly concave by

the preceding proposition. In order for us to stay with the infinite horizon value

function P (v), we make the following assumption about limk=∞ Pk(v):
6

Assumption: The value function P (v) is strictly concave.

6 To get the main result reported below that all households become impoverished in the

limit, Thomas and Worrall provide a proof that requires only concavity of P (v) as established

in the preceding proposition.
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20.5.4. Local downward constraints always bind

At the optimal solution, the local downward incentive constraints always bind,

while the local upward constraints never do. That is, a household is always

indifferent between reporting the truth and reporting that its income is actually

a little lower than it is; but it never wants to report that its income is higher.

To see that the downward constraints must bind, suppose to the contrary that

Ck,k−1 > 0 for some k ∈ S . Since bk ≤ bk−1 , it must then be the case that

wk > wk−1 . Consider changing {bs, ws; s ∈ S} as follows. Keep w1 fixed, and

if necessary reduce w2 until C2,1 = 0. Next reduce w3 until C3,2 = 0, and

so on, until Cs,s−1 = 0 for all s ∈ S . (Note that any reductions cumulate

when moving up the sequence of constraints.) Thereafter, add the necessary

constant to each ws to leave the expected value of all future promises unchanged,∑S
s=1 Πsws . The new contract offers the household the same utility and is

incentive compatible because bs ≤ bs−1 and Cs,s−1 = 0 together imply that the

local upward constraint Cs−1,s ≥ 0 does not bind. At the same time, since the

mean of promised values is unchanged and the differences (ws−ws−1) have either

been left the same or reduced, the strict concavity of the value function P (v)

implies that the planner’s profits have increased. That is, we have engineered a

mean-preserving decrease in the spread in the continuation values w . Because

P (v) is strictly concave,
∑

s∈S ΠsP (ws) rises and therefore P (v) rises. Thus,

the original contract with a nonbinding local downward constraint could not

have been an optimal solution.

20.5.5. Coinsurance

The optimal contract is characterized by coinsurance, meaning that the house-

hold’s utility and the planner’s profits both increase with a higher income real-

ization:

u(ys + bs) + βws > u(ys−1 + bs−1) + βws−1 (20.5.9)

−bs + βP (ws) ≥ −bs−1 + βP (ws−1) . (20.5.10)

The higher utility of the household in expression (20.5.9) follows trivially from

the downward incentive-compatibility constraint Cs,s−1 = 0. Concerning the

planner’s profits in expression (20.5.10), suppose to the contrary that −bs +
βP (ws) < −bs−1 + βP (ws−1). Then replacing (bs, ws) in the contract by



820 Insurance Versus Incentives

(bs−1, ws−1) raises the planner’s profits but leaves the household’s utility un-

changed because Cs,s−1 = 0, and the change is also incentive compatible. Thus,

an optimal contract must be such that the planner’s profits weakly increase in

the household’s income realization.

20.5.6. P ′(v) is a martingale

If we let λ and µs , s = 2, . . . , S , be Lagrange multipliers associated with the

constraints (20.5.2) and Cs,s−1 ≥ 0, s = 2, . . . , S , respectively, the first-order

necessary conditions with respect to bs and ws , s ∈ S , are

Πs

[
1− λu′(ys + bs)

]
= µs u

′(ys + bs) − µs+1 u
′(ys+1 + bs), (20.5.11)

Πs

[
P ′(ws) + λ

]
= µs+1 − µs , (20.5.12)

for s ∈ S , where µ1 = µS+1 = 0. (There are no constraints corresponding to

µ1 and µS+1 .) From the envelope condition,

P ′(v) = −λ . (20.5.13)

Summing equation (20.5.12) over s ∈ S and using
∑S

s=1(µs+1 − µs) = µS+1 −
µ1 = 0 and equation (20.5.13) yields

S∑

s=1

Πs P
′(ws) = P ′(v) . (20.5.14)

This equation states that P ′ is a martingale.
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20.5.7. Comparison to model with commitment problem

In the model with a commitment problem studied in section 20.3, the efficient al-

location had to satisfy equation (20.3.12), i.e., u′(ys+ bs) = −P ′(ws)
−1 . As we

explained then, this condition sets the household’s marginal rate of substitution

equal to the planner’s marginal rate of transformation with respect to transfers

in the current period and continuation values in the next period. This condition

fails to hold in the present framework with incentive-compatibility constraints

associated with telling the truth. The efficient trade-off between current con-

sumption and a continuation value for a household with income realization ys
can not be determined without taking into account the incentives that other

households have to report ys untruthfully in order to obtain the corresponding

bundle of current and future transfers from the planner. It is instructive to note

that equation (20.3.12) would continue to hold in the present framework if the

incentive-compatibility constraints for truth telling were not binding. That is,

set the multipliers µs , s = 2, . . . , S , equal to zero and substitute first-order

condition (20.5.12) into (20.5.11) to obtain u′(ys + bs) = −P ′(ws)
−1 .

20.5.8. Spreading continuation values

An efficient contract requires that the promised future utility falls (rises) when

the household reports the lowest (highest) income realization, that is, that

w1 < v < wS . To show that wS > v , suppose to the contrary that wS ≤ v .

That this assumption leads to a contradiction is established by the following

line of argument. Since wS ≥ ws for all s ∈ S and P (v) is strictly concave,

equation (20.5.14) implies that ws = v for all s ∈ S . Substitution of equation

(20.5.13) into equation (20.5.12) then yields a zero on the left side of equation

(20.5.12). Moreover, the right side of equation (20.5.12) is equal to µ2 when

s = 1 and −µS when s = S , so we can successively unravel from the constraint

set (20.5.12) that µs = 0 for all s ∈ S . Turning to equation (20.5.11), it

follows that the marginal utility of consumption is equalized across income real-

izations, u′(ys+ bs) = λ−1 for all s ∈ S . Such consumption smoothing requires

bs−1 > bs , but from incentive compatibility, ws−1 = ws implies bs−1 = bs , a

contradiction. We conclude that an efficient contract must have wS > v . A

symmetric argument establishes w1 < v .
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The planner must spread out promises to future utility because otherwise it

would be impossible to provide any insurance in the form of contingent payments

today. Equation (20.5.14) describes how the planner balances the delivery of

utility today versus tomorrow. To understand this expression, consider having

the planner increase the household’s promised utility v by one unit. One way

of doing so is to increase every ws by an increment 1/β while keeping every

bs constant. Such a change preserves incentive compatibility at an expected

discounted cost to the planner of
∑S

s=1 ΠsP
′(ws). By the envelope theorem,

locally this is as good a way to increase v as any other, and its cost is therefore

equal to P ′(v); that is, we obtain expression (20.5.14). In other words, given

a planner’s obligation to deliver utility v to the agent, it is cost-efficient to

balance today’s contingent deliveries of goods, {bs} , and the bundle of future

utilities, {ws} , so that the expected marginal cost of next period’s promises,∑S
s=1 ΠsP

′(ws), becomes equal to the marginal cost of the current obligation,

P ′(v). No intertemporal price affects this trade-off, since any interest earnings

on postponed payments are just sufficient to compensate the agent for his own

subjective rate of discounting, (1 + r) = β−1 .

20.5.9. Martingale convergence and poverty

The martingale property (20.5.14) for P ′(v) has an intriguing implication for

the long-run tendency of a household’s promised future utility. Recall that

limv→−∞ P ′(v) = 0 and limv→vmax P
′(v) = −∞ , so P ′(v) in expression (20.5.14)

is a nonpositive martingale. By a theorem of Doob (1953, p. 324), P ′(v) then

converges almost surely. We can show that P ′(v) must converge to 0, so that v

converges to −∞ . Suppose to the contrary that P ′(v) converges to a nonzero

limit, which implies that v converges to a finite limit. However, this assumption

contradicts our earlier result that future ws always spread out to provide in-

centives. The contradiction is avoided only for v converging to −∞ ; therefore,

the limit of P ′(v) must be zero.

The result that all households become impoverished in the limit can be

understood in terms of the concavity of P (v). First, if there were no asymmet-

ric information, the least expensive way of delivering lifetime utility v would

be to assign the household a constant consumption stream, given by the up-

per bound on the value function in expression (20.5.6). The concavity of P (v)
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and standard intertemporal considerations favor a time-invariant consumption

stream. But the presence of asymmetric information makes it necessary for the

planner to vary promises of future utility to induce truth telling, which is costly

due to the concavity of P (v). For example, Thomas and Worrall pointed out

that if S = 2, the cost of spreading w1 and w2 an equally small amount ǫ on

either side of their average value w̄ is approximately −0.5ǫ2P ′′(w̄).7 In gen-

eral, we cannot say how this cost differs for any two values of w̄ , but it follows

from the properties of P (v) at its endpoints that limv→−∞ P ′′(v) = 0, and

limv→vmax P
′′(v) = −∞ . Thus, the cost of spreading promised values goes to

zero at one endpoint and to infinity at the other endpoint. Therefore, the con-

cavity of P (v) and incentive compatibility considerations impart a downward

drift to future utilities and, consequently, consumption. That is, with private

information the ideal time-invariant consumption level without private informa-

tion is abandoned in favor of random consumption paths that are expected to

be tilted toward the present.

One possibility is that the initial utility level vo is determined in competi-

tion between insurance providers. If there are no costs associated with admin-

istering contracts, vo would then be implicitly determined by the zero-profit

condition, P (vo) = 0. Such a contract must be enforceable because, as we have

seen, the household will almost surely eventually wish that it could revert to

autarky. However, since the contract is the solution to a dynamic program-

ming problem where the continuation of the contract is always efficient at every

date, the insurer and the household will never mutually agree to renegotiate the

contract.

7 The expected discounted profits of providing promised values w1 = w̄−ǫ and w2 = w̄+ǫ

with equal probabilities, can be approximated with a Taylor series expansion around w̄ ,∑2
s=1

1
2P (ws) ≈

∑2
s=1

1
2

[
P (w̄) + (ws − w̄)P ′(w̄) +

(ws−w̄)2

2 P ′′(w̄)

]
= P (w̄) + ǫ2

2 P
′′(w̄).
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20.5.10. Extension to general equilibrium

Atkeson and Lucas (1992) provide examples of closed economies where the con-

strained efficient allocation also has each household’s expected utility converg-

ing to the minimum level with probability 1. Here the planner chooses the

incentive-compatible allocation for all agents subject to a constraint that the

total consumption handed out in each period to the population of households

cannot exceed some constant endowment level. Households are assumed to ex-

perience unobserved idiosyncratic taste shocks ǫ that are i.i.d. over time and

households. The taste shock enters multiplicatively into preferences that take

either the logarithmic form u(c, ǫ) = ǫ log(c), the constant relative risk aversion

(CRRA) form u(c, ǫ) = ǫcγ/γ , γ < 1, γ 6= 0, or the constant absolute risk

aversion (CARA) form u(c, ǫ) = −ǫ exp(−γc), γ > 0. The assumption that

the utility function belongs to one of these families greatly simplifies the ana-

lytics of the evolution of the wealth distribution. Atkeson and Lucas show that

an equilibrium of this model yields an efficient allocation that assigns an ever-

increasing fraction of resources to an ever-diminishing fraction of the economy’s

population.

20.5.11. Comparison with self-insurance

We have just seen how in the Thomas and Worrall model, the planner re-

sponds to the incentive problem created by the consumer’s private information

by putting a downward tilt into temporal consumption profiles. It is useful to

recall how in the savings problem of chapters 17 and 18, the martingale con-

vergence theorem was used to show that the consumption profile acquired an

upward tilt coming from the motive of the consumer to self-insure.
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20.6. Insurance with unobservable storage

In the spirit of an analysis of Franklin Allen (1985), we now augment the model

of the previous section by assuming that households have access to a technology

that enables them to store nonnegative amounts of goods at a risk-free gross

return of R > 0. The planner cannot observe private storage. The planner

can borrow and lend outside the village at a risk-free gross interest rate that

also equals R , so that private and public storage yield identical rates of return.

The planner retains an advantage over households of being the only one able to

borrow outside of the village.

The outcome of our analysis will be to show that allowing households to

store amounts that are not observable to the planner so impedes the planner’s

ability to manipulate the household’s continuation valuations that no social

insurance can be supplied. Instead, the planner helps households overcome

the nonnegativity constraint on households’ storage by in effect allowing them

to engage also in private borrowing at the risk-free rate R , subject to natural

borrowing limits. Thus, outcomes share many features of the allocations studied

in chapters 17 and 18.

Our analysis partly follows Cole and Kocherlakota (2001), who assume that

a household’s utility function u(·) is strictly concave and twice continuously

differentiable over (0,∞) with limc→0 u
′(c) = ∞ . The domain of u is the

entire real line with u(c) = −∞ for c < 0.8 They also assume that u satisfies

condition A above. This preference specification allows Cole and Kocherlakota

to characterize an efficient allocation in a finite horizon model. Their extension

to an infinite horizon involves a few other assumptions, including upper and

lower bounds on the utility function.

We retain our earlier assumption that the planner has access to a risk-free

loan market outside of the village. Cole and Kocherlakota (2001) postulate a

closed economy where the planner is constrained to choose nonnegative amounts

of storage. Hence, our concept of feasibility differs from theirs.

8 Allowing for negative consumption while setting utility equal to −∞ is a convenient

device for avoiding having to deal with transfers that exceed the household’s resources.
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20.6.1. Feasibility

Anticipating that our characterization of efficient outcomes will be in terms of

sequences of quantities, we let the history of a household’s reported income

enter as an argument in the function specifying the planner’s transfer scheme.

In period t , a household with an earlier history ht−1 and a currently reported

income of yt receives a transfer bt({ht−1, yt}) that can be either positive or

negative. If all households report their incomes truthfully, the planner’s time t

budget constraint is

Kt +
∑

ht

π(ht)bt(ht) ≤ RKt−1, (20.6.1)

where Kt is the planner’s end-of-period savings (or, if negative, borrowing) and

π(ht) is the unconditional probability that a household experiences history ht ,

which in the planner’s budget constraint equals the fraction of households that

experience history ht . Given a finite horizon with a final period T , solvency of

the planner requires that KT ≥ 0.

We use a household’s history ht to index consumption and private storage

at time t ; ct(ht) ≥ 0 and kt(ht) ≥ 0. The household’s resource constraint at

history ht at time t is

ct(ht) + kt(ht) ≤ yt(ht) +Rkt−1(ht−1) + bt(ht), (20.6.2)

where the function for current income yt(ht) returns the tth element of the

household’s history ht . We assume that the household has always reported its

income truthfully, so that the transfer in period t is given by bt(ht).

Given initial conditions K0 = k0 = 0, an allocation (c, k, b,K) ≡ {ct(ht),
kt(ht), bt(ht), Kt} is physically feasible if inequalities (20.6.1), (20.6.2) and

kt(ht) ≥ 0 are satisfied for all periods t and all histories ht , and KT ≥ 0.
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20.6.2. Incentive compatibility

Since income realizations and private storage are both unobservable, households

are free to deviate from an allocation (c, k, b,K) in two ways. First, households

can lie about their income and thereby receive the transfer payments associated

with the reported but untrue income history. Second, households can choose

different levels of storage. Let ΩT be the set of reporting and storage strategies

(ŷ, k̂) ≡ {ŷt(ht), k̂t(ht); for all t, ht} , where ht denotes the household’s true

history.

Let ĥt denote the history of reported incomes, ĥt(ht) = {ŷ1(h1), ŷ2(h2),
. . . , ŷt(ht)} . With some abuse of notation, we let y denote the truth-telling

strategy for which ŷt({ht−1, yt}) = yt for all (t, ht−1), and hence for which

ĥt(ht) = ht .

Given a transfer scheme b , the expected utility of following reporting and

storage strategy (ŷ, k̂) is

Γ(ŷ, k̂; b) ≡
T∑

t=1

βt−1
∑

ht

π(ht)

· u
(
yt(ht) +Rk̂t−1(ht−1) + bt(ĥt(ht))− k̂t(ht)

)
, (20.6.3)

given k0 = 0. An allocation is incentive compatible if

Γ(y, k; b) = max
(ŷ,k̂)∈ΩT

Γ(ŷ, k̂; b). (20.6.4)

An allocation that is both incentive compatible and feasible is called an incentive

feasible allocation. The following proposition asserts that any incentive feasible

allocation with private storage can be attained with an alternative incentive

feasible allocation without private storage.

Proposition 1: Given any incentive feasible allocation (c, k, b,K), there exists

another incentive feasible allocation (c, 0, bo,Ko).

Proof: We claim that (c, 0, bo,Ko) is incentive feasible where

bot (ht) ≡ bt(ht)− kt(ht) +Rkt−1(ht−1), (20.6.5)

Ko
t ≡

∑

ht

π(ht)kt(ht) +Kt. (20.6.6)

Feasibility follows from the assumed feasibility of (c, k, b,K). Note also that

Γ(y, 0; bo) = Γ(y, k; b). The proof of incentive compatibility is by contradiction.
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Suppose that (c, 0, bo,Ko) is not incentive compatible, i.e., that there exists a

reporting and storage strategy (ŷ, k̂) ∈ ΩT such that

Γ(ŷ, k̂; bo) > Γ(y, 0; bo) = Γ(y, k; b). (20.6.7)

After invoking expression (20.6.5) for transfer payment bot (ĥt(ht)), the left side

of inequality (20.6.7) becomes

Γ(ŷ, k̂; bo) =

T∑

t=1

βt−1
∑

ht

π(ht)u
(
yt(ht) +Rk̂t−1(ht−1)− k̂t(ht)

+
[
bt(ĥt(ht))− kt(ĥt(ht)) +Rkt−1(ĥt−1(ht−1))

])

= Γ(ŷ, k∗; b),

where we have defined k∗t (ht) ≡ k̂t(ht) + kt(ĥt(ht)). Thus, inequality (20.6.7)

implies that

Γ(ŷ, k∗; b) > Γ(y, k; b),

which contradicts the assumed incentive compatibility of (c, k, b,K).

20.6.3. Efficient allocation

An incentive feasible allocation that maximizes ex ante utility is called an effi-

cient allocation. It solves the following problem:

(P1) max
{c,k,b,K}

T∑

t=1

βt−1
∑

ht

π(ht)u(ct(ht))

subject to

Γ(y, k; b) = max
(ŷ,k̂)∈ΩT

Γ(ŷ, k̂; b)

ct(ht) + kt(ht) = yt(ht) +Rkt−1(ht−1) + bt(ht), ∀t, ht
Kt +

∑

ht

π(ht)bt(ht) ≤ RKt−1, ∀t

kt(ht) ≥ 0, ∀t, ht
KT ≥ 0,

K0 = k0 = 0.
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The incentive compatibility constraint with unobservable private storage

makes problem (P1) exceedingly difficult to solve. To find the efficient allocation

we will adopt a guess-and-verify approach. We will guess that the consumption

allocation that solves (P1) coincides with the optimal consumption allocation in

another economic environment. For example, we might guess that the consump-

tion allocation that solves (P1) is the same as in a complete markets economy

with complete enforcement. A better guess might be the autarkic consumption

allocation where each household stores goods only for its own use, behaving

according to a version of the chapter 17 model with a no-borrowing constraint.

Our analysis of the model without private storage in the previous section makes

the first guess doubtful. In fact, both guesses are wrong. What turns out to be

true is the following.

Proposition 2: An incentive feasible allocation (c, k, b,K) is efficient if and

only if c = c∗ , where c∗ is the consumption allocation that solves

(P2) max
{c}

T∑

t=1

βt−1
∑

ht

π(ht)u(ct(ht))

subject to
T∑

t=1

R1−t [yt(hT )− ct(ht(hT ))] ≥ 0, ∀hT .

The proposition says that the consumption allocation that solves (P1) is the

same as that in an economy where each household can borrow or lend outside the

village at the risk-free gross interest rate R subject to a solvency requirement.9

Below we will provide a proof for the case of two periods (T = 2). We refer

readers to Cole and Kocherlakota (2001) for a general proof.

Central to the proof are the first-order conditions of problem (P2), namely,

u′(ct(ht)) = βR

S∑

s=1

Πsu
′ (ct+1({ht, ys})) , ∀t, ht (20.6.8)

T∑

t=1

R1−t [yt(hT )− ct(ht(hT ))] = 0, ∀hT . (20.6.9)

9 The solvency requirement is equivalent to the natural debt limit discussed in chapters 17

and 18.
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Given the continuous, strictly concave objective function and the compact, con-

vex constraint set in problem (P2), the solution c∗ is unique and the first-order

conditions are both necessary and sufficient.

In the efficient allocation, the planner chooses transfers that in effect re-

lax the nonnegativity constraint on a household’s storage is not binding, i.e.,

consumption smoothing condition (20.6.8) is satisfied. However, the optimal

transfer scheme offers no insurance across households because the present value

of transfers is zero for any history hT , i.e., the net-present value condition

(20.6.9) is satisfied.

20.6.4. The case of two periods (T = 2)

In a finite horizon model, an immediate implication of the incentive constraints is

that transfers in the final period T must be independent of households’ reported

values of yT . In the case of two periods, we can therefore encode permissible

transfer schemes as

b1(ys) = bs, ∀s ∈ S,

b2({ys, yj}) = es, ∀s, j ∈ S,

where bs and es denote the transfer in the first and second period, respectively,

when the household reports income ys in the first period and income yj in the

second period.

Following Cole and Kocherlakota (2001), we will first characterize the so-

lution to the modified planner’s problem (P3) stated below. It has the same

objective function as (P1) but a larger constraint set. In particular, we enlarge

the constraint set by considering a smaller set of reporting strategies for the

households, Ω2
R . A household strategy (ŷ, k̂) is an element of Ω2

R if

ŷ1(ys) ∈ {ys−1, ys}, for s = 2, 3, . . . , S

ŷ1(y1) = y1.

That is, a household can either tell the truth or lie downward by one notch

in the grid of possible income realizations. There is no restriction on possible

storage strategies.
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Given T = 2, we state problem (P3) as follows. Choose {bs, es}Ss=1 to

maximize

(P3)

S∑

s=1

Πs


u(ys + bs) + β

S∑

j=1

Πju(yj + es)




subject to

Γ(y, 0; b) = max
(ŷ,k̂)∈Ω2

R

Γ(ŷ, k̂; b)

ct(ht) = yt(ht) + bt(ht), ∀t, ht
kt(ht) = 0, ∀t, ht
Kt +

∑

ht

π(ht)bt(ht) ≤ RKt−1, ∀t

K2 ≥ 0,

given K0 = k0 = 0.

Beyond the restricted strategy space Ω2
R , problem (P3) differs from (P1) in con-

sidering only allocations that have zero private storage. But by Proposition 1,

we know that this is an innocuous restriction that does not affect the maximized

value of the objective.

Here it is useful to explain why we are first studying the contrived problem

(P3) rather than turning immediately to the real problem (P1). Certainly prob-

lem (P3) is easier to solve because we are exogenously restricting the households’

reporting strategies to either telling the truth or making one specific lie. But

how can knowledge of the solution to problem (P3) help us understand problem

(P1)? Well, suppose it happens that problem (P3) has a unique solution equal

to the optimal consumption allocation c∗ from Proposition 2 (which will in fact

turn out to be true). In that case, it follows that c∗ is also the solution to

problem (P1) because of the following argument. First, it is straightforward to

verify that c∗ is incentive compatible with respect to the unrestricted set Ω2

of reporting strategies. Second, given that no better allocation than c∗ can be

supported with the restricted set Ω2
R of reporting strategies (telling the truth

or making one specific lie), it is impossible that we can attain better outcomes

by merely introducing additional ways of lying.
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Let us therefore first study problem (P3). In particular, using a proof by

contradiction, we now show that any allocation (c, 0, b,K) that solves problem

(P3) must satisfy three conditions:10

(i) The aggregate resource constraint (20.6.1) holds with equality in both peri-

ods and K2 = 0;

(ii) u′(c1(ys)) = βR
∑S
j=1 Πju

′
(
c2({ys, yj})

)
, ∀s;

(iii) bs +R−1es = 0, ∀s.

Condition (i) is easy to establish given the restricted strategy space Ω2
R . Suppose

that condition (i) is violated and hence, some aggregate resources have not been

transferred to the households. In that case, the planner should store all unused

resources until period 2 and give them to any household who reported the highest

income in period 1. Given strategy space Ω2
R , households are only allowed to

lie downward so the proposed allocation cannot violate the incentive constraints

for truthful reporting. Also, transferring more consumption in the last period

will not lead to any private storage. We conclude that condition (i) must hold

for any solution to problem (P3).

Next, suppose that condition (ii) is violated, i.e., for some i ∈ S ,

u′(c1(yi)) > βR

S∑

s=1

Πsu
′ (c2({yi, ys})) . (20.6.10)

(The reverse inequality is obviously inconsistent with the incentive constraints

since households are free to store goods between periods.) We can then construct

an alternative incentive feasible allocation that yields higher ex ante utility as

follows. Set Ko
1 = K1 − ǫΠi , b

o
i = bi + ǫ , eoi = ei − δ , and choose (ǫ, δ) such

that

u(yi+bi + ǫ) + β

S∑

s=1

Πsu (ys + ei − δ)

= u(yi + bi) + β

S∑

s=1

Πsu (ys + ei) , (20.6.11)

10 The proof by contradiction goes as follows. Suppose that an allocation (c, 0, b,K) solves

problem (P3) but violates one of our conditions. Then we can show either that (c, 0, b,K)

cannot be incentive feasible with respect to (P3) or that there exists another incentive feasible

allocation (co, 0, bo,Ko) that yields an even higher ex ante utility than (c, 0, b,K) .
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u′(yi + bi + ǫ) ≥ βR

S∑

s=1

Πsu
′ (ys + ei − δ) . (20.6.12)

By the envelope condition, (20.6.10) implies that δ > Rǫ , so this alternative

allocation frees up resources that can be used to improve ex ante utility. But we

have to check that the incentive constraints are respected. Concerning house-

holds experiencing yi , the proposed allocation is clearly incentive compatible,

since their payoffs from reporting truthfully or lying are unchanged, and con-

dition (20.6.12) ensures that they are not deviating from zero private storage.

It remains to be checked that households with the next higher income shock

yi+1 would not like to lie downward. This is also true, since a household with a

higher income yi+1 would not like to accept the proposed loan against the fu-

ture at the implied interest rate, δ/ǫ > R , at which the lower-income household

is indifferent to the transaction. The following lemma shows this formally.

Lemma: Let ǫ , δ > 0 satisfy δ > Rǫ , and define

Z(m) ≡ max
k≥0

[
u(m− k) + βEyu(y +Rk)

]

W (m) ≡ max
k≥0

[
u(m− k + ǫ) + βEyu(y +Rk − δ)

]
,

where u is a strictly concave function and the expectation Ey is taken with

respect to a random second-period income y . If Z(ma) = W (ma) and mb >

ma , then Z(mb) > W (mb).

Proof: Let the unique, weakly increasing sequence of maximizers of the savings

problems Z and W be denoted kZ(m) and kW (m), respectively, which are

guaranteed to exist by the strict concavity of u . The proof of the lemma proceeds

by contradiction. Suppose that Z(mb) ≤ W (mb). Then by the mean value

theorem, there exists mc ∈ (ma,mb) such that Z ′(mc) ≤W ′(mc). This implies

that

u′(mc − kZ(mc)) ≤ u′(mc − kW (mc) + ǫ).

The concavity of u implies that

0 ≤ kZ(mc) ≤ kW (mc)− ǫ.

The weak monotonicity of kW implies that kW (mb) ≥ kW (mc), so we know

that 0 ≤ kW (mb)− ǫ and we can write

Z(mb) ≥ u(mb − kW (mb) + ǫ) + βEyu(y +Rkw(mb)−Rǫ)

> u(mb − kW (mb) + ǫ) + βEyu(y +Rkw(mb)− δ) =W (mb),
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which is a contradiction.

Finally, suppose that condition (iii) is violated, i.e., for some i ∈ S ,

Ψs ≡ bs +R−1es 6= bs−1 +R−1es−1 ≡ Ψs−1.

First, we can rule out Ψs < Ψs−1 because it would compel households with

income shock ys in the first period to lie downward. This is so because our

condition (ii) implies that the nonnegative storage constraint binds for neither

these households nor the households with the lower income shock ys−1 . Hence,

households with income shock ys will only report truthfully if Z(ys + Ψs) ≥
Z(ys + Ψs−1), where Z(·) is the value of the first savings problem defined in

the lemma above. Thus, we conclude that Ψs ≥ Ψs−1 .

Second, we can rule out Ψs > Ψs−1 by constructing an alternative incentive

feasible allocation that attains a higher ex ante utility. Compute the certainty

equivalent Ψ̃ such that

ΠsZ(ys + Ψ̃) + Πs−1Z(ys−1 + Ψ̃) = ΠsZ(ys +Ψs) + Πs−1Z(ys−1 +Ψs−1).

Then change the transfer scheme so that households reporting ys or ys−1 get

the same present value of transfers equal to Ψ̃. Because of the strict concavity

of the utility function, the new scheme frees up resources that can be used to

improve ex ante utility. Also, the new scheme does not violate any incentive

constraints. Households with income shock ys−1 are now better off when re-

porting truthfully, households with income shock ys are indifferent to telling the

truth, and households with income shock ys+1 will not lie because the present

value of the transfers associated with lying has gone down. Since the planner

satisfies the aggregate resource constraint at equality in our condition (i), we

conclude that all households receive the same present value of transfers equal to

zero.

By establishing conditions (i)–(iii), we have in effect shown that any solution

to (P3) must satisfy equations (20.6.8) and (20.6.9). Thus, problem (P3) has

a unique solution (c∗, 0, b∗,K∗), where c∗ is given by Proposition 2 and

b∗t (ht) = c∗t (ht)− yt(ht),

K∗
t = −

∑

ht

π(ht)
t∑

j=1

Rt−1b∗j (hj(ht)).
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Moreover, (c∗, 0, b∗,K∗) is incentive compatible with respect to the unrestricted

strategy set Ω2 . If a household tells the truth, its consumption is optimally

smoothed. Hence, households weakly prefer to tell the truth and not store.

The proof of Proposition 2 for T = 2 is completed by noting that by

construction, if some allocation (c∗, 0, b∗,K∗) solves (P3), and (c∗, 0, b∗,K∗) is

incentive compatible with respect to Ω2 , then (c∗, 0, b∗,K∗) solves (P1). Also,

since equations (20.6.8) and (20.6.9) fully characterize the consumption allo-

cation c∗ , we have uniqueness with respect to c∗ (but there exists a multitude

of storage and transfer schemes that the planner can use to implement c∗ in

problem (P1)).

20.6.5. Role of the planner

Proposition 2 states that any allocation (c, k, b,K) that solves the planner’s

problem (P1) has the same consumption outcome c = c∗ as the solution to

(P2), i.e., the market outcome when each household can lend or borrow at the

risk-free interest rate R . This result has both positive and negative messages

about the role of the planner. Because households have access only to a stor-

age technology, the planner implements the efficient allocation by designing an

elaborate transfer scheme that effectively undoes each household’s nonnegativity

constraint on storage while respecting solvency requirements. In this sense, the

planner has an important role to play. However, the optimal transfer scheme of-

fers no insurance across households and implements only a self-insurance scheme

tantamount to a borrowing-and-lending outcome for each household. Thus, the

planner’s accomplishments as an insurance provider are very limited.

If we had assumed that households themselves have direct access to the

credit market outside of the village, it would follow immediately that the plan-

ner would be irrelevant, since the households could then implement the efficient

allocation themselves. Allen (1985) first made this observation. Given any

transfer scheme, he showed that all households would choose to report the in-

come that yields the highest present value of transfers regardless of what the

actual income is. In our setting where the planner has no resources of his own,

we get the zero net present value condition for the stream of transfers to any

individual household.
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20.6.6. Decentralization in a closed economy

Suppose that consumption allocation c∗ in Proposition 2 satisfies

∑

ht

π(ht)

t∑

j=1

Rt−j
[
yj(ht)− c∗j (hj(ht))

]
≥ 0, ∀t. (20.6.13)

That is, aggregate storage is nonnegative at all dates. It follows that the ef-

ficient allocation in Proposition 2 would then also be the solution to a closed

system where the planner has no access to outside borrowing. Moreover, c∗

can then be decentralized as the equilibrium outcome in an incomplete markets

economy where households competitively trade consumption and risk-free one-

period bonds that are available in zero net supply in each period. Here we are

assuming complete enforcement so that households must pay off their debts in

every state of the world, and they cannot end their lives in debt.

In the decentralized equilibrium, let at(ht) and kdt (ht) denote bond hold-

ings and storage, respectively, of a household indexed by its history ht . The

gross interest rate on bonds between periods t and t + 1 is denoted 1 + rt .

We claim that the efficient allocation (c∗, 0, b∗,K∗) can be decentralized by

recursively defining

rt ≡ R− 1, (20.6.14)

kdt (ht) ≡ K∗
t , (20.6.15)

at(ht) ≡ yt(ht)− c∗t (ht)−K∗
t +RK∗

t−1 +Rat−1(ht−1), (20.6.16)

with a0 = 0. First, we verify that households are behaving optimally. Note

that we have chosen the interest rate so that households are indifferent between

lending and storing. Because we also know that the household’s consumption

is smoothed at c∗ , we need only to check that households’ budget constraints

hold with equality. By substituting (20.6.15) into (20.6.16), we obtain the

household’s one-period budget constraint. The consolidation of all one-period

budget constraints yields

aT (hT ) =− kdT (hT ) +

T∑

t=1

RT−t [yt(hT )− c∗t (ht(hT ))]

+RT−1(kd0 + a0) = 0
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where the last equality is implied by K∗
T = K0 = a0 = 0 and (20.6.9). Second,

we verify that the bond market clears by summing all households’ one-period

budget constraints,

∑

ht

π(ht)at(ht) =
∑

ht

π(ht)
[
yt(ht)− c∗t (ht)− kdt (ht)

+Rkdt−1(ht−1(ht)) +Rat−1(ht−1(ht))
]
.

After invoking (20.6.15) and the fact that b∗t (ht) = c∗t (ht) − yt(ht), we can

rewrite this expression as

∑

ht

π(ht)at(ht) =−K∗
t +RK∗

t−1

−
∑

ht

π(ht)
[
b∗t (ht)−Rat−1(ht−1(ht))

]

=R
∑

ht−1

π(ht−1)at−1(ht−1) = 0 ,

where the second equality is implied by (20.6.1) holding with equality at the

allocation (c∗, 0, b∗,K∗), and the last equality follows from successive substitu-

tions leading back to the initial condition a0 = 0.

It is straightforward to make the reverse argument and show that if 1 +

rt = R for all t in our incomplete markets equilibrium, then the equilibrium

consumption allocation is efficient and equal to c∗ , as given in Proposition 2.

Cole and Kocherlakota note that seemingly ad hoc restrictions on the secu-

rities available for trade are consistent with the implementation of the efficient

allocation in this setting, and they argue that their framework provides an ex-

plicit micro foundation for incomplete markets models such as Aiyagari’s (1994)

model that we studied in chapter 18.
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20.7. Concluding remarks

The idea of using promised values as a state variable has made it possible to

use dynamic programming to study problems with history dependence. In this

chapter we have studied how using a promised value as a state variable helps

to study optimal risk-sharing arrangements when there are incentive problems

coming from limited enforcement or limited information. The next several chap-

ters apply and extend this idea in other contexts. Chapter 21 discusses how to

build a closed-economy, or general equilibrium, version of our model with im-

perfect enforcement. Chapter 22 discusses ways of designing unemployment

insurance that optimally compromise between supplying insurance and provid-

ing incentives for unemployed workers to search diligently. Chapter 23 uses

a continuation value as a state variable to encode a government’s reputation.

Chapter 25 discusses some models of contracts and government policies that

have been applied to some enforcement problems in international trade.

A. Historical development

20.A.1. Spear and Srivastava

Spear and Srivastava (1987) introduced the following recursive formulation of

an infinitely repeated, discounted repeated principal-agent problem: A principal

owns a technology that produces output qt at time t , where qt is determined

by a family of c.d.f.’s F (qt|at), and at is an action taken at the beginning of

t by an agent who operates the technology. The principal has access to an

outside loan market with constant risk-free gross interest rate β−1 . The agent

has preferences over consumption streams ordered by

E0

∞∑

t=0

βtu(ct, at).

The principal is risk neutral and offers a contract to the agent designed to

maximize

E0

∞∑

t=0

βt{qt − ct}
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where ct is the payment from the principal to the agent at t .

20.A.2. Timing

Let w denote the discounted utility promised to the agent at the beginning of

the period. Given w , the principal selects three functions a(w), c(w, q), and

w̃(w, q) determining the current action at = a(wt), the current consumption

c = c(wt, qt), and a promised utility wt+1 = w̃(wt, qt). The choice of the

three functions a(w), c(w, q), and w̃(w, q) must satisfy the following two sets

of constraints:

w =

∫
{u[c(w, q), a(w)] + βw̃(w, q)} dF [q|a(w)] (20.A.1)

and
∫
{u[c(w, q), a(w)] + βw̃(w, q)} dF [q|a(w)]

≥
∫
{u[c(w, q), â] + βw̃(w, q)}dF (q|â) , ∀ â ∈ A. (20.A.2)

Equation (20.A.1) requires the contract to deliver the promised level of dis-

counted utility. Equation (20.A.2) is the incentive compatibility constraint re-

quiring the agent to want to deliver the amount of effort called for in the contract.

Let v(w) be the value to the principal associated with promising discounted util-

ity w to the agent. The principal’s Bellman equation is

v(w) = max
a,c,w̃

{q − c(w, q) + β v[w̃(w, q)]} dF [q|a(w)] (20.A.3)

where the maximization is over functions a(w), c(w, q), and w̃(w, q) and is

subject to the constraints (20.A.1) and (20.A.2). This value function v(w) and

the associated optimum policy functions are to be solved by iterating on the

Bellman equation (20.A.3).



840 Insurance Versus Incentives

20.A.3. Use of lotteries

In various implementations of this approach, a difficulty can be that the con-

straint set fails to be convex as a consequence of the structure of the incen-

tive constraints. This problem has been overcome by Phelan and Townsend

(1991) by convexifying the constraint set through randomization. Thus, Phe-

lan and Townsend simplify the problem by extending the principal’s choice to

the space of lotteries over actions a and outcomes c, w′ . To introduce Phelan

and Townsend’s formulation, let P (q|a) be a family of discrete probability dis-

tributions over discrete spaces of outputs and actions Q,A , and imagine that

consumption and values are also constrained to lie in discrete spaces C,W , re-

spectively. Phelan and Townsend instruct the principal to choose a probability

distribution Π(a, q, c, w′) subject first to the constraint that for all fixed (ā, q̄)

∑

C×W

Π(ā, q̄, c, w′) = P (q̄|ā)
∑

Q×C×W

Π(ā, q, c, w′) (20.A.4a)

Π(a, q, c, w′) ≥ 0 (20.A.4b)
∑

A×Q×C×W

Π(a, q, c, w′) = 1. (20.A.4c)

Equation (20.A.4a) simply states that Prob(ā, q̄) = Prob(q̄|ā)Prob(ā). The

remaining pieces of (20.A.4) just require that “probabilities are probabilities.”

The counterpart of Spear-Srivastava’s equation (20.A.1) is

w =
∑

A×Q×C×W

{u(c, a) + βw′} Π(a, q, c, w′). (20.A.5)

The counterpart to Spear-Srivastava’s equation (20.A.2) for each a, â is

∑

Q×C×W

{u(c, a) + βw′} Π(c, w′|q, a)P (q|a)

≥
∑

Q×C×W

{u(c, â) + βw′} Π(c, w′|q, a)P (q|â).

Here Π(c, w′|q, a)P (q|â) is the probability of (c, w′, q) if the agent claims to be

working a but is actually working â . Express

Π(c, w′|q, a)P (q|â) =

Π(c, w′|q, a)P (q|a) P (q|â)
P (q|a) = Π(c, w′, q|a) · P (q|â)

P (q|a) .
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To write the incentive constraint as

∑

Q×C×W

{u(c, a) + βw′}Π(c, w′, q|a)

≥
∑

Q×C×W

{u(c, â) + βw′} Π(c, w′, q|â) · P (q|â)
P (q|a) .

Multiplying both sides by the unconditional probability P (a) gives expression

(20.A.6).

∑

Q×C×W

{u(c, a) + βw′} Π(a, q, c, w′)

≥
∑

Q×C×W

{u(c, â) + βw′} P (q|â)
P (q|a) Π(a, q, c, w′) (20.A.6)

The Bellman equation for the principal’s problem is

v(w) = max
Π

{(q − c) + βv(w′)}Π(a, q, c, w′), (20.A.7)

where the maximization is over the probabilities Π(a, q, c, w′) subject to equa-

tions (20.A.4), (20.A.5), and (20.A.6). The problem on the right side of equa-

tion (20.A.7) is a linear programming problem. Think of each of (a, q, c, w′)

being constrained to a discrete grid of points. Then, for example, the term

(q − c) + βv(w′) on the right side of equation (20.A.7) can be represented as a

fixed vector that multiplies a vectorized version of the probabilities Π(a, q, c, w′).

Similarly, each of the constraints (20.A.4), (20.A.5), and (20.A.6) can be repre-

sented as a linear inequality in the choice variables, the probabilities Π. Phelan

and Townsend compute solutions of these linear programs to iterate on the Bell-

man equation (20.A.7). Note that at each step of the iteration on the Bellman

equation, there is one linear program to be solved for each point w in the space

of grid values for W .

In practice, Phelan and Townsend have found that lotteries are often re-

dundant in the sense that most of the Π(a, q, c, w′)’s are zero, and a few are

1.
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Exercises

Exercise 20.1 Thomas and Worrall meet Markov

A household orders sequences {ct}∞t=0 by

E

∞∑

t=0

βtu(ct), β ∈ (0, 1)

where u is strictly increasing, twice continuously differentiable, and strictly

concave with u′(0) = +∞ . The good is nondurable. The household receives an

endowment of the consumption good of yt that obeys a discrete-state Markov

chain with Pij = Prob(yt+1 = yj |yt = yi), where the endowment yt can take

one of the I values [y1, . . . , yI ] .

a. Conditional on having observed the time t value of the household’s endow-

ment, a social insurer wants to deliver expected discounted utility v to the

household in the least costly way. The insurer observes yt at the beginning of

every period, and contingent on the observed history of those endowments, can

make a transfer τt to the household. The transfer can be positive or negative

and can be enforced without cost. Let C(v, i) be the minimum expected dis-

counted cost to the insurance agency of delivering promised discounted utility v

when the household has just received endowment yi . (Let the insurer discount

with factor β .) Write a Bellman equation for C(v, i).

b. Characterize the consumption plan and the transfer plan that attains C(v, i);

find an associated law of motion for promised discounted value.

c. Now assume that the household is isolated and has no access to insurance.

Let va(i) be the expected discounted value of utility for a household in au-

tarky, conditional on current income being yi . Formulate Bellman equations

for va(i), i = 1, . . . , I .

d. Now return to the problem of the insurer mentioned in part b, but assume

that the insurer cannot enforce transfers because each period the consumer is

free to walk away from the insurer and live in autarky thereafter. The insurer

must structure a history-dependent transfer scheme that prevents the household

from ever exercising the option to revert to autarky. Again, let C(v, i) be the

minimum cost for an insurer that wants to deliver promised discounted utility

v to a household with current endowment i . Formulate Bellman equations
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for C(v, i), i = 1, . . . , I . Briefly discuss the form of the law of motion for v

associated with the minimum cost insurance scheme.

Exercise 20.2 Wealth dynamics in moneylender model

Consider the model in the text of the village with a moneylender. The village

consists of a large number (e.g., a continuum) of households, each of which has

an i.i.d. endowment process that is distributed as

Prob(yt = ys) =
1− λ

1− λS
λs−1

where λ ∈ (0, 1) and ys = s + 5 is the sth possible endowment value, s =

1, . . . , S . Let β ∈ (0, 1) be the discount factor and β−1 the gross rate of return

at which the moneylender can borrow or lend. The typical household’s one-

period utility function is u(c) = (1 − γ)−1c1−γ , where γ is the household’s

coefficient of relative risk aversion. Assume the parameter values (β, S, γ, λ) =

(.5, 20, 2, .95). Tom XXXX: I changed β from .95 to .5 following Isaac’s

advice. Double check my matlab programs to verify that β = .5 in

the programs.

Hint: The formulas given in the section 20.3.3 will be helpful in answering the

following questions.

a. Using Matlab, compute the optimal contract that the moneylender offers

a villager, assuming that the contract leaves the villager indifferent between

refusing and accepting the contract.

b. Compute the expected profits that the moneylender earns by offering this

contract for an initial discounted utility that equals the one that the household

would receive in autarky.

c. Let the cross-section distribution of consumption at time t ≥ 0 be given by

the c.d.f. Prob(ct ≤ C) = Ft(C). Compute Ft . Plot it for t = 0, t = 5, t = 10,

t = 500.

d. Compute the moneylender’s savings for t ≥ 0 and plot it for t = 0, . . . , 100.

e. Now adapt your program to find the initial level of promised utility v > vaut

that would set P (v) = 0.

Exercise 20.3 Thomas and Worrall (1988)
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There is a competitive spot market for labor always available to each of a con-

tinuum of workers. Each worker is endowed with one unit of labor each period

that he supplies inelastically to work either permanently for “the company” or

each period in a new one-period job in the spot labor market. The worker’s

productivity in either the spot labor market or with the company is an i.i.d.

endowment process that is distributed as

Prob(wt = ws) =
1− λ

1− λS
λs−1

where λ ∈ (0, 1) and ws = s+5 is the sth possible marginal product realization,

s = 1, . . . , S . In the spot market, the worker is paid wt . In the company,

the worker is offered a history-dependent payment ωt = ft(ht) where ht =

wt, . . . , w0 . Let β ∈ (0, 1) be the discount factor and β−1 the gross rate of

return at which the company can borrow or lend. The worker cannot borrow or

lend. The worker’s one-period utility function is u(ω) = (1 − γ)−1w1−γ where

ω is the period wage from the company, which equals consumption, and γ is

the worker’s coefficient of relative risk aversion. Assume the parameter values

(β, S, γ, λ) = (.5, 20, 2, .95). Tom XXXX: again, I changed β from .95 to

.5, following Isaac’s advice. Check matlab programs.

The company’s discounted expected profits are

E

∞∑

t=0

βt (wt − ωt) .

The worker is free to walk away from the company at the start of any period,

but must then stay in the spot labor market forever. In the spot labor market,

the worker receives continuation value

vspot =
Eu(w)

1− β
.

The company designs a history-dependent compensation contract that must be

sustainable (i.e., self-enforcing) in the face of the worker’s freedom to enter the

spot labor market at the beginning of period t after he has observed wt but

before he receives the t period wage.

Hint: Do these questions ring a bell? See exercise 20.2 .

a. Using Matlab, compute the optimal contract that the company offers the

worker, assuming that the contract leaves the worker indifferent between refusing

and accepting the contract.
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b. Compute the expected profits that the firm earns by offering this contract for

an initial discounted utility that equals the one that the worker would receive

by remaining forever in the spot market.

c. Let the distribution of wages that the firm offers to its workers at time t ≥ 0

be given by the c.d.f. Prob(ωt ≤ w) = Ft(w). Compute Ft . Plot it for t = 0,

t = 5, t = 10, t = 500.

d. Plot an expected wage-tenure profile for a new worker.

e. Now assume that there is competition among companies and free entry. New

companies enter by competing for workers by raising initial promised utility with

the company. Adapt your program to find the initial level of promised utility

v > vspot that would set expected profits from the average worker P (v) = 0.

Exercise 20.4 Thomas-Worrall meet Phelan-Townsend

Consider the Thomas Worrall environment and denote Π(y) the density of the

i.i.d. endowment process, where y belongs to the discrete set of endowment levels

Y = [y1, . . . , yS ] . The one-period utility function is u(c) = (1− γ)−1(c− a)1−γ

where γ > 1 and yS > a > 0.

Discretize the set of transfers B and the set of continuation values W . We

assume that the discrete set B ⊂ (a − yS , b] . Notice that with the one-period

utility function above, the planner could never extract more than a − yS from

the agent. Denote Πv(b, w|y) the joint density over (b, w) that the planner

offers the agent who reports y and to whom he has offered beginning-of-period

promised value v . For each y ∈ Y and each v ∈ W , the planner chooses a set

of conditional probabilities Πv(b, w|y) to satisfy the Bellman equation

P (v) = max
Πv(b,w,y)

∑

B×W×Y

[−b+ βP (w)] Πv(b, w, y) (1)

subject to the following constraints:

v =
∑

B×W×Y

[u(y + b) + βw] Πv(b, w, y) (2)

∑

B×W

[u(y + b) + βw] Πv(b, w|y) ≥
∑

B×W

[u(y + b) + βw] Πv(b, w|ỹ)

∀(y, ỹ) ∈ Y × Y (3)

Πv(b, w, y) = Π(y)Πv(b, w|y) ∀(b, w, y) ∈ B ×W × Y (4)
∑

B×W×Y

Πv(b, w, y) = 1. (5)
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Here (2) is the promise-keeping constraint, (3) are the truth-telling constraints,

and (4), (5) are restrictions imposed by the laws of probability.

a. Verify that given P (w), one step on the Bellman equation is a linear pro-

gramming problem.

b. Set β = .94, a = 5, γ = 3. Let S,NB, NW be the number of points in

the grids for Y,B,W , respectively. Set S = 10, NB = NW = 25. Set Y =

[ 6 7 . . . 15 ], Prob(yt = ys) = S−1 . Set W = [wmin, . . . , wmax] and B =

[bmin, . . . , bmax] , where the intermediate points in W and B , respectively, are

equally spaced. Please set wmin = 1
1−β

1
1−γ (ymin − a)

1−γ
and wmax = wmin/20

(these are negative numbers, so wmin < wmax ). Also set bmin = (1− ymax+ .33)

and bmax = ymax − ymin .

For these parameter values, compute the optimal contract by formulating

a linear program for one step on the Bellman equation, then iterating to con-

vergence on it.

c. Notice the following probability laws:

Prob(bt, wt+1, yt|wt) ≡ Πwt(bt, wt+1, yt)

Prob(wt+1|wt) =
∑

b∈B,y∈Y

Πwt(b, wt+1, y)

Prob(bt, yt|wt) =
∑

wt+1∈W

Πwt(bt, wt+1, yt).

Please use these and other probability laws to compute Prob(wt+1|wt). Show

how to compute Prob(ct), assuming a given initial promised value w0 .

d. Assume that w0 ≈ −2. Compute and plot Ft(c) = Prob(ct ≤ c) for

t = 1, 5, 10, 100. Qualitatively, how do these distributions compare with those

for the simple village and moneylender model with no information problem and

one-sided lack of commitment?

Exercise 20.5 The IMF

Consider the problem of a government of a small country that has to finance

an exogenous stream of expenditures {gt} . For time t ≥ 0, gt is i.i.d. with

Prob(gt = gs) = πs where πs > 0,
∑S
s=1 πs = 1 and 0 < g1 < · · · < gS . Raising

revenues by taxation is distorting. In fact, the government confronts a dead-

weight loss function W (Tt) that measures the distortion at time t . Assume that
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W is an increasing, twice continuously differentiable, strictly convex function

that satisfies W (0) = 0,W ′(0) = 0,W ′(T ) > 0 for T > 0 and W ′′(T ) > 0 for

T ≥ 0. The government’s intertemporal loss function for taxes is such that it

wants to minimize

E−1

∞∑

t=0

βtW (Tt), β ∈ (0, 1)

where E−1 is the mathematical expectation before g0 is realized. If it cannot

borrow or lend, the government’s budget constraint is gt = Tt . In fact, the gov-

ernment is unable to borrow and lend except through an international coalition

of lenders called the IMF. If it does not have an arrangement with the IMF, the

country is in autarky and the government’s loss is the value

vaut = E
∞∑

t=0

βtW (gt).

The IMF itself is able to borrow and lend at a constant risk-free gross rate

of interest of R = β−1 . The IMF offers the country a contract that gives the

country a net transfer of gt − Tt . A contract is a sequence of functions for

t ≥ 0, the time t component of which maps the history gt into a net transfer

g−Tt . The IMF has the ability to commit to the contract. However, the country

cannot commit to honor the contract. Instead, at the beginning of each period,

after gt has been realized but before the net transfer gt−Tt has been received,

the government can default on the contract, in which case it receives loss W (gt)

this period and the autarky value ever after. A contract is said to be sustainable

if it is immune to the threat of repudiation, i.e., if it provides the country with

the incentive not to leave the arrangement with the IMF. The present value of

the contract to the IMF is

E

∞∑

t=0

βt(Tt − gt).

a. Write a Bellman equation that can be used to find an optimal sustainable

contract.

b. Characterize an optimal sustainable contract that delivers initial promised

value vaut to the country (i.e., a contract that renders the country indifferent

between accepting and not accepting the IMF contract starting from autarky).
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c. Can you say anything about a typical pattern of government tax collections Tt

and distortions W (Tt) over time for a country in an optimal sustainable contract

with the IMF? What about the average pattern of government surpluses Tt− gt
across a panel of countries with identical gt processes and W functions? Would

there be a “cohort” effect in such a panel (i.e., would the calendar date when

the country signed up with the IMF matter)?

d. If the optimal sustainable contract gives the country value vaut , can the IMF

expect to earn anything from the contract?


