This paper considers parametric estimation problems with i.i.d. data. It focusses on rate-effciency, in the sense of maximal possible convergence rates of stochastically bounded estimators, as an optimality criterion, largely unexplored in parametric estimation. Under mild conditions, the Hellinger metric, defined on the space of parametric probability measures, is shown to be an essentially universally applicable tool to determine maximal possible convergence rates.
Maximal uniform convergence rates in parametric estimation problems
Authors
Published Date
1 April 2010
Type
Journal Article