Working Paper

Optimal bandwidth selection for robust generalized method of moments estimation

Authors

Daniel Wilhelm

Published Date

24 March 2014

Type

Working Paper (CWP15/14)

A two-step generalized method of moments estimation procedure can be made robust to heteroskedasticity and autocorrelation in the data by using a nonparametric estimator of the optimal weighting matrix. This paper addresses the issue of choosing the corresponding smoothing parameter (or bandwidth) so that the resulting point estimate is optimal in a certain sense. We derive an asymptotically optimal bandwidth that minimizes a higher-order approximation to the asymptotic mean-squared error of the estimator of interest. We show that the optimal bandwidth is of the same order as the one minimizing the mean-squared error of the nonparametric plugin estimator, but the constants of proportionality are significantly di fferent. Finally, we develop a data-driven bandwidth selection rule and show, in a simulation experiment, that it may substantially reduce the estimator’s mean-squared error relative to existing bandwidth choices, especially when the number of moment conditions is large.