Working Paper

Vector quantile regression: an optimal transport approach

Authors

Guillaume Carlier, Victor Chernozhukov, Alfred Galichon

Published Date

22 September 2015

Type

Working Paper (CWP58/15)

We propose a notion of conditional vector quantile function and a vector quantile regression. A conditional vector quantile function (CVQF) of a random vector Y, taking values in Rd given covariates Z=z, taking values in Rk, is a map u –> QY|Z(u,z), which is monotone, in the sense of being a gradient of a convex function, and such that given that vector U follows a reference non-atomic distribution FU, for instance uniform distribution on a unit cube in Rd, the random vector QY|Z(U,z) has the distribution of Y conditional on Z=z. Moreover, we have a strong representation, Y =QY|Z(U,Z) almost surely, for some version of U. The vector quantile regression (VQR) is a linear model for CVQF of Y given Z. Under correct specification, the notion produces strong representation,Y=β(U)Tf(Z),for f(Z) denoting a known set of transformations of Z, where u –> β(u)T f(Z) is a monotone map, the gradient of a convex function, and the quantile regression coefficients u –> β(u) have the interpretations analogous to that of the standard scalar quantile regression. As f(Z) becomes a richer class of transformations of Z, the model becomes nonparametric, as in series modelling. A key property of VQR is the embedding of the classical Monge-Kantorovich’s optimal transportation problem at its core as a special case. In the classical case, where Y is scalar, VQR reduces to a version of the classical QR, and CVQF reduces to the scalar conditional quantile function. An application to multiple Engel curve estimation is considered.


Latest version

Vector quantile regression: an optimal transport approach
Guillaume Carlier, Victor Chernozhukov, Alfred Galichon
CWP

Previous version

Vector quantile regression
Guillaume Carlier, Victor Chernozhukov, Alfred Galichon
CWP48/14